Pyreal: A Framework for Interpretable ML Explanations - IRD - Institut de recherche pour le développement
Pré-Publication, Document De Travail Année : 2023

Pyreal: A Framework for Interpretable ML Explanations

Alexandra Zytek
  • Fonction : Auteur
Wei-En Wang
  • Fonction : Auteur
Dongyu Liu
  • Fonction : Auteur
Kalyan Veeramachaneni
  • Fonction : Auteur

Résumé

Users in many domains use machine learning (ML) predictions to help them make decisions. Effective ML-based decision-making often requires explanations of ML models and their predictions. While there are many algorithms that explain models, generating explanations in a format that is comprehensible and useful to decision-makers is a nontrivial task that can require extensive development overhead. We developed Pyreal, a highly extensible system with a corresponding Python implementation for generating a variety of interpretable ML explanations. Pyreal converts data and explanations between the feature spaces expected by the model, relevant explanation algorithms, and human users, allowing users to generate interpretable explanations in a low-code manner. Our studies demonstrate that Pyreal generates more useful explanations than existing systems while remaining both easy-to-use and efficient.

Dates et versions

ird-04382081 , version 1 (09-01-2024)

Identifiants

Citer

Alexandra Zytek, Wei-En Wang, Dongyu Liu, Laure Berti-Equille, Kalyan Veeramachaneni. Pyreal: A Framework for Interpretable ML Explanations. 2024. ⟨ird-04382081⟩
16 Consultations
0 Téléchargements

Altmetric

Partager

More