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ABSTRACT 19 

The El Niño Southern Oscillation (ENSO) is the leading mode of climate interannual 20 

variability, with large socioeconomical and environmental impacts, potentially increasing with 21 

climate change. Improving its understanding may shed further light about its 22 

predictability.  Here we revisit the two main conceptual models for explaining ENSO cyclic 23 

nature, namely, the Recharge Oscillator (RO) and the advective-reflective Delayed Oscillator 24 

(DO).  Some previous studies have argued that these two models capture similar physical 25 

processes. Yet, we show here that they actually capture two distinct roles of ocean wave 26 

dynamics in ENSO's temperature tendency equation, using observations, reanalyses, and 27 

Climate Model Intercomparison Project (CMIP) models. The slow recharge/discharge process 28 

mostly influences central-eastern Pacific by favoring warmer equatorial undercurrent and 29 

equatorial upwelling, while the 6-month delayed advective-reflective feedback process 30 

dominates in the western-central Pacific. We thus propose a hybrid Recharge Delayed 31 

Oscillator (RDO) that combines these two distinct processes into one conceptual model, more 32 

realistic than the RO or DO alone. The RDO eigenvalues (frequency and growth rate) are 33 

highly sensitive to the relative strengths of the recharge/discharge and delayed negative 34 

feedbacks, which have distinct dependencies to mean state. Combining these two feedbacks 35 

explains most of ENSO frequency diversity among models. Thanks to the two different spatial 36 

patterns involved, the RDO can even capture ENSO spatiotemporal diversity and complexity. 37 

We also develop a fully nonlinear and seasonal RDO, even more robust and realistic, 38 

investigating each nonlinear term. The great RDO sensitivity may explain the observed and 39 

simulated richness in ENSO's characteristics and predictability.  40 

SIGNIFICANCE STATEMENT 41 

El Niño and La Niña events, and related southern oscillation, cause the largest year-to-year 42 

variations of earth’s climate. Yet the theories behind them are still debated, with two main 43 

conceptual models, the recharge oscillator and the delayed oscillator. Our purpose is here to 44 

address this debate by developing a more realistic theory, a hybrid Recharge Delayed 45 

Oscillator. We show how simple yet realistic it is, with equivalent contributions from the slow 46 

recharge process and from the faster delayed feedback. It even captures the observed El Niño 47 

and La Niña diversity in space and in frequency. Future studies could use the simple theoretical 48 

framework provided here to investigate the El Niño Southern Oscillation in observations, 49 

theories, climate models diagnostics and forecasts, and global warming projections.  50 
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1. Introduction 51 

 52 

The El Niño Southern Oscillation (ENSO) is the leading mode of climate interannual 53 

variability, with large socioeconomical and environmental impacts, and with its extremes 54 

possibly increasing with global warming (e.g. Cai et al. 2021). ENSO basic amplification 55 

dynamics has been fairly well understood (e.g. Neelin 1998, Wang and Picaut 2004, Clarke 56 

2008 reviews). Yet there are still debates on the main mechanisms at play for ENSO phase 57 

reversal and related quasi-cyclic nature, on ENSO theories / conceptual models (e.g. Graham 58 

et al. 2015; Santoso et al. 2017; Timmermann et al. 2019; Jin et al. 2020), and on how to 59 

implement ENSO diversity in these conceptual models (Fang and Mu 2018, Geng et al. 2020, 60 

Chen et al. 2022, Thual and Dewitte 2023). ENSO diversity, a continuum from extreme Eastern 61 

Pacific (EP) El Niño events to western-Central Pacific (CP) El Niño Modoki (e.g. Trenberth 62 

and Stepaniak 2001, Ashok et al 2007, Takahashi et al. 2011, Capotondi et al. 2015, 2020), and 63 

even encompassing  La Niña events (Monselesan et al., submitted), is crucial to 64 

understand/forecast ENSO global impacts (e.g. Johnson and Kosaka 2016), e.g. on tropical 65 

cyclones activity in the Pacific, notably over vast French Polynesia (Vincent et al. 2011; Pagli 66 

et al., in prep.).  67 

ENSO events usually initiate in boreal spring, develop in summer and autumn and then 68 

decay in the next spring (e.g. Bunge and Clarke 2009, Fang and Zheng 2018). They develop 69 

because of the Bjerknes positive feedback. Positive Sea Surface Temperature (SST) anomalies 70 

in the central-eastern equatorial Pacific (TE) enhance deep atmospheric convection in the 71 

central Pacific, resulting in westerly wind stress anomalies in the western-central Pacific (τx; 72 

Clarke 1994). These in turn force equatorial downwelling Kelvin waves with eastward surface 73 

currents that advect the warm pool eastern edge eastward (e.g. Picaut et al. 1996; Vialard et al. 74 

1998) and thermocline depth (h) positive anomalies towards the central-eastern equatorial 75 

Pacific, thereby reinforcing the initial SST anomalies. This positive feedback mechanism is 76 

offset by several negative instantaneous and delayed feedbacks. The delayed negative 77 

feedbacks result from oceanic dynamics: 1) a slow negative feedback related to the wind-driven 78 

slower equatorial basin adjustment to El Niño westerlies that acts to create a discharge (and a 79 

recharge in the La Niña easterlies case) of Warm Water Volume (WWV)/Oceanic Heat Content 80 

(OHC, proportional to h; e.g. Jin 1997a,b; Meinen and McPhaden 2000; Clarke 2010; Zhu et 81 

al. 2017; Izumo et al. 2019; Izumo and Colin 2022) of the southwestern and equatorial Pacific 82 

(Fig. 1b), 2) a rapid ~6-month delayed advective-reflective feedback through equatorial 83 
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oceanic wave reflections (e.g. Boulanger and Menkes 2001; Boulanger et al. 2004; cf. Fig. 1a 84 

and section 3).  85 

Two main groups of theories have emerged to explain the quasi-cyclic nature of ENSO, 86 

based on the aforementioned negative oceanic feedbacks: 1) the Recharge Oscillator (RO; e.g. 87 

Wyrtki 1985; Jin 1997a,b; Meinen and McPhaden 2000; Clarke et al. 2007, 2010; Thual et al. 88 

2013), 2) the delayed oscillator (Suarez and Schopf 1988, Battisti and Hirst 1989) and its 89 

improved version emphasizing the crucial role of Indo-Pacific warmpool eastern edge, the 90 

advective-reflective Delayed Oscillator (DO; Picaut et al. 1997). An in-depth description of the 91 

RO and DO is given in section 3. Other conceptual models, e.g. the unified oscillator (Wang 92 

2001), have been shown to be less realistic (Graham et al. 2015).   93 

Some studies question the RO and suggest that the DO is more realistic (e.g. Linz et al. 94 

2014, Graham et al. 2015). Yet, the recharge/discharge process is also part of ENSO cycle, 95 

both in observations and models. One reason for this “RO vs DO” debate is that RO and DO 96 

have been seen as two different formal ways to represent the same wave adjustment process 97 

favoring an ENSO phase reversal (e.g. Jin 1997ab; Jin and An 1999). But actually, they mainly 98 

involve different physical processes with different timescales (Fig. 1). For the RO, it is the slow 99 

(~1-2 years) equatorial basin adjustment (e.g. Izumo et al. 2019, their Suppl. Fig. S4) 100 

influencing central-eastern Pacific SST through the thermocline feedback (e.g. Wyrtki 1985, 101 

Jin 1997ab), and through heat transport changes (Izumo 2005; Ballester et al. 2015, 2016). For 102 

the DO, it is the faster (~6-month) equatorial wave reflection influencing central Pacific SST 103 

through the zonal advective feedback (Vialard et al. 1998). So, is it really fair to consider the 104 

RO and DO as a single mechanism while they capture physical distinct processes and have 105 

different impacts on the TE tendency equation? 106 

Here we show, by analyzing observations/reanalyses (section 4b) and 79 CMIP models 107 

(Climate Model Intercomparison Project; section 4c), that we should keep both the recharge 108 

and advective-reflective delayed feedbacks as two distinct crucial processes in the ENSO 109 

temperature tendency equation, without considering them as formally identical. By keeping 110 

both of them, we obtain a more physically-based and more realistic ENSO conceptual model, 111 

a hybrid Recharge Delayed Oscillator (RDO; schematics in Fig. 1; derivation of its equations 112 

in section 4a). We then analyze the behavior of this RDO. Section 4d explores the eigenvalues 113 

dependency to parameters, within the observations and CMIP parameter space. Section 4e first 114 

investigates the RDO response to stochastic forcing and related spectral response. It then shows 115 

how ENSO characteristics (amplitude and spectrum) in the RDO framework are highly 116 

sensitive to the relative strengths of the recharge and delayed negative feedback. Section 4f 117 
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shows that the RDO can, even its simplest form, capture some ENSO spatiotemporal diversity, 118 

if we take into account the spatial dependency of these feedbacks. Section 5 then improves the 119 

simplest RDO framework, by adding: 1) the seasonal cycles of RDO parameters (section 5a), 120 

2) asymmetries/non-linearities, e.g. quadratic terms and a multiplicative noise (section 5b). 121 

Section 5 confirms the robustness of the RDO framework, with the non-linear seasonal RDO 122 

version being even more realistic than the linear RDO version. Finally, section 6 summarizes 123 

the results and discusses mechanisms, possible improvements of the RDO, implications and 124 

perspectives. 125 

 126 
Fig. 1. Schematics of the Recharge Delayed Oscillator (RDO) principle, combining the advective-127 
reflective Delayed Oscillator (DO; upper green; representing mainly the zonal feedback; Picaut et al. 128 
1997) and the Recharge Oscillator (RO; bottom red; representing the slow recharge process; Jin 129 
1997ab). a)  equatorial zonal current response (in the upper oceanic layer, color shading and red/blue arrows) 130 
to a westerly pulse in early October in the western-central Pacific (brown arrows), with equatorial waves 131 
(black arrows for downwelling waves, dashed arrows for upwelling waves) and their reflections indicated 132 
schematically (in particular the downwelling Kelvin wave Kd with positive zonal current reflecting at the 133 
eastern boundary as a downwelling Rossby wave Rd with opposite negative current; see Izumo et al. 2016 134 
for details on a similar idealized pulse experiment starting in January). b) slow recharge of hind (SLA 135 
independent of the fast zonal tilt mode) forced by La Niña easterly anomalies (i.e. the -F2TE term obtained 136 
by multivariate regression in obs1; vice versa for a discharge during El Niño). TC and UC denote central 137 
equatorial Pacific SST and zonal current respectively; TE denotes central-eastern Pacific SST; h is the 138 
objectively-optimized recharge index developed in Izumo and Colin (2022) study (panel b here adapted from 139 
Fig. 2h of this study), i.e. SLA (or Z20) averaged over the equatorial and southwest Pacific (black boxes in 140 
b), namely hind_eq+sw (hind_eq+sw ≈ heq+sw, note that the RDO robustness does not depend much of the recharge 141 
index choice; cf. section 2).  142 
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2. Data and methods 143 

See Supplementary text S1 for a detailed description of the typical statistical methods 144 

we use, plus additional details on data, indices and validation/sensitivity tests. Note that for the 145 

non-linear seasonal version of the RDO (section 5), the scripts for obtaining the RDO 146 

parameters through multivariate linear regression fits and for running the RDO forced by red 147 

noise were developed in python language within the framework of the RO community model 148 

under development as a follow-up of the RO review by Vialard et al. (in preparation).  149 

a. Data 150 

For SST observations we use the following monthly datasets: Optimum Interpolation 151 

SST OISSTv2 based on in situ observations and satellite measurements for the recent period 152 

(November 1981-March 2022; Reynolds et al. 2002; hereafter ‘obs1’); HadiSSTv1.1 SST 153 

(1870-March 2022; Rayner et al. 2003) when using longer-time-scale reanalyses. We also use 154 

GPCP monthly precipitation (Adler et al. 2003) for developing the approximated formula of 155 

sensitivity of precipitation to Relative SST.  156 

We use SLA as a proxy for thermocline depth (e.g. 20ºC isotherm depth Z20) and 157 

Oceanic Heat Content (OHC) anomalies (e.g. Rebert et al. 1985; Gasparin and Roemmich 158 

2017; Palanisamy et al. 2015; see Izumo and Colin 2022 for a detailed comparison of SLA, 159 

Z20 and OHC for the recharge index). SLA is advantageous because it is measured since three 160 

decades by satellites (Copernicus product; 1993-mid2021; ‘obs1’), allowing a homogeneous 161 

spatiotemporal sampling. We also use longer SLA datasets for comparison and to increase the 162 

number of effective degrees of freedom: ECMWF ORAS5 oceanic reanalysis extended version 163 

(1959-2018; Zuo et al. 2019; hereafter ‘obs2’; we also use its subsurface potential temperature 164 

and currents [currents only available from 1975]); even longer SLA from a historical oceanic 165 

reanalysis, SODA2.2.6 (1871-2008; Giese and Ray 2011; without subsurface assimilation to 166 

avoid spurious trends; hereafter ‘hist’), required to estimate the non-linear seasonal version of 167 

the RDO, for which the number of parameters to fit strongly increases (section 5). We subtract 168 

from the SLA its 60°S-60°N global average at each time step to remove sea level rise global 169 

trend due to global warming, and we also remove any additional regional trend through a linear 170 

regression. 171 

32 CMIP5 and 47 CMIP6 (Supplementary Table S1; Coupled Model Intercomparison 172 

Project phases 5 and 6) models are analysed here. They are the ones for which we have SST 173 

and SLA available, for the historical runs (usually 1861-2005 for CMIP5 and 1850-2015 for 174 
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CMIP6). This amounts to more than 10000 years of model data to test the validity of our 175 

hypotheses.  176 

b. ENSO indices 177 

For the ENSO index, TE, we use the usual Niño3.4 region (170°W-120°W, 5°N-5°S), 178 

where the main ENSO SST variability is located in observations. We define TE as Niño3.4 179 

relative SST (RSST, i.e. SST minus its 20°N-20°S tropical mean; Vecchi and Soden 2007), as 180 

recommended by Izumo et al. (2020) and Van Oldenborgh et al. (2021) because atmospheric 181 

tropical deep convection interannual anomalies are rather related to RSST than to SST, notably 182 

under external forcing, i.e. anthropogenic (see also Johnson and Xie 2010; Johnson and Kosaka 183 

