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ABSTRACT 23 

Climate change is projected to increase water resources limitation and to impact significantly 24 

agricultural production. A big challenge for agriculture will be to reduce the amount of water used to fit 25 

the environmental constraints, while maintaining a level of production that ensure food security. In this 26 

context, we propose a methodology based on high spatial and temporal resolution remote sensing data 27 

combined with a semi-empirical crop model coupling the Simple Algorithm For Yield estimates (SAFY, 28 

Duchemin et al., 2008, 2015; Battude et al., 2016) and a water balance model adapted from the FAO-56 29 

method (Allen et al., 1998). A module was added to automatically simulate irrigation. The model was 30 

used to assess the dynamics of actual Evapotranspiration (ETca) and water supplies of maize crop over 31 

large areas and during contrasted climatic years in the south west of France. The model was first 32 

calibrated and evaluated over an experimental field using four years of ETca measurements. The 33 

validation was done over 18 maize fields and larger irrigated zones (135 ha to 450 ha) using total 34 

irrigation depths. This work permitted to quantify the ability of different methods to estimate the 35 

storage capacity (soil map vs in situ data) and the basal crop coefficient Kcb (standard vs remotely 36 

sensed values) and their impact on total irrigation depths. Good estimations were obtained for ETca (R = 37 

0.88; RRMSE = 20%). The model also reproduced correctly the total irrigation depth over the 18 maize 38 

fields (R = 0.79; RRMSE = 18.8%) and three larger irrigated zones (R = 0.8; RRMSE = 42%). The 39 

underestimation (Bias = -93 mm) may be due to different reasons such as errors in soil water storage 40 

capacity estimates, but also to an overestimation of water needs by water managers or a potential over-41 

irrigation carried out by farmers. Finally, the work demonstrates the high potential of combining a 42 

simple agro-meteorological model using only few parameters with satellite imagery for a large-scale 43 

monitoring of total irrigation depth.  44 
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1. INTRODUCTION 45 

Agriculture is by far the main consumer of fresh water with about 70% of all withdrawals devoted 46 

to irrigation (UNESCO, 2015). With the multiplication of extreme weather events, irrigation has become 47 

essential to ensure a reliable, stable and profitable production. In a world where population is 48 

constantly increasing and with high climate extremes, a big challenge for agriculture will be to maintain 49 

a sufficient level of crop production while reducing the amount of water used, and therefore to increase 50 

its use efficiency (Kijne et al., 2003). Indeed, an important amount of water allotted to irrigation is not 51 

efficiently used by crop (Smith et al., 1992). This naturally leads the scientific community to work on 52 

management tools to both ensure food security and meet environmental issues. 53 

The present study was conducted in the south west of France on irrigated maize fields. In this 54 

region, maize crop (Zea mays) represents 60% of irrigated lands, consuming 70 to 80% of whole 55 

irrigation water (around 250.106 m3/year). 56 

Several agronomical crop models are developed to assess specific agronomical needs like grain 57 

yield or irrigation demand prediction (e.g. DSSAT (Jones et al., 2003), STICS (Brisson et al., 2003)). 58 

However, if such crop models are quite suitable for monitoring plant development at the field scale, 59 

their implementation over larger areas is often limited by the availability of input data. To overcome 60 

these difficulties, a widely used solution is to integrate satellite observations into semi-empirical crop 61 

models (see Dorigo et al., 2007 for review). Halfway between complex and empirical approaches, these 62 

models combine the descriptions of the main biophysical processes and simple empirical 63 

parameterizations (e.g., AquaCrop (Steduto et al., 2009), AqYield (Constantin et al., 2015), GRAMI 64 

(Maas, 1992), Pilote (Mailhol et al., 1997), PolyCrop (Nana et al., 2014), SAFY (Duchemin et al., 2008; 65 

