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Abstract

Molecular dating has been widely used to infer the times of past evolutionary events using molec-

ular sequences. This paper describes three bootstrap methods to infer confidence intervals under a

penalized likelihood framework. The basic idea is to use data pseudoreplicates to infer uncertainty

in the branch lengths of a phylogeny reconstructed with molecular sequences. The three specific

bootstrap methods are nonparametric (direct tree bootstrapping), semiparametric (rate smoothing),

and parametric (Poisson simulation). Our extensive simulation study showed that the three meth-

ods perform generally well under a simple strict clock model of molecular evolution; however, the

results were less positive with data simulated using an uncorrelated or a correlated relaxed clock

model. Several factors impacted, possibly in interaction, the performance of the confidence inter-

vals. Increasing the number of calibration points had a positive effect, as well as increasing the

sequence length or the number of sequences although both latter effects depended on the model

of evolution. A case study is presented with a molecular phylogeny of the Felidae (Mammalia:

Carnivora). A comparison was made with a Bayesian analysis: the results were very close in terms

of confidence intervals and there was no marked tendency for an approach to produce younger or

older bounds compared to the other.
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1. Introduction

The inference of divergence dates using molecular sequence data has many applications such2

as estimating the dates of major evolutionary radiations more than one billion years ago (Parsons

et al., 2021) or quantifying the dynamics of viral epidemics over several months (?). Pioneer works4

on the molecular clock by Zuckerkandl and Pauling (1962, 1965b,a) opened up the development

of numerous methods on these issues (Rutschmann, 2006; Bromham, 2019; Guindon, 2020). A6

crucial step forward was achieved by the integration of molecular clock models with phylogenetic

tree inference (Felsenstein, 1984, 1987) making possible to account for the variation in rates of8

molecular evolution both among lineages and among genomic regions (Zuckerkandl, 1987; Ho

et al., 2011).10

Assessing variation in rates of molecular evolution in DNA sequences involves two distinct

levels. First, the rate of substitution (the replacement over a long time of one base by another) can12

vary with the type of substitution (e.g., TS/TV ratio) or the position of the base along the sequence.

This level of variation can be taken into account during phylogenetic inference. The fundamental14

model of phylogenetic inference assumes time-reversibility so a reconstructed tree is unrooted

and its branch lengths are expressed in expected numbers of substitutions (Felsenstein, 1981).16

Therefore, variation in substitution rates among lineages cannot be generally inferred (unless in

some special cases; see below). Second, molecular dating takes into account variation among18

lineages in order to estimate dates of the nodes of a (assumed rooted) phylogeny. The simplest

model (commonly called ‘strict clock’ model) assumes that the substitution rate is the same in all20

lineages. The models that relax this assumption are called under the collective name of ‘relaxed

clock’ models. The present paper is concerned with this second level of variation.22

Incorporating heterogeneity in molecular evolutionary rates when analyzing large data sets,

possibly covering large numbers of evolutionary lineages and of genomic regions, can be done in24

a statistical framework (Sanderson, 2002; Drummond et al., 2006). A critical aspect of statistical

inference is to assess the confidence or uncertainty in parameter estimates. Bayesian methods treat26

this problem by integrating over a set of prior parameter distributions in order to infer their pos-

terior distributions given the data (e.g., Zhu et al., 2015; Bromham et al., 2018). With frequentist28

methods, confidence intervals (CIs) of the parameter can be derived with different methods based

on assumptions about the distribution of the estimators or on the shape of the likelihood function30
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(Casella and Berger, 2002). However, such methods may not be reliable if their basic assumptions

are not met. The bootstrap provides a general approach to compute CIs of an estimate with few32

assumptions (Efron, 1981). An attractive feature of the bootstrap is that it can be used in complex

situations such as phylogenetic inference (Felsenstein, 1985; Efron et al., 1996).34

Some efforts have been made to increase the realism of relaxed clock models, for instance

the universal pacemaker model (?), or specialized models to analyze bacterial genomes (??). Fur-36

thermore, recent works have emphasized the importance of calibration points in molecular dating

(???); this issue is further discussed below. In a recent review, ? list seventeen computer programs38

aimed at performing molecular dating: two of them are based on a distance-based approach, six

on a likelihood approach, and nine on a Bayesian approach.40

Baldwin and Sanderson (1998) used nonparametric bootstrap data matrices to infer confidence

intervals of the inferred dates using a strict clock model (which was not rejected from their data).42

