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At andesitic volcanoes, effusive lava flows and dome emplacement alternate with explosive, sometimes
very destructive events. It is thus crucial to obtain quantitative information on the dome volume
emplaced as well as on the extrusion rate. However, steep slopes and continuous activity make it
difficult to install field instruments near many volcano summits. In this study, we take advantage of two
high resolution remote-sensing datasets, Pléiades (optical acquisitions in tri-stereo mode) and
TanDEM-X (radar acquisitions in bistatic mode), to produce twenty Digital Elevation Models (DEMs)
over the summit area of Merapi volcano, Indonesia, between July 2018 and December 2019. We
calculate the difference in elevation between each DEM and a reference DEM derived from Pléiades
images acquired in 2013, in order to track the evolution of the dome in the crater. Uncertainties are
quantified for each dataset by a statistical analysis of areas with no change in elevation. We show that
the DEMs derived from Pléiades and TanDEM-X data are consistent with each other and provide good
spatio-temporal constraints on the evolution of the dome. Furthermore, the remote-sensing estimate of
the lava volume is consistent with local drone measurements carried out by BPPTKG at the time of
dome growth. From our DEMs, we show that the dome growth was sustained by a relatively small
effusion rate of about 0.0336 + 0.0067 m*.s'(2900 + 580 m*/day) from August 2018 to February 2019,
when it reached a height of 40 meters (+ 5 m) and a volume of 0.64 Mm? (+ 0.03 Mm?). The lava dome
initially grew radially, and then extended asymmetrically to the northwest and southeast starting in
October 2018. From February 2019 onwards, the dome elevation remained constant, but lava was
continuously emitted. Lava supply was balanced by destabilization southwards downhill producing an
accumulation zone of 400 meters long and maximum 15 meters (+ 5m) high with a volume of 0.37
Mm’ (£ 0.29 Mm’). The measured accumulation rate between February and September 2019 is 0.0094
+ 0.001 m’.s7'(810 + 90 m*/day). In late 2019, several minor explosions partially destroyed the center
of the dome. This study highlights the strong potential of the joint use of TanDEM-X and Pléiades
DEMs to quantitatively monitor domes at andesitic stratovolcanoes.

Keywords: TanDEM-X, bistatic interferometry, Pléiades, Digital Elevation Models (DEMs), lava
dome volume, effusion rate
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1. Introduction

On active stratovolcanoes, it is crucial to assess the hazard associated with the appearance of a new
lava dome. Viscous lava domes build up by lava accumulation and eventually collapse when unstable
(Harnett et al., 2018). During their collapse, they are either partially or totally destroyed, and sudden
magma decompression might trigger explosions, volcanic blasts, ash plumes, pyroclastic density
currents (PDCs) and lahars that might reach densely populated areas (e.g on Merapi, Voight et al., 2000
; on Volcan de Colima, Capra et al., 2016; 2018). Frequently, a new dome appears after the destruction
of the previous dome (e.g Zorn et al., 2019, Colima volcano between 2013-2015; Pallister et al., 2013,
Merapi in 2010). The dome is often located in a crater surrounded by steep slopes : the growth of the
dome can last weeks to years before being destroyed. Several potential causes have been suggested to
explain the destruction of lava domes : a gravitational contribution due to oversteepened slopes of the
dome, an over-pressure within or below the dome, or even external factors such as heavy rainfall
(Kelfoun et al., 2021). However, the link between dome growth and collapse still remains to be solved.
As a consequence, in the absence of obvious precursors to dome explosions, it is necessary to
constantly evaluate the size and eruptive dynamics of the lava dome in order to evaluate the amount of
magma that could be mobilized and to estimate the expected runout distance of potential dome-collapse
PDCs.

Detection of variations of topography thanks to Digital Elevation Models (DEMs), volume estimates
and changes in the effusion rate of the dome provide key information to evaluate the hazard and
eventually raise alert levels (Fink and Griffith, 1998 ; Calder et al., 2002 ; Dietterich et al., 2021).
Comparison of the effusion rate with historical records provides insights on changes to the dome and
may also raise attention (Ogburn et al., 2015). Since 1000 AD, lava dome growth has occurred at one
hundred and twenty volcanoes. Morphology, volume and effusion rates are then used to understand the
behavior of such domes. Observational data are implemented in analogue (Donnadieu et al., 2003 ;
Walter et al., 2022) or numerical modeling to understand dome destabilization (Harnett et al., 2018,
2021) , building (Walter et al., 2019) and strain evolution within the dome (Zorn et al., 2019 & 2020).
Topographic changes are mainly tracked using optical, radar and thermal infrared imagery when
available : however, tracking changes is often challenging due to the small size of domes (between
100-200 m wide on average) often hosted within a summit crater of similar size. Both thermal and
radar methods have the advantage of being able to provide information at night and regardless of cloud
cover, whereas optical methods highly depend on daylight and good climatic conditions. Optical and
thermal acquisitions provide DEMs using stereo-photogrammetry (Diefenbach et al., 2012, 2013 ;
Bagnardi et al., 2016 ; Carrara et al., 2019), and eventually velocity maps and strain maps resulting
from image correlation (Walter et al., 2011 & 2013). Radar imagery enables the quantification of the
thickness and volume of domes and their associated flows emplaced at the surface, using either the
amplitude (Wadge et al., 2011 ; Walter et al., 2015 ; Arnold et al., 2017 ; Angarita et al. 2022) or the
phase (e.g Kubanek et al., 2017 ; Ordonez et al., 2022) acquired from bistatic interferometry (two
images acquired simultaneously). Retrieving the surface topography from the phase of monostatic radar
data (one image acquired per measurement) requires the analysis of a long time series in order to
separate elevation changes from surface deformation and atmospheric artifacts. Moreover, monostatic
radar is also not appropriate for dome studies due to loss of coherence on short timescales (Wang et al.,
2015). Therefore, bistatic radar data are favored and ensure a better accuracy when available (Bato et
al., 2016). Bistatic data have the additional advantage of being unaffected by coherence loss due to
changes in surface properties, and this coherence loss strongly reduces the use of the phase of radar
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data acquired at different times (Salzer et al., 2016). However, some studies succeeded in imaging
changes in the summit areas of volcanoes using monostatic SAR data (Richter et al., 2013).

Instruments to monitor volcanoes are either ground-based or remote, and episodic or permanent,
depending on the spatial and temporal resolution required, as well as the operating budget available.
Multi-sensor studies are often carried out to estimate volumes (Ryan et al., 2010). Studies from the past
century were mainly tracking the topography of domes using ground-based leveling, photographs and
theodolites. Ground-based optical and/or thermal cameras have also been widely used to track dome
topography, like on Mt St Helens, USA (Major et al., 2009), on Volcan de Colima, Mexico (Walter et
al., 2013), or on Merapi, Indonesia (Hort et al., 2006 ; Ratdomopurbo et al., 2013 ; Kelfoun et al.,
2021). Ground-based radar observations associated with seismicity also provided insights on lava dome
growth, such as at Soufriere Hills volcano, Montserrat (Wadge et al., 2008 ; Ryan et al., 2010).
However, due to steep-slopes and explosions, it can be difficult to implement ground-based
measurements close to the crater for visibility, accessibility and security reasons (Darmawan et al.,
2018). In contrast, remote-sensing using instruments mounted on helicopters, airplanes, more recently
on unmanned aerial vehicles (UAVs), or satellites has the ability to provide cost-effective quantitative
information on the crater area with minimized risk and spatially continuous coverage (Zorn et al., 2019
& 2020). Generally, an increase in the distance at which the measurement is made results in an increase
in the area covered at the cost of a decrease in spatial resolution and accuracy.

Airborne instruments have been successfully used to produce DEMs of hazardous lava domes:
examples include helicopter kinematic laser on the Soufriere Hills dome, Montserrat (Sparks et al.,
1998), low-cost helicopter cameras above Mount St Helens, USA (Diefenbach et al., 2012), UAVs
optical images on the Merapi dome in 2012-2015 (Darmawan et al., 2018), or thermal infrared imagery
of the Volcan de Colima dome, Mexico (Thiele et al., 2017 ; Salzer et al., 2017). Thermal infrared
imagery can also be used to infer the effusion rate using equations linking temperature, heat loss, and
crystallization of lava. This technique was in particular applied to MODIS data during the dome growth
episode of 2006 at Merapi volcano (Harris et Ripepe, 2007 ; Carr et al. 2016).

Airborne monitoring is, however, inconsistent, weather-dependent and costly, which led to an increase
in the use of satellite imagery in recent years. The huge amount and diversity of remote-sensing data
from various space agencies provide more continuous data with regular revisit times. These data are
sometimes open source (Sentinel-1 for radar and Landsat-8 or Sentinel-2 for optic). Numerous
automated processing chains are implemented in observatories, sometimes using deep learning
algorithms, thus increasing the rapid response to a volcanic crisis and eventually providing an insight
into the probability of an eruption (Anantrasirichai et al., 2019 ; Milillo et al., 2021). Automated chains
usually provide ground displacement time series from InSAR and GNSS, sometimes even amplitude
and coherence time series (d’Oreye et al., 2021). However the monitoring of summit domes, which are
typically a few hundred meters wide, still requires high resolution satellite data, such as TanDEM-X
(bistatic radar imagery) (Zink et al., 2014), COSMO-SkyMed (monostatic radar imagery) or Pléiades
(stereo optical imagery). These data are not routinely acquired and are only tasked based on specific
requests through scientific proposals, for volcanoes labeled as Supersite by the Committee on Earth
Observation Satellites (CEOS) for example. Some initiatives such as the International Charter Space
and Major Disasters Activation Map or the French Cellule d'Intervention d'Expertise Scientifique et
Technique (CIEST2) (Goubhier et al., 2022) are also meant to favor acquisitions in case of volcanic
crises.