Battude et al., 2016)).  66 

This approach combining remote sensing data and crop models has been made possible by the 67 

development of new sensors providing high resolution images, necessary to an accurate vegetation 68 
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monitoring, and has been particularly popular for the monitoring of water resources and irrigation water 69 

supplies at the regional scale (Duchemin et al., 2006; Zwart et al., 2010; Droogers et al., 2010; Saadi et 70 

al., 2015; Toureiro et al., 2016). Most of the models among the previously cited studies did not allow to 71 

estimate both the water needs and supplies, the biomass production and yields. In a previous study, 72 

Battude et al. (2016) proposed a remote sensing driven approach to estimate the maize biomass 73 

production and yield for both irrigated and rainfed fields. An original methodology was developed 74 

specifically for large areas with a limited use of in situ information. In that purpose, we used a quite 75 

simple semi-empirical model, the SAFY (i.e. Simple Algorithm For Yield estimates) model (Duchemin et 76 

al., 2008) driven by high spatial and temporal resolution images, which is able to take into account the 77 

dynamic of vegetation without requiring information about soil characteristics. This last study led to a 78 

new formalism of the Effective Light Use Efficiency (ELUE) and the Specific Leaf Area (SLA) that was 79 

implemented in the original version of the SAFY model. Results revealed that the new version of the 80 

model improves yield estimates both at field scale (RRMSE = 13.7%) and at regional scale (RRMSE = 5%). 81 

However, this new version of the model did not include a water balance module and, thus, did not give 82 

access to the crop water needs and supplies which knowledge is essential in a context of water 83 

management. The original version of the SAFY model had already been coupled with FAO methods on 84 

rainfed wheat crops (Duchemin et al., 2015) and had led to good estimates of biomass, ETca and soil 85 

water content. We thus coupled the new version of the SAFY model with the FAO-56 method and a sub-86 

module simulating irrigation in which irrigation events are triggered according to the water stress level 87 

of the crop, in order to simulate both biomass production and water needs and supplies.  88 

Even though the FAO-56 methods are sometimes questioned, they remain the most commonly 89 

approach used for the estimation of crop evapotranspiration from field to global scales (Pereira et al., 90 

2015) due to their relative simplicity. Indeed, the method allows estimating optimal crop 91 

Evapotranspiration (ETc) with a crop coefficient (Kc) applied to the reference evapotranspiration (ET0). 92 
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Such approach overcomes the difficulties encountered with direct measurements (e.g. Eddy-Covariance, 93 

Bowen ratio energy balance, lysimeters) for which applications are restrained to field scale because of 94 

the heavy and costly needed investment. The accurate estimation of actual crop Evapotranspiration 95 

(ETca) over large areas is essential to improve water resource management. Given their strong impact 96 

on ETca, the crop coefficient and the plant water availability must be correctly estimated which is one of 97 

the major difficulties of the application of the FAO approach over large areas. Indeed, the standard crop 98 

coefficient method based on tabulated values implies “standard conditions” that do not vary from field 99 

to field and that are not actual most of the time. As crop characteristics correlate well with spectral 100 

reflectances, numerous studies aimed at developing empirical relationships between Kc and remote 101 

sensing data that allowed improving ETca estimates and irrigation scheduling (Bausch et al., 1987; Neale 102 

et al., 1989; Hunsaker et al., 2003; Glenn et al., 2011).  103 

Beside the importance of an accurate estimation of Kc, the knowledge of the Storage Capacity (SC) 104 

of the soil is also useful as it is a widely used concept for a large panel of models. This integrative value 105 

relies on the knowledge of soil properties that are rarely available over large areas. Moreover, some 106 

sensitivity analyses have demonstrated the large impact of uncertainty of the SC values on yield 107 

estimates (Pachepsky and Acock, 1998; Lawless et al., 2008) or on the soil hydraulic characteristics 108 

(Baroni et al., 2010).  109 

The objectives of this study were twofold. First, we aimed at reproducing the seasonal dynamics of 110 