2016; Williams and Patricola 2018, and Okumura 2019) or volcanic forcing (Khodri et al. 184 

2017; Izumo et al. 2018). The deep convection threshold SST>~27-28°C (e.g. Gadgil et al. 185 

1984) translates into RSST>~1°C, a threshold that remains valid with global warming (e.g. 186 

Johnson and Xie 2010). See Supplementary Text S3 of Izumo and Colin 2022 for an extensive 187 

discussion justifying the relevance of RSST for ENSO and RO equations. Note that using SST 188 

instead of RSST gives quasi-similar results. But it is safer to use RSST because of external 189 

forcing. TE is normalized by its standard deviation (STD).  190 

For the recharge index (see details and sensitivity tests in Supplementary Text S1), there 191 

has been a debate on which recharge index best measures the slow recharge/discharge process: 192 

which averaging region (e.g. western Pacific (120°E-155°W) or whole equatorial band (120°E-193 

80°W) hw or heq in 5°N-5°S) and which variable (SLA, Z20 (i.e. Warm Water Volume WWV) 194 

or OHC) should we use (e.g. Meinen and McPhaden 2000; Planton et al. 2018; Izumo et al. 195 

2019) ? Izumo and Colin (2022) have thus developed a physically-unambiguous and 196 

objectively-optimized index of the ENSO slow recharge mode, out of phase with TE (i.e. 197 

uncorrelated to TE at lag 0 and “independent” of the fast adjustment zonal tilt mode, by 198 

regressing out from h its component linearly related to TE approximately considered to be this 199 

fast tilt mode). Here we thus use their optimal improved index hind_eq+sw: the SLA averaged 200 

over the equatorial plus southwestern Pacific (eq+sw box: equatorial box 5°N-5°S, 120°E-201 

80°W + southwest box 5°S-15°S, 120°E-170°W), from which TE-variability has been regressed 202 

out, to build a recharge index statistically-independent from TE. In other words, hind_eq+sw = 203 

heq+sw – K TE ≈ heq+sw (as regression coefficient K is small thanks to the addition of the South 204 

West Pacific region to the equatorial band for the recharge index, e.g. 0.30 for obs2, if all 205 

indices are normalized; i.e shared variance between heq+sw and TE only of 9%). Its advantage is 206 

that it is “orthogonal” to TE, so it is a pure additional degree of freedom capturing the slow 207 
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recharge, without being polluted by the fast tilt mode. Also, its approximation heq+sw is simple 208 

and easy to compute. 209 

Anyway, we would like to emphasize that the RDO robustness does not depend a lot of 210 

the recharge index choice. The RDO implementation would still be useful and robust if one 211 

were using usual indices, e.g. heq or hw, with β, F1 and F2 terms still highly significant (cf. 212 

section 4). Furthermore, both β and the final correlation skill of dTE/dt tendency equation (8) 213 

will be mathematically exactly the same whether or not we remove the dependent component 214 

of h index, as TE is also one of the other variables of the multivariate regression. Therefore, if 215 

the users have a preference, they can also use the typical heq or hw indices for the 216 

implementation of RDO. Only the overall skill of the RDO equations to represent observed 217 

temperature and recharge tendencies will be weaker than if hind_eq+sw or heq+sw is used. For the 218 

sake of simplicity and clarity of the equations, the optimal recharge index hind_eq+sw will be 219 

hereafter noted as “h”.  220 

 221 

 222 

3. The two main simple ENSO conceptual models, the RO and the DO 223 

a. The Recharge Oscillator (RO) 224 

The RO theory (Jin 1997ab) focuses on the slow oceanic negative feedback on SST 225 

associated with wind-driven equatorial OHC variations (Meinen and McPhaden 2000), as 226 

aforementionned. It brings long oceanic memory across ENSO phases. During a La Niña, 227 

easterlies favor a slow recharge of OHC (i.e. a deepening of the thermocline depth h) in the 228 

equatorial and southwestern Pacific (Fig. 1b). The El Niño event will in turn lead to a discharge 229 

favoring a reversal to La Niña conditions, and so on.  230 

 The RO equations (Jin et al. 2020; Izumo and Colin 2022) are: 231 

 232 

dTE/dt = RRO TE + F1_RO h      (4) 233 

dh/dt = – F2 TE - ε h           (5) 234 

 235 

where RRO is the net effect of Bjerknes positive feedback and instantaneous negative 236 

feedback, F1_RO the recharge/discharge influence on TE, F2 the slow recharge/discharge forced 237 

by La Niña/El Niño and ε a Newtonian damping on h. The subscript RO is added to avoid 238 

ambiguity when necessary.  239 



 

9 
File generated with AMS Word template 2.0 

Using the improved optimal recharge index h=hind_eq+sw, independent of TE (cf. section 2), 240 

ε is negligible in observations and in all CMIP models (Fig. 4b, see section 4.b). Therefore, we 241 

neglect it at first for the simplest RDO framework (linear and without seasonal cycle). This RO 242 

system of two differential equations has the form of a harmonic oscillator (Jin 1997a). 243 

b. The Delayed Oscillator (DO) 244 

The zonal advective-reflective delayed oscillator (DO) is based on the relatively rapid 245 

equatorial wave reflections causing a 4 to 8-month delayed negative feedback dominated by 246 

the zonal advective term (Picaut et al. 1997; Vialard et al. 1998) in the central Pacific where 247 

the coupling with atmospheric deep convection is the largest. E.g. El Niño westerlies force an 248 

equatorial downwelling Kelvin wave Kd,forced (i.e. equatorial zonal current anomaly U’ > 0 and 249 

eastward displacement of the warmpool eastern edge) reflecting at the eastern boundary into a 250 

downwelling Rossby wave Rd,reflection (i.e. U’ < 0) bringing back the edge westward half a year 251 

later (Fig. 1a) (there is also a Rup,forced forced to the west of the westerly anomaly, propagating 252 

westward and reflecting at the western boundary as an eastward Kup,reflection wave; e.g. 253 

Boulanger and Menkes 2001). This strong zonal advective delayed feedback favoring ENSO 254 

phase reversal is well observed, simulated and understood. Formally, it relates zonal current 255 

interannual anomalies to the evolution of zonal wind stress anomalies τx over the preceding 256 

months. The equatorial Pacific Ocean dynamics being quasi-linear (at intraseasonal to 257 

interannual timescales), the response to any windstress anomaly τx(t) with a typical ENSO wind 258 

pattern is the convolution of this τx(t) to the linear oceanic impulse response. Thus, the 259 

anomalies can be approximated as a “causal” filter of τx: τx
 Am(t−t1) – c τx

 Bm(t−t2) where t1 is ~0 260 

to 2 months, the difference t2 – t1 is ~4 to 6 months, where the superscript, e.g. Am, stands for a 261 

A-month running mean and c varies depending on τx’ anomaly location, and of the variable 262 

(either U, SLA or SST; cf. Izumo et al. 2016). For UC anomalies, they are approximately 263 

proportional to the zonal wind stress anomalies 1–2 months earlier minus a fraction of the wind 264 

stress anomalies 7–8 months earlier. The first term represents the fast oceanic response, while 265 

the second one represents the delayed negative feedback associated with wave reflection at 266 

both boundaries. I.e. a realistic approximation of UC is: 267 

 268 

  UC(t) ≈ A (τx(t) – β0 τx(t-η ))     (6) 269 

  270 

where τx is equatorial zonal windstress, A is a constant and β0 is e.g. ~2/3 for UC at 0oN, 271 

170oW (based on Table 1 of Izumo et al. 2016 combined with the approximation τx
2m ≈ τx

1m 272 
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valid for periods longer than intraseasonal). We consider the delay η to be approximately 6 273 

months for the sake of simplicity, as it is rather well constrained by equatorial wave propagation 274 

times in a fixed basin geometry, with the main mode (first baroclinic mode) celerity well known 275 

in the equatorial Pacific. This formula is an excellent approximation of the response of the 276 

quasi-linear continuously-stratified equatorial Pacific Ocean (with a realistic coastline) to a 277 

windstress forcing with an ENSO-like spatial pattern. It is more realistic than previous 278 

approximations of UC used in previous RO-based conceptual models.  279 

We can combine (6) with some typical assumptions to derive a DO equation for TC, where 280 

TC is the SST anomaly in the central equatorial Pacific. We suppose: 1) τx ≈ µCTC (µC being a 281 

coupling parameter), 2) the zonal SST gradient in the central Pacific to be its climatological 282 

value (i.e. independent of the anomaly TC) at 1st order (dTC/dx ≈ dTC_clim/dx ≈ -C, with C > 0; 283 

hence the zonal advection term is CUC; relaxing this assumption leads to non-linear terms such 284 

as in section 5), and 3) that atmospheric fluxes can be approximated as a weak Newtonian 285 

damping (term -rdampTC), weaker than the Bjerknes feedback related to the 1st term in the above 286 

equation for UC. Thus, we have, using (6): 287 

 288 

dTC/dt ≈ -UC(t) dTC/dx(t) - rdamp TC(t) ≈ ACµC (TC (t) – β0 TC(t- η )) - rdamp TC(t)   (7.0) 289 

 290 

We obtain the usual DO equation:  291 

 292 

dTC/dt = RDO TC(t)  –  βDO TC(t-η)     (7) 293 

 294 

where RDO = ACµC - rdamp and βDO = Aβ0CµC are positive constants. From here onwards, 295 

we skip the notation (t) when the variable is taken at time t without delay. 296 

 297 

 298 

4. Building the RDO model by merging the RO and DO models 299 

a. Combining RO and DO equations 300 

The RO captures the long-term recharge of h influencing the SST in the central-eastern 301 

Pacific. The DO captures the faster delayed advective-reflective negative feedback influencing 302 

the SST in the western-central Pacific. Knowing the importance of central Pacific SST for 303 

convection and thus zonal wind, and that the negative feedbacks involved in the DO and RO 304 
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are physically different, it thus seems relevant to keep these different feedbacks as two distinct 305 

processes combined in a hybrid « Recharge Delayed Oscillator » (RDO), whose set of 306 

equations is: 307 

 308 

dTE/dt = R TE + F1 h – β TE(t-η)       (8) 309 

dh/dt = – F2 TE - ε h      (9) 310 

 311 

Equation (8) merges (4) and (7); (9) is as equation (5). Here central-eastern Pacific TE and 312 

central Pacific TC are merged into one variable representing a single region, the central-eastern 313 

Pacific, hereafter TE (Niño3.4 RSST; cf. section 2), for the sake of simplicity. Even though we 314 

replace TC by TE, we still consider η to be about 6 months, because physically the zonal 315 

advection delayed feedback operates more on temperature “weighted” by atmospheric 316 

convection sensitivity (cf. below), i.e. more in the central Pacific than in the eastern Pacific 317 

(while the recharge thermocline feedback influences more the central-eastern Pacific; cf. 318 

following section).  319 

This RDO simple set of equations sounds conceptually compelling. Notably it does not 320 

require the low-frequency approximation (used in Fedorov 2010 and Clarke 2010) to be valid, 321 

as the RDO takes into account the two main “fast” wave processes, the fast mode adjustment, 322 

and the zonal-advective delayed negative feedback.  323 

b. Confirming the RDO through observations/reanalyses  324 

We now want to verify empirically that this RDO set of equations is justified and 325 

statistically grounded, in observations as well as in the 79 CMIP models.  326 

First, we verify that separating the zonal-advective delayed feedback and the recharge 327 

process through equation (8) makes sense. I.e. that +F1h  and –βTE(t-η) represent two distinct 328 

physical processes. We do a multivariate linear regression for an equation similar to equation 329 

(8), but for the tendency of temperature T(x,y,t) anywhere in the tropical Pacific: 330 

 331 

∂T(x,y,t)/∂t = R(x,y) TE + F1(x,y) h – β(x,y) TE(t-η)       (8.1)      332 

 333 

The regression quantifies the contributions of -β(x,y)TE(t-η) and F1(x,y)h terms to T(x,y,t) 334 

tendency at each grid point. Fig. 2ab compares their spatial patterns in the tropical Pacific, that 335 

are indeed quite different (orthogonal).  Indeed, we see that the -βTE(t-η) contribution is 336 

stronger in the western-central Pacific, especially near the warm pool eastern edge, where the 337 
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zonal advection term dominates. It confirms that -βTE(t-η) represents the zonal advective-338 

reflective delayed negative feedback. Conversely, the recharge term F1h is larger in the eastern 339 

Pacific as expected, as the thermocline feedback term is stronger there (i.e. the 340 

recharge/discharge process is more important for EP than for CP El Niño events; e.g. Hasegawa 341 

et al. 2006; Kug et al. 2009, 2010; McPhaden 2012; Capotondi 2013; Ren and Jin 2013). Fig. 342 