Despite their high potential for summit dome monitoring, TanDEM-X DEMs have so far mainly been
used to track lava flows on relatively flat terrain (Kubanek et al., 2017 ; Poland, 2014 ; Rowland et al.,
2003 ; Ebmeier et al., 2012 ; Lundgren et al., 2019) or volcanic edifice slopes (Albino et al., 2015 ;
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Bato et al., 2016 ; Carrara et al., 2019 ; Arnold et al., 2016), PDCs (Albino et al., 2020) or large scale
crater shape evolution (Kubanek et al., 2015). Pléiades DEMs have been widely used to track lava
flows (Bagnardi et al., 2016 ; Pedersen et al., in revision ; Gouhier et al., 2022), PDCs and dome
growth (Moussallam et al., 2021) and major events of dome destruction (Carrara, et al. 2019). To our
knowledge no Pléiades and TanDEM-X images have been used jointly to produce DEM time series of
lava domes on dome building volcanoes, despite the high potential benefits to the volcanological
community, both in terms of monitoring domes and modeling their behavior. Indeed, the joint use
offers the possibility to quickly produce high resolution DEMs to follow the morphological evolution
of domes over time, and to easily combine the two datasets as they are consistent with each other: for
example, if cloud cover prevents optical acquisition, radar images can help cover this data gap. The
combination of the two datasets therefore allows for better spatial and temporal resolution, the only
remaining limitations being the cost and potential latency of delivery of TanDEM-X and Pleiades data.
These data could avoid the use of drones in difficult climatic conditions. They could be used in
conjunction with DEMs generated by SAR shadows, providing even better temporal resolution for
monitoring purposes. However, the potential of TanDEM-X and Pleiades for monitoring small volume
changes (less than 1 Mm?) remains to be clarified, which is one of the objectives of this study.

In this study, we focus on the spatial-temporal evolution of a lava dome that appeared on 11 August
2018 at Merapi volcano, Indonesia. We take advantage of the high spatial resolution of optical Pléiades
images and radar TanDEM-X data to build a total of twenty DEMs with a horizontal resolution of 3 m
and a vertical accuracy of a few meters over a period from 10 July 2018 to 09 December 2019.
Topographic changes with respect to a reference DEM from 2013, manual dome outline mapping, and
volume estimates are derived from these DEMs, enabling a better understanding of the dome evolution
over one year. Volume estimates derived from satellite imagery are compared to independent volume
estimates from in situ drone measurements and the ability of both datasets to quantitatively track the
evolution of the dome is discussed.

2. Merapi volcano recent activity and monitoring devices

Located about 30 km north of the city of Yogyakarta near the south coast of Java island (Fig. 1),
Merapi is an extremely hazardous dome building stratovolcano, with about 2 million people living less
than 30 km away from the almost permanently active crater. The volcanic activity at Merapi started
more than 100,000 years ago, and the construction of the recent Merapi cone initiated around 4,800
years ago (Gertisser et al., 2012). The recent period is characterized by cyclic effusive growth of
viscous lava domes, followed by their partial or total destruction (Camus et al., 2000 ; Ogburn et al.,
2015). Dome are frequently destroyed by gravitational collapses (VEI 2) every 4-5 years (Voight et al.,
2000a ; Newhall et al. 2000 ; Pallister et al. 2013), resulting in pyroclastic density currents (PDCs)
driven downhill at high velocities and frequently reaching 7 km long distances (Abdurachman et al.,
2000). During rainy seasons, PDCs can be remobilized forming lahars, thus increasing casualties
(Lavigne et al., 2000). Less frequent (every 50-100 years) explosions of relatively high intensity (VEI
3-4) can cause dome destruction and generate major PDCs that can reach up to 17 km from the summit
(Komorowski et al., 2013).

The last major explosive eruption (VEI 3-4) occurred in November 2010, resulting in a horseshoe-
shaped crater of 400 m wide and 250 m deep. When the eruption ended, it resulted in a lava dome of
150 m wide and 40 m high, shaped like a plateau (Darmawan et al., 2018). The crater is opened to the
south-east in the direction of Gendol gorge (Kubanek et al., 2015). This new crater morphology offers
direct visibility to the inside of the crater for optical cameras (Kelfoun et al., 2021).
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The 2018 dome extruded from the middle of a pre-existing fissure on the plateau, after six successive
explosions between 2012-2014 (Kelfoun et al., 2021 ; Darmawan et al., 2018). The first UAV picture
was acquired on 12 August 2018. The new dome was emplaced at the same location as the prior
phreatic vents, with a 47 m long oval shape, having a width of 17 m and a height of 2 m. This black
lava dome had a blocky structure (carapace), an andesitic to andesite-basaltic composition, and a
temperature over 100°C.

Merapi is closely monitored by the BPPTKG (Volcano Research and Technology Development
Center), which is part of the CVGHM (Indonesian Geological Agency's Center for Volcanology and
Geologic Hazard Mitigation), in Yogyakarta, with ground-based, airborne and spaceborne tools.
Currently, a Global Positioning System (GPS) network is implemented around the volcano (Beauducel,
1999), although quite far from the summit area (closest station PASB, ~650 m from crater), as well as
an Electronic Distance Measurements (EDM) array. Several remote-sensing datasets provide various
information on the ground deformation of the volcano in near-real time as they are processed following
an automated chain: open source Sentinel-1 provide interferograms every six to twelve days (Pinel et
al., 2021), Sentinel-2 optical images provide a view of the summit area, and B12 band thermal imagery
provide frequent maps of thermal anomalies. These data are gathered in the WEBOBS platform
(Beauducel et al., 2020). During the 2018 dome growth, in situ drone measurements were carried out
using a low-cost UAV Quadcopter model to obtain detailed morphological data of the summit with a
resolution of 0.5 m (Granados-Bolafios et al., 2021) and an accuracy of 40 cm. The aerial photography
of Merapi was done using DJI Phantom 4 PRO, a Quadcopter with a payload of less than 1.3 kg, with a
very stable flight controller, a sensitive gimbal, and a high-quality camera (20 megapixels camera, 4 K
video capable). The flight execution was carried out at a height of 350 m over the summit with a
mapping flight speed of 15 m.s" (Fig 1.C) and 80% overlap. Each aerial photo is georeferenced, with
dimensions of 4864 x 3648 pixels, with a horizontal resolution of 72 dpi.
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Figure 1. Geographical setting of Merapi volcano, Indonesia (Google Earth views). Panel A:
location of the volcano (white square), near the south coast of Java island, part of a volcanic arc
resulting from the subduction of the Australian plate beneath the Sonde plate. Panel B: Merapi volcano
is surrounded by the Merbabu volcano to the north, by plains and crops to the west, the Indian ocean to
the south and the Kedu plain to the east. It is only 25 km to the north of the city of Yogyakarta. The
footprint of TanDEM-X and Pléiades satellites used in this study are displayed, respectively TanDEM-
X descending track 134 (green rectangle), ascending track 96 (orange rectangle) and track 20 (red
rectangle), and Pléiades (pink rectangle). The white rectangle covers the area of Panel C. Panel C:
Zoom on Merapi: vegetation stops around 2300 meters a.s.l, the volcano is covered by ash up to the
summit horseshoe shaped crater inherited from the 2010 eruption. The crater is connected to the
southeast to the Gendol valley. At the summit, slopes reach on average 40°. The flight path of the drone
is along the red line with the location of the take-off/landing site and the start and end location of aerial
acquisitions. The pink dot in the crater corresponds to the seeding point location of the unwrapping and
the pink box on the southwest flank shows the area for phase referencing for TanDEM-X DEMs (See
Material and Methods).

3. Material and Methods

3.1. High resolution optical images: Pléiades data

3.1.1. Data description
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The Pléiades satellites acquire stereo or tri-stereo images in Panchromatic mode over the same area
during a single-pass (Gleyzes et al., 2012). The parameter B (maximum baseline between 2 stereo-
images) over H (height of satellite, assumed constant ~700 km) characterizes the geometry of
acquisition and influences the quality of the photogrammetric reconstitution. A B/H ratio superior to
0.25 1s optimum for processing DEMs, depending on the relief (see B/H ratio description in Pléiades
User Guide). In this study, the B/H ratio was retrieved from the code howstereo.py (Copyright (C)
2020 Arthur Delorme), using incidence angles across and along track as well as azimuth, available in
the metadata. Here we use and process one stereo pair of Pléiades optical images acquired in April
2013, to derive a reference DEM, and five tri-stereo Pléiades optical images (fifteen panchromatics)
acquired between February and September 2019. The reference DEM characterizes the summit
topography before the initiation of the dome growth. Pléiades panchromatic images have a nominal
resolution of 0.5 m. Geometrical characteristics and dates of acquisition of the six images used are
given in Table 1.

3.1.2 Processing method with Ames Stereo Pipeline (ASP)

Pléiades images were processed using Ames Stereo Pipeline (ASP), an open source suite dedicated to
stereophotogrammetry, developed by NASA (Shean et al., 2016). Each image of a given stereo couple
or triplet was first projected on a preexisting SRTM 2000 (Shuttle Radar Topography Mission) DEM of
30 m ground pixel size (Fig 2.A). Then, a point cloud was generated using pixel correlation and
triangulation between the two or three images. Finally, a 3 m pixel size DEM was derived from this
point cloud. As no ground control points were used, the absolute positioning of the DEM produced was
not fully accurate. The six DEMs produced were coregistered in order to align and minimize positional
biases between the successive DEMs following the methodology described in Berthier et al. (2007).
Small gaps in data due to clouds of limited size over the summit area were interpolated during the
post-processing from five neighboring pixels using an inverse distance weighting function of QGIS.
Note that in addition to the DEMs produced, the ortho-images obtained are useful to identify surface
changes induced by the eruptive activity.