ETca and total irrigation depth over large areas and various contrasted climatic years. For that, we used 111 

a water balance crop model combined with high spatial and temporal resolution remote sensing data. 112 

Second, we aimed at evaluating the impact on simulated ETca and total irrigation depths of various 113 

methods used to determine the soil water storage capacity (SC) and the crop coefficient (Kc).  114 

 115 

 116 
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2. MATERIAL & METHODS 117 

2.1. Model description 118 

In this study, we used the SAFY-FAO model. This model combines the SAFY crop model (Duchemin 119 

et al., 2008; Battude et al., 2016) with a water balance model proposed by the FAO-56 method (Allen et 120 

al., 1998) and a sub-module simulating irrigation events, hereafter referred to as “automatic irrigation 121 

module”. The SAFY-FAO model simulates the dynamics of Green Area Index (GAI in m2.m-2, ratio of the 122 

photosynthetically active plant area, without organ distinction, per meter square ground; Baret et al., 123 

2010), Dry Aboveground Mass (DAM in g.m-2), actual crop Evapotranspiration (ETca in mm.day-1) and 124 

Current Available Water (CAW in mm) in three soil layers (i.e. top, intermediate and deep) at a daily time 125 

step from a date of plant emergence (D0). It can be run in two different ways: using the real irrigation 126 

supplies (forced mode) or activating the automatic irrigation module (automatic mode). Remotely 127 

sensed GAI and green cover fraction (FCOVER), incoming global radiation (Rg in MJ.m-2), air temperature 128 

(Ta in °C), reference evapotranspiration (ET0 in mm.day-1), precipitation and irrigation (in the forced 129 

mode case) are used as inputs. ET0 is derived from climatic parameters according to the Penman-130 

Monteith equation recommended by FAO (Allen et al., 1998), which is adapted for a hypothetical grass 131 

reference surface. 132 

The GAI (in m2.m-2) is simulated by the SAFY crop model (Duchemin et al., 2008). In the present 133 

study, we used the new formulation of vegetation dynamics proposed in Battude et al. (2016). This new 134 

version of the SAFY model includes sixteen parameters (Table 1) allowing the seasonal variation of the 135 

Specific Leaf Area (SLA in m2.g-1) and the Effective Light Use Efficiency (ELUE in g.MJ-1) (see Battude et 136 

al., 2016 for details). The SLA is defined as the ratio of leaf area to dry mass and it allows converting 137 

daily leaf mass production into daily leaf area growth. The SLA increase with time is due to the 138 

increasing leaves thickness during the plant growth. The ELUE corresponds to the plant efficiency to 139 
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convert radiation into aboveground biomass. The rise of ELUE during the plant growth may be due to 140 

several processes, among them the variation of the root-shoot ratio (Amos and Walters, 2006). The 141 

biomass production (    , [Eq. 1]) is based on the Monteith’s light-use efficiency theory (Monteith, 142 

1972). It depends on the effective light-use efficiency (ELUE), on a stress factor (FT) being function of the 143 

daily air temperature (Ta) and on the daily photosynthetically active radiation absorbed by canopy 144 

(APAR in MJ.m-2), and is limited by the water stress coefficient (Ks). The Ks ([Eq. 2]) daily value varies 145 

from 0 (complete stress) to 1 (no stress) and depends on a critical humidity parameter (Dft, for 146 

“Transpiration reduction coefficient”) and on the soil maximal relative humidity (RHtot). The RHtot ([Eq. 147 

3]) depends on the relative humidity of the two first layers (RH1 and RH2), those in which the roots 148 

develop. The relative humidity of a soil layer (RHx, [Eq. 4]) corresponds to the ratio between the current 149 

available water in the soil layer (CAW in mm) and its water storage capacity (SC in mm). SC ([Eq. 5]) 150 

depends on the soil layer thickness (SLTx in mm) and on the water content at field capacity (Hfc in m3.m-3) 151 

and at wilting point (Hwp in m3.m-3). The SLT of the intermediate layer (SLT2 in mm) increases with the 152 

root depth (RD in mm, [Eq. 6]), constrained by the soil maximal depth (SD in mm) and depending on the 153 

air temperature (Ta in °C), the minimal temperature for growth (Tmin in °C), the Ks coefficient and the 154 

root growth rate (Vpr in mm.°C). 155 

                                   [Eq. 1] 156 

            
         