Uncertainty in tree topology was also assessed in their study. This approach was refined and inte-

grated into the program r8s (Sanderson, 2003), although this has been removed from its later ver-44

sions (see r8s’s manual dated December 2004; https://sourceforge.net/projects/

r8s/; accessed 2022-04-20). This approach has been used extensively in the literature (Burbrink46

and Pyron, 2008; Sauquet, 2013, and references therein). Britton et al. (2002) developed the mean

path length (MPL) method that uses a rooted tree with branch lengths estimated with no assump-48

tion of a strict molecular clock (see next section) to estimate the divergence dates with the variance

of the lengths of the paths from nodes to tips. Under the assumption of Poisson-distributed sub-50

stitutions, standard-errors of these estimated dates can be calculated. Several approaches based

on least squares also proposed to use bootstrap resampling to assess uncertainty in the estimated52

dates (Xia and Yang, 2011; To et al., 2016). Tao et al. (2020) developed an analytical method

to compute CIs based on the RelTime method (Tamura et al., 2012), a method that shares some54

similarities with the MPL method. Using simulated and real data, they showed that their method

gives CIs similar to the credible intervals from a Bayesian analysis.56

In this paper, we further elaborate on the nonparametric bootstrap introduced in the previous

paragraph, and present semiparametric, and parametric bootstrap methods to infer CIs in molecular58

dates inferred by maximum likelihood (Sanderson, 2002; Paradis, 2013). These methods, which

use pseudoreplication together with likelihood maximization, are likely to be attractive in big60

phylogenetic problems where a Bayesian analysis is unfeasible (e.g., Harvey et al., 2020). An
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extensive simulation study was run to assess several statistical properties of these three methods.62

A case study is presented on the molecular phylogeny of the Felidae (Mammalia, Carnivora).

2. Methods64

Throughout this paper, it is assumed that the data are made of n aligned sequences with s sites

with one or more additional sequences representing an outgroup (i.e., the n sequences constitute a66

monophyletic group with respect to the outgroup) also aligned with the n sequences, so the initial

data set is made of n′ sequences (with n′ > n). In absence of an outgroup, the tree can be rooted68

by other means that may be less optimal (e.g., To et al., 2016) which we do not consider here.

Besides, we adhere to the terminology of calling a ‘phylogram’ a phylogenetic tree with branch70

lengths in numbers of substitutions, a ‘chronogram’ a tree with lengths in units of time, and a

‘cladogram’ a tree with no branch lengths.72

2.1. Maximum likelihood framework

The aligned sequences are first analyzed with phylogenetic tree reconstruction by maximum74

likelihood (ML) yielding an unrooted binary phylogram with 2n′−3 branches. After rooting the

tree with the outgroup and removing the latter from the tree, we obtain a rooted binary phylogram76

with n tips and 2n− 2 branches. The branches are now time-oriented from the root towards the

tips. We denote each branch length as li (i = 1, . . . ,2n− 2). ML phylogenetic inference usually78

assumes a Markovian, time-reversible model of molecular evolution so that multiple substitutions

are taken into account, and the estimated branch length l̂i is interpreted as the mean number of80

substitutions per site between the two nodes along branch i (Felsenstein, 2004). We denote the

substitution rate along branch i as ri. This rate is expressed in substitutions per site per unit of82

time. We further denote the time separating the two nodes along branch i as ti, and write:

li = ri × ti. (1)

We make the following assumptions on the possible values of these three quantities: ti > 0, ri ≥ 0,84

and therefore li ≥ 0.

We now aim to find the dates of the nodes: we denote these dates as d j ( j = 1, . . . ,n− 1). If86

we assume that the sequences are contemporary, we can define constraints among the ti’s and the
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dates in relation to the tree topology. For instance, if two terminal branches, say x and y, define a88

cherry in the tree (i.e., they are connected to the same node), then tx = ty = dk where k is the node

ancestor of the branches x and y. Even with such contraints, there are still too many parameters for90

a straightforward likelihood approach (the number of cherries in a tree depends on its topology and

varies between one and ⌊n/2⌋). Additional constraints on how the substitution rates vary among92

the branches of the tree make possible to use a penalized likelihood (PL) approach (Sanderson,

2002). The PL function, Ψ, is:94

Ψ = lnL−λΦ, (2)

where L is the likelihood function of a model of the branch lengths based on eq. (1), λ is a smooth-

ing parameter, and Φ is a penalty function constraining rate variation. Ψ is defined in terms of its96

parameters (i.e., the dates d j’s and the rates ri’s) and needs to be maximized with respect to these

parameters to find their estimates, d̂ j and r̂i. An important feature of molecular dating methods98

is the way substitution rates vary across the tree. In this paper, we consider three main models:

the strict clock model where the rate is constant, the correlated relaxed clock model where rates in100

contiguous branches are similar, and uncorrelated relaxed clock model where rates vary without

correlation. We emphasize here that there are some small differences in the exact definitions and102

implementations of these models depending on the software and whether they are used for simu-

lation or inference (see Sect. ?? for details on the models considered in this study). In particular,104

we point out that the ‘relaxed’ model implemented in ape (Paradis and Schliep, 2019) is actually

an uncorrelated relaxed clock model (the term ‘relaxed’ is actually often used in the literature to106

qualify all clock models outside of the strict clock model).