—,

(A

lreprojection onl an SRTM DEM
. imagproj1 || imagproj2 ..imagprojB .
l correlation | triangulation |

Figure 2. Pléiades images workflow with ASP and optical panchromatic ortho-images. Panel A:
Correlation (gray arrows) between pixels (red dots) produces a stereo map from three images acquired
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with a slightly different geometry. This point cloud is then georeferenced using bundle adjustment, a
method which refines the pixel coordinates by minimizing the errors between observed and predicted
pixel position. Panel B: Panchromatic image from 26 February 2019 projected on a SRTM DEM. The
extent of the dome is trackable thanks to grayscale contrast between old material (light gray) and new
emplaced material (dark gray). From this contrast we can estimate a first order outline for the 2018
dome (dotted red outline). Within this extent, a rougher radial surface stands out (dotted green outline).
Panel C: Panchromatic image from 21 May 2019 projected on a SRTM DEM. Two main differences
compared to the previous 26 February 2019 image are trackable in the summit area: the southern part
of the dome is partially destroyed (green outline) and new material was emplaced to the southeast
(white outline).

3.2. High resolution radar images: Tandem-X data

3.2.1. Data description

The TanDEM-X satellite mission (Zink et al., 2014) is aimed at building high precision DEMs every
eleven days, relying on the physics of radar waves interferometry in bistatic mode. During one “‘single-
pass” acquisition, two nearly identical SAR sensors aboard the TerraSAR-X and TanDEM-X satellites
fly in close helical formation (Krieger et al., 2007), resulting in two X-band radar images acquired
simultaneously over the same area. In this case, the phase difference between the two radar images is
an interferogram that corresponds only to the contribution of the topography (reference and residual
topography), thus bypassing the atmospheric and deformation contribution to the phase, due to
simultaneous acquisitions (Kubanek et al., 2015) (See Supplementary material for further details).
From the phase change in radians, the terrain elevation 4 can be retrieved in meters using the slant-to-
height conversion (Yoon et al., 2009):

h = —(A*r * sin(0)* Pusar) /(478 1) (D)

where 4 is the X-band wavelength (roughly 0.031 m), r the geometric range distance of the ground to
the master satellite, 6 the incidence angle with respect to the vertical, and B, the effective
perpendicular baseline between the two satellites, which is in the case of bistatic mode half of the
perpendicular component of the distance between the two satellites (Kubanek et al., 2021). The
sensitivity of the phase to elevation changes can also be expressed in terms of the height of ambiguity
(ha), defined as the height difference corresponding to a phase shift of 2m. The larger the B, , the
smaller the ha, meaning that the measurement will be sensitive to smaller changes in elevation.
However, this may make unwrapping more difficult because there is a higher fringe gradient.

The summit area of Merapi volcano is imaged by three different tracks of TanDEM-X: the descending
track D134, the ascending track A96 and the ascending track A20 (see Table 1 for the characteristics of
all images processed in this study, see Fig 1.B for the footprints). Comparison between three tracks
enables selecting the tracks with best visibility on the crater area. Coherence and amplitude images are
shown for each track for images acquired in June 2019 in Fig. 3. Images are displayed in radar
geometry : depending on the track, images are not oriented and distorted the same way. Descending
track images (column A) are horizontally mirrored compared to the terrain geometry, meaning the
image is reversed along the west-east direction. Inversely, ascending track images (column B and C)
are vertically mirrored compared to the terrain geometry, meaning the image is reversed along the
north-south direction. Because of a higher angle of incidence, which greatly reduces the effects of



284 layover and foreshortening, the ascending A96 gives the best view of the dome, even if shadow effects
285 induced by the crater walls limit the visibility of the western part of the dome and in the Gendol valley
286 located below the dome. Based on this observation, we focused our study on the use of sixteen
287 TanDEM-X images from the ascending track A96.

A Track D134 B. Track A96 C. Track A20

Coherence

900

Amplitude

s 200

288 Figure 3. Amplitude and coherence images for the three TanDEM-X tracks available over
289 Merapi volcano summit area. Panel A: Descending image from track D134 acquired on 18 June
290 2019. The dome is strongly distorted, with a shadow zone on its Western part and low coherence.
291 Panel B: Ascending image from track A96 acquired on 16 June 2019. The dome is less distorted than
292 on D134, although shadowing occurs on the eastern flank of the dome. Coherence is relatively high on
293 the dome except on the shadow area. Panel C: Ascending image from track A20 acquired on 11 June
294  2019. The dome is not visible at all due to major foreshortening.
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Table 1. TanDEM-X and Pléiades data along with their main characteristics. Top: TanDEM-X
data in Stripmap acquisition mode and heights of ambiguity. Volume estimates were calculated only
for dates in bold for track A96, using an outline derived from the produced DEMs (referred to as RS
outline later in the paper, See Fig 6). Bottom: Pléiades B/H ratio and across/along track incidence
angle for each tri-stereo pair and the time of acquisition. Please note the reference stereo-pair of 26
April 2013 was used for the radar reference DEM simulation and for the differencing of each DEM.

Volumes are calculated the same way as volumes from TanDEM-X.

3.2.2. Processing method

TanDEM-X images were processed with an adapted workflow relying on ROI_PAC (Rosen et al,
2004) and developed at ISTerre, Grenoble (Fig 4.A). For each date, we obtained interferograms
corresponding to the residual topography with respect to the reference topography. The quality of the
interferogram in the small dome area strongly depends on the choice of the reference DEM. Here, we

Date Orbit Track number Effective ha (m) Lava dome volume (Mm?) |
2018/07/10 Ascending 96 84,39 0.052 |
2018/08/12 Ascending 96 109.83 0.055 ;
2018/08/23 | Ascending 96 120.19 0.10
2018/09/03 | Ascending 96 131.49 0.12 |
2018/10/17 Ascending 96 168.1 0.26 |
2018/11/21 Descending 134 23.37
2018/11/30 | Ascending 96 384
2019/03/09 Ascending 96 83.62 0.66
2019/03/31 Ascending 96 94,59 0.59
2019/04/11 Ascending 96 100.96 0.56
2019/04/22 Ascending 96 42 87 0.66
2019/04/24 Descending 134 26.49
2019/06/05 | ‘Ascending 96 47.53 0.64
2019/06/11 Ascending 20 21.18
2019/06/16 | Ascending 9 48.94 0.66
2019/06/18 Descending 134 30.54 f

| 2010/06/22 | Ascending 20 2174 i
2019/06/27 Ascending 96 50,19 0.66 |
2019/06/29 Descending 134 31.13 |
2019/07/03 Ascending 20 22.48 |
2019/07/08 | Ascending 96 51.67 0.68 |
2019/09/14 Descending 134 33.14
2019/09/25 Descending 134 34,48 |
2019/11/28 Ascending 96 74.68 0.53 |
2019/12/09 | Ascending 96 85,42 0.50 |

Date B/H Along track incidence(®) | Across track incidence(”) | Lava dome volume (Mom3)
2013/04/26 0.20

03:08:25 -8.817217220395586  |-6.898799157153648 _
03:08:43 12.383020158158021 -9.223405423996606 |
2019/02/26 058 0.65 |
03:07:59 -20.09433944147328  |-4.996002238992582 |

_ 03:08:35 1557682621504057 |-9.617006567140558 | |
03:08:53 111.90792550774587 -11.78130916077721 | |
2019/05/21 0.64 0.61 |
03:11:26 | -21.11026123928664  |-13.48404049447741 =
03:12:04 1.188814345094415 -17.93280482389636

| 03:12:26 114.49136020831147 -20.53711324954333 -

2019/06/18 052 0.66

_ 02:56:49 [-8.533043237688107 | 20.69034026318977
02:56:59 -2,574938500384239  |19.52180668358012
02:57:38 120.41997423763934  |14.84033163022764
2019/08/21 0.60 0.63
03:05:42 -17.83986894461046  |3.576958740279529
03:04:45 -4.414469766169287  |0.5951481585683186 |
03:05:08 115.75972447437973 -3.826905908328997 |

2019/09/09 0.42 I R 0.63 |
03:08:39 -12.55068782653866  |-6.984662271092217 |
03:09:17 -5,472328159858717  |-8.482084153786536 |
03:08:51 9.790743438505295 -11.65541947384622 ;
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used a reference DEM resulting from the merging of a large-scale SRTM 30 m DEM oversampled to 3
m and a 3 m resolution DEM of the summit area, derived from stereo Pléiades images acquired in April
2013.

The 2013 DEM is suited as a pre-eruptive dome DEM, because between 2010 and 2018, only a series
of phreatic eruptions occurred in 2014 without major morphological changes, except a minor wall
destabilization in the south-eastern flank.