3a compares more quantitatively their values along the equator. The contribution of -βTE(t-η) 343 

is larger than that of F1h in the western-central Pacific (around Niño4 region), while the 344 

contribution of F1h is the largest in the central eastern region (from ~150oW, the western 345 

boundary of Niño3 region), for both obs1 and obs2 datasets (that are consistent, with 346 

differences not significant at the 90% level, cf. Suppl. Fig. S1; while β and F1 differences are 347 

statistically significant). Note that R(x,y,t) is, as β, larger in ~Niño4 region (Suppl. Fig. S1d, 348 

likely because of the largest positive Bjerknes feedback there). R is however only about one 349 

third of β there. The correlation skill of equation (8.1) is high east of the dateline, being at its 350 

largest around Niño3.4 region (Suppl. Fig. S1d), where β and F1 roles add up. This also 351 

confirms that focusing on Niño3.4 region is a good approximation.  352 

Considering only RSST tendency (Fig. 2ab), we could think that the recharge term 353 

dominates the delayed term. Yet, in terms of feedback to deep 354 

convection/precipitation/windstress, the deep convection (the primary contributor to 355 

precipitation in the Tropics) sensitivity to RSST anomalies is larger in the western Pacific 356 

warmpool region, where climatological RSST is larger, than in the central-eastern cold tongue 357 

region (e.g. He et al. 2018 study had estimated a formula for the precipitation sensitivity to 358 

SST, P(SST) ). To illustrate this, we can use a simple exponential formula we have developed 359 

as an approximation of the precipitation sensitivity to local RSST, P(RSST) (Appendix Fig. 360 

A1): 361 

 362 

 P(RSST)= 2 e0.56RSST    (8.2) 363 

 364 

Where RSST is the total RSST field (including both climatology and anomaly, i.e. 365 

RSSTclim+RSST’).  The constant 0.56 is taken from the term representing the effect of RSST 366 

on deep convection in Tippett et al.  (2011) cyclogenesis index (efficient at describing the 367 

cyclogenesis seasonal cycle at the global scale; Menkes et al. 2012). The factor 2 (in mm day-368 
1) is a crude fit to the scatterplot of Precipclim to RSSTclim in the equatorial Pacific (this factor 369 

will anyway not influence the relative contributions to dP(RSST)/dt of -βTE(t-η) and F1h that 370 

are our focus here). Fig. 2cd is as Fig. 2ab, but for dP(RSST)/dt. The contribution to convective 371 



 

13 
File generated with AMS Word template 2.0 

precipitation tendency of -βTE(t-η) has actually, in the western-central Pacific, an almost 372 

similar amplitude to the contribution of F1h. Note that these estimated contributions to local 373 

precipitation will be then amplified by the convergence feedback (Conditional Instability of 374 

the Second Kind; CISK), notably for strong El Niño events in the central-eastern Pacific 375 

(Srinivas et al. 2022). To conclude, the -βTE(t-η) term can force large tendencies in precipitation 376 

and related equatorial zonal windstress, crucial for the ocean-atmosphere coupling. Hence 377 

adding the –βTE(t-η) term to the ∂T(x,y,t)/∂t equation can make the conceptual model 378 

significantly more realistic. 379 

  380 

Fig. 2. Distinct physical processes represented by –βTE(t-η) and F1h terms in RDO, and related ENSO 381 
spatiotemporal diversity captured by the RDO. a and b) contributions of respectively -β(x,y)TE(t-η)  and 382 
F1(x,y)h(t) to ∂T(x,y,t)/∂t(t) in Equation 8.1 (i.e. the regression coefficients β(x,y) and F1(x,y) for normalized 383 
TE and h, i.e. unit in °C.month-1 per STD of TE or h) for obs2. By reconstructing T(x,y,t) from these patterns, 384 
the RDO can simulate part of ENSO spatial and spectral diversity (cf. section 4f). c and d) as a and b, but 385 
for the expected response of deep convection/precipitation to RSST tendency shown in a and b (mm day-1 386 
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month-1), more sensitive to RSST anomalies in the western Pacific warmpool than in the central-eastern cold 387 
tongue region (based on equation 8.2: P(RSST)= 2 e0.56RSST). Lower panels show the oceanic mechanisms 388 
behind –βTE(t-η) and F1h contributions to ∂T(x,y,t)/∂t. e and f are as a and b, but for equatorial (2ºN-2ºS 389 
average) subsurface zonal current anomaly U’ (color, cm/s), with climatological isotherms Tclim overlayed 390 
(black contours, ºC). g and h) as a and b, but for subsurface potential temperature anomaly T’ (color, ºC), 391 
with climatological zonal and vertical currents Uclim and Wclim overlayed (black vectors, cm s-1). 392 

 393 

To understand the oceanic mechanisms behind –β(x,y)TE(t-η) and F1(x,y)h(t)   contributions 394 

to ∂T(x,y,t)/∂t, remember that the temperature tendency of the oceanic mixed layer is firstly due 395 

to heat advection (see its full decomposition in Supplementary Figures S2 an), with surface 396 

fluxes acting to damp interannual SST anomalies. So as to understand heat advection 397 

anomalies, Fig. 2 lower panels show equatorial subsurface zonal current anomaly U’, with 398 

climatological isotherms Tclim overlayed, as well as subsurface potential temperature anomaly 399 

T’, with climatological currents Uclim and Wclim overlayed. 400 

The – βTE(t-η) contribution is firstly through a large positive U’ anomaly in the upper 401 

layer. U’ is maximal near the dateline (up to 6 cm s-1 per STD of TE(t-η); Fig. 2e), consistent 402 

with the timing of the westward propagation of the equatorial upwelling Rossby wave forced 403 

by easterly anomalies 6 months earlier (in the case of a prior La Niña with negative TE and 404 

easterlies; Fig. 1a was shown for the opposite westerly case). This eastward current anomaly 405 

U’ advects the negative climatological zonal temperature gradient ∂Tclim/∂x, i.e. -U’∂Tclim/∂x 406 

(Suppl. Fig. S3c), favoring a warming of the oceanic mixed layer in the central Pacific (of up 407 

to 0.15K month-1, i.e. about 1K in half a year, per STD of TE(t-η); Suppl. Fig. S2c). The T’ 408 

anomalies related to –βTE(t-η) are conversely weak near the surface (about 0.2K per STD of 409 

TE(t-η); Fig. 2g) and have a secondary role (Suppl. Fig. S3a) in the heat zonal advection of the 410 

mixed layer (and at the subsurface, they are much weaker than those related to F1h; see also 411 

Fig. 3c). This analysis confirms that –βTE(t-η) contribution is firstly through zonal advection 412 

in the central Pacific, i.e. –βTE(t-η) represents the zonal advective-reflective delayed negative 413 

feedback. 414 

The recharge influence +F1h represents a different physical process. F1h influence is 415 

through warmer EUC and upwelling because of the warm subsurface anomaly in the central-416 

eastern Pacific due to the recharge and related deeper thermocline. h recharge favors a large 417 

subsurface warm anomaly in the heart of the Equatorial UnderCurrent (EUC shallower in the 418 

east, like the thermocline, from ~150m at 180ºE to ~100m at 130ºW). This warm TEUC’ 419 

anomaly, partly due to the deeper thermocline (cf. Izumo 2003, 2005), will be advected by the 420 

climatological EUC, i.e. a positive term -Uclim ∂T’/∂x (Suppl. Fig. S3b). It is also within the 421 

climatological equatorial upwelling, i.e. -Wclim ∂T’/∂z (Suppl. Fig. S3f). I.e. the EUC will bring 422 
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warmer waters to the central-eastern Pacific, where they will be upwelled to the mixed layer 423 

by the climatological upwelling, favoring an overall warming tendency of the mixed layer of 424 

the central-eastern equatorial Pacific (Suppl. Fig. S2b). Note that there are secondary roles of: 425 

1) an increase of the deepest part of the EUC in the east (because of increased zonal gradient 426 

of thermocline since the recharge is more in the western-central than in the eastern Pacific), i.e. 427 

-U’ ∂Tclim/∂x (Suppl. Fig. S3d), 2) an upwelling reduction in the extreme east, east of ~100ºW, 428 

i.e. -W’ ∂Tclim/∂z (Suppl. Fig. S3h). 429 

 To better understand the origin of this warm subsurface anomaly, we have to remember 430 

that the EUC is part of a large-scale 3D circulation. It is fed by the north and south meridional 431 

pycnocline convergences, at their largest in the western Pacific. They are the lower branches 432 

of the shallow SubTropical/Tropical Cells (STCs/TCs; McCreary et al. 1992; McCreary and 433 

Lu 1994; Zeller et al. 2019, 2021). The south convergence is climatologically two times larger 434 

than the north one (because of the potential vorticity barrier in the north) and is the first origin 435 

of EUC waters (Blanke and Raynaud 1997; Stellema et al. 2022). Hence, the h recharge 436 

associated to deeper thermocline in the equatorial and southwest Pacific favors warmer 437 

transport-weighted temperatures of the meridional pycnocline convergences, notably the 438 

dominant south convergence related to southwest Pacific recharge, thereby feeding the EUC 439 

with warmer waters (Izumo 2003, 2005; Ballester et al. 2015, 2016). Note by the way that the 440 

north-south asymmetry in the convergence further justifies the use of the asymmetric recharge 441 

index heq+sw. 442 

Fig. 3bc summarizes the distinct dominant oceanic processes for the delayed feedback 443 

(green line) and recharge term (red). The delayed feedback dominates for U’ in the west and 444 

central Pacific upper layer, i.e. for zonal advection -U’ ∂Tclim/∂x. The recharge term dominates 445 

for the subsurface temperature anomaly T’ advected by the mean 3D circulation, i.e. by the 446 

climatological EUC through -Uclim ∂T’/∂x, and by climatological upwelling through -Wclim 447 

∂T’/∂z, in most of the equatorial Pacific. 448 

 449 
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 450 
Fig. 3. Equatorial contributions of delayed feedback –βTE(t-η) (green) and of recharge term F1h  (red). 451 
a) as Fig. 2ab for RSST tendency, but for the 5ºN-5ºS average. b) as a but for upper layer (0-100m average) 452 
zonal current. c) as a but for subsurface potential temperature (50-150m average). 453 

 454 

Overall, these analyses confirm from observations/reanalysis that this RDO is physically-455 

grounded, the two terms –βTE(t-η) and F1h being both important and representing distinct 456 

physical processes. It is hence more physical to distinguish these two terms, equation (8) being 457 

one reasonable way to conceptualize them. Furthermore, we will later on show that the different 458 

spatial patterns of β and F1 seen in Fig. 2ab allow the RDO to capture partly the ENSO 459 

spatiotemporal diversity in equatorial Pacific T(x,y,t). But for now, we will firstly analyze the 460 

RDO in its simplest form, focusing on spatially-averaged Niño3.4 RSST, namely TE(t). 461 

 462 

a) -βTE(t-η) and F1h contributions to dRSST/dt

b) -βTE(t-η) and F1h contributions to upper layer U(0-100m)

c) -βTE(t-η) and F1h contributions to subsurface T(50-150m)



 

17 
File generated with AMS Word template 2.0 

 463 
Fig. 4. Significance of the RDO coefficients in observations and CMIP. a) coefficients R (black), F1 (red) 464 
and β (green) of the regression of dTE/dt onto normalized TE(t), h(t) and TE(t-η) (cf. Equation 8) for the 79 465 
CMIP models sorted by β (numbers 1 to 79 on x-axis). b) coefficients F2 (red) and ε (black) of the regression 466 
of dh/dt onto h(t) and TE(t) (cf. Equation 5). Three thick error bars from the left respectively show obs1, 467 
obs2 and Multi-Model Mean (MME). TE and h are normalized so that regression coefficients (in month-1) 468 
can be compared, whatever the model’s ENSO amplitude. 90% confidence intervals are shown as dashes, 469 
and for observations and MMM as marks.  470 

 471 

A 2nd way of confirming the relevance of the RDO equation (8) is to compute the 472 

coefficients R, F1 and β obtained from the multivariate linear regression of dTE/dt onto TE(t), 473 

h(t) and TE(t-η) for observations (and in the following section for CMIP models), now focusing 474 

on the tendency of spatially-averaged TE, as shown in the very left of Fig. 4a for observations. 475 

The most striking result is that F1 and β are both highly-significantly positive in obs1 and obs2 476 

(at the 95% level). Therefore, both need to be taken into account, and cannot be neglected in 477 

Equation (8). Consistently, observed h and TE(t-η) have more than half (~60%) of unshared 478 

variance, in agreement with the fact that they firstly represent different physical processes. 479 

 480 
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c. Confirming the RDO through CMIP multi-model database; mean state influence 481 

 482 

Accordingly, the RDO equation is also relevant for most CMIP models, with F1 and β 483 

being both significantly positive in almost all the CMIP models (Fig. 4). In the following, we 484 

write variable X = X1[X2]{X3} with X1 for values obtained with ‘obs1’ (OISST and satellite 485 

SLA), X2 for ‘obs2’ (HadiSST and ORAS5 SLA) and X3 for Multi Model Mean (MMM) of 486 

CMIP5 and CMIP6 historical runs. CMIP MMM values lie within observational uncertainties: 487 

(F1,β) = (0.14±0.03,0.06±0.04) [0.11±0.02,0.09±0.02] month-1 for observations and 488 

