
HAL Id: ird-04731400
https://ird.hal.science/ird-04731400v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low Cost Real Time Complex Event Processing And
Stream Reasoning System

Laty Ndiaye Mouhamet, Mamour Diop Serigne, Yacine Ghamri-Doudane,
Ismail Benis, Didier Orange, Magali Gerino

To cite this version:
Laty Ndiaye Mouhamet, Mamour Diop Serigne, Yacine Ghamri-Doudane, Ismail Benis, Di-
dier Orange, et al.. Low Cost Real Time Complex Event Processing And Stream
Reasoning System. Global Information Infrastructure and Networking Symposium (GIIS),
https://edas.info/showPaper.php?m=1570978523, 2024. �ird-04731400�

https://ird.hal.science/ird-04731400v1
https://hal.archives-ouvertes.fr


Low Cost Real Time Complex Event Processing
And Stream Reasoning System

Mouhamet Latyr Ndiaye
L3i, La Rochelle University

La Rochelle, France
mouhamet.ndiaye@univ-lr.fr

El Hadji Serigne Mamour Diop
Gaston Berger University

Saint Louis, Senegal
serigne-mamour.diop@ugb.edu.sn

Yacine Ghamri-Doudane
L3i, La Rochelle University

La Rochelle, France
yacine.ghamri@univ-lr.fr

Ismail Benis
IRIMAS, University of Haute-Alsace

Mulhouse, France
ismail.bennis@uha.fr

Didier Orange
Université de Montpellier

Montpellier, France
didier.orange@ird.fr

Magali Gerino
LEFE/Campus Université Toulouse 3

Toulouse, France
magali.gerino@univ-tlse3.fr

Abstract—In IoT applications, data are continuously gen-
erated and must be processed in real-time to react to state
changing in the environment where devices are deployed.
Processing data as generated from sources is inefficient because
of the low level of data. In this paper, we propose a generic
Complex Event Processing system with reasoning abilities which
we have evaluated with case studies.

Index Terms—Complex Event Processing, Stream Reasoning,
WaziUp

I. INTRODUCTION

IoT applications are widely used in various domains and
large amounts of data are continuously produced. These data
are generated as streams and must be processed in real time
because the system has to react almost instantaneously to
their variations to make decisions, raise alerts or activate
actuators. Processing these data in their raw form remains
most of the time inefficient. We shoud then be able to have
means of processing, not the raw data but a representation
with an abstraction level that makes it more tangible and
easier to manipulate. In addition, in most of the proposed
architectures, the data processing is done in the Cloud.

To avoid drawbacks induced by cloud-based processing
and to design a system that can be used in rural areas
where internet is not always present, we propose in this
paper a Real Time Stream Processing system. This system
consists of a combination of Semantic Web tools and Complex
Event Processing (CEP) technologies with a Semantic Model
to perform reasoning on data streams (Stream Reasoning).
The implementation is carried out on the WaziGate gateway
offered by the WAZIUP project to ensure processing is
performed as close as possible to the data sources. We have
evaluated the proposal with a fire detection system and a
biological wastewater quality control system.

II. RELATED WORKS
Reis et al. [1] present a semantic model to allow real-

time reasoning over data streams by combining CEP and
performing continuous over streams of RDF semantic data.
Their approach allow deriving RDF data from basic events
by using CEP in edge devices.

A. Dhillon et al. [2] propose a CEP based approach for
Remote Patient Monitoring. They use a mobile device and a
remote IoT Hospital Server (IHS) deployed on the cloud. In
their work, complex event detection is performed on the edge
and complex event streams are sent to the hospital server for
further processing.

Lan et al [3] propose a CEP mechanism for Real-Time
Monitoring using hierarchical complex event model to re-
duce the complexity of event modeling. The CEP system is
deployed on the network edge between sensing devices in
terminal and applications in the cloud.

However, these propositions do not address all the con-
strains we aim to lift, which are:

• Internet access is not always guaranteed In the rural
areas of many localities, as in some African countries,
Internet access is sometimes poor or even non-existent.

• Cost To minimize cost, the system should be deployable
in low-cost, low-power devices such as Single Board
Computers (SBCs).

• Genericity The system must be generic enough to adapt
to different use cases.