The resulting interferogram (Fig 4. C) is then filtered (Goldstein and Werner, 1998 , Fig4.D),
unwrapped (Chen and Zebker, 2001, Fig 4.E), and referenced with respect to a stable area (Fig 4.F and
Fig 1.C). Slant-to-height conversion is then performed using equation (1). Ultimately, interferograms
are geocoded from radar to ground geometry, with a look-up table.
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Figure 4. General workflow used to generate TanDEM-X DEMs. Panel A: The adapted processing
chain starting from the images in .slc ROI_PAC format. After wrapped interferogram production, post-
processing steps allow for filtering good coherence pixels (above 0.4), unwrapping, referencing,
geocoding and eventual shift corrections for vertical misalignment. Panel B: Zoom on the radial dome
in the 22 April 2019 amplitude image. Shadowing occurs on the eastern side of the dome due to its
height and the satellite viewing angle. Panel C: Zoom on the dome in the corresponding wrapped
interferogram. Note the noisy random distribution of the phase in corresponding shadowed areas on the
amplitude image. Signal is present on the dome. Panel D: Zoom on the dome in the filtered wrapped
interferogram. Only pixels with a coherence above 0.4 are conserved. Note that the outline of the
topographic fringes is different from Panel C because the scale is different. Panel E: Zoom on the
dome in the filtered and unwrapped interferogram. Unwrapping succeeded in areas of good coherence
and with sufficient signal. The dome has been successfully unwrapped, but notice the surrounding areas
where no topographic change is expected are not equal to 0. Panel F: Zoom on the same area as Panel
E with a shift correction from a reference area without topographic changes, resulting in areas outside
of the dome being equal to 0.

In addition to the DEMs directly derived from the interferograms, we also produced amplitude and
coherence images, and used the latter to build vertical precision maps. As the track is ascending,
amplitude and coherence maps show shadowing on the eastern slopes of the volcanic edifice. SAR
amplitudes are a useful tool to assess dome shape, surface roughness and eventually highlight the
emplacement of new lava at the surface. False color amplitude maps were thus computed between two
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dates in order to better evidence changes in the surface properties and shape (Solikhin et al., 2015;
Walter et al., 2015) (See Text S1 Supplementary material for further details). Coherence maps
reflect the spatial stability of the pixels between two radar images. A good coherence (value close to 1)
means the pixels are highly stable and thus the topography derived from the phase is accurate. Within
the dome, the average coherence is 0.44 due to shadowing. When masking the dome with coherence
values below 0.6, to exclude shadowed zones, the average coherence reaches 0.83.

3.3. Elevation change maps uncertainties

We computed the mean and standard deviation of each elevation change map on stable areas out of the
summit to correct for eventual vertical shifts (See Text S2 and Table S1 in Supplementary material
for further details). For Pléiades DEMs, we added a filter on slopes which excluded slopes above 70°.
For TanDEM-X DEMs, we added a filter on coherence as areas with good coherence (above 0.8) have
more spatially stable pixels and are expected to be characterized by a lower uncertainty in the retrieved
elevation than areas of low coherence (below 0.4) (Fig 5.B) (see Table S1 and Fig S1 in
Supplementary material for further description of the selected pixels). We corrected the fifteen
TanDEM-X DEMs by subtracting the mean of the non-deformed areas of good coherence from the
whole DEM. For both TanDEM-X (Fig 5.A) and Pléiades (Fig 5.C), we observe a gaussian distribution
of the elevation difference, even though on some TanDEM-X we observe a small asymmetry. It seems
the smaller the ha, the more the curve is asymmetric (smaller standard deviation but also smaller
number of pixels centered around O value).

There is a positive linear relation between standard deviation and height of ambiguity ha (Fig 5.B). As
a consequence, DEMs derived from pairs characterized by a large ha show higher artifacts outside the
crater than the ones obtained with a smaller ha. Moreover, coherence also impacts the standard
deviation of non deformed areas (Fig 7.B) : in the case of bad coherence areas, mean (green dot) and
standard deviation (green error bars) are higher than in the case of good coherence (blue dots and error
bars). This leads us to use the precision maps o(z) (Fig 5.D), functions of coherence y and ha , as a
proxy for vertical uncertainties on the dome, for TanDEM-X derived DEMs (See Text S2 in
Supplementary material for further details):

o(z)= )

The precision maps allow us to assess vertical precision of height estimates for each pixel of the DEMs.
Precision maps display the spatial variability of the vertical accuracy of heights on the dome, with bad
precision over the shadowed area and good precision on the rest of the dome : for large ha and low
coherence, the value of precision is high, meaning accuracy is low, and inversely. Mean vertical
precision over the dome of coherence values above 0.8 is 14 m (+ 8 m), with best precision obtained
for DEMs of small height of ambiguities: precision of 5 m is predicted for an effective height of
ambiguity of about 50 m. For Pléiades, uncertainties are estimated using classic standard deviation
estimated from non deformed areas and are around 7 m on average (Fig 5.C and Table S1).
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Figure 5. Standard deviation and mean for elevation change maps derived from TanDEM-X
DEMs and Pléiades DEMs for areas with no topographic changes compared to 2013. For
TanDEM-X DEMs, we applied a specific threshold on the coherence and for Pléiades a specific
threshold on slopes. Panel A: histogram for TanDEM-X DEMs corrected from their vertical offset,
considering coherence above 0.8 (good coherence). As a consequence from the vertical offset
correction, the mean is centered around O and standard deviation does not exceed 20 m. Panel B: mean
of non-deforming areas as a function of the effective height of ambiguity for TanDEM-X, for good
(blue) and bad (green) coherence areas, and as a function of B over H ratio for Pléiades (orange). Panel
C: histogram for Plé¢iades DEMs, considering an additional filter excluding slopes above 70° where big
outliers can be expected. The mean is centered on 0, showing that the vertical offset estimated, when
coregistering the various DEMs, has been successful. Panel D: Precision map of 09 March 2019
showing the spatial variability of the vertical precision on the dome, with bad precision over the
shadow area and good precision of about 5 m at best on the rest of the dome.

Number of pixels

3.4. Volume estimation

From the elevation change maps, we retrieve the volume of the dome for each date. The outline of the
dome is defined in two ways for comparison purposes between the various datasets. A first outline of
the dome is derived from the area selected for drone measurements by the BPPTKG (referred to as
BPPTKG dome outline in the rest of the paper, surface area of 18177 m?) in order to compare our
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volume estimates from Pléiades and TanDEM-X to their estimates from drone using the same surface
of the dome. A second outline is manually traced using the elevation change gradient on produced
DEMs (referred to as Remote Sensing RS dome outline, surface area of 27509 m?) : we consider this
outline as a more relevant outline with respect to our dataset, allowing us to include the north-western
part of the dome, and thus derive proper volume estimates from our observations. Then, the average
height within this surface is computed for positive values on DEM differences and finally the average
lava volume is calculated. Ultimately, an average magma discharge rate can be estimated by
considering the time derivation. Please note that excluding negative values does not mean excluding
negative changes of topography within the dome : negative values are negative with respect to the
reference DEM of 2013, therefore we consider them as outliers, confirmed by the fact that there are
very few of them and they are sparsely distributed. A loss of topography of the dome, with respect to
2013, still corresponds to a positive value.

More precisely, during the dome growth and the so-called “steady” period, we do not measure negative
changes, but it does not mean loss of topography did not occur. Indeed, as described in Darmawan et
al., 2020, ground-based optical cameras show scars and destabilizations on the edges of the dome, but
we can not detect them on our time series : either they are not well resolved in our DEMs, or they are
transient and thus balanced by lava supply maintaining “constant” topography of the dome between 2
satellite acquisitions. In addition, we want to mention that significant negative changes were observed
by the end of 2019 when explosions occurred and partly destroyed the dome, as displayed in cross-
sections (Fig. 10) and volumes (Fig. 12).

The volumes derived from the twenty DEMs, using the first BPPTKG outline of the dome, are then
compared to the volumes calculated by the BPPTKG from their own drone measurements. We also
performed volume calculation of the accumulation zone below the dome only in Pléiades DEMs, in a
similar way, with our own outline only.

Uncertainties in the volume were estimated using the standard deviation of the height within the dome
outline multiplied by the surface of the dome. We also added a component corresponding to the
uncertainty of the outline itself by estimating the volume on a section around the dome outline of one
more pixel of 3 m. For the volume uncertainties from the drone, we consider the accuracy of 40 cm
multiplied by the surface of the dome.

4. Results

Based on the dome monitoring performed by drone measurements, and following the description of
Kelfoun et al., 2021, we discriminate three main stages in the dome evolution between 2018 and 2019.
The first stage is a spatial expansion within the crater from August to December 2018. This “growth
stage” is followed by a “steady stage” of constant elevation and shape of the dome within the crater.
This constant elevation is due to new lava effusion with compensative gravitational collapse into the
Gendol valley from January to September 2019, followed by a final stage with partial destruction of the
dome until June 2020. The first image of our dataset also provides information on the crater before the
dome appeared. Based on the information provided by the thermal cameras (Kelfoun et al., 2021), we
consider that the growth of the dome is mainly exogenous, but we cannot totally exclude that some
material is emplaced beneath or inside the dome.

We first present the Pléiades panchromatic images, only available during the “steady stage” period, and
associated derived DEMs. These data provide quantitative information on the shape and topography of
the dome, as well as complementary information on the Gendol valley below. Then we present
TanDEM-X results as they provide more information on the chronological evolution of the dome,
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especially the early growth and the later start of destruction in favor of explosions. The comparison of
the two datasets is carried out over the “steady stage” period when both datasets are available and then
used to estimate lava volumes and emission rates.

4.1. Pléiades imagery: ‘‘steady stage” period

The analysis of the five Pléiades panchromatic tri-stereo acquisitions provides information on the 2018
dome after emplacement (Fig 2.B and C). Within the horseshoe shaped crater, the extent of the dome
is trackable thanks to grayscale contrast between old material (light gray) and new emplaced material
(dark gray). From this contrast we estimate the 2018 dome is ~200 m diameter. Within this extent, a
rougher radial and cracked surface stands out. The image of 21 May 2019 shows two main differences
compared to the previous image of 26 February 2019 : the southern part of the dome is partially
destroyed and some new and thin coarse material has deposited to the southeast. The following images
show no major changes in the summit area.