If no calibration point is available, it is possible to fix the age of the root of the tree to a fixed108

value (e.g., one) so that the estimated dates are in relative units of time. If some absolute dates can

be used as calibration points (e.g., from fossils) then these dates can be calculated in absolute time110

units.

The penalized framework is one way to impose restrictions on the distribution of substitution112

rates. Another way is to define a discrete distribution of these rates throughout the tree but without

assigning a specific value to each branch. The likelihood function is calculated with the contri-114

bution of each branch integrated with respect to the possible values of rates weighted by their

frequencies (e.g., the strict clock model is a special case with a single category; see Lepage et al.,116
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2007). This approach makes use of a full likelihood function instead of a penalized likelihood.

Both approaches can be seen as parts of a general framework of molecular dating with likelihood118

methods.

2.2. Uncertainty assessment120

In the ML framework, uncertainty in parameter estimation is commonly assessed by comput-

ing the second derivatives of the likelihood function: this amounts to assessing the reliance to be122

placed in the estimates in different samples from the same statistical population (Fisher, 1922).

This approach assumes a parametric formulation of the data distribution; however, it is not di-124

rectly applicable to a PL approach because of the penalty term. On the other hand, the bootstrap

makes no parametric assumption about the distribution of the data (Efron and Tibshirani, 1993;126

Hesterberg, 2015). The resampling procedure of the bootstrap aims to provide alternative samples

from the distribution under investigation using the original data as an approximation for this dis-128

tribution. In the context of phylogenetic inference, bootstrap samples are obtained by resampling

the sites of the aligned sequences (Felsenstein, 1985). The idea used in this paper is to obtain a130

set of estimates of the branch lengths, assess their variation, and use this variation to quantify the

uncertainty in the estimated dates (d̂ j). Three bootstrap methods are presented in the followings132

(Fig. 1).

2.2.1. Nonparametric bootstrap134

The first method uses the bootstrap trees directly into the penalized likelihood dating proce-

dure. Bootstrap samples are first generated by resampling the sites of the sequence alignment with136

replacement; each chronogram is then estimated using the same time calibration constraints. Note

that the usual phylogenetic bootstrap performs topology search for each bootstrap sample and is138

used to assess uncertainty in the inferred bipartitions of the unrooted tree (Czech et al., 2017). By

contrast, in the present approach, the tree topology is fixed to the one found by the ML tree search140

performed on the original sequence data. Therefore, the bootstrap samples will be used to infer

a set of bootstrap trees all with that same topology, but different branch lengths, and then input142

in the chronogram estimation procedure. The variation of the estimated dates from the bootstrap

trees will give a measure of their uncertainty.144
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2.2.2. Semiparametric (smoothed) bootstrap

Because resampling the sequence alignment is done with replacement, the same site can be146

drawn several times in the same bootstrap sample. If two sequences differ by only a few sites,

then the configurations of the bootstrap samples is limited and they will vary discretely which148

is likely to produce biases for summary statistics based on them. Smoothing the distribution

of bootstrap samples has been proposed as a solution to this problem (Silverman and Young,150

1987; De Angelis and Young, 1992; ?). Kernel density estimation (Wand and Jones, 1995) can

be used to fit a non-parametric distribution to the bootstrap samples of branch lengths for each152

branch, then randomly sample this distribution to obtain a set of branch lengths subsequently

used in the penalized likelihood procedure. Two constraints are imposed on this distribution:154

it must be unimodal, and its density must be equal to zero at l = 0. Because of the discrete

nature of sequences and the variable sites therein, it is common that bootstrap branch lengths vary156

also discretely, so that a non-parametric density estimation might be multimodal (Fig. 2). The

bandwidth, b, of the density estimation should not be too large to avoid inferring positive densities158

for unrealistic values of l (see below), and not too small to avoid a multimodal density curve. We

used an initial bandwidth using Silverman’s (1986) ‘rule of thumb’ which is:160

b = min
(

σ(li),
Q3(li)−Q1(li)

1.34

)
×0.9×B−0.2,

where σ(li) is the standard-deviation calculated with the bootstrap sample of the lengths of branch

i, Q1(li) and Q3(li) are its first and third quartiles, respectively, and B is the number of bootstrap162

replicates. The density is then estimated by local Gaussian smoothing. If the resulting density is

multimodal, then b is increased by b/10 until the density is unimodal.164

In order to avoid sampling negative or zero branch lengths, the density was defined for l ≥