III. PROPOSITION

A. System operation

Considering the constraints, we listed in the previous
section, we proposed a system that is attached on top of
the module provided by the Waziup project [4]. Waziup
is a collaborative research project for IoT and Big Data
to improve working conditions in the rural ecosystem of
sub-Saharan Africa. In our system, messages are sent from
sensors and received at the gateway. After a preprocessing
stage, data are passed to the stream reasoning system which
is composed of three modules: Complex Event Processing
module, Reasoning module and Controller module

The end-device consists of a programmable device
equipped with sensors and a LoRa connectivity. It is responsi-
ble for collecting the values read by the sensors, sending them
to the gateway and activating actuators. The gateway has
LoRa connectivity to communicate with devices. It receives



data from sensors, performs analysis and sends commands
to the end-device to control its state.

B. Architecture

In the proposed system, devices take measurements and
send them to the gateway. This one performs operations with
the CEP module and produces a result as facts, represented
by RDF statements. These facts are inserted into a reasoner
which contains queries to deduce relevant knowledge for
the system. The reasoner combines the declarations received
from the CEP module with a knowledge base to deduce
complex situations defined within the reasoner.

1) CEP module: Data coming from the devices are in-
jected into a CEP engine which contains the rules allowing
to extract the useful events. Events undergo a number of
transformations such as aggregation, filtering etc. Each unit
takes a stream as input and outputs a stream of events
satisfying the criteria defined by the processing unit. By
making the correspondence between these events and the
facts they describe, the module outputs a stream of RDF
statements corresponding to these events.

2) Reasoner module: Reasoning consists of deducing new
facts from existing axioms and relationships in an ontology.
It is used to describe the concepts and entities of a domain
as well as the relationships that exist between them. The
reasoning module relates the data contained in the knowledge
base to the statements resulting from the CEP stage in order
to find expected facts.

3) Controller Module: This module is responsible for
sending commands to devices in order to act on the monitored
environment. These commands correspond to the results
obtained from the reasoning module.

CEP Engine

Raw DATA

Events of interest

Reasoner

RDF triples

Knowledge base

RDF triples

Controller

Sensor

Thing

Actuator

Commands

Fig. 1. Global process diagram

C. Implementation

In this section, we will propose an implementation of our
architecture.

1) The hardware: The sensing device consists of a mi-
crocontroller to which various sensors and/or actuators are
connected.

The Gateway is based on a 3 B+ Raspberry Pi running the
Raspbian operating system, a Debian-based Linux distribu-
tion (Fig. 2).

Fig. 2. WaziUP’s WaziGate

For long range communication, the gateway and the sens-
ing devices are equipped with LoRa modules which ensure
bidirectional communication. We used the Modtronix inAir9
that operates at 868 and 915Mhz using a Semtech SX1276
chip.

2) CEP implementation: The CEP module is implemented
using Apache Flink which is a framework for processing
unlimited data streams in real time. It provides a set of tools
for performing operations over data streams. In addition, it
has a very rich CEP library and can process a high data rate.
Apache Flink offers multiple features such as:
- Windowing: Windows split the stream into parts of finite
size, over which we can apply computations.
- Filtering: Filtering allows defining criteria on the data flow.
Apache Flink has a large number of built-in filters and also
allows users to define custom filter functions.
- Aggregation: Aggregation functions are used to reduce a
group of values to a single value. Apache Flink offers many
aggregation functions (SUM, COUNT...) and also allows
user-defined functions.
- Pattern Matching: Pattern Matching allows setting condi-
tions and sequences on data. Apache Flink provides a CEP
library, FlinkCEP, which allows detecting complex patterns
in an endless data stream. CEP rules are defined by setting
conditions on the values, their succession etc., and also
allow defining time windows (TimeWindow) or number
of elements (CountWindow) to determine the interval of
data to which the rules are applied. By mapping patterns to
facts they describe, we generate an output stream of RDF
statements of those facts. This will allow us to perform
reasoning on the data stream.

3) Reasoning implementation: The implementation of this
module is essentially based on OWLAPI [5] with the HermiT
[6] reasoner. OWLAPI allows creation and manipulation of
ontologies. It is an open source JAVA API that provides a
large number of tools for handling ontologies. First, a knowl-
edge base made up of A-Box and T-Box of the semantic



model is loaded. The T-Box contains concepts and roles def-
inition while the A-Box describes individuals with assertions
using the concepts and roles in the T-Box. The RDF stream
produced from CEP rules is received and the RDF triples
are combined with the statements of the knowledge base to
deduce the expected facts. In this work, the HermiT reasoner
is used. HermiT supports a wide range of optimizations that
improve its reasoning performance on ontologies. It has some
advantages over other popular reasoners such as Fact++ and
Pellet. A comparison with Fact++ and Pellet is given in [6].