{0.11±0.02,0.07±0.02} for CMIP (similar values for CMIP5 and CMIP6 MMM). Note that the 489 

relative strengths of F1 and β can also depend of the period used (consistent with the fact that 490 

the dominant ENSO flavor may have changed with time). E.g. longer obs2 can be compared to 491 

obs1 on their 26-yr long overlapping period, 1993-2018. It gives (F1,β) = 492 

[0.13±0.02,0.06±0.02] month-1, almost similar to obs1, with F1 larger than β. While obs2 on 493 

the 26-yr earlier period 1959-1984 gives (F1,β) = [0.09±0.02,0.10±0.02] month-1, with 494 

conversely F1 weaker than β (possibly because of higher-frequency ENSO during that period; 495 

cf. section 4; such decadal changes could partly explain the changes in observed WWV/TE lag-496 

relationship shown by McPhaden 2012 and confirmed by Crespo et al. 2022). The R coefficient 497 

is weaker, R = 0.02±0.03 [0.03±0.02]{0.02±0.02} month-1, but is still significantly positive at 498 

the 90% level in the majority of CMIP models in this new RDO framework, contrary to RRO 499 

that is not significantly different from zero in the pure RO framework. The correlation skill of 500 

the RDO dTE/dt equation (8) is highly significant (rTe =0.71[0.68]{0.64}), also confirming the 501 

RDO relevance. The Steiger’s test (on the difference between these two dependent correlations 502 

from a single sample; note that the correlations are overlapping, sharing one variable in 503 

common) allows us to compute the significance of the improvement of the skill (and of its 504 

square, i.e. explained variance) in obs1[obs2]: from RO to RDO, this significance is 84%[97%]  505 

(explained variance increases from 48% to 51% [41% to 46%]), and from DO to RDO, it is 506 

99%[99%] (explained variance increases from 34% to 51% [35% to 46%]). For CMIP MMM, 507 

the improvement is even more significant statistically, given the much longer timeseries: the 508 

explained variance increases by ~10% from RO to RDO (from 34 to 38%) and by ~20% from 509 

DO to RDO (from 29% to 38%). Note that, in the most realistic version of the RDO, the non-510 

linear seasonal RDO developed later, the improvement is even much larger (section 5). 511 

Interestingly, there is a large CMIP inter-model diversity in the relative strengths of the 512 

coefficients F1 and β, larger than for R (Fig. 4a). The models (sorted by the amplitude of β in 513 

Fig. 4) that have a large F1 tend to have a weak β, and vice versa (inter-model correlation = -514 
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0.69). R is positively correlated to β (0.59) and negatively correlated to F1 (-0.75). This large 515 

diversity of the parameters is likely related to the diversity of spectral, spatial and amplitude 516 

(related to growth rate) characteristics of ENSO and of Pacific mean state (cf. below) among 517 

CMIP models. 518 

Fig. 4b similarly shows the coefficients F2 and ε for the regression of dh/dt onto TE(t) and 519 

h(t). F2 is highly significant in all observations and models, F2 = 0.17±0.03 520 

[0.16±0.02]{0.15±0.02} month-1 and more consistent in amplitude among CMIP than F1 and 521 

β, with a weaker inter-model diversity (~ ±30% of MMM value) positively correlated with F1 522 

(inter-model correlation = 0.79). As in observations, ε is negligible in all CMIP models 523 

(confirming Izumo and Colin 2022 result for CMIP models: using an independent index such 524 

as “h”=hind_eq+sw rather than other recharge indices polluted by the tilt mode component leads 525 

to a negligible ε; note that we expect oceanic dissipation to be weak, e.g. Fedorov 2010). The 526 

correlation skill of the regression is again highly significant: rh=0.67 [0.67]{0.57}. 527 

CMIP MMM is qualitatively similar to observations, but each model has its own biases. 528 

One may hence question how sensitive these results are to ENSO realism in CMIP models.  So 529 

we have evaluated ENSO in each CMIP model by its ENSO amplitude (STD(TE)) and spectral 530 

shape (namely the ratio between the spectral density in the 1–3 years band and that in 3–15 531 

years band, i.e. STD(1/3-1/1 yr-1 band-pass filtered Niño3.4 RSST) divided by STD(1/15-1/3 532 

yr-1 band-pass filtered Niño3.4 RSST), close to Bellenger et al. (2014) metrics; more detailed 533 

evaluations of CMIP ENSO can be found in earlier references; e.g. Bellenger et al. 2013). We 534 

have found some models that are quite far from observations for these two metrics, especially 535 

in CMIP5. We have then selected the most realistic CMIP models and have redone Fig. 4 for 536 

them (Suppl. Fig. S4). Consistently, the models with the lowest β values (on the left) are 537 

rejected, as well as most models with the largest β values. But anyway, the MMM of the RDO 538 

parameters are almost similar (to the MMM of all models without selection) for this set of 539 

selected models (as well as for CMIP5 and CMIP6 separately). These verifications confirm 540 

that the results here are robust, β becoming even more statistically significant when selecting 541 

the most realistic models.  542 

The next step is to understand what causes the inter-model diversity in RDO parameters. 543 

Knowing that β and F1 represent distinct physical processes, we expect their strengths to have 544 

distinct dependances to the mean state of the climate model. They should depend notably on 545 

the SST zonal gradient, the position of the warm pool eastern edge, the mean thermocline depth, 546 

themselves possibly related to the typical cold tongue bias, or to the western Pacific 547 

precipitation bias (e.g. Bayr et al. 2018, 2019a) with double ITCZ (InterTropical Convergence 548 
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Zone) bias and related SPCZ (South Pacific Convergence Zone) bias. We can explore this in 549 

e.g. CMIP5 models. Fig. 5 shows the inter-model regressions of model mean state (in terms of 550 

SST, SLA, precipitation and windstress) onto β and F1 separately. Note that the patterns related 551 

to β and F1 might seem opposite to each other at first glance but they are actually quite different, 552 

not simply opposite in sign. β is as expected larger if the cold tongue is stronger in a model 553 

(Fig. 5a), i.e. if the negative mean zonal SST gradient in the western-central equatorial Pacific 554 

is stronger (Bayr et al. 2018). The stronger cold tongue there is itself related to larger equatorial 555 

easterlies related to larger precipitation over the maritime continent and weaker precipitation 556 

in the central Pacific with a horseshoe pattern (Fig. 5e). F1 strength is more correlated to 557 

SLA/thermocline depth mean state (Fig. 5d). A possible explanation is the following: the 558 

shallower the mean thermocline is in the southwestern and equatorial Pacific (and also at the 559 

southern edge of the north ITCZ, where the North Equatorial Counter Current (NECC) is 560 

located), the shallower the STCs lower branches are, the more their transport-weighted 561 

temperatures can be affected by thermocline depth anomalies related to a recharged or 562 

discharged state. The SLA/thermocline depth mean state changes in Fig. 5d are interestingly 563 

related not only to equatorial zonal windstress and equatorial cold tongue, but also to 564 

meridionally-asymmetric off-equatorial windstress and related curl (with notably Ekman 565 

pumping in the SPCZ forcing off-equatorial Rossby waves propagating westward in the 566 

southwest Pacific) associated with mean precipitation (and SST) asymmetric changes (Fig. 5f). 567 

To sum up, the strength of the delayed feedback and the effectiveness of the recharge/discharge 568 

process vary as a result of the CMIP mean state diversity. 569 

  570 
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   571 
Fig. 5. Mean state influence on β (left) and F1 (right) in CMIP5 models. Inter-model regressions, onto β 572 
and F1 separately, of model mean state, in terms of SST (upper panels; K), SLA (middle panels, with SLA 573 
global mean removed; cm) and precipitation (lower panels; mm day-1; wind stress overlaid in grey, and in 574 
black when significant at the 90% level, vectors direction adjusted to panels aspect ratio; N m-2; 90% 575 
significant level overlaid as black contours; two-tailed student t-test). Amplitudes per inter-model STD of β 576 
or F1. 577 

 578 

For simplicity, we choose the default values F1 = 0.12, β = 0.08, R = 0.02, F2 = 0.16 and ε 579 

= 0 month-1, as a simple example to represent their typical values. With these default 580 

parameters, the delayed term contribution is two thirds of the recharge term contribution in the 581 

temperature tendency equation. 582 

d. RDO eigenvalues and their dependency to parameters 583 

 584 
The solutions of the RDO system of differential equations are a vector space, actually of 585 

infinite dimension because of the delayed term (see details later on and see also Jin 1997a). To 586 

understand the RDO behavior and dependency to parameters, we obtain the eigenvalues by 587 

Mean state influence on β Mean state influence on F1

SS
T

SL
A

Pr
ec

ip
ita

tio
n

a) b)

c) d)

e) f)



 

22 
File generated with AMS Word template 2.0 

considering complex solutions of the form eσt, with σ = σr + i σi, its real part σr being the 588 

exponential growth or damping rate, and its imaginary part σi being the angular frequency. The 589 

set of equations (8) and (9) (with ε here neglected for the sake of simplicity; including it is 590 

straightforward but makes the below equations heavier; not shown) leads to the following 591 

eigenvalues characteristic equation: 592 

 593 

σ2 – Rσ +  βσe-ση +F1F2 = 0 (10) 594 

     595 

This equation in the complex space is equivalent to two real equations: 596 

 597 

σr
2 – σi

2 – Rσr + βe-(σr η) (σr cos(σiη) + σi sin(σiη)) + F1F2 = 0     (real part of (10)) 598 

2σrσi – Rσi + βe-(σr η) (σi cos(σiη) – σr sin(σiη)) = 0      (imaginary part of (10)) 599 

 600 

The solutions can be found numerically as the intersections of the solutions of each of 601 

these last two equations in the (σr,σi) space (Suppl. Fig. S5). The pure DO has an infinity of 602 

solutions, while the pure RO has only one. Therefore, the RDO eigenvalues equation (10) has 603 

an infinity of solutions and the model has an infinity of eigenmodes. Around the default values 604 

of the parameters, the 1st mode is a weakly-damped low-frequency mode (close to observed 605 

ENSO main period, and with characteristics relatively close to the RO single mode), with a ~3-606 

yr period and a ~0.02 month-1 damping rate (i.e. ~1/4 yr-1). The 2nd mode is a highly-damped 607 

higher-frequency mode (~5-month period and ~0.45 month-1 damping rate).  This 2nd mode can 608 

add some high-frequency behavior, making the RDO more appealing than the pure RO which 609 

only has one eigenmode close to the 1st RDO mode.  Higher eigenmodes are even more damped 610 

and of higher frequency. 611 

Eigenvalues equation (10) depends on parameters R, β and on the product F1F2, i.e. on the 612 

Wyrtki angular frequency W=(F1F2)1/2, on which the eigenfrequency depends in the RO 613 

framework (cf. Lu et al. 2018, Jin et al. 2020). Suppl. Fig. S6def shows the dependency of 614 

RDO eigenfrequency f=σi/(2π) to W, β and R separately. Ranges of W, β and R are chosen by 615 

considering the observations uncertainties and the inter-model diversity in CMIP data shown 616 

in Fig. 4a. For these ranges, the dependency of RDO eigenfrequency to W and β is larger than 617 

for the range of R seen in observations and CMIP. Thus, we just focus on the dependency to 618 

W and β (Fig. 6b). Both W and β will increase the eigenfrequency similarly. The isofrequency 619 

lines can be crudely approximated as diagonal lines with a negative slope close to -1. Actually, 620 

if the isofrequency lines were exactly diagonal lines with a negative slope equal to -1 (cf. slope 621 
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of the overlayed diagonal line) and monotonically increasing with W and β in that figure 6b, 622 

that would mean that f would be proportional to the sum W+β. I.e. f ~ f0 + S (W+β), where f0 623 

and S would be approximately constant within the CMIP parameter range (with approximately 624 

f0~0.008 month-1 and S~0.09). The inter-model diversity in RDO eigenfrequency (or also 625 

qualitatively in ENSO spectral shape) should hence be approximately proportional to the sum 626 

W+β. Indeed, the ENSO spectral shape in CMIP models is roughly linearly related to W+β, as 627 

evidenced by Fig. 6c, with a high inter-model correlation of 0.75 between W+β and ENSO 628 

spectral shape among models. The correlation drops to only 0.43 or 0.30 when only W or β 629 

alone is used instead of their sum W+β (note: correlation with W alone here less good than in 630 

Lu et al. (2018) because here W is evaluated from the multi-regression fit for the RDO; in their 631 

study the pure RO is considered, so that their recharge term F1_RO will then mix statistically F1 632 

and β contributions). The sum W+β thus explains well the diversity of ENSO frequency among 633 

CMIP models. It represents the combined effects of the recharge and delayed feedback 634 

processes on ENSO frequency diversity in CMIP models. 635 

The eigen growth rate σr has a complex dependence to W and β (Fig. 6a; σr dependence to 636 

W, β and R separately shown in Suppl. Fig. S6abc). Around CMIP MMM, an increase in W 637 

increases σr, i.e. decreases the damping, while an increase in β increases the damping. Around 638 

W and β default values, σr increases quasi-linearly with R (Suppl. Fig. S6c), i.e. with the 639 

Bjerknes feedback: σr ≈ 0.6*(R-0.04) (for the RO, we would have σr = (RRO-ε)/2 ≈ 0.5*RRO; 640 

Jin et al. 2020). The diversity of these parameters may relate to the diversity in ENSO frequency 641 

and ENSO amplitude among models. Interestingly, obs1 as well as about half of CMIP models 642 

are near criticality (i.e. almost undamped). If the combination of the three parameters leads to 643 

a sufficiently large σr so as to become positive, it would lead to an instability. Could this explain 644 

some ENSO non-linearities? Or some tipping point effects? Further work would be needed to 645 

test this. 646 

 647 

Dependency of RDO eigenvalues to parameters

Eigen frequency (color) in the 
(β,W) 2D space 

Diagonal line shows W = -β + constant 

W
yr

tk
i i

nd
ex

 W
 

β

Sp
ec

tr
al

 sh
ap

e

W + β 

r=0.75 
month-1

CMIP inter-model diversity of ENSO frequency 
well explained by W+β

b) c)