No significant elevation changes in the dome are recorded between February and September 2019,
corresponding to the “steady stage” in the evolution of the dome: the maximum dome thickness is ~ 40
meters and cross-sections evidence the dome is limited by steep slopes (Fig 6 A, B and profile AA’ in
Fig. 6C). The shape of the dome is radial with an extension to the northwest (Fig 6.A), which is
consistent with the panchromatic images. Pléiades also provides additional information on the
southeastern Gendol valley below the dome. Successive Pléiades-derived DEMs reveal increasing
topography in the 400 m below channelized in the gorge (Fig 6). The maximum elevation goes from
about 5 meters in February 2019 up to 15 meters in September 2019, as displayed on the west-east
cross-sections of the accumulation area (Profile BB’ in Fig 6.C).
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Figure 6. Pléiades DEMs and cross-sections along the dome and north of the accumulation zone.
Panel A: successive Pléiades DEMs showing the dome with no significant change in elevation and
shape. On the contrary, the accumulation zone below increases in elevation. Panel B: outlines of the
dome and the accumulation zone on the Panchromatic image of Pléiades of 26 February 2019. The red
outline corresponds to the outline derived from the DEMs in this study (Remote Sensing RS outline),
the green outline corresponds to the delimitation of the surface monitored by drone flights (BPPTKG
outline) and the blue outline corresponds to the accumulation zone. Cross-sections along the west-east
profile are done using the mean of elevation within a ten pixels wide window (see rectangles displayed
on the first DEM), and considering the mean precision along the cross-sections as an estimate of the
uncertainties. Panel C: West-east (A-A’) cross section across the dome and west-east (B-B’) cross-
section along the top of the accumulation zone for the five dates of Pléiades images. Light gray area
corresponds to standard deviation. Note the difference in scale for heights.

4.2. TanDEM-X dataset: temporal evolution
4.2.1. Before dome emplacement

Amplitude maps clearly display the horse-shoe shaped crater area of ~400 m wide leading to the
Gendol gorge to the south-east. The first amplitude map from 10 July 2018, prior to the appearance of
the dome, reveals in the middle of the crater a northwest-southeast oriented shadow crossing the whole
plateau (Fig 7B). We interpret this linear shadow as the fracture described in Kelfoun et al., 2021. It is
likely to be the fracture from which the dome extruded one month later. Similarly, the coherence map
for this date shows poor coherence within the fracture (Fig 7.A). Precision on the fracture is low (above
100 m), contrary to the rest of the plateau where there is a good vertical precision (between 2 and 5 m)
(Fig. 7. C).

A. Coherence maps B. Precision maps C. Amf'”“de maps

5 110.448

110.445 110,445 110.448 110

0 75 150m

Figure 7. Coherence, precision and amplitude maps for the first image of the TanDEM-X dataset,
acquired on 10 July 2018. The northwest-southeast oriented central fracture on the pre-existing
plateau is clearly evidenced on the maps. Note that the ascending acquisition mode does not image the
western flank of the valley below the plateau, nor the western wall of the crater.
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4.2.2 Growth stage

Starting 23 August 2018, a new small shadow appears on the eastern side of the crater on both
amplitude and coherence maps, and continues to grow until 09 March 2019, after which the size of the
shadow remains constant until 08 July 2019 (Fig 8). According to the BPPTKG, the dome appeared on
11 August 2018, with the first aerial picture taken the day after. We interpret this shadow as the shadow
of the dome due to its elevation: it is a qualitative way to visually assess the dome growth between
August 2018 and March 2019. The false composite maps provide additional information to track the
activity of the dome. First, they show that apart from the crater, the flanks of the volcano ground
properties remain constant (yellow). Then, within the crater, the zone where the amplitude increases
due to the rough properties and increasing slopes of the new extruded lava (cyan) enlarges between
August 2018 and March 2019, with respect to the reference date of 10 July 2018. This method enables
the tracking of dome growth both in area and height. More precisely, images from 23 August and 03
September 2018 show the shape of the rougher zone is almost radial, whereas it later extends
asymmetrically to the northwest. On the other side of the fracture, a dark red zone also increases with
time until March 2019, corresponding to the increasing shadow of the growing dome. From March
2019 to July 2019, this shadow remains constant.



(A) Conerence (B) Ampitude (C) RreBAmpitude

L5 e

110443 190440 a5 10

T
2018-07-1

20150708

I Increase in amplitude
Unchanger

B Decrease in amplitude
499 Figure 8. Coherence, amplitude and false color composite amplitude maps for 23 August 2018, 03
500 September 2018, 17 October 2018, 09 March 2019, and 08 July 2019. The growing shadow of the
501 dome enables tracking dome growth of the dome between August 2018 and March 2019 on coherence
502 and amplitude maps. The false color composite maps provide additional information on the slope
503 changes between the first date prior to the dome (10 July 2018) and the given date. They reveal that at
504 least until 03 September 2018 the dome has a radial shape and seems to extend to the northwest starting
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17 October 2018 at the latest. The shape of the dome remains the same from 09 March 2019 to 08 July
2019, as the two last rows are identical.

The DEMs of 23 August, 03 September, and 17 October 2018 evidence the rapid growth of the dome
from 8 meters to 25 meters high at the top, within only three months (Fig 9 and corresponding
profiles in Fig 10).
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Figure 9. TanDEM-X derived DEMs for the growing stage, areas with a coherence below 0.6
being masked and DEMs are superimposed on the hillshade of 2013 DEM. The time series
evidences the growth of the dome in the center of the crater up to 20 m high. Please note the important
outliers on the flanks of the volcano (mainly on the east crater wall), due to potential residual
unwrapping errors in areas characterized by a strong foreshortening.
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Figure 10. Mean cross sections of the TanDEM-X and Pléiades derived DEMs and precision as
uncertainties. Panel A: location of the windows of the respective cross-sections in black boxes. The
red outline corresponds to the outline derived from the DEMs of this study (Remote Sensing RS
outline), the green outline corresponds to the outline of the surface monitored by drone flights
(BPPTKG outline) . Top image is the TanDEM-X DEM of 09 March 2019, bottom image is the
Pléiades DEM of 26 February 2019, both zoomed on the dome. Panel B: West-east cross section along
A-A’ in top box, and north-south cross section along B-B’ in bottom box (boxes used to derive the
profiles are ten pixels wide). Dotted lines correspond to Pléiades DEMs and continuous lines refer to
TanDEM-X DEMs elevations. The filled gray zones behind correspond to the respective mean
precision along the cross-sections. Please note that on the west-east cross-section, precision is very low
on the eastern side of the dome due to the shadow resulting from the elevation of the dome in the line
of sight of the satellite (LOS).

4.2.3. Steady stage

After March 2019, the growth phase is followed by a period of six months with no significant change in
the morphology of the dome. We also performed a false composite map during the period where the
size of the shadow of the dome remains constant: we take as the first date 09 March 2019 and as the
second date 08 July 2019. The map evidences a cyan colored zone in the dome, meaning there was new
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income of rougher material (lava) during this period even though the dome shadows suggest there are
no more elevation changes.

Starting 09 March 2019 up to 08 July 2019, seven DEMs show the same elevation pattern without
significant changes (see corresponding profiles in Fig.10). The dome top elevation rises to about 40
meters, with steep slopes.

4.2.4. Partial destruction stage

The two last dates of our TanDEM-X dataset are 28 November 2019 and 09 December 2019. Both
show a partial decrease of the extent of the shadow on the eastern part of the dome, probably linked to
the removal of some material of the dome (Fig 11).
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Figure 11. End of the dome growth evidenced by coherence, amplitude and RGB composite
amplitude maps for 12 December 2019. Panel A: coherence map showing loss of coherence on the
central part of the dome. Panel B: amplitude map showing similar information as coherence map.
Panel C: false color composite map with the blue component corresponding to the difference between
08 July 2019 and 12 December 2019. It shows the decreasing amplitude corresponding to a potential
loss of height, as well as an increase in amplitude to the south, that might correspond to some new
rough material.

The partial destruction of the dome by explosion is also clearly visible in the DEMs. On 28 November
and 09 December 2019, a central depression of more than 10 meters is evidenced on the west-east
cross-section, and a depression of the same scale is identified to the south on the north-south cross-
section (see corresponding profiles in Fig 10).

4.3. Comparison between TanDEM-X and Pléiades

Cross sections of the lava dome enable the tracking in space and time of the main topographic changes.
We compute the mean west-east and north-south cross-section within a chosen window of ten pixels, in
order to increase the signal to noise ratio (Fig 10). We take the vertical precision as an indicator of the
uncertainties of our data.

The fifteen TanDEM-X derived DEMs provide quantitative information on the elevation changes of the
dome. The maps provide information except in areas where unwrapping was not successful, mostly
characterized by low coherence. As shown in section IIL.3, the precision of elevation derived from
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TanDEM-X data depends on the height of ambiguity (precision decreases with increasing height of
ambiguity). However, we consider that TanDEM-X data provide reliable information on the dome
topography for a height of ambiguity as large as 100 m. For example, DEMs from 11 April and 22
April 2019 have respective heights of ambiguity of 105 and 44 m, and the dome morphology and
heights are very close - the mean difference is only 0.46 m (see Fig. 10).