10−8. Because we used a local Gaussian smoothing, it could result in density being positive for166

l ≤ 0. If this happened, the density function was modified to be zero for l < 10−8, and rescaled

so that the total density area given by its integral is equal to one. The final density function was168

transformed into a cumulative density function (CDF) which was then used to generate random

samples of branch lengths by first generating random variates from a uniform distribution on [0,1]170

and then finding the values of l from the CDF.
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2.2.3. Parametric bootstrap: Poisson simulation172

Under stochastic models of molecular evolution, the number of substitutions along a branch

of the tree is expected to follow a Poisson distribution. Since the branch length estimated by ML l̂i174

is the expected number of substitutions along branch i, it can be taken as an estimate of the mean

of this Poisson distribution. A sample of branch lengths can thus be generated by simulating from176

this distribution and scaling by the sequence length. These samples of branch lengths are then used

to estimate a sample of chronograms. The information from these chronograms is summarized in178

the same way as for the two other methods.

2.3. Implementation180

We implemented the methods presented in this paper in R (R Core Team, 2024). The ML tree

estimation and tree bootstrapping use functions in phangorn (Schliep, 2011) which makes possi-182

ble to perform phylogenetic bootstrapping with a fixed tree topology. The branch length smoothing

and simulations were implemented with functions in the stats package. Some additional code has184

been written for the present study and is available on GitHub (see Data accessibility) or upon

request from the authors.186

2.4. Simulation study

The questions addressed in the present simulation study were: (1) What are the coverages (the188

propability that the true date is within the inferred CI) of the bootstrap methods proposed here?

and (2) How robust are these bootstrap methods to model misspecification?190

All simulations shared the same basic structure: a tree was simulated under a birth–death

process with a fixed value of n using Stadler’s (2011) reverse-time algorithm setting speciation192

rate depending on n (as explained below) and extinction rate equal to zero, as coded in ape. The

branch lengths were rescaled so that the age of the root was equal to 50. An outgroup with a single194

tip was attached to this tree (so n′ = n+ 1). Three different models of substitution rate variation

among lineages were used as implemented in NELSI (Ho et al., 2015): a strict clock model (with196

parameters rate = 0.01 and noise = 10−5), Kishino’s model of autocorrelated rates (rate = 10−5,

standard-deviation = 0.3), and a model of uncorrelated, Γ-distributed rates (shape = 0.5, rate = 1).198

The justifications for the choice of these parameters are given in the Supplementary information.

The tree output by NELSI was used to simulate a set of n′ sequences with s sites under a Jukes–200

Cantor model (Jukes and Cantor, 1969) using the function simSeq in phangorn. Before running
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the dating procedure, κ calibration points were selected from the branching times of the birth–202

death tree; except for the root which was always included, the nodes were chosen randomly. The

dates of these calibration points were assumed to be known without error. These simulations were204

potentially highly stochastic because of the combination of three random processes (birth–death,

substitution rate variation, and sequence evolution), so that several adjustments were made. First,206

the speciation rate was adjusted with respect to n to avoid very short branches for large values of

n: it was set to 0.1, 0.05, and 0.025 for n = 20, 50, and 100, respectively. Second, the branch208

lengths of the tree returned by NELSI were rescaled so the shortest terminal branch had a length

of at least 0.001, so that it was unlikely that two sequences were identical. And third, the rate of210

the Jukes–Cantor model in phangorn was adjusted so that no more than 50% of the sequence sites

were polymorphic. It was assumed that the tree topology was known, the ML tree estimated by212

phangorn was rooted by removing the outgroup, and then input in the molecular dating procedure.

In the first run, the parameters were n = {20,50,100}; s = {103,104}; and κ = {1,5,10}. The214

three models described in the previous paragraph (strict clock, correlated relaxed clock, and uncor-

related relaxed clock) were used to simulate rates with NELSI. These simulations were replicated216

100 times for each combination of n, s, and κ, and each model. The model was assumed to be

known, so the model used for the simulation was also used for the chronogram estimation. For218

each simulated data set and each bootstrap method, 100 bootstrap replicates were used. The 50%

and 95% CIs of each estimated date were calculated and stored with the branching times of the220

simulated birth–death tree, as well as the running times of each bootstrap analysis. This run was

duplicated independently on a cluster in Canada and on the Occigen supercomputer in Montpellier.222

In the second run, two models were considered: strict clock and correlated relaxed clock. The

values n= 20 and s= 103 were chosen, while κ= {1,5,10}. This run is similar to the previous one224

except that the model was assumed to be misspecified: the dating procedure used the correlated

model if the data were simulated with the strict clock model, and vice versa. The simulations were226

replicated 100 times for each combination of the two models with the different values of κ.