Fig. 2. 

a) Eigen growth rate (color) in 
the (β,W) 2D space 

W
yr

tk
i i

nd
ex

 W
 

β
month-1



 

24 
File generated with AMS Word template 2.0 

Fig. 6. Dependency of RDO eigenfrequency to parameters. a) RDO eigen growth rate (color shading; 648 
month-1) as a function of both β and Wyrtki angular frequency W=(F1F2)1/2 (W being the eigen angular 649 
frequency of the pure RO). b) same as a for eigenfrequency (blue diagonal line showing W= -β + constant). 650 
c) ENSO spectral shape metric (higher values when ENSO frequency increases, cf. section 2) as a function 651 
of the sum W+β for each CMIP5 (blue) and CMIP6 (purple) model (with their MMM in squares). In panels 652 
a and b, circles show obs1 (red) and obs2 (green).  653 

 654 

e. RDO response to stochastic forcing 655 

Now we analyze the RDO response to stochastic forcing. Stochastic forcing is required, as 656 

the RDO is damped for the default parameters. To better understand the conceptual model 657 

behavior, we have forced the RDO by adding two realistic red noises, one, µT, in the right-hand 658 

side (rhs) of TE equation (8) and one, µh, in the rhs of h equation (9). The STDs of these red 659 

noises (σT ≈ σh ≈ 0.18 month-1) are inferred from the two observed residuals of the linear 660 

regression fits of equations (8) and (9). These noises are chosen to be independent, as the two 661 

observed residuals are only weakly correlated (shared variance < 10%; see also Takahashi et 662 

al. 2019 sensitivity tests on this kind of noise choice). Fig. 7a firstly shows an example of the 663 

TE synthetical time series obtained for default parameter values. The system has oscillations, 664 

with a frequency modulation, and with low and high-variance decades (similar results over the 665 

full 1000-yr period; not shown). The RDO spectral response consistently has a broad peak 666 

between ~4 and ~2-yr periods, maximal at ~3-yr (black curve in Fig. 7c), roughly consistent 667 

with observed ENSO. Fig. 7b shows the typical evolution of the different terms of the dTE/dt 668 

equation during an ENSO event (i.e. lag-regression onto TE) for the default synthetic time series 669 

shown in Fig. 7a. h (red curve) leads TE (light blue) by ~10 months, i.e. about a quarter of the 670 

ENSO period, as expected because a recharge in h favors a positive TE (Equation 8), as for 671 

usual RO. The delayed feedback effect has a different timing. It is the first to favor the phase 672 

reversal, followed by the recharge process. In the RDO, the negative noise forcing at lag ~-20 673 

months can already force indirectly the following El Niño onset, notably through the delayed 674 

feedback 6 months later. And a positive noise (from about -10 months before ENSO peak) can 675 

of course also force an El Niño directly.   676 
 677 
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 678 
Fig. 7. RDO response to stochastic forcing. a) Synthetical time series of TE for the linear RDO forced by 679 
realistic red noises (added to the rhs of equations 8 and 9; STD(TE)=0.7 for 1000-yr). b) The different terms 680 
of the dTE/dt equation (8) lag-regressed onto TE, showing their various contributions (unit: month-1 per STD 681 
of TE) during the evolution of an ENSO event: dTE/dt (black), F1h (red), -βTE(t-η) (green), RTE (cyan; which 682 
also indicates ENSO phase), red noise forcing σT (dark blue). The x-axis shows the lag, with negative lags 683 
before ENSO peak and positive lags after ENSO peak. c) RDO spectral response (i.e frequency response to 684 
white noise: power spectrum of TE for a 1000-yr long white noise forcing) for β default value (0.08 month-685 
1, black), a larger β (0.13 month-1, green; i.e. closer to pure DO with a QuasiBiennal QB mode) and a smaller 686 
β (0.05 month-1, red; i.e. close to pure RO with a QuasiQuadriennal QQ mode; for the small β case, the much 687 
larger power spectrum is divided by 3 for visualization). 688 

 689 

While most contributions are qualitatively similar in obs1 and obs2 (shown in Supp. Fig. 690 

S7 for comparison) and are within observations confidence intervals, there are also interesting 691 

differences. Observed asymmetries are - by construction - not captured by the simplest RDO 692 

framework with only linear terms (cf. sections 5 and 6), e.g. : 1) non-linearities and external 693 

forcing included in the residual in equations (8) and (9) are possibly large during ENSO 694 

development and mature phase, and damp the reversal to ENSO opposite phase (with the 695 

observed 2nd peak of the residual at ~10-month lag not seen for the synthetic time series);  2) 696 

the advective-reflective delayed negative feedback seems to play a larger and more systematic 697 

role for ENSO events termination and for La Niña onset than for El Niño onset (Suppl. Fig. S7 698 

composites). In summary, within its linear limits, the linear nonseasonal RDO framework 699 
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qualitatively matches observations and could help us to better understand the interplay between 700 

the recharge and advective-reflective delayed feedbacks in shaping the real-world ENSO.  701 

To illustrate how sensitive the RDO spectral response is to the strength of the advective-702 

reflective delayed negative feedback β, Fig. 7c shows the RDO spectral response for a smaller 703 

(0.05) or larger (0.13) β (its default value being 0.08 month-1).  In the small β case, the response 704 

is of lower frequency (period~3.3-yr) and less damped, with a sharper peak (closer to RO 705 

harmonic oscillator behavior). In the large β case, the response is of higher frequency 706 

(period~2.5-yr) and highly damped, with a broader spectral range (closer to DO behavior). This 707 

broader spectral response can be explained because the DO has a much broader spectral 708 

response, thanks to its infinity of eigenmodes, than the RO which has only one eigenfrequency. 709 

I.e. the delayed negative feedback brings spectral diversity to the RDO spectrum. To sum up, 710 

ENSO spectrum and amplitude are very sensitive to β, i.e. to the advective-reflective delayed 711 

negative feedback strength (itself related to the climatological SST zonal gradient). 712 

f. ENSO spatial-temporal diversity in the RDO framework 713 

The RDO model, even in its simplest form, can also explain part of ENSO spatial diversity. 714 

To illustrate this, we can exploit the multivariate linear regression based on equation (8.1) for 715 

the tendency of temperature T(x,y,t) anywhere in the tropical Pacific. As seen earlier (Fig. 2ab), 716 

the β(x,y) contribution reminds us of the central Pacific (CP) El Niño spatial pattern, and the 717 

F1(x,y)  contribution reminds us of the eastern Pacific (EP) El Niño pattern.  Hence, when the 718 

RDO is forced by noise, we will have different spatial patterns of T(x,y,t), closer to CP or EP 719 

spatial pattern depending on the relative contributions of β and F1 terms (that notably depend 720 

of the frequency of stochastic forcing). The spatial and temporal properties of ENSO are thus 721 

strongly dependent on which of the recharge F1 or delayed β effect is locally dominant. Indeed, 722 

we can reconstruct “offline” T(x,y,t) at any location by integrating temporally Equation 8.1 (i.e. 723 

the linear combination of TE(t), h(t) and TE(t-6)), after having obtained synthetic time series of 724 

TE and h from the RDO forced by noise (e.g. time series shown in Fig. 7a). As an example, we 725 

have reconstructed T(x,y,t) from the 1000-yr long synthetic time series of TE and h, using the 726 

averages of obs1 and obs2 for the regression coefficients R(x,y), F1(x,y) and β(x,y)  727 

(reconstructed T(x,y,t) is high-pass filtered, like long obs2, to remove multidecadal variability 728 

that can arise from the time integration, so as to focus on interannual timescales). We can then 729 

compare for instance reconstructed Niño4 (CP) and Niño3 (EP) SST variabilities. Niño4 is of 730 

significantly higher frequency than Niño3, with an almost-doubled spectral shape metrics: 2.7 731 

for Niño4, 1.5 for Niño3. This is because Niño3 is dominated by F1h, and h is essentially the 732 
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integral of TE, and thus of lower frequency than TE. While Niño4 is dominated by –βTE(t-η), 733 

which has the same spectrum as TE. The RDO can thus, even in its simplest form, simulates 734 

some ENSO spatiotemporal diversity. The RDO captures the fact that part of the CP variability 735 

is more biennal (QB) because the delayed feedback is dominant there, and that the EP 736 

variability is more quadriennal (QQ; e.g. Wang and Ren 2017) because the slower recharge 737 

feedback is dominant there. Note that additionally, there is in observations a decadal 738 

component of CP ENSO (Behera and Yamagata 2011, Sullivan et al. 2016, Capotondi et al. 739 

2020) that could be implemented in the RDO framework, e.g. through a decadal modulation of 740 

the mean state (e.g. Zhang et al. 2019) modulating RDO parameters (possibly through STCs; 741 

Zeller et al. 2019, 2021). 742 

 743 

 744 

5. Non-linear seasonal RDO 745 

 746 

The simplest RDO framework, linear and non-seasonal, can be obviously improved by 747 

adding: 1) the seasonal cycles of RDO parameters, 2) asymmetries/non-linearities, e.g. 748 

quadratic terms and a multiplicative noise. We have added them separately, and then all 749 

together in the most comprehensive RDO version, the non-linear seasonal RDO. We have also 750 

tested the influence of each non-linear parameter on the phase diagram trajectories 751 

(Supplementary Materials). The take-home message is that, with seasonal cycle, non-linearities 752 

and multiplicative noise added, the RDO is even more realistic, and still has robust and highly-753 

significant F1 and β coefficients, i.e. the non-linear seasonal RDO is more realistic than the 754 

non-linear seasonal RO or DO. 755 

a. Seasonality of RDO parameters 756 

Knowing the ENSO observed seasonal phase-locking, the first improvement to do to the 757 

RDO is to allow all its parameters to vary seasonally. The simplest seasonality we can add for 758 

parameters is, for instance for β parameter, of the form β= β0 + βseas sin(ωt-λ) = β0 + βS sin(ωt) 759 

+ βC cos(ωt). β= β0 + βseas sin(ωt-λ) looks mathematically ‘nicer’, by having amplitude βseas 760 

and phase λ separately, than β= β0 + βS sin(ωt) + βC cos(ωt). Yet the later form is more 761 

convenient, notably to compute intervals of confidence and when we want to compare different 762 

observations and/or models, as the phase λ is modulo(2π) and we for instance cannot compute 763 

a multi-model mean (MMM) of λ directly from the λ of each model (it would only be possible 764 
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by first computing the βS and βC MMM, to then convert them into βseas and λ values). And βS 765 

and βC are straightforward to interpret: here t=0 on January 1st, so that sin(ωt) is maximum on 766 

April 1st and minimum on October 1st, and cos(ωt) is maximum on January 1st and minimum 767 

on July 1st. As the number of parameters to fit is now multiplied by 3, i.e. 9 for TE tendency 768 

equation and 6 for h one, we essentially focus on the results based on our longest reanalysis 769 

data, ‘hist’, and on CMIP historical runs, for which the number of effective degrees of freedom 770 

is sufficiently large (obs2 still shown in Suppl. Fig. S8; note however the larger uncertainty 771 

bars when estimating RDO seasonally-varying parameters with obs2; obs1 is not shown, being 772 

obviously too short). In a nutshell, the correlation skills rT and rh of dTE/dt and dh/dt equations 773 

strongly increase by including the seasonal cycle (compare panel c to panel b in Suppl. Fig. 774 

S8). And the RDO still has a robust and highly-significant β coefficient for the delayed 775 

feedback (with β0 even two times larger than F1,0 in hist; Suppl. Fig. S8c).  776 

Let us now describe each parameter’s seasonal cycle (Fig. 8abc shown here for the non-777 

linear version of the seasonal RDO, which has a similar seasonality to its linear version; cf. 778 

comparison of each parameter’s seasonal coefficients in Suppl. Fig. S8). We here focus on hist-779 

based parameters, as this should be our most realistic estimates, keeping in mind the limit of 780 

historical oceanic reanalyses, the actual “truth” being possibly between hist, shorter obs2, and 781 

CMIP estimates. To interpret the coefficients seasonality, keep in mind that their actual 782 

contribution to TE and h tendencies will be the product of the coefficient and of its associated 783 

term. E.g. F2TE actual contribution to dh/dt will be larger in boreal winter than F2 alone, when 784 

TE interannual STD peaks. Let us start with R. R has a strong seasonal cycle, with -RS ~ R0 >0.  785 

R is the largest around September and the lowest in March, favoring a peak of ENSO around 786 

December, as expected from previous studies (e.g. Jin et al. 2020). F1 has a relatively-weak 787 

seasonal cycle, being slightly larger around January-March and weaker around July-788 

September, likely because the climatological equatorial upwelling in the central-eastern Pacific 789 

(170ºW-120ºW) is the strongest in January-March and the weakest in July-September. β0 is 790 

highly significant (even above 99% level) and larger than F1,0 in hist (but not in obs2 and 791 

CMIP). β has a large seasonal cycle, dominated by βS, i.e. is maximal in spring, possibly 792 

because of the seasonal cycle in the product CμC between the coupling parameter μC and the 793 

climatological zonal SST gradient C (cf. section 3.2), and/or because of Indian Ocean Dipole 794 

(IOD, an equivalent of El Niño for the Indian Ocean, e.g. Saji et al. 1999) delayed influence 795 

(Izumo et al. 2010) likely partly included in the delayed term. The difference between F1 and 796 