Vertical precision and pixel resolution in the ground range of TanDEM-X DEMs vary within the dome,
as a consequence of radar acquisition geometry as detailed in section III.3. It should be noted that
precision on the eastern flank of the dome is very low, due to the low coherence explained by the
shadow of the dome on the plateau. Therefore the elevation in this area should not be considered as
accurate for interpretation. Similarly, on the north-south cross-section, precision is low on the edges of
the dome, on the wall of the crater to the north and the edge of the plateau to the south. TanDEM-X and
Pléiades derived DEMs show very similar trends in the morphological evolution of the 2018-2019
dome on Merapi, which can be considered as a strong validation of both methods on a relatively small
dome size. However, some differences evidenced by the cross-sections shouldn’t be neglected. The
west-east mean cross-sections global pattern shows that the edges of the west and east flanks are not at
the exact same location (Fig 11.B). Pléiades derived DEMs provide a wider extent of the dome,
especially to the east. This can be explained by the very low precision of the TanDEM-X derived
DEMs on the eastern edges as it is shadowed. TanDEM-X DEMs probably lead to an underestimation
of the dome extent on the east flank. On north-south cross-sections, TanDEM-X DEMs evidence a
slightly wider and flatter dome than Pléiades DEMs.

4.4. Volume and effusion rate estimates

From dome surface manual mapping, mean volumes were computed in order to track the eruptive
activity of the dome (Fig 12). Following the volumetric evolution of the dome is crucial for hazard
assessment, as the hazard usually increases with growing and renewed quantity of unstable material. In
this study, lava volumes correspond to lava effusion and accumulation building up the dome (refer to
Kelfoun et al., 2021 thermal time series). TanDEM-X derived volumes track the rapid growth of the
dome, a later stage with no topographic changes, followed by partial destruction of the central part of
the dome. Pléiades derived volumes only track the volumes of the dome from the period with no major
topographic change due to acquisition dates falling within this period only, but also provide a volume
estimate of the accumulation area below the dome. This deposition zone also undergoes topographic
changes, and tracking these changes is crucial for hazard assessment as well, as it might be unstable
fresh material.

For the dome, volumes estimated from our outline are higher than volumes derived from the BPPTKG
outline as we include the north-west increasing topography structure in the dome outline. We consider
this latter definition of the dome outline relevant in our study, as we are interested in the quantity of
incoming material to evaluate the activity of the dome. We focus on the volcanic behavior of the dome,
not only for immediate monitoring purposes, but also for global dome understanding and modeling.
Indonesian authorities, on the other hand, are more interested in assessing the maximum height of the
dome for the monitoring and risk assessment, because the higher the dome, the more likely it will
destabilize. Therefore, we mostly consider volumes derived from the RS outline for the dome as the
best estimator of the volume, and we use the BPPTKG outline for comparison with the drone estimates.

Considering the RS outline on TanDEM-X DEMs, the dome reached a maximum volume of 0.26 Mm"*
by October 2018. During this early growth stage (August 2018-February 2019), the dome produced
lava at a rate of 0.0336 + 0.0067 m’.s™ (2900 + 580 m*/day). Then volumes remained roughly constant
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with a total mean volume for the dome of 0.64 + 0.03 Mm? considering the period February-September
2019, using RS outline on both TanDEM-X and Pléiades. Plé¢iades and TanDEM-X DEMs separately
provide a similar mean volume estimate during this period, of 0.64 + 0.02 Mm? and 0.66 = 0.01 Mm®
respectively. The BPPTKG outline provides smaller estimates of lava dome volumes: a volume of 0.47
+ 0.03 Mm® considering both datasets, 0.46 £ 0.03 Mm® with TanDEM-X only, and 0.49 + 0.02 Mm*
with Pléiades only. This confirms that TanDEM-X and Pléiades DEMs are complementary and
consistent when used together to estimate lava dome volumes.

Using the Pléiades dataset, we also estimated the accumulation zone volume. The accumulation zone
by September 2019 reached a maximum volume of about 0.37 + 0.29 Mm? and an accumulation rate of
0.0094 £ 0.001 m*.s™" (810 = 90 m*/day) between February-September 2019.

To validate the TanDEM-X and Pléiades methods for estimating dome volumes, we compared our
volumes derived from DEMs (using the BPPTKG outline) to independent daily volumes measured by
BPPTKG drone flights. We show that volumes of the dome derived from DEMs are fully consistent
with volumes computed from the drone. The mean volume estimated by the drone using
photogrammetry is 0.46 + 0.01 Mm? and for our DEMs is 0.47 + 0.03 Mm®. The effusion rate during
the growth stage is similar for the drone and for TanDEM-X, respectively 0.0336 + 0.0010 m?.s™* (2900
+ 90 m'/day) and 0.0249 + 0.0053 m®.s™ (2150 + 460 m*/day ). We note that TanDEM-X provided
slightly higher volume estimates than the drone at the early stage of dome growth, which might be an
overestimate. For August 23, 2018, we measured with TanDEM-X DEM a volume of 0.04 Mm?
whereas the drone measured a volume of 0.02 Mm?®. On the contrary, during the “steady” stage,
TanDEM-X and Pléiades measured very similar volumes to the drone volumes. This confirms the
reliability of both TanDEM-X and Pléiades for dome monitoring.
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Figure 12. Volume estimates from the dome and the accumulation zone. Panel A: extent of the
area where volumes were computed from TanDEM-X and Pléiades DEMs. Panel B: volume estimates
and their uncertainties. The color of the marker refers to the type of outline that has been used to
calculate the volume, and the marker type refers to the data type from which the volumes were derived.
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The mean volume using both TanDEM-X and Pléiades between February-September 2019 is shown
with the dashed gray line at 0.64 Mm?®. The effusion rates for TanDEM-X only and drone only on the
dome are plotted as dashed lines, respectively red and black. The accumulation rate from Pléiades is
plotted as a blue dashed line. The numbers 1, 2, 3 above arrows in the end of 2019 indicate dates when
dome explosions were recorded : on 14 October 2019, 9 November 2019 and 17 November 2019,
according to Kelfoun et al., 2021. Additional seismic data from WebObs is also presented to highlight
that even though the volume of the dome remained constant between March-July 2019, small rock falls
(referred to as Guguran, brown line) contributed in partially destroying the dome and supplying the
accumulation zone with new material.

5. Discussion
5.1. Interpretation of chronology of events

Relying on the description of changes to the lava dome described by Kelfoun et al., 2021 using two
cameras on the edges of the crater, we interpret the results observed on the DEMs derived from remote-
sensing. First, the location and dimensions of the dome are consistent with their description. The timing
is also consistent with ground-based observations: Kelfoun et al., 2021 describe a first radial growth
until October 2018, followed by asymmetric growth oriented towards the northwest.

After this dome expansion, they observe the dome starts to destabilize first on the northwest flank, and
then mainly on the southeast flank, with material falling into the Gendol gorge. They suggest
destabilization is partly controlled by the accumulation of talus from the dome that reaches a certain
slope threshold related to a change in rheology of the rock, triggering partial gravitational collapse.
This observation is consistent with seismic records of increasing small rockfalls (Gugurans) recorded
on Merapi (available on WEBOBS online) at this time (Fig 12.B). Gugurans increase as the dome
grows with steeper slopes, resulting in gravitational instabilities on its edges (Ratdomopurbo and
Poupinet, 2000). At the same time, multiphase events (also available on Webobs) are also numerous
during the growth stage, up to about twenty events per day. These can be interpreted as lava effusion
contributing to dome growth, whereas Gugurans are related to volume loss even if the dome 1is still
growing. Another study by Darmawan et al., 2020, using high resolution optical cameras in April 2019,
also confirms decameters to meters-scale destabilization of the central and south parts of the dome,
leading to scars on its edges.

This observation of destabilization on the talus part of the dome is consistent with observations on
other domes : it seems the dome first grows vertically and later expands laterally on the talus area, and
potentially collapses due to slope and modification of the rheological behavior of the rock (Zorn et al.,
2020 ; Harnett et al., 2018 & 2021). Moreover, Zorn et al., 2019 suggest the directional expansion of
the dome could be a hint on its instability, even though the reasons why a preferential direction is taken
are not fully understood. In our case, we observe the lateral expansion of the dome first to the northwest
after a radial phase, followed by a change of direction toward the southeast, constrained by topography
(the crater wall to the northwest). This is supported by Walter et al., 2013b that suggest that the crater
shape plays a role in the orientation of the dome flow. Zorn et al., 2019 also suggest that load removal
from the dome, as in our study with falling blocks in the Gendol valley, can maintain lava extrusion
due to stress changes in the local, shallow conduit, which we also observe as material loss is balanced
by lava accumulation.

While some parts of the talus detach from the dome, Kelfoun et al., 2021 still observe lava emission
from the dome. This suggests that the constant topography we observe on our DEMs, from February to
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September 2019, is the result of a balance between lava gain in the dome and loss from rockfalls,
driven in the Gendol gorge. We could therefore consider the estimated accumulation rate in the Gendol
valley, with Pléiades, as a proxy for the ongoing extrusion rate at the dome during this “steady” period.
The production of lava during this period of no elevation changes is evidenced thanks to the TanDEM-
X amplitude false color composite map between March and July 2019: rougher material is detected,
that is probably due to new lava extruding between these two dates.