4) Controller module implementation: This module is
responsible for sending commands to sensing devices. The
commands sent depend to the results obtained by the reason-
ing stage and are sent as a string specifying the actuator and
the action it should perform. Example: /@AON/BOFF/C12#
In this command, actions represented by the characters ON,
OFF and 12 are sent respectively to A, B and C actuators.
In the next section the proposal is evaluated through case
studies.

IV. EVALUATION

In order to evaluate the system, two case studies were
considered: a fire detectionsystem and a wastewater control
system.

A. Case study: fire detection

In this case study, we will first perform the detection
only with the temperature parameter and, in the second case,
temperature and humidity will be used.

1) Case 1: fire detection using temperature: Each room
of the building has a temperature sensor which continuously
sends the temperature value to the gateway. We define a
simple CEP rule which monitors the temperature and gen-
erates the RDF triple (ROOM_ID, hasTemperature,
HIGH_TEMPERATURE) when the latter reaches a fixed
threshold value. In the knowledge base, it is defined that
a room with HIGH_TEMPERATURE value is considered as
a room on fire.

CEP rule: With Apache Flink we define the rules
allowing to detect rooms having a very strong heat.
When an event satisfies this rule, the following triple
is generated and directed to the output flow (sink):
(ROOM_ID, has, VeryHighHeat).

Reasoner The ontology consists of a TBox
containing an individual of class Room and
another of class Temperature. The relation
(ROOM_ID, hasTemperature,TEMPERATURE)
indicates that the room having the ID ROOM_ID
has a temperature which value is TEMPERATURE.
TEMPERATURE can take the values LOW_TEMPERATURE,
MEDIUM_TEMPERATURE or HIGH_TEMPERATURE

The Reasoner module receives the previous triples and
loads the knowledge base. For each triple, it queries the
reasoner to find the relations describing a room on fire.

2) Case 2: Fire detection using temperature and humidity:
In Case 2, the devices are equipped with a temperature and
humidity sensor (DHT11).

CEP rule CEP rules are defined to detect rooms with
heat that exceeds the TMP_THRESHOLD value and humidity
below the HU_THRESHOLD value.

Reasoner The Case 1 ontology is completed by the
individual LOW_HUMIDITY of class Humidity.

Here, we ask the reasoner to find the rooms that are on
fire by defining its reasoning process.

3) Performance Analysis: We analyse here the
performances of the system for the two cases defined
in this case study. This analysis is mainly focused on latency
and RAM and CPU resources usage.
Data availability Temperature and humidity are measured
with an LM35(case 1) or DHT11(case 2) sensor then
transmitted to the gateway by LoRa. Data are sent as TC/23
for the first case and TC/23/HU/50 for the second case.
Here we measure the time elapsed between the receiving of
messages by the gateway’s LoRa module and the availability
of raw data. Fig. 3 illustrates the evolution of the availability
time for the two cases over a period of 60 minutes.

Fig. 3. Availability delays

Complex Event Processing The CEP processing time is
the time spent by the data in the CEP module, i.e. from the
admission of the data in this module to the creation of the
RDF facts that result from the CEP analysis. The evolution
of the CEP duration is represented in Fig. 4 for a period of
60 minutes.

Fig. 4. CEP delays

Reasoning This stage covers from the receiving of data by
the reasoner to the generation of new facts as a result of the
reasoning process. Figure 5 gives reasoning times measured
over a period of 60 minutes.



Fig. 5. Reasoning delays

4) Observations:

• Case 1 The availability delay varies from 312ms to
417ms with an average value of 360.6ms. For the CEP
stage, we have a variation in processing times from
10ms to 103ms with an average of 59.60ms. In the
reasoning phase, the average execution time is 260.0ms
with values varying from 182ms to 346ms.

• Case 2 In case 2, the availability delay varies from
315ms to 423ms with an average value of 366ms. For
the CEP stage, we have the processing times varying
from 10ms to 104ms with an average of 61ms. In the
reasoning phase, the average execution time is 268.9ms
with values varying from 185ms to 379ms.