β seasonal cycles further confirms that F1 and β terms represent distinct physical processes. 797 
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 798 
Fig. 8. The non-linear seasonal RDO. a) bar plot showing each parameter of equations 11 and 12, estimated 799 
by a multivariate fit (with B and σT estimated as in An et al. 2020). To represent the actual contribution of 800 
the non-linear terms for strong ENSO events, their parameters are multiplied by 2 for quadratic terms and 801 
by 4 for the cubic term, for a fair comparison with linear parameters such as R, F1 and β (as for a strong 802 
2STD event, we will have e.g. F1TE = 2F1, bTTE

2 = 2*2bT, cTE
3 = 2*4c). The correlation skills rT and rh are 803 

given above the bar plot. For hist (black), the red line shows the 95% interval of confidence. For CMIP 804 
MMM (green), it represents the ±1 inter-model STD (among all CMIP). b) seasonal cycles of the main RDO 805 
parameters estimated from the fit on hist. c) same as b but for CMIP MMM. d) 100-yr long timeseries of 806 
hist-based nonlinear seasonal RDO (STD given for the average of fifty 100-yr long timeseries). e) as d, but 807 
for CMIP-based RDO.  808 

 809 

For dh/dt equation (1), which is the same for the RO and RDO, previous studies (e.g. Chen 810 

and Jin 2020) of the RO had usually considered F2 to be seasonally-constant, supposing that 811 

its seasonal cycle was negligible. Actually, F2 has a large significant and robust seasonality in 812 

all our estimates (Fig. 8abc and Suppl. Fig. S8). This is the first study to our knowledge that 813 

shows this F2 seasonality for the RO/RDO recharge equation. F2 represents the efficiency of 814 
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the recharge for a given TE anomaly (e.g. 1K). F2,S is as large as the constant component F2,0 815 

in hist. F2 is maximum in early spring (Feb.-Apr.) and negligible in early autumn (Aug.-Oct.), 816 

with of course differences among observations and CMIP estimates. ε0 is weakly positive, 817 

~0.02 month-1, with some seasonal cycle, maximum in hist (εS < 0) in fall and negligible in 818 

spring. Taking into account all these seasonal cycles lead to a more realistic RDO behavior 819 

with seasonal phase-locking and richer combination tones (e.g. Stuecker et al. 2013), especially 820 

when including non-linearities, i.e. the full non-linear seasonal RDO version described 821 

hereafter. 822 

b. Adding non-linearity: the non-linear seasonal RDO 823 

Above we had neglected asymmetries/non-linearities for the sake of simplicity. The next 824 

step is to include such terms. We can add to the dTE/dt equation (8) the quadratic and cubic 825 

terms +bT TE
2 – c TE

3 + d TE h. They notably represent the non-linear response of convection 826 

(and of related windstress) to TE (e.g. Choi et al. 2013; Takahashi et al. 2019; Jin et al. 2020; 827 

An et al. 2020; Dommenget and Al Ansari 2022; Srinivas et al. 2022, 2024). We can also add 828 

a multiplicative noise (e.g. Jin et al. 2007; Graham et al. 2015, their equation 23). We can add 829 

to the dh/dt equation (9) a quadratic term -bhTE
2. I.e. the discharge during an El Niño of 830 

amplitude TE_0 is larger than the recharge during a La Niña of similar amplitude -TE_0, notably 831 

because equatorial zonal windstress anomalies are of larger amplitude and fetch (Srinivas et al. 832 

2024) and are further to the east (e.g. Izumo et al. 2019; note that we could add even further 833 

complexity, e.g. a non-linearity of the delayed term, as in DiNezio and Deser 2014, and a state-834 

dependency of F2 as in Iwakiri and Watanabe 2022 to even better simulate long-lasting La 835 

Niña). Thus, the non-linear seasonal RDO equations are: 836 

 837 

dTE/dt = R TE + F1 h – β TE(t-η) + bT TE
2 – c TE

3 + d TE h + µT(1+BTE) (11) 838 

dh/dt = – F2 TE - ε h  - bhTE
2 + µh               (12) 839 

 840 

Where µT and µh are red noises with standard deviations σT and σh respectively, and with 841 

a 5-day decorrelation time (cf. section 2). B represents the strength of the multiplicative noise 842 

(i.e. larger noise during El Niño than during La Niña). Here we have tried to keep the notations 843 

as much as possible consistent with the (soon open-source) Community RO model under 844 

development presently, to which we participate (Vialard et al. 2023, personal communication; 845 

see also review of An et al. 2020).  846 
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Now we have 12 parameters to fit for equation (11) (as we assume no seasonality of the 847 

non-linear terms, and as B and σT are separately estimated from the residual distribution), and 848 

7 parameters for equation (12), shown in Fig. 8a and Suppl. Fig. S8. The first result is that the 849 

RDO is still robust and better than the RO, when including non-linearity and multiplicative 850 

noise in addition to seasonality. β0 is large and significant (even at the 99% level in hist and 851 

CMIP). Including this delayed effect to the RO clearly increases the skill and explained 852 

variance of dTE/dt equation (in hist: correlation skill rT =0.60 to 0.67, i.e. a relative increase of 853 

explained variance by 25%, rT
2 increasing from 36% to 45%; in CMIP: rT =0.67 to 0.72, i.e. 854 

increase of explained variance by 16%, rT
2 increasing from 45% to 52%). The results for CMIP 855 

and hist are qualitatively consistent, but quantitatively different. The largest differences are for 856 

F1 and β relative contributions, β being larger than F1 in hist (vice versa for CMIP), as 857 

aforementioned. The nonlinearities d and bh are stronger in hist. Fig. 8de shows the generated 858 

synthetic time series of TE, for hist and CMIP-MMM parameters respectively. They are quite 859 

different too. The synthetic time series for hist look more realistic (asymmetry, irregularity). 860 

Most CMIP models have a bias in ENSO nonlinearity/asymmetry (Hayashi et al. 2020); thus, 861 

that their RDO also fails to reproduce asymmetry is expected. The larger irregularity of hist-862 

based RDO could be partly explain by the larger β/F1 ratio in hist than in CMIP. Fig. 9b shows 863 

the trajectories in the (TE,h) phase space of the hist-based nonlinear seasonal RDO. They are 864 

qualitatively similar to hist ones (Fig. 9a), with similar asymmetries, namely larger extreme El 865 

Niño events with larger and faster discharges than extreme La Niña (see e.g. Iwakiri and 866 

Watanabe 2022 for processes driving long-lasting La Niña). 867 

 868 
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  869 

Fig. 9. a) Phase diagram (TE,h) of hist observations/reanalysis. The trajectories are shown in thin grey 870 
curves, and their probability density function (PDF) in color shading. b) phase diagram (TE_synthetic,h_synthetic) 871 
of 50 100-yr long synthetical time series obtained by forcing hist-based non-linear seasonal RDO by red 872 
noises. c) as b but for the hist-based simplest linear RDO without seasonality (and without multiplicative 873 
noise, i.e. B=0). d) as c but adding seasonality. e) as c but adding non-linearities (including multiplicative 874 
noise). Note that, when the distribution is shifted with extreme El Niño and discharge being stronger, the 875 
PDF maximum, i.e. the most likely points, is shifted towards slightly negative TE and positive h anomalies 876 
(mean removed). 877 

 878 

To highlight visually the role of each non-linear term in the non-linear seasonal RDO (for 879 

the set of parameters obtained from hist), Suppl. Fig. S9 shows RDO phase diagram when each 880 

of them is artificially removed. E.g. the absence of bhTE
2 in S9b leads to less extreme discharge 881 

(there is still some asymmetry in the recharge/discharge due to the non-linear terms in the 882 

dTE/dt equation, but weaker than with bh included). I.e. S9b shows that bhTE
2 role makes the 883 

discharge more extreme during strong El Niño. Multiplicative noise associated to B sustains 884 

strong El Niño (i.e. the lower-right quarter of the phase diagram; Suppl. Fig. S9d). The role of 885 

bT TE
2 should be to increase El Niño and reduce La Niña. However, in the hist case shown here 886 
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where bT is weak, this effect is hard to see in Suppl. Fig. S9e (it would be more seen in CMIP-887 

based RDO case). The cubic term –cTE
3 reduces very extreme TE events (for both El Niño and 888 

La Niña events; Suppl. Fig. S9f). The d TE h favors larger « La Niña+discharged state » events 889 

in the lower-left quadrant and diminishes them in the upper-right quadrant, ‘tilting’ the phase 890 

diagram.  Note that this detailed analysis of the role of each non-linear term remains 891 

qualitatively valid for the RO framework.  892 

 893 

6. Conclusion 894 

a. Summary 895 

We have developed a hybrid recharge-delayed oscillator, the RDO, more realistic than the 896 

stand-alone RO or DO (schematics in Fig. 1). This RDO can help us to improve our theoretical 897 

understanding of ENSO and of its irregularity, diversity and complexity. We have shown that 898 

the ENSO temperature tendency dTE/dt results essentially from the combination of two distinct 899 

negative feedback mechanisms with distinct spatial distributions, in addition to the Bjerknes 900 

positive feedback: 901 

 (1) the slow long-term recharge during La Niña (discharge during El Niño) with a 902 

timescale of ~1-2 years. This slow recharge process takes place over the equatorial and 903 

southwestern Pacific independently of the fast tilt mode, i.e. “h”= hind_eq+sw. This long-term 904 

recharge firstly affects the oceanic mixed layer temperature tendency in the central-eastern 905 

equatorial Pacific by favoring advection of warmer subsurface waters by the climatological 906 

STCs/TCs and EUC towards the equatorial upwelling, i.e. -Uclim ∂T’/∂x and -Wclim ∂T’/∂z.  907 

(2) the advective-reflective delayed negative feedback of ~6 months. This delayed 908 

feedback firstly affects the oceanic mixed layer temperature tendency in the western-central 909 

equatorial Pacific by anomalous upper layer zonal current advecting the climatological 910 

temperature zonal gradient through wave processes, i.e. -U’ ∂Tclim/∂x.  911 

These two distinct processes are both essential for equatorial Pacific SST variability and 912 

so for the coupled system. Hence, rather than stating that the recharge oscillator (RO) and 913 

delayed oscillator (DO) are two different formal ways of representing the same physical 914 

process as done usually in previous studies, the present results based on observations and 79 915 

CMIP models show that these two different physical processes with different timescales should 916 

be distinguished in the equations. They can be formally incorporated in the RDO. This hybrid 917 

oscillator has qualitatively-realistic spectral characteristics (with a wider spectral peak than the 918 
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RO) and lead-lag relationships. The inclusion of the delayed term -βTE(t-η) [with η = 6 months] 919 

favors a more irregular, and possibly chaotic, behavior when forced by stochastic forcing.  920 

RDO eigenvalues are highly sensitive to both the Wyrtki angular frequency W=(F1F2)1/2 and 921 

the β parameter (representing respectively the strengths of the RO and DO components), 922 

themselves sensitive to the mean state (and thus to CMIP model biases). We have notably 923 

shown that the main RDO eigenfrequency is approximately linearly related to the sum W+β. 924 

I.e. ENSO frequency increases not only if W is larger, but also if the advective-reflective 925 

delayed feedback is larger. Furthermore, by taking into account that the advective-reflective 926 

delayed feedback (respectively recharge feedback) is larger in the western-central Pacific 927 

(respectively eastern equatorial Pacific), each feedback having its own time scale, we can 928 

reconstruct equatorial SST at any longitude within the RDO framework, and simulate some 929 

ENSO spatiotemporal diversity. 930 

Finally, we have shown that the simple RDO framework is robust and more realistic than 931 

the RO framework, and could be significantly improved by adding: 1) the seasonal cycles of 932 

RDO parameters, 2) asymmetries/non-linearities, e.g. quadratic/cubic terms and a 933 

multiplicative noise. These non-linearities added to seasonality further increase the system’s 934 

complexity and possibly make it more irregular and chaotic, and thus increase potentially 935 

ENSO spatiotemporal diversity. We have also investigated the influence of each non-linear 936 

term on the (TE,h) phase space trajectories, an investigation that is also useful for the RO 937 

framework. 938 

b. Discussion on possible improvements of the RDO  939 

This latest and more refined RDO version could still be further improved by adding: 1) 940 

influences external to the tropical Pacific, 2) a third box in the model to explicitly allow for 941 

more spatial diversity of ENSO events.  942 

External influences to add are notably the two-way interaction of the IOD with ENSO (e.g. 943 

Izumo et al. 2010, Luo et al. 2010, Jourdain et al. 2016), the mean tropical Indian and Atlantic 944 

Oceans warming/cooling, which act as negative feedbacks to ENSO (e.g. Dommenget and Yu 945 

2017), and the north and south tropical Pacific (e.g. Alexander et al. 2010). E.g. the IOD can 946 

also force the advective-reflective delayed feedback: a negative IOD forces easterly anomalies 947 

in the western Pacific, thereby favoring positive zonal current anomalies ~6 months later in the 948 

western-central equatorial Pacific. Hence a perspective would be to add a third variable in the 949 

system, the IOD as a forcing external to the tropical Pacific coupled to ENSO (mathematically 950 
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like in Kug and Kang 2006 and Frauen and Dommenget 2012, but for the IOD rather than for 951 

the Indian Ocean basin-wide SST). 952 

Here our original aim was not to capture the various ENSO flavors, i.e. the ENSO diversity 953 

continuum from extreme EP El Niño to CP El Niño Modoki events, that have partly distinct 954 

global teleconnections. For the sake of simplicity, we have focused on ENSO events defined 955 

with the usual Niño3.4 region. Still, the RDO framework has allowed us to reconstruct ENSO 956 

spatiotemporal diversity, at least partly, even without adding non-linear terms (Fig. 2ab). While 957 

in the RO framework, nonlinearities are needed to capture ENSO diversity (Thual and Dewitte 958 