2.5. Case study228

The family Felidae (Mammalia: Carnivora) includes around 40 living species, all with a

strictly carnivorous diet, and many fossil forms (Werdelin et al., 2010). In relation to their preda-230

tory lifestyle, they have acquired highly specialized adaptations (e.g., long canines, high running

9



speed, night vision, social hunting behaviour). A dated phylogeny is crucial for the evolutionary232

study of these adaptations. The data came from a study by Johnson et al. (2006) on the phylo-

genetic relationships among the species of Felidae. A search on GenBank under this reference234

returned 993 sequences covering 45 taxa, including seven species of Carnivora not belonging to

Felidae and which served as outgroup in this study. All sequences were downloaded: they covered236

23 genes although not all were sequenced for the 45 taxa: the number of sequences for each gene

varied between 38 and 45. Each gene was aligned separately with MUSCLE (Edgar, 2004), and238

the alignments were then combined in a single matrix. This matrix was analyzed with phangorn

using a GTR+Γ+I model of molecular evolution. A topological search using stochastic tree rear-240

rangements (Nguyen et al., 2015) was performed and all parameters were estimated by maximizing

the likelihood. The final topology was used for molecular dating after dropping the outgroup. A242

single calibration point was used assuming an age of the root (i.e., the most recent common ances-

tor of all living Felidae) between 16 Ma and 20 Ma (Benton and Donoghue, 2007; Werdelin et al.,244

2010). Three molecular dating models were fitted: the strict clock model, the correlated relaxed

clock model, and the uncorrelated relaxed clock model. Their respective fit was assessed with246

the penalized information criterion (ΦIC) which is computed with ΦIC = AIC+ λδ{Φ}, where

AIC is the Akaike criterion information (AIC =−2lnL+2k, where k is the number of estimated248

parameters) and δ{Φ} is the singular value of Φ (Paradis, 2013). For comparison, the data were

also analyzed with BEAST (Drummond et al., 2006), and with a model of rooted phylogenetic250

inference (Felsenstein, 2004, p. 266); see Supplementary information.

3. Results252

3.1. Simulation study

With data simulated from a strict clock model, the coverage of dates was mostly high and var-254

ied around 95% (Fig. 3a). Longer sequences did not increase the performance unless the number

of sequences was large too. Overall, increasing the number of calibrations improved the coverage256

of the CIs except for n = 20. For all values of n, s, and κ, the parametric bootstrap performed less

well than the two other methods, and there was a tendency for the semiparametric bootstrap to per-258

form better than the nonparametric one. Increasing s improved the performance of the parametric

bootstrap. With data simulated with the correlated relaxed clock model, the performances were260
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less satisfying; however, in this case, they improved with more sequences and also with more cal-

ibration points (Fig. 3b). A similar result was obtained with data simulated from the uncorrelated262

relaxed clock model (Fig. 3c). For these two models, we observed the same difference between

the three bootstrap methods noted with the strict clock model.264

The observed widths of the 95% CIs were related to the previous results: the smaller the

proportions covering the true value, the narrower the CIs (Fig. 4). However, there were some266

important exceptions to this general pattern. For data simulated from the strict clock model, the CI

widths decreased when the number of sequences increased (Fig. 4a). Particularly, the parametric268

bootstrap showed narrower CIs when s was increased while the coverages were improved (Figs.

3a and 4a). On the other hand, this pattern was not observed for the two other models (Fig. 4b,c).270

For all models, the parametric bootstrap yielded narrower CIs than the two other methods. In some

cases (e.g., strict clock model with n = 20), increasing the number of calibration points resulted in272

narrower CIs, but this was not a general result.

The running times varied greatly and were mostly explained by the model and the number of274

sequences (Fig. 5): the timings for the strict clock model varied between 0.1 sec and 1 min 24 sec

whatever the other settings, and were less than 10 sec on average. The parametric bootstrap was the276

fastest of the three bootstrap methods. Increasing the number of calibration points also decreased

running times. Clearly, the number of free parameters is an important factor in the variation of278

these running times. The semiparametric bootstrap was the slowest of the three methods: most of

the analyses took between 20 min and 1 hr for the two relaxed clock models with n = 100.280

When data were analyzed with a misspecified model, the observed patterns depended on the

models: when data were simulated under a strict clock model and analyzed with a correlated282

relaxed clock model the CIs were narrower and with smaller coverage values than the reverse

situation (Fig. 6). Increasing the number of calibration points yielded narrower CIs when the284

data were simulated from a correlated relaxed clock model, but not with the strict clock model

(Fig. 6c,d).286

3.2. Case study

The alignment obtained with MUSCLE had a total of 619,785 bp (n′ = 45, s = 13,773) and288

included 50,011 alignment gaps which were very clustered: 833 sites (6% out of 13,773) had

eight gaps or more. A majority of these gaps (29,808; 60%) were inserted when combining the 23290
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gene-level alignments as a consequence of missing sequences in some species. The phylogenetic

reconstruction gave a log-likelihood = −49,269.78. There was evidence for a substantial propor-292

tion of invariant sites (Î = 0.236), and for inter-site variation (shape parameter of the Γ distribution:

α̂ = 0.909). The phylogeny was overall consistent with the tree inferred by Johnson et al. (2006)294

with only a small number of differences. Although there is room to improve the GTR+Γ+I model

used here, for instance with partitioned models, we limited the present phylogenetic analysis since296

it is aimed to illustrate the methods introduced in this paper.