All these independent observations confirm the partial destruction of the dome starting early 2019 on
the southeast edges of the crater, balanced by the continuous effusion state of the dome, thus explaining
the absence of major topographic changes of the dome until September 2019. Starting September 2019,
Kelfoun et al., 2021 identify several explosions occurring in the crater, leading to partial destruction of
the southeast edges of the dome, which is also consistent with our cross-sections. The authors suggest
that due to the slopes of the dome exceeding 35°, the dome couldn’t grow within its external slopes,
resulting in continuous destabilization of blocks of talus for almost one year, without any real risk as
they were rapidly depositing downward in the Gendol gorge. This behavior could have prevented the
dome from reaching the critical state and generating PDCs that would have threatened the population.
The authors suggest the morphology of the dome at the summit would therefore influence the evolution
of the dome into either gravitational collapse or more hazardous explosive events. Our study provides
additional support for such a hypothesis, as ground-based measurements only partially observe the
dome. We provide spatially continuous maps of the whole dome, and have the ability to estimate the
deposits in the Gendol gorge, which is currently not possible using only ground-based cameras. Similar
observations of dome growth and stability before partial destruction have been done, for example
Diefenbach et al., 2013 on Redoubt volcano. The authors suggest the dome could be stable because of
the open-shaped crater that allows lateral extension before reaching a threshold where material flows
downslope.

5.2 Effusion rates

Dome growth rates and duration have long been recognised as key information for inferring the
probability of an explosive eruption and its intensity (Newhall et al., 1983). In particular, the likelihood
of an eruption following dome growth being highly explosive (VEI>4) increases with the rate of
extrusion (Ogburn et al., 2015). For the 2018 dome growth episodes at Merapi volcano, which lasted
about two hundred days, between August 2018 - February 2019, the extrusion rate was estimated, in
this study, to be around 0.0336 m*.s' (and 0.0336 m®.s™ also with drone estimates), which is at the
lower bound of time-average discharge rates commonly observed for volcanoes of andesitic
composition, ranging from to 0.035 m’.s™ to several tens of m’.s™ over short durations (see
Supplementary material of Arnold et al., 2017). The extrusion rate observed during the 2018 dome
growth episode is close to the long term trend recorded at Merapi volcano, where the average effusion
rate over hundred years is 0.038 m’s™ (3280 m’.day™) according to Siswowidjoyo et al., 1995.
However, this value is small for a dome building episode (Pallister et al, 2013 ; Moussallam et al.,
2021) and a volume of 0.64 Mm’ is on the lower end of domes size (Moussallam et al., 2021 ; refer
also to Table 2). The likelihood of an eruption immediately following this dome growth episode thus
remained quite small as evaluated by the BPPTKG and the main concern was related to gravitational
collapses when the dome reached the edge of the plateau. For comparison the effusion rate recorded
before the 2006 eruption was larger by two orders of magnitude with peak rates around 4 m’.s™
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(Ratdomopurbo et al., 2013). The highest dome growth rates recorded at Merapi volcano reached 35
m’.s” and were observed just before the VEI 4 eruption, which occurred in early November 2010
(Pallister et al., 2013).

If we compare our study with other dome volume and effusion rate estimates (Table 2), the volume of
0.64 Mm’ is of the same amplitude as other low volume domes for equivalent sizes estimated from
optical imagery. It is similar, for example, to the size of the dome emplaced at Nevados de Chillan,
Chile (Moussallam et al., 2021) or at Colima volcano, Mexico either in 2011 (Walter et al., 2013) or in
2013-2015 (Thiele et al., 2017). However, as mentioned previously, the Merapi 2018-2019 dome
stands at the lower end of domes : if we look at Redoubt (Diefenbach et al., 2012), the dome has a
width of 500 m for an average thickness of 200 m and a volume of 72 Mm?3 with a high effusion rate of
at least 2.2 m%/s, or the Soufriere Hills Montserrat (Wadge et al., 2011) with 1 km long dome lobes for
a volume of 40-50 Mm3.

Verlical
it Wolcano/ Yaar Method Datatype D width + halght (m) Volume (Mm®) | Extrusion rate (md/s) Pracigion {m) Pixal slze {m)
15 TanDEM-¥
Gur study IMerap) SAR ampliude + phase 6 Plaades 200
2022 20182019 Optical 5P Drone cptical Images 40 064 0.034 5 3
Waclga st al, Souliers Hills
201 20082010 SAR ampliude & TerraSARK ~1000 40 not indicated I scale
TRELRRGAT + 6 TerTanhn,
Palligter et al, Merapi GeoEye 1 nad (1400
2013 a0ma SAR amplituds Wiarkd View-2 =200 -14.50 25-35 rol indicated 05103
Kubansk et al, Merap =400*400
2015 2010 SAR phase 3 TanDEM-X 200 19 rof indicated 2ing 3
Arncld el al Sauligre Hills ~200*500
2018 19952010 SAH phase ALCS + TanDEM-X, ~290 108 not indicated <10 0
Hrnold et al, El Reveritadar ~200%200 2.5 {amplitude)
207 2011-2016 SAR phase + ampitude 32 RADARSAT-2+% TanDEM-X 201030 09 meter scale & (TanDEM-X DEMs)
Wangetal, 4040
2015 SAH amplitude 10 TerraSAHR 20 net indicated nar indicated 1.5
Argarita et al, 200*200 3
201 SAR amplitude Dozens of TeraSARK 20 01018 not indicated
Andan et al Optical SP LI&Ws with CaMmEeras
2012 207 InSAR T ot computed nat computed nat indicated 0.66-1.78 [optical)
Water etal, Celima SAR amplitude 160 alang ME-SW 2 {radar)
2019 2013 Of xed offset 20 0032 not computed ot indicated 0.7 {optical}
Zomaetal, ~100*100 1 {amplitude)
2019 & ~30 not dane nat computed ot indicated 01 [optical)
TpTicar P F FIvel GrTset
Zorm et al, Santlaguito Thenmal 07 {optical}
2020 2019 Pléiades a5 reference Q0005 0.04-D.06 <03 045 (thermall
68 {ground-hassd)
Walter et al, Shivduch SAR amplitude poset offset 10
2022 2020 Optical 5P nel indicated 0.3-07 2 [Pléiades)
37 TanDEM-X + 30 TerraSARX
Ordonez et al,; Hevado del Ruz SAR amplitude 2 aerial models ~0.1%n 2015 2 5 (radar}
2022 2015-2021 Oiptical 5P 3 Plarat Lahs 17402 0.02 in 2018 ol indicated 160 (optical)
[ Herdetal,
2005 Oiptical cross sections Ground-bassd optical camera 164 nat computed nat indicated nat indicated
Ryanetal, Soufriére Hills Ground-based opti marE
20010 20052008 Optical 5P [+ radar + LIDAR) nat indicated 306 56 nat indicated nat indicated
Diefenbach et al,, St Heleng 100000
2011 2004-2007 Optical 5P 12 aerial modeis n G405 03 13 Z
Diefenbach e al, 50041 000
2013 Optical 5P 10 aenal models 00 72 a5 nat indicated 0
Carrmawanet al, TR0
2018 Optical 5P #aerial models 30-70 02 not Indicated 0306 05
Maussallam st al, 7 Pléiades 35722 (2077),1719+79 {2018} 002in208 0 48 (Aenal) 0710 7 (Aeria)
20211 Optical P 12 gerial modeks ~30 0.4 0007 n2019 1 (Plesades} not ndicated (|
Waiter et al, Ground-based thermial 1B4*784
2013 Thermal piel offset Cameras haight net indlcated not computed nat carmputed a.5
Carretal, 150%150
2018 Thermal InfraRed radiance 75 MODIS + ASTER height not indicated §4 nat indicated <100
Thieleetal; Colima 27 aedial thermal models 1404740 1.05 (therrral),
2017 20132015 Thermal + optical cameras 5P 15 optical modejs ~60 1.16 (opticai) not indicated nat indicated natindicated

Table 2. Dome dimensions, volume and extrusion rate estimates for other volcanoes, using
various remote sensing methods. Note some papers did not estimate volume or extrusion rate
estimates due to the method itself hindering a 3D view of the dome, as it is the case for radar
amplitude, ground-based optical or thermal cameras studies. SP stands for StereoPhotogrammetry,
meaning DEMs were produced ; UAV stands for Unmanned Aerial Vehicle.

Yellow colors indicate methods using mostly SAR, green colors indicate methods using both aerial or
ground-based optical cameras and SAR, orange colors indicate methods using mostly aerial or ground-
based optical cameras, and blue colors indicate methods using thermal images. Our study is the only
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one to use both bistatic SAR data and optical satellite data acquired in stereo mode to track a dome
growth episode.

5.3. Comparison with other lava dome studies methods

While other studies of crater-hosted lava domes (Table 2) have used a wide range of methods (radar,
optical, thermal), none use high-resolution satellite radar and satellite optical data together to retrieve
DEMs. A few papers attempt to use the maximum available remote data to track topographic changes
during dome events (e.g. Ordonez et al., 2022 ; Walter et al., 2022), but without using SAR phase.

Studies using SAR mostly rely on amplitude analysis to deduce height changes, but rarely DEMs. For
example, Wang et al., 2015 retrieve heights thanks to the amplitude through modeling of the dome,
Walter et al., 2019 use RGB composite maps of amplitude to qualitatively assess changes, Angarita et
al., 2022 retrieve topography thanks to gradient from the amplitude, Arnold et al., 2017 and Wadge et
al., 2011 use the shadow from the amplitude. These studies relying on SAR are sometimes compared
to airborne optical images (e.g. Walter et al., 2019 ; Zorn et al., 2019). We only record two studies
using SAR phase from TanDEM-X to build DEMs. Kubanek et al., 2015 demonstrated that TanDEM-
X was a powerful tool for monitoring changes at the top of Merapi using DEMs. Following this
milestone, Arnold et al., 2017, on El Reventador, use both TanDEM-X phase and RADARSAT
repeated-pass amplitude shadowing to assess topographic changes, volumes and effusion rates.
However, neither of the latter two studies uses optical satellite images as additional data. In addition,
the studies using satellite radar rely mainly on amplitude analysis, with repeat-pass interferometry
being more common and easier to access than bistatic datasets.