2023). Adding seasonality and nonlinearities to the RDO (section 5) can increase simulated 959 

ENSO diversity/complexity even more. The next step is to implement our RDO approach in a 960 

three-box conceptual model (i.e. west, central and east Pacific boxes), such as in Fang and Mu 961 

(2018), Geng et al. (2020) and Chen et al. (2022) but with a physically-based formalization of 962 

the equations inspired by the above RDO approach. 963 

c. Implications and perspectives 964 

The RO still remains useful, being the simplest ENSO conceptual model. We still 965 

appreciate its use. But it implicitly mixes two physically different processes, the zonal 966 

advective and thermocline feedbacks. The RDO does not. It is more physical and captures the 967 

spatial and frequential diversity of ENSO, while still remaining simple enough. 968 

The RDO set of equations may formally look partly like a simplification of the unified 969 

oscillator of Wang (2001), which was shown by Graham et al. (2015) to be less realistic than 970 

the simple DO. However, here the RDO set of equations is for (TE,hind_eq+sw) orthogonal space 971 

instead of (TE,heq) non-orthogonal space. And the various terms of the RDO equations represent 972 

clear distinct physical mechanisms, conversely to the unified oscillator as pointed out by 973 

Graham et al. (2015).  974 

For ENSO operational forecast diagnostics, Izumo and Colin (2022) have shown that the 975 

pair of coordinates (TE,hind_eq+sw) is more relevant to describe the RO system trajectory than the 976 

usual pairs (TE,heq) or (TE,hw). Here the RDO realism furthermore suggests that an additional 977 

useful term to take into account to operationally diagnose the system state is TE(t-η) as an 978 

indicator of the advective-reflective delayed negative feedback effect, e.g. when diagnosing 979 

the present oceanic state or for operational forecasts. The RDO framework should also be 980 

useful to study ENSO predictability with information theory (Fang and Chen 2023). 981 

Background interdecadal changes in the sum W+β may favor the Quasi-Quadriennal (QQ) 982 

or Quasi-Biennal (QB) ENSO regimes (e.g. Jin et al. 2020), and might have a role in ENSO 983 
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‘regime shifts’ and ENSO diversity. The QQ regime is more associated with large EP El Niño 984 

events, for which the thermocline feedback (W) plays a central role. While the QB regime is 985 

more associated with moderate CP El Niño events more driven by the zonal advection feedback 986 

(β). The RDO framework (possibly adding a third box as suggested above) could help us in 987 

understanding the differences between the decades with weak and strong ENSO variances and 988 

with differences in ENSO frequency and flavors, possibly related to decadal mean state 989 

changes influencing β and W relative strengths (Chen et al. 2022, Chen and Fang 2023), as well 990 

as the ENSO response to climate change (e.g. Cai et al. 2021; Shin et al. 2022). 991 

There are several pathways to better understand theoretically the RDO model. How 992 

combining the RO and DO influences the chaotic behavior of the delayed differential equation 993 

system (e.g. Tziperman et al. 1995, Keane et al. 2016), as for the case of two coupled oscillators 994 

interacting with noise. A mathematical approach with series as in Power (2011) for the DO 995 

could be developed for the RDO. For the nonlinear seasonal RDO, an approach based on a 996 

Fokker-Planck equation could help (An et al. 2021). Then we could use an intermediate 997 

approach similar to Yu et al. (2015),who combined the RDO to a slab ocean coupled to an 998 

AGCM to capture ENSO dynamics and diversity. But we could modify their intermediate 999 

model by (1) using an independent recharge index such as hind_eq+sw, (2) adding the delayed 1000 

negative feedback with its shorter timescale.  1001 

The RDO could help us to reconcile ENSO theories.  It would be very interesting to redo 1002 

detailed analyses testing each ENSO oscillator, such as Graham et al. (2015) approach, and/or 1003 

Linz et al. (2014) approach based on transfer functions, in light of the present results, and see 1004 

whether theories, climate models and observations would better agree if one keeps RO and DO 1005 

processes distinguished through the hybrid RDO framework developed here. To conclude, 1006 

using this simple RDO framework could help us to improve ENSO theories, climate model 1007 

diagnostics and forecasts. 1008 
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APPENDIX 1037 

 1038 
 1039 
Fig. A1. Verification of the approximated formula for the sensitivity of precipitation to RSST. 1040 
Scatterplot of Precipclim (monthly GPCP precipitation, mm/day) to RSSTclim (monthly OISST, regridded on 1041 
GPCP grid; K) in the equatorial Pacific (5ºN-5ºS, 120ºE-80ºW). The default fit in blue is P(RSST)= 2 1042 
e0.56RSST, the factor 0.56 inspired by Tippett et al. cyclogenesis index. Tests using other exponential forms, 1043 
e.g. P(RSST)= 2 e0.4RSST (green) or P(RSST)= 2 e0.8(RSST-0.5) (red) show that the default approximation is 1044 
qualitatively reasonable. Fig. 2cd redone with these other forms lead to qualitatively-similar results, with 1045 
delayed term contribution increasing if the factor in the exponential increases, as it gives more weight to 1046 
regions with higher climatological RSST (vice versa if it decreases).  1047 
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Supplementary text S1: Additional data and methods information 
 

a. Validation of indices (sensitivity tests) 

 
Using Niño3 region instead of Niño3.4 region leads to qualitatively-similar results. It 

leads to only a weak decrease for RDO temperature equation skill (see RDO equations in 

section 3), and a slight F1 increase, for instance in obs2 from 0.11 to 0.12±0.02 month-1 and a 

β decrease from 0.09 to 0.07±0.02 month-1 as expected physically because Niño3 is slightly 

further east (cf. Fig. 2a and Suppl. Fig. S1). 

For the recharge index, the debate is partly caused by the potentially-misleading 

character of the most commonly used recharge index, the equatorial Pacific OHC index, heq, 

which mixes the slow recharge mode with the temporary rapid variations related to equatorial 

Kelvin waves that project strongly onto heq, as shown by Izumo et al. (2018a). Through an 

objective approach to optimize the fit of the RO differential equations with observations, Izumo 

and Colin (2022) have thus developed a more physical and optimized index of the ENSO slow 

recharge mode, uncorrelated to TE (i.e. independent of the fast adjustment mode). They separate 

the fast oceanic adjustment in phase with TE (tilt mode) and the slow oceanic component out of 

phase with TE, i.e. the pure recharge/discharge process (whose tendency is forced by in-phase 

currents associated to TE). Doing this separation allows them to reconcile western and equatorial 

recharge indices, as well as SLA, Z20 or OHC-based indices, as all the recharge indices become 

much more similar when only looking at their pure recharge components independent of TE. 

The study also investigates what is the best averaging region optimizing the RO set of equations. 

The optimal two-rectangle region to capture the slow recharge process is obtained by adding a 

hsw southwest Pacific box to heq box (see Fig. 1b that physically represents the recharge after 

long-lasting easterly anomalies in observations; see Iwakiri and Watanabe 2022 for processes 

driving long-lasting La Niña). This recharge (in the case of easterly anomalies, discharge in the 

westerly case) is through (1) an equatorial basin adjustment with the leakage of OHC negative 

anomalies towards the poles along the eastern boundary recharging equatorial OHC (e.g. Izumo 

et al. 2018, their Supplementary Figure S4) and (2) meridionally-asymmetric Ekman pumping 

recharging more the southwest Pacific, that will progressively favor positive TE and thus El 

Niño onset (this asymmetry explains why the optimal region, “eq+sw”, is asymmetric). Adding 

“sw” to “eq” further improves the fit of RO equations and ENSO hindcasts, with the added 

advantage of reducing the correlation to TE. Note that this eq+sw region is actually also optimal 

for the RDO set of equations developed in the present study (not shown). Note also that one 



could also use the 20oC isotherm depth, the Z20, instead of SLA, but the SLA is directly 

observed by satellite and more easily available in CMIP database and gives equivalent results. 

In fine, the optimized recharge index statistically-independent from TE is hind_eq+sw = heq+sw – K 

TE ≈ heq+sw (Izumo and Colin 2022).  

Indeed, the RDO equations 6 and 7 remain in practice quasi-similar if we use heq+sw 

instead of hind_eq+sw for the recharge index. As K is so small, the shared variance between heq+sw 

and TE is for instance only 9% for obs2. Hence I.e. β (e.g. 0.09±0.02 month-1 in obs2) remains 

mathematically identical. F1 does not change at the second digit, remaining for instance in obs2 

at 0.11±0.02 month-1. F2 changes weakly, from 0.16±0.02 to 0.17±0.02 month-1. Only R and ε 

decrease, R from 0.03±0.02 to 0.00±0.02 month-1 and ε from 0.00±0.02 to -0.05±0.02 month-1 

in obs2 for instance. The correlation skill for the temperature equation remains mathematically 

identical, and the skill for recharge equation decreases slightly, e.g. from 0.68 to 0.66 in obs2.  

 

b. Methods 

Here we use typical statistical methods. The monthly seasonal cycle (computed by 

averaging each month of the year over the whole period) is removed and intraseasonal 

variations are filtered out by a 4-month window Hanning filter, so that periods lower than ~2-

month are removed (considering as fast adjustments anything with timescales less than ~2-

month). For the long historical datasets ‘obs2’ (ORAS5 analysis over its whole extended period 

1959-2018 + HadiSST), hist (SODA2.2.6 + HadiSST, note: at the time of doing the present 

research work, CERA20C ECMWF server was unfortunately down, and could not be used) and 

CMIP, we use in addition to the intraseasonal low-pass filter a high-pass Hanning filter (14-

year window) to remove interdecadal variability with cutting frequency at periods of ~10-year, 

as our focus is here on ENSO main interannual timescale (note that interdecadal variability and 

possible trends are removed to be safe, but the results are quasi-similar without this high-pass 

filter).  

Multivariate linear regressions are used to obtain the best-fit coefficients for the RDO 

differential equations. Note that for monthly values, it is important to use centered derivatives 

to estimate h and TE tendencies accurately (using forward derivatives leads to biased parameters 

and thus biases of the RDO response to stochastic forcing). All along the paper, numbers are 

given for normalized h and TE, i.e. divided by their standard deviation (STD), so as to represent 

typical amplitudes. Using formulae (30) of Bretherton et al. (1999), we have about one effective 

degree of freedom every 4 months, i.e. ~85 for obs1, ~140 for obs2, ~370 for hist, ~360 for 



each CMIP5 model historical run, ~450 for each CMIP6 historical run. These effective numbers 

of degrees of freedom are sufficiently large, so that statistics are robust. For statistical 

significance, we can thus use typical two-tailed Student t-tests for e.g. 90% or 95% confidence 

intervals. As here, our effective number of degrees of freedom dof is sufficiently large, being 

always larger than ~80, the reader can easily switch from 90 to 95% [or even 99%] intervals by 

multiplying by the ratio of the corresponding t-values, quite stable for dof above 30 (e.g. for 

dof=80, ratio of 1.2 to switch from 90 to 95% [ratio of 1.6 to switch from 90 to 99%]). 

To obtain the RDO response to stochastic forcing, we use the Euler-Heun numerical 

scheme, necessary when a multiplicative noise is included. The stochastic forcings of the RDO 

are red noises (except for computing the spectral response, for which we force by white noise).  

Their amplitudes are based on the STD of the residuals of the tendency equations regression 

fits. We take a realistic decorrelation time of 5-day for these red noises, which we have 

estimated from the observed decorrelation time of the main stochastic forcing of ENSO, namely 

intraseasonal zonal windstress over the oceanic equatorial wave guide (2ºN-2ºS) in the western 

Pacific (e.g. 120ºE-155ºW) due to westerly wind bursts and to Madden-Julian Oscillation 

(MJO; using daily Tropflux product; Praveen Kumar et al. 2013; interannual anomalies 

removed with a 6-month window Hanning filter). This decorrelation time is qualitatively 

consistent with the one of Vijayeta and Dommenget (2018). Note that, at the end, the amplitude 

of the synthetical time series directly depends on this time. The larger the decorrelation time is, 

the more energy there will be at interannual timescales, the larger the RDO response will be. 

E.g. STD increases by about 0.3 from 5-day to 15-day, for non-linear seasonal RDO based on 

hist shown in Section 5 (even if the STD of the red noises are unchanged). 