Analyzes The evaluation shows relatively average delays
during the three program execution phases. There is a very
slight increase in the total processing time when the number
of measurements sent to the gateway doubles. The average
CPU and RAM occupation are respectively 18% and 260MB,
before program execution.
During execution, the average RAM usage increases from
260MB(28%) to 456MB(49%) i.e. 206MB(22%) of RAM
used. CPU usage rose from 18% to 21%.

These performances can be satisfactory in different IoT
applications (home automation, smart agriculture, etc.) but
this case study may be too simple to evaluate the system.
We will, in the next section, study a slightly more complex
use case.

B. Case study: filters planted with reeds

This second case study concerns the wastewater treatment
unit of Gaston Berger University. This station consists of
filters planted with reeds for the treatment and reuse of
wastewater. Filters planted with reeds are purification systems
allowing monitored reconstitution of natural self-purification
phenomena [7].

1) Description of the system: The system analyzes data
from sensors installed at water filters and makes decisions
based on this data. The objective is to be able to dynamically
determine the possible uses of filtered water according to
its quality. For this, a set of parameters is involved: pH,
Suspended Solids(SS), Biological Oxygen Demand (BOD5),
Chemical Oxygen Demand (COD), Total Nitrogen(TN),
Phosphorus and Colony forming unit(CFU). Three possible

qualities have been defined for the filtered water: GOOD,
MEDIUM and BAD.

The filtered water is used to irrigate three types of
crops with different tolerances to wastewater constituents
according to the quality of the filtered water by controlling
the corresponding valves. Because of the unavailability of
some sensors, the study was based on data from laboratory
analyzed samples in [8]. These data were used to simulate
sensors.

CEP rules for water filtering With Apache Flink, we
have set the rules to filter relevant events. This step outputs
an event as an RDF declaration. The produced event is
of the form (filter, has_quality,QUALITY) with
QUALITY ∈ {BAD, MEDIUM, GOOD}.

Knowledge base The knowledge base comprises the re-
sources of the system as well as the relationships between
them. Fig. 6 represents an ontology describing the elements
of a simplified filter.

Filter Quality

ValveValveState

Tolerance

Crop

has_state

contains

has_quality

irrigate

tolerance

VALVE_CLOSEDVALVE_OPENED

LOW_TOLERANCEHIGH_TOLERANCE

BAD_QUALITY

MEDIUM_QUALITY

GOOD_QUALITY

CROP_A

CROP_B

CROP_C

VALVE_001

FILTER_001

VALVE_002

VALVE_003

Fig. 6. Knowledge base ontology describing the filter’s elements

The filter allows to irrigate crops with different tolerances,
depending on the quality of the water it produces, by opening
the corresponding valve. Irrigation is done according to the
following rules:

• Water classified as BAD is discharged into the system.
• Water classified as MEDIUM can only irrigate crops

with a high tolerance.
• Water classified as GOOD can irrigate all crops.
Tables I and II illustrate the correspondences between

Crop, Tolerance, Valve and Quality classes.

Crop CROP_A CROP_B CROP_C
Tolerance HIGH_TOLERANCE HIGH_TOLERANCE LOW_TOLERANCE
Valve VALVE_001 VALVE_002 VALVE_003

TABLE I
DIFFERENT CROP TOLERANCES AND CORRESPONDING VALVES

Tolerance HIGH_TOLERANCE LOW_TOLERANCE
Quality GOOD - MEDIUM GOOD

TABLE II
CORRESPONDENCE BETWEEN CROP TOLERANCE AND WATER QUALITY

Reasoning The reasoning process leads to
determining which crops can be irrigated: (Filter,
irrigates,Crop). For this, it uses the information
obtained from the CEP stage on the quality of the
water: (Filter, has_quality,Quality). This



information is used in combination with knowledge base
assertions to determine which valves to open. At the end
of the reasoning stage, the system produces the triple:
(Valve,has_state, ValveState). Using this
information, the controller orders the filter to open the
valves that serve the crops to be irrigated.

2) Performance Analysis: We measure here the perfor-
mances of the system with respect to the execution durations
of the different phases as well as the system resources
(RAM and CPU) usage. The data for the simulation is
randomly generated and submitted to the system at regular
time intervals.
Processing delays
Data availability delay Here we measure the time elapsed
between the reception of data and their availability for the
CEP module. The evolution of this delay is given by graph
7 over a period of 60 minutes.