In our study, we take advantage of both the phase and the amplitude of the radar to infer as much
information as possible about the dome. We also provide a well-resolved time evolution: Kubanek et
al., 2015 used three DEMs to track changes in one month, while we use fifteen DEMs from TanDEM-
X to track changes over more than one year. Furthermore, we are able to provide a quantitative
estimate of our uncertainties, which is not systematically available in the literature (see Table 2).

Looking at studies involving optical imagery, the vast majority of them rely on either ground-based or
airborne cameras, Pléiades being only additional data to validate results. Ground-based (Walter et al.,
2019 ; Herd et al., 2005 ; Ryan et al., 2010) and aerial flights (Zorn et al., 2020 ; Moussallam et al.,
2021) have the advantage of providing better resolute views of a dome, but require specific campaigns
that are costly in time and can only cover smaller areas. The limitations of optical imagery often lead to
use this method jointly with other tools : thermal imagery (Thiele et al., 2017) or SAR amplitudes
(Ordonez et al., 2022). One reason explaining the limited number of studies using Pléiades is data
availability. To our knowledge, the only studies using Pléiades are the ones from Moussallam et al.,
2021 and Walter et al., 2022. Ordonez et al., 2022 use Planet Labs which are also satellite optical
imagery.

5.4. Advantage/Disadvantages of TanDEM-X data compared to Pléiades data

Both Pléiades and TanDEM-X space imagery provide high spatial resolution products to generate high
resolution DEMs of the dome area. In this study we have shown that both methods provide consistent
DEMs and can be used together to construct DEM time series with better temporal resolution. We have
also shown that these data allow the monitoring of small domes with a volume of less than 1 Mm?
characterized by a low effusion rate. This means that, considering similar uncertainties, the monitoring
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of larger domes, with a higher effusion rate, should be even more robust. The main remaining
limitation for the use of these high resolution data is due to the fact that they are neither routinely
acquired nor provided as open data, but rather are only available on demand through dedicated
proposals with limited access.

We discuss in the following section the specific interest to use TanDEM-X and Pléiades in the tracking
of a lava dome: both are crucial tools that could be more widely developed in observatories, when the
access to the volcano is difficult (e.g remote, steep sloped or active volcano) for routine monitoring, or
when an effusive eruption is ongoing (e.g this study). Explosive eruptions might be more difficult to
monitor with optical methods, mainly due to the presence of ash plumes.

The main advantage of TanDEM-X data is the return time of only eleven days, thus opening
possibilities to build DEMs time series with high temporal resolution. They have proven to be suited
and efficient for tracking other volcanic activity such as lava flows (Kubanek et al., 2017), PDCs
(Albino et al., 2020) and crater morphology (Kubanek et al., 2015). However, they lack full spatial
coverage due to the grazing incidence of satellites: the slopes around the dome and in half of the
Gendol gorge are very noisy and can’t be unwrapped, resulting in a lack of data. Results also have to be
interpreted with respect to coherence maps that reflect the quality of the data. Another consequence of
the geometry of acquisition is that a previous selection of tracks showing best visibility needs to be
done in order to continuously map the area of interest, using ground resolution maps for instance
(Albino et al., 2020). Ground resolution maps depend on the local incidence of the radar wave with
respect to the slopes of the volcano, and indicate areas where shadowing or layover will occur. A high
resolution reference DEM also needs to be available for optimal interferogram generation.

Our study proves Pléiades are crucial data for effective monitoring of an active summit area. When
Pléiades stereo-pairs or triplets can be used, they have the advantage to be easily and rapidly processed
in a fully automated processing chain, although the final step of DEM offset correction still needs to be
done manually. Even though Pléiades has the advantage of providing a wide view of the dome and the
associated deposits, it is highly dependent on daylight and good weather conditions. Therefore,
acquisitions can not be equally spaced in time, resulting in a sparser temporal resolution. Moreover, the
accuracy we obtain with Pléiades is worse than aerial optical images, but the spatial extent of the image
offers the capability to track larger areas and to eventually bypass field campaigns if weather conditions
are bad.

Radar and optical DEMs should also be compared to GPS measurements to improve the monitoring,
although installing stations on the dome itself would be too hazardous. Our study uses a drone carrying
optical cameras to validate our results : we prove satellite and aerial data are consistent with one
another. The ultimate aim of dome monitoring would be to understand what controls dome destruction
and if there are signs to forecast its onset.

5.5. An alternative method to rapidly estimate heights from radar images

We also tried to estimate the height of the edge of the dome using the shadow of the amplitude and
coherence maps. Shadow was more contrasted on coherence maps than on amplitude maps. Assuming
the shadow on coherence maps is only due to the geometry of the dome thanks to the bistatic mode of
acquisitions, we measured the length of the shadow on a west-east line and follow the strategy of
Wadge et al., 2011 for a flat bottomed valley with flat deposits, considering the plateau on which the
dome builds up is flat (Fig 13.A). The relationship is h;=g;*cot(®), with ® the incidence angle, hl the
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edge of the dome of height, and g, the width of the shadow of the dome. We compare these heights
with the ones from the DEMs (See TanDEM-X DEMs section) and the ones from shadows on
amplitude maps. The method relies on the use of the propagation path of the wave along the crater wall
and the dome. We show that for height estimates based on coherence, there is a difference of 10-20 m
between mean height estimates from the DEMs on the eastern edge of the dome, but that the evolution
of the height over time is similar (Fig 13.B). Furthermore, when considering the maximum height of
the dome only, estimates from coherence shadow are very similar to estimates from the DEM. On the
contrary, height estimates from amplitude have a bigger offset to the estimates from DEMs, but the
variations are similar. We consider this method relying on the shadow can be a good first
approximation to follow the relative evolution in time of the height. But the method from shadow is not
sufficient to get the absolute height as the uncertainties are too high, mainly because of the manual
estimation of the limit between shadowed and non shadowed area. Moreover, we also assume the top of
the dome and the plateau are flat. However, it can be a useful tool in case of monitoring and/or when
bistatic acquisitions are not available, as a first order proxy for evolution of the height of the dome.
Alternatively, a recent study by Angarita et al., 2022 proposes a new method to derive DEMs from
radar amplitude images using the relationship between the backscatter properties and the local
topographic slope. This tool requires an inversion to retrieve the topography but could be promising to
reconstruct DEMs without the need of bistatic acquisitions.
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Figure 13. Height of the eastern border of the dome using TanDEM-X elevations from the DEMs
and elevations estimated from the coherence maps shadow. Panel A: Scheme of the geometrical
parameters to deduce the height of the dome from its shadow (adapted from Wadge et al., 2011). Panel
B: Height estimates and their respective uncertainties. Green dots refer to height estimates from
shadows on coherence maps, red dots to estimates from shadows on amplitude maps, blue dots refer to
the mean height from DEMs within the drone outline, and black dots refer to maximum dome height
from DEMs for each date.

6. Conclusion

This study of the evolution of the lava dome on the Merapi between 2018 and 2019 provides
information on the behavior of a lava dome before it is destroyed, as well as methodological
improvements for the monitoring of the activity of the dome of a steep sloped stratovolcano. Dome
building stratovolcanoes such as the Merapi are highly difficult to monitor with ground based
instruments and are among the most dangerous volcanoes. As a consequence, remote sensing tools are
crucial to assess volcanic risk safely and efficiently as their spatial and temporal resolution keep
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improving. In this study, we take advantage of two high resolution remote sensing imaging satellite
systems to estimate heights and volumes of the dome. We use TanDEM-X and Pléiades radar and
optical images to build a partially complete time series of DEMs, with a DEM almost every month. The
accuracy of each method for estimating heights and volumes is assessed by statistical error estimates
and validated by comparison with additional, independent volume estimates from thermal imaging
cameras and drone measurements.

Using TanDEM-X and Pléiades derived DEMs, we show that the dome first appears on a pre-existing
fracture on a pre-existing dome within the crater of the volcano, then grows radially and
asymmetrically, reaches a stage where no more topographic change is recorded, and is finally partially
destroyed in its center by explosions. However, during the period when the dome maintains a constant
topography, new material continues to reach the surface, indicating that the dome is still active.
Pléiades DEMs allow mapping an accumulation zone below the dome: this suggests there is a balance
between the addition and destabilization of material, explaining its constant topography. This pattern of
dynamics can be of great use to better understand what triggers dome growth and collapse. Our study
provides new insights and observations on a possible mechanism ruling dome stability : on the one
hand the lava dome seems to reach a critical threshold regarding height, dimensions and slope, and on
the other hand, the instability leading to rock falls could be a mechanism explaining renewed lava
supply.

Our study also proposes a new monitoring strategy for small domes hosted within craters. This strategy
is complementary to all other monitoring methods of lava domes. The fifteen TanDEM-X DEMs
provide a good temporal resolution of the dome evolution, whereas the five Pléiades DEMs increase the
spatial extension of the mapping as they also enable the tracking of deposits south of the dome, in the
Gendol gorge. Here, we prove that both Pléiades and TanDEM-X DEMs are effective and
complementary to map lava domes of small dimension on a steep sloped volcano, therefore extending
the capabilities of these satellites in volcano monitoring. They are also able to be used in conjunction
with drone surveys. We also show that amplitude and coherence maps resulting from TanDEM-X data
provide complementary information to the interpretation of DEMs, by evidencing renewed magma
supply of the dome even though no elevation change is detected. We suggest TanDEM-X and Pléiades
derived DEMs are relevant tools to assess lava dome evolution on stratovolcanoes, and propose a wider
use of these datasets in observatories, as well as constraints for numerical models.
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