The fitted models showed that the strict clock model was the best one (ΦIC = 77.6, 224, and298

227, for the strict clock, autocorrelated relaxed clock, and uncorrelated relaxed clock models, re-

spectively). The estimated substitution rate was r̂ = 4.27× 10−4 substitution.site−1.Ma−1. The300

chronogram and its CIs inferred by the three above methods were very similar (Fig. 7). The 95%

CIs were slightly wider for the semiparametric method (mean: 2.53 Ma) than for the nonpara-302

metric method (2.48 Ma), whereas the parametric bootstrap resulted in the narrowest intervals

(mean: 2.24 Ma). A similar pattern was observed for the 50% CIs (0.96 Ma, 0.88 Ma, 0.83 Ma,304

respectively).

The analysis with BEAST gave results which are very close to those described in the previous306

paragraph: the lower and upper bounds of the intervals inferred from both approaches were highly

correlated (Pearson correlation coefficient = 0.77 and 0.74, respectively) and the agreement was308

particularly strong for the older nodes. There was no marked tendency for a method to produce

younger or older bounds compared to the other (see Supplementary information and Figs. ??–??310

for details).

4. Discussion312

It is still debated what is the most appropriate approach for molecular dating and assessment of

uncertainty around the estimated dates as illustrated by the various approaches and reviews cited314

in this paper. Our simulation results give a mixed picture of the success and usefulness of our

proposed bootstrap methods: good statistical properties were observed for the simple case of a316

strict molecular clock whereas the results were less positive in more complex settings, although

some factors had a positive impact on the quality of the CIs such as longer sequences as we discuss318

in the following paragraphs.

Several points emerge from our simulation results. The number of calibration points was320
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an important factor, and increasing this number resulted in better CIs in almost all situations.

Several recent studies based on simulations reached a similar conclusion (???), with some studies322

showing the greatest importance for the calibration points close to the root of the tree (Duchêne

et al., 2014; ?; ?). Furthermore, ? showed that “strategically placed” calibration points are likely324

to compensate biases due to using simplistic assumptions in the substitution model. We decided

to always include the root node date as a calibration point in order to simplify the comparisons of326

our simulation results.

Another result is the importance of the model of substitution rate evolution along the tree. Not328

surprisingly, using a strict clock model to simulate and analyze the data gave good results with

respect to all measures we considered in this study. To et al. (2016) observed a similar result330

with a least squares dating method (further discussed below). Surely, a critical feature in our

study is that estimation with this model implies the estimation of a single rate thus simplifying332

the optimization of the likelihood function (this is confirmed by the short running times with the

strict clock model). The two other models require to calculate a penalty function which needs to334

estimate a rate for each branch of the tree. Generally when one fits a statistical model, increasing

the number of parameters while keeping the same data is likely to increase the CIs of the parameter336

estimates because less information (or degrees of freedom) is used to estimate each parameter.

Increasing the number of calibration points partially compensated for this increased imprecision,338

while increasing the sequence length did not (a similar result that was also observed by Duchêne

et al., 2014).340

Furthermore, it is likely that the parameter values used to simulate the data were influential on

our results. We selected these values in order to simulate trees that are substantially non-clock like342

(see Supplementary information) which may lead to difficulties in estimating correctly the dates.

As an interesting comparison, Tao et al. (2020) obtained good coverage intervals when simulating344

data with Kishino’s uncorrelated model; however, they simulated data using v = 0.1 while we

observed that this parameter value led to trees that are close to clock-like trees. Instead we used346

v = 0.3 in our simulations which resulted in much more non-ultrametric trees.

In agreement with our expectations, sequence length had an effect on our simulation results.348

Generally in statistical analyses, sample size is expected to increase the precision of bootstrap

methods because larger samples lead to better estimates of data distributions (Hesterberg, 2015).350

We observed that the longer sequences generally resulted in better coverage of the CIs, particularly
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when a single calibration point was used. Sequence length had an effect on the widths of the CIs352

but, as discussed above on the number of calibration points, this depended on several factors: with

the strict clock model CIs were narrower with longer sequences but this was not observed with354

n= 100 sequences. A similar pattern was found for the correlated relaxed clock model except with

the parametric bootstrap which always gave wider CIs when sequence length was increased. With356

the uncorrelated relaxed clock model, the CIs were generally narrower with longer sequences.