    
            [Eq. 2] 157 

                           [Eq. 3] 158 

                      [Eq. 4] 159 

                               [Eq. 5] 160 

                                                   [Eq. 6] 161 

The water balance model includes nine parameters that can be related to soil characteristics (Hfc, 162 

Hwp, SD, SLT1, β) or vegetation characteristics (Vpr, Kcbmax, Etrp, Dft) (Table 1). Only vertical water 163 
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transfers are taken into account and surface runoff is neglected. ETca calculation is based on the dual-164 

crop coefficient FAO-56 method, splitting the Kc parameter into Ke (i.e. soil water evaporation 165 

coefficient) and Kcb (i.e. basal crop coefficient) [Eq. 7 and Eq. 9] (Allen et al., 1998), the Ks being as 166 

defined previously. Soil evaporation (E, [Eq. 7]) depends on the reference evapotranspiration (ET0) and 167 

on the Ke coefficient. The Ke ([Eq. 8]) is function of the green cover fraction (FCOVER), the top soil layer 168 

relative humidity (RH1) and limited by a   function. Unlike Duchemin et al. (2015), the FCOVER, useful 169 

for the calculation of evaporation [Eq. 8], is estimated with the BVNet tool (see section 2.5. “Remote 170 

sensing GAI and FCOVER”). Plant transpiration (T, [Eq. 9]) depends on the Kcb, the ET0 and the Ks as 171 

defined previously. The Kcb ([Eq. 10]) involved in the transpiration process is related to the GAI; the 172 

Kcbmax corresponding to the maximal transpiration coefficient and the Etrp being the exponent of the 173 

transpiration. Soil evaporation (E) is calculated according to the relative humidity of the top soil layer 174 

(RH1) [Eq. 7 and Eq. 8], whereas both top and intermediate layers are used for the computation of the 175 

plant transpiration (T) [Eq. 9, Eq. 2 and Eq. 3]. Soil diffusive fluxes are simulated with [Eq. 11].  176 

                    [Eq. 7] 177 

                         
         [Eq. 8] 178 

                       [Eq. 9] 179 

                           )          [Eq. 10] 180 

            
     

   
 
    

         [Eq. 11] 181 

When activated, the automatic irrigation module triggers an irrigation event at a fixed depth 182 

determined by the DI parameter, when the Ks coefficient is lower than 1. This happens when the relative 183 

humidity (RHtot) reaches a defined threshold (Dft) [Eq. 2]. The simulated irrigation is then used as an 184 

input into the SAFY-FAO model. The period when irrigation can be triggered ranges from the plant 185 

emergence until the beginning of the senescence phase (i.e. when the sum of temperature reaches a 186 

growing degree day threshold called STT, in °C). After that day, irrigations are allowed only if the time 187 
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before harvest is higher than a specific number of days defined by Iend parameter.  188 

 Name Notation Unit Value Data Sources 

SA
FY

 M
O

D
EL

 P
A

R
A

M
ET

ER
S 

 

Climatic efficiency εc - 0.48 
Literature 

(Varlet Grancher et al., 1982) 

Temperature for growth 
Tmin,Topt, 

Tmax 
°C 8-30-45 

Literature 

(Drouet and Pages, 2003) 

Polynomial degree β0 - 2 
Literature 

(Drouet and Pages, 2003) 

Light-interception coefficient Kext - 0.65 
Literature 

(Cavero et al., 2000) 

Harvest index HI - 0.5 
Literature 

(Steduto et al., 2012) 