Fig. 7. Data availability delay

Complex Event Processing delay
The duration measured here is the time taken by the pattern
detection process at the CEP level, i.e. from the reception of
the data in this stage to the creation of the RDF facts resulting
from the CEP analysis. These durations are represented in
graph 8 for a period of 60 minutes.

Fig. 8. CEP delays

Reasoning delay Here we measure the time taken by the
reasoning process. This time corresponds to the duration
which elapses between the generation of the RDF triples by
the CEP module and the generation of the triples correspond-
ing to the decision taken. Fig. 9 shows the reasoning delays
measured over a 60-minute period.

Fig. 9. Reasoning delays

These data show fairly short delays during the different
processing phases. The availability delay varies from 265ms
to 609ms with an average value of 382.32ms. For the CEP
phase, we have a variation in processing times from 333ms

to 671ms with an average of 460.60ms. In the reasoning
phase, the average execution time is 214.30ms with values
varying from 163ms to 461ms.

Resource usage We evaluate here the RAM and CPU usage
during the execution of the program with data received every
10 seconds.
Before execution, CPU usage hovers around 20%. The mem-
ory occupation stagnates at around 213MB i.e. 23% of the
total memory (927.2MB). During execution, the average CPU
usage is around 25% with peaks up to 43%. The used mem-
ory climbs to 431MB(46.5%), an increase of 218MB(23.5%
of total memory). By reducing the data reception interval to
one second, there is a significant increase in CPU usage (from
20% before execution to 40% during execution) and RAM
(from 213MB before execution to 500MB during execution).

These results show satisfactory processing times as well
as an acceptable use of system resources for the considered
use case.

V. CONCLUSION

We proposed a system to identify complex events from raw
data from IoT devices in order to execute reasoning processes
on these events. Validation tests were thus carried out through
case studies in order to test the capability of the system to
adapt to various scenarios, on a resource-constrained device.
However, defining CEP rules manually can be challenging.
Artificial Intelligence techniques should be able to generate
business rules automatically or even to predict the occurrence
or not of an event.

Acknowledgement Thanks to SmartCleanGarden concept,
Prix Convergences du Forum Mondial « Zero Pauvreté, Zero
Exclusion, Zero Carbone » (2018-2019),GDRI IRD-SENSE-
South (2018-2022). https://smartcleangarden.org/

REFERENCES

[1] R. D. Reis, M. Endler, V. P. de Almeida, and E. H. Haeusler, “A soft
real-time stream reasoning service for the internet of things,” in 2019
IEEE 13th International Conference on Semantic Computing (ICSC),
2019, pp. 166–169.

[2] A. S. Dhillon, S. Majumdar, M. St-Hilaire, and A. El-Haraki, “A mobile
complex event processing system for remote patient monitoring,” in
2018 IEEE International Congress on Internet of Things (ICIOT), 2018,
pp. 180–183.

[3] L. Lan, R. Shi, B. Wang, L. Zhang, and N. Jiang, “A universal complex
event processing mechanism based on edge computing for internet of
things real-time monitoring,” IEEE Access, vol. 7, pp. 101 865–101 878,
2019.

[4] C. Pham, A. Rahim, and P. Cousin, “Waziup: A low-cost infrastructure
for deploying iot in developing countries,” in e-Infrastructure and
e-Services for Developing Countries: 8th International Conference,
AFRICOMM 2016, Ouagadougou, Burkina Faso, December 6-7, 2016,
Proceedings 8. Springer, 2018, pp. 135–144.

[5] M. Horridge and S. Bechhofer, “The owl api: A java api for owl
ontologies,” Semantic web, vol. 2, no. 1, pp. 11–21, 2011.

[6] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “Hermit: an
owl 2 reasoner,” Journal of Automated Reasoning, vol. 53, no. 3, pp.
245–269, 2014.

[7] O. Gilibert, M. Gerino, D.-T. Costa, S. Sauvage, F. Julien, Y. Capowiez,
and D. Orange, “Density effect of eisenia sp. epigeic earthworms on the
hydraulic conductivity of sand filters for wastewater treatment,” Water,
vol. 14, no. 7, p. 1048, 2022.

[8] M. TOURÉ, “Etude des performances des filtres plantés de roseaux
pour le traitement et la réutilisation des eaux usées de l’ugb,” 2019.