Nevertheless, the improvement due to increased sequence length was visibly less important than358

the improvement due to increased number of calibration points.

A result from our simulations that needs further attention is the fact that the correlated and360

uncorrelated relaxed clock models gave narrower CIs than the strict clock model. This difference

tended to be less when increasing the number of calibration points, and also for the semiparamet-362

ric bootstrap compared to the nonparametric one, particularly for the uncorrelated relaxed clock

model. We looked at some simulated trees and observed that with the uncorrelated relaxed clock364

model there was a tendency to generate branch lengths with a very skewed distribution, so that

one or two branches were very long. When bootstrapping the data, these long branches were con-366

sistently represented in the bootstrap trees thus leading to narrow CIs. Smoothing the distribution

of branch lengths partially compensated for this effect.368

The running times of computing the CIs with n = 20 did not exceed fifteen minutes. These

times varied a lot and depended on the model: they were ten times longer for the correlated370

relaxed clock model compared to the strict clock model, and twice longer for the uncorrelated

relaxed clock model compared to the correlated relaxed clock model. Interestingly, increasing the372

sequence length resulted in shorter running times which is likely explained by the fact that longer

sequences lead to better estimates of branch lengths (l̂i’s) and, consequently, to easier estimation374

of dates during the PL optimization (i.e., the PL function is “less flat” with more accurate l̂i’s).

Increasing the number of calibration points also decreased running times which may be explained376

by the lesser number of dates to estimate.

The simulation results showed that the nonparametric and semiparametric methods gave very378

close results, while the parametric method gave the narrowest CIs with both simulated and real

data. This is expected given that the last method generates pseudo-samples based only on the380

stochasticity of the model of substitution and ignores the additional error due to sampling se-

quences of finite length. The two other methods capture both sources of error, resulting in slightly382
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wider and more accurate CIs with real data. With simulated data, the parametric bootstrap resulted

in CIs that did not cover well the real dates, so that these narrow CIs were not well paid-off. On384

the other hand, we note that the simulations with the strict clock model showed that the para-

metric bootstrap yielded narrower and more precise CIs when the sequence length was increased,386

therefore suggesting that this method behaves correctly at least in some situations (e.g., long se-

quences). Clearly, a more extensive study is required to investigate how the present approach388

behaves in a wider variety of situations.

The application with the Felidae data gave results broadly consistent with previous works,390

although differing on several points. Most estimated dates are a bit more ancient than those previ-

ously published although the fossil record of Felidae is still poorly known (Werdelin et al., 2010).392

For instance, Tseng et al. (2014) described a skull closely related to Panthera that they dated back

to 7 Ma, whereas it was previously estimated that the big cats belonging to this genus diverged394

about 4 Ma (Werdelin et al., 2010). With all three methods, the CIs were wider for the older nodes

than with the recent ones. Further analyses not shown here found that much narrower CIs were396

obtained if the age of the root is fixed, especially for the Pantherinae (Panthera + Neofelis), al-

though the dates were not themselves substantially modified. Concerning the BEAST analysis, it398

would be interesting to explore the impact of tree priors on the estimated dates and could explain

the observed discrepancies with the PL analysis, especially for the shallower nodes.400

It is not clear from the literature how similar Bayesian posterior distributions and frequentist

CIs are (or should be) perceived by phylogenetists. Some studies have focused on point esti-402

mates of dates and showed that chronograms reconstructed by Bayesian and likelihood methods

with real data from these two approaches were very close (Lorén et al., 2014). Furthermore, ?404

showed that the dates inferred with RelTime and with Bayesian inference are generally in very

good agreement, although they apparently did not compare confidence and credibility intervals.406

Conceptually, intervals from Bayesian and from frequentist methods should not be confused. First,

Bayesian intervals depend on both the prior distributions of the parameters and the data, whereas408

CIs depend, for a given fitted model, only on the data. Second, these intervals are obtained by

MCMC integration for Bayesian methods, while model fitting optimization is used for frequentist410

methods. And third, Bayesian methods usually jointly estimate the tree and the dates (although the

cladogram topology can be fixed) whereas frequentist methods compute CIs on a fixed cladogram.412

In this respect, it is interesting to note the recent contribution by Bickel (2022) who proposed to
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include clade uncertainty into the frequentist CIs of estimated dates. A simple practical approach414

could be to report together (e.g., in a table) the CIs of the dates with the support values of the

nodes.416

An attractive feature of the approach presented in this paper is that it can be run in reason-

able times: the complete analysis with the Felidae data took less than one hour, which includes418

sequence alignment, phylogeny inference with phangorn, and molecular dating with calculations

of CIs with the three bootstrap methods. The running times may vary a lot, however, depending420

on the data size and the models considered. The least-squares dating (LSD) method is another

very fast dating method for very large phylogenies (n > 1000) with dated tips (To et al., 2016).422