  



     a) -βTE(t-η) contribution          b) F1h contribution 

  
   d) β, F1, R, skills (dashes) rTe and RV-coefficient (5ºN-5ºS) 

 
 
Suppl. Fig. S1. Contributions of -β(x,y)TE(t-η) and F1(x,y)h to dT(x,y,t)/dt. a and b) as Fig. 2ab but for 
obs1 (OISST+CMEMS satellite SLA, 1993-2021) instead of obs2 (HadiSST+ORAS5 SLA, 1959-2018), for 
verification. c) β(x,y) (green) and F1(x,y) (red) along the equator (here normalized by dividing by 
STD(dT(x,y,t)/dt) for a normalized comparison), for obs1 (long dashes) and obs2 (short dashes). d) as c, but 
for 5ºN-5ºS average for obs1 only, and by also showing R (black line) and the correlation skill for temperature 
tendency equation 8 in blue dashes, and the RV-coefficient skill for the system of the two tendency equations 
together (see definition in Izumo and Colin 2022). The β contribution is qualitatively close to central Pacific 
(CP) El Niño spatial pattern, and the F1 contribution is closer to the eastern Pacific (EP) El Niño pattern, both 
in obs1 and obs2.  

c) β and F1 normalised contributions to dT(x,y,t)/dt along the equator

a) β contribution b) F1 contribution



 
 
Fig. S2. Equatorial-depth section as Fig. 2efgh, but for a,b: the total heat advection -U∂T/∂x - V∂T/∂y - 
W∂T/∂z (for monthly ORAS5, K month-1); c,d: zonal advection -U∂T/∂x ; e,f: vertical advection -W∂T/∂z 
(sign convention: z increases upward (i.e. if e.g. z=-50 at depth 50m) and W is positive upward). The role of 
-V∂T/∂y is not represented here, as it is negligible (Tropical Instability Waves (TIWs) damping effect is here 
not taken into account, as we only consider here monthly fields, in which TIWs are strongly filtered out). A 
8°-window Hanning filter has been applied along longitude to reduce spatial noise before plotting. To 
interpret Fig. S2 correctly, remember that T’ has much more variance around the thermocline, as even 
relatively-weak anomalies of the thermocline depth lead to large T’ anomalies. Thus, the largest signals here 
are around the thermocline. Yet the weaker signals near the surface are actually essential to understand SST 
(and RSST) tendency (e.g. in the central Pacific on panels a and c) and should not be underestimated: they 
are weak in absolute amplitude but can be large in % of explained variance. 
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Suppl. Fig. S3. As Fig. S2, but here decomposing the zonal and vertical advections -U∂T/∂x and -W∂T/∂z 
into the contributions of anomalous current advecting climatological temperature gradient, and of anomalous 
temperature gradient advected by climatological current.  
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a)            Coefficients for dTE/dt equation: R, F1 and β for the most realistic CMIP models  

 
   b)   Coefficients for dh/dt equation: F2 and ε, for the most realistic CMIP models  

 
Suppl. Fig. S4. As Fig. 4 (keeping the same sorting by β), but only for the selected most realistic CMIP 
models in terms of ENSO STD and ENSO spectral shape. Both criteria have to be between 3/4 and 4/3 of 
their observed values (that are STD≈0.8K and spectral shape≈1.2). Interestingly, the models with the lowest 
β values (on the left) are rejected, as well as most models with the largest β values (on the right). The MMM 
of the RDO parameters for selected models (R=0.0259, F1=0.107, β=0.072, F2=0.161, ε=0.00 month-1) are 
almost similar to the MMM for all models (R=0.0249, F1=0.110, β=0.068, F2=0.152, ε=0.00 month-1). Note 
the slight increases in the ratio β/F1 and in F2 for the MMM of the selected models.  
 
 

 
Suppl. Fig. S5. Resolution of the RDO differential equations system for solutions in eσt, by finding its 
eigenvalues σ which obey the characteristic equation (10):  σ2 – Rσ + βσe-ση +F1F2 = 0. Real part of the 
left-hand side term of equation (10) in color shading and black contours, imaginary part in red contours, as a 
function of σr along the x-axis and of σi along the y-axis (with σ = σr + i σi, its real part σr being the exponential 
growth - or damping rate if negative - and its imaginary part σi being the angular frequency ω, here in rad 
month-1; 0.2 rad month-1 corresponds to a period of 31.4 month). The solutions of the equation, i.e. the 
eigenvalues, are where both real and imaginary parts are zero, i.e. where the black and red zero-line contours 
intersect. Panel a is for β = 0 case (pure RO), panel b is for F1 = 0 case (pure DO) and panel c is for the RDO. 
The RDO has an infinity of eigenmodes due to the delayed term, like the DO, while the RO only has one. 
RDO 1st mode is of low-frequency (period ≈ 3 years) and weakly-damped (damping rate ≈ 0.02 month-1 ≈ 
1/(4year)). RDO 2nd mode is of higher frequency (period ≈ 0.5 year) and is highly-damped (damping rate ≈ 
0.45 month-1 ≈ 1/(2months)). But this 2nd mode still adds some high-frequency response to the RDO, absent 
in the pure RO (cf. spectra in Fig. 7b). 
 

 



 
 
Suppl. Fig. S6. Dependency of eigenvalues to a single parameter. Dependency of RDO growth rate σr 
(upper panels) and eigenfrequency f=σi/(2π) (lower panels) to Wyrtki angular frequency W=(F1F2)1/2 (1st 
column), β (2nd column) and R (3rd column) separately (unit: month-1).  
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Wyrtki index W=(F1F2 )1/2 β (delayed effect) R (BJ strength)
=> Frequency, i.e. Quasi-Quadriennal (QQ) or Quasi-Biennal (QB) (e.g. Jin et al. 2019), depends both
of β and Wyrtki index:    f ~ Wyrtki_i + β 
=> role in regime shifts?
(near mean values (in blue), increased damping and increased frequency if β increases; while
decreased damping and increased frequency if Wyrtki index increase)

Old Notes: panel d => damping rate Sigma_r almost linearly related to R:  
Sigma_r ~ -0.04+R*0.04/0.05 ~ -0.04 + 0.8*R , while Sigma_r = (R-epsilon)/2 ~ R/2 if ROindep
Panel e and f => Delta_f = 0.025 pour Delta_β=0.19; Delta_f=0.025 pour Delta_Wyrtki=0.15

Suppl. Fig. S2 (old)

4yr

3yr

2yr

New note: W = 0.139 
for new default 
values F1=0.12 and 
F2=0.16

[note: panel h is the 
same as Fig. 2a]

[one could do a 
CMIP analysis of the 
ENSO amplitude 
dependency to 
damping rate. More 
damping when beta 
increases and/or 
Wyrtki index 
decreases. It could 
work if noise 
amplitude is not 
playing a large role 
=> could be tested 
later (not a priority)

a) b) c)

d) e) f)



 

 
 

Suppl. Fig. S7. Observed lag-regression (upper row) and lag-composites (middle and lower rows) of the 
different contributions to the TE tendency equation. Upper row as Fig. 7b but for obs1 and obs2. In these 
observations, F1 term dominates. The residual (i.e. noise plus non-linearities notably; cf. discussion) plays 
also a large role. The β term plays a large role after ENSO peak, but plays a weaker role compared to RDO 
synthetical timeseries before ENSO peak. Middle and lower rows show El Niño and La Niña separately 
(composites criteria: Niño3.4 RSST anomaly larger than two thirds of its standard deviation). 
 
 
 
 

Observed lag-regression of the different terms of the dTE/dt equation

Suppl. Fig. S3

--- dTE/dt --- F1 hind     --- -β TE(t-6)   --- RTE --- residual 
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before ENSO peak       after ENSO peak

Obs1 (OISST+CMEMS SLA, 1993-2021) Obs2 (HadiSST+ORAS5 SLA, 1959-2018)

El Nino composites

Suppl. Fig. S3bis

--- dTE/dt --- F1 hind     --- -β TE(t-6)   --- RTE --- residual 

Lag in months

before ENSO peak       after ENSO peak

--- dTE/dt --- F1 hind     --- -β TE(t-6)   --- RTE --- residual 

Lag in months

before ENSO peak       after ENSO peak

Obs1 (OISST+CMEMS SLA, 1993-2021) Obs2 (HadiSST+ORAS5 SLA, 1959-2018)

La Nina composites



 
Suppl. Fig. S8. Comparison of the non-linear seasonal RDO to RO and their several versions. Bar plots 
as Fig. 8a, but here for both obs2 and hist, and for CMIP5 and CMIP6 separately.  
 
 
 
 

 
Suppl. Fig. S9. Role of each non-linear term on RDO phase diagram. Comparison of the phase diagrams 
of the full non-linear seasonal RDO (based on hist; shown in panel a, which is the same as Fig. 9b) with 
specific RDO configurations in which some non-linear terms have been artificially set to 0, to illustrate their 
influences. 
  

Suppl. 
Figures for 
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1) Bar plots 
comparing 
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the RDO 
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Suppl. Figures for the non-linear seasonal RDO:

2) Phase diagrams, testing the influence of the different non-linear terms 
Start from the parameters fit on hist (with 5 days as decorrelation time for the red noise), and we test different 
configuration for the non linearities. 

RDO nonlinear seasonal bh = 0 bT = c =d = 0 B = 0

bT = 0 c = 0 d = 0 RDO linear seasonal

a) b) c) d)

e) f) g) h)

MAJ avec le bon cycle 
saisonnier



Table S1a. CMIP5 models historical runs used in the present study (as in Izumo et al. 2019). The 32 
models, for which we have SST, SLA, precipitation and windstress available in their historical runs (at least 
over the 1861-2005 historical period, except CanCM4 starting in 1961).  
 

Institute name Model name 
BCC bcc-csm1-1 

 bcc-csm1-1-m 

CCCma CanCM4 

 CanESM2 

CMCC CMCC-CESM 

 CMCC-CM 

 CMCC-CMS 

CNRM-CERFACS CNRM-CM5 

 CNRM-CM5-2 

CSIRO-BOM ACCESS1-0 

 ACCESS1-3 

CSIRO-QCCCE CSIRO-Mk3-6-0 

FIO FIO-ESM 

INM inmcm4 

IPSL IPSL-CM5A-LR 

 IPSL-CM5A-MR 

 IPSL-CM5B-LR 

LASG-CESS FGOALS-g2 

LASG-IAP FGOALS-s2 

MIROC MIROC5 

 MIROC-ESM 

 MIROC-ESM-CHEM 

MOHC HadGEM2-CC 

MRI  MRI-CGCM3 

 MRI-ESM1 

NASA-GISS GISS-E2-R 

 GISS-E2-R-CC 

NCC NorESM1-M 

 NorESM1-ME 

NOAA-GFDL GFDL-CM2p1 

 GFDL-CM3 

 GFDL-ESM2G 

 GFDL-ESM2M 

NSF-DOE-NCAR CESM1-CAM5 

 
  



Table S1b. The 47 CMIP6 models historical runs used in the present study (with the reference number of 
the historical run used). 
 

NCC_NorESM2-MM_gn_r1i1p1f1_20191108 
CCCma_CanESM5_gn_r1i1p1f1_20190429 
NCC_NorCPM1_gn_r1i1p1f1_20200724 
HAMMOZ-Consortium_MPI-ESM-1-2-HAM_gn_r1i1p1f1_20190627 
NOAA-GFDL_GFDL-CM4_gr_r1i1p1f1_20180701 
BCC_BCC-CSM2-MR_gn_r1i1p1f1_20181126 
MRI_MRI-ESM2-0_gr_r1i1p1f1_20190904 
INM_INM-CM5-0_gr1_r1i1p1f1_20190610 
EC-Earth-Consortium_EC-Earth3-Veg-LR_gn_r1i1p1f1_20200919 
NCAR_CESM2-WACCM_gr_r1i1p1f1_20190808 
NASA-GISS_GISS-E2-1-G_gn_r1i1p1f1_20180827 
AWI_AWI-ESM-1-1-LR_gn_r1i1p1f1_20200212 
E3SM-Project_E3SM-1-1_gr_r1i1p1f1_20191204 
THU_CIESM_gn_r1i1p1f1_20200220 
NASA-GISS_GISS-E2-1-H_gn_r1i1p1f1_20190403 
EC-Earth-Consortium_EC-Earth3-CC_gn_r1i1p1f1_20210113 
NASA-GISS_GISS-E2-1-G-CC_gn_r1i1p1f1_20190815 
NUIST_NESM3_gn_r1i1p1f1_20190703 
CMCC_CMCC-CM2-SR5_gn_r1i1p1f1_20200616 
EC-Earth-Consortium_EC-Earth3_gn_r1i1p1f1_20200918 
NCC_NorESM2-LM_gn_r1i1p1f1_20190815 
CSIRO-ARCCSS_ACCESS-CM2_gn_r1i1p1f1_20191108 
CAS_CAS-ESM2-0_gn_r1i1p1f1_20200306 
CAS_FGOALS-g3_gn_r1i1p1f1_20191107 
EC-Earth-Consortium_EC-Earth3-AerChem_gn_r1i1p1f1_20200624 
NCAR_CESM2_gr_r1i1p1f1_20190308 
MIROC_MIROC6_gn_r1i1p1f1_20181212 
NCAR_CESM2-FV2_gr_r1i1p1f1_20191120 
EC-Earth-Consortium_EC-Earth3-Veg_gn_r1i1p1f1_20200919 
CMCC_CMCC-ESM2_gn_r1i1p1f1_20210114 
CSIRO_ACCESS-ESM1-5_gn_r1i1p1f1_20191115 
E3SM-Project_E3SM-1-1-ECA_gr_r1i1p1f1_20200127 
BCC_BCC-ESM1_gn_r1i1p1f1_20181129 
NOAA-GFDL_GFDL-ESM4_gr_r1i1p1f1_20190726 
INM_INM-CM4-8_gr1_r1i1p1f1_20190530 
MPI-M_MPI-ESM1-2-HR_gn_r1i1p1f1_20190710 
E3SM-Project_E3SM-1-0_gr_r1i1p1f1_20190826 
MPI-M_MPI-ESM1-2-LR_gn_r1i1p1f1_20190710 
AWI_AWI-CM-1-1-MR_gn_r1i1p1f1_20181218 
NCAR_CESM2-WACCM-FV2_gr_r1i1p1f1_20191120 
CAMS_CAMS-CSM1-0_gn_r1i1p1f1_20190708 
FIO-QLNM_FIO-ESM-2-0_gn_r1i1p1f1_20191122 
SNU_SAM0-UNICON_gn_r1i1p1f1_20190323 
CMCC_CMCC-CM2-HR4_gn_r1i1p1f1_20200904 
CAS_FGOALS-f3-L_gn_r1i1p1f1_20191007 
IPSL_IPSL-CM6A-LR_gn_r1i1p1f1_20180803 
AS-RCEC_TaiESM1_gn_r1i1p1f1_20200630 

 