This method assumes that the branch lengths of the phylogram follow a normal distribution so that

least squares can be used to estimate the dates of the nodes. To et al. (2016) found their method424

to be robust to violation of the strict molecular clock as long as the rates are uncorrelated. This is

likely a consequence of the normality assumption: if the rates are correlated then the errors due to426

the strict clock assumption would accumulate along the paths from root to tips resulting in biased

estimates. Besides, it is likely that the LSD method does not perform well with small phylogenies428

because the errors would not cancel out on the paths from root to tips if these paths are too short

(even in the case of uncorrelated rates). Furthermore, it will be interesting to extent the present430

PL framework to the situation of dated (i.e., non-contemporaneous) tips which would require to

handle the date constraints in different a way than done in the present study. This clearly requires432

further study.

The simulation results presented above demonstrate that the CIs inferred by the present ap-434

proach have generally satisfying statistical properties. Clearly, more simulations and works are

needed to investigate these properties. We suggest that more attention needs to be paid on simu-436

lation settings in order to improve our understanding of the present methods and to compare them

with previous contributions and other simulation studies from the literature. The present study left438

aside the issue of bias: in theory, bootstrap replicates make possible to estimate the expected value

of the estimator biases; however, bias estimates can have high variability (Hesterberg, 2015), or440

require computationally intensive methods such as double bootstrapping, although approximate

methods exist (DiCiccio and Efron, 1996; Burbrink and Pyron, 2008).442

16



CRediT authorship contribution statement

Emmanuel Paradis: Conceptualization, Methodology, Software, Validation, Formal analy-444

sis, Resources, Writing – Original Draft, Writing – Review & Editing, Visualization. Santiago

Claramunt: Conceptualization, Methodology, Software, Writing – Review & Editing. Joseph446

Brown: Methodology, Software, Validation, Resources, Writing – Review & Editing. Klaus

Schliep: Methodology, Software, Writing – Review & Editing.448

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-450

tionships that could have appeared to influence the work reported in this paper.

Acknowledgments452

We are grateful to three anonymous reviewers and the Associate Editor for their constructive

comments on a previous version of this article. The calculations used for data analyzes bene-454

fited from the ISEM computing cluster platform and the Occigen Supercomputer under the Grand
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Figure 1: The framework described in this paper. The leftmost workflow is the standard procedure of phylogenetic
inference and downstream molecular dating. The three approaches shown in red are described in the text: nonparametric
bootstrap (bootstrap trees), semiparametric bootstrap (smoothing), and parametric bootstrap (Poisson simulation).
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Figure 2: (a) An unrooted tree with two branches shown with circles and analyzed after bootstrapping on the left and
right panels, respectvively. (b) The raw distribution of branch lengths (histogram) with a local Gaussian density (curve).
(c) The smoothed density estimated by the procedure described in the text. (d) The final cumulative density used to
generate random samples of branch lengths.
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Figure 3: Proportion of true dates within the inferred 95% confidence intervals. (a) Strict clock model. (b) Correlated
relaxed clock model. (c) Uncorrelated relaxed clock model. See main text for the implementations of these models dur-
ing simulations and for model fitting. s: sequence length; Ncal: number of calibration points; n: number of sequences.
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Figure 4: Mean width of the inferred 95% confidence intervals. (a) Strict clock model. (b) Correlated relaxed clock
model. (c) Uncorrelated relaxed clock model. See main text for the implementations of these models during simulations
and for model fitting. s: sequence length; Ncal: number of calibration points; n: number of sequences.
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Figure 5: Running times. (a) Strict clock model. (b) Correlated relaxed clock model. (c) Uncorrelated relaxed clock
model. See main text for the implementations of these models during simulations and for model fitting. s: sequence
length; Ncal: number of calibration points; n: number of sequences.
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Figure 6: Simulation with misspecified models. (a) and (c) Data simulated with a strict clock model and analyzed with
a correlated relaxed clock model. (b) and (d) Data simulated with a correlated relaxed clock model and analyzed with
a strict clock model. Ncal: number of calibration points.
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Figure 7: Chronogram with 50% and 95% confidence intervals of the Felidae. (a) Semiparametric, (b) nonparametric,
and (c) parametric boostrap.


	Introduction
	Methods
	Maximum likelihood framework
	Uncertainty assessment
	Nonparametric bootstrap
	Semiparametric (smoothed) bootstrap
	Parametric bootstrap: Poisson simulation

	Implementation
	Simulation study
	Case study

	Results
	Simulation study
	Case study

	Discussion