Initial specific leaf area SLA0 m².g
-1

 [0.024 ; 0.032] 
Optimized using GAI 

(Battude et al., 2016) 

Leaf thickness coefficient LTC - 
[-1.3e-05 ; 

 -9e-06] 

Optimized using GAI 

(Battude et al., 2016) 

Potential effective  

light-use efficiency 
ELUEp g.MJ

-1
 [7 ; 11] 

Optimized using GAI 

(Battude et al., 2016) 

Plant maturation index PMI - [-260 ;  -300] 
Optimized using GAI 

(Battude et al., 2016) 

Day of plant emergence D0 day of year L1 +/20j 
Logistic function 

(Battude et al., 2016) 

Sum of temperature for senescence STT °C SMT(L3 +/20j) 
Logistic function 

(Battude et al., 2016) 

Partition-to-leaf function : par a Pla - [0.05 - 0.5] 
Literature 

(Claverie et al., 2012) 
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Partition-to-leaf function : par b Plb - - 
linked to Pla 

(Battude et al., 2016) 

Rate of senescence RS °C.day
-1

 - 
linked to STT  

(Battude et al., 2016) 

SO
IL

 

Soil top layer thickness SLT1 m 0.1 
Literature 

(FAO-56 Allen et al., 1998) 

Soil maximal depth SD m Measured Measurements or Soil Map 

Humidity 

at field capacity 
Hfc m

3
.m

-3
 Measured Measurements or Soil Map 

Humidity 

at wilting point 
Hwp m

3
.m

-3
 Measured Measurements or Soil Map 

Evaporative reduction coefficient β - 0.94  
Calibrated (ETca meas.; bare 

soil period) 

V
EG

ET
A

TI
O

N
 

TI
O

N
 

Maximal transpiration coefficient Kcbmax - 1.15 
Literature 

(FAO-56 Allen et al., 1998) 

Exponent of the transpiration Etrp - 0.34 
Calibrated (ETca meas.; non-

stressed vegetation period) 

Transpiration reduction coefficient Dft - 0.45 
Literature 

(FAO-56 Allen et al., 1998) 

Root growth rate Vpr m.°C 0.0015 
Literature 

(STICS Brisson et al., 2003) 

IR
R

IG
A

TI
O

N
 Irrigation depth DI mm 30 Agricultural practices 

Number of days before harvest for 

irrigation ending 

Iend day of year 45 Agricultural practices 

Table 1: List of the 27 parameters of the crop model (i.e. 16 for the SAFY model, 9 for the water balance 189 

model and 2 for the automatic irrigation module) with their initial value or range and the source of data.  190 
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2.2. Study area 191 

The study was carried out in the south west of France, near Toulouse (Figure 1). We focused on two 192 

departments (i.e. division of the French territory according to administrative boundaries): Haute-193 

Garonne and Gers. The climate is temperate mild, with rainy springs and warm and dry summers 194 

(temperature often exceeding 35°C). The Haute-Garonne department is characterized by a wide plain 195 

stretching across the north and a mountainous region in the south that is a part of the Pyrenean range. 196 

The Gers department is characterized by hilly landscapes. Half of Haute-Garonne and up to 70% of Gers 197 

are covered by agricultural land. Haute-Garonne and Gers are respectively covered by about 20 000 ha 198 

and 48 000 ha of irrigated maize. In the study area, maize fields are sown from mid-April to early June, 199 

and harvest takes place from mid-August (mainly for silage maize) to late October.  200 

 201 
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Figure 1: Location of the study area. Haute-Garonne and Gers departments are in orange and green, 202 

respectively. The “Lamothe” (LAM) experimental field is in yellow. Pink points represent the 18 maize 203 

fields and black region of interest represent the three irrigated zones (Miradoux, Saint-Sauvy and 204 

Poucharramet).  205 

2.3. Dataset over the LAM field  206 

2.3.1. Site description 207 

The “Lamothe” experimental field (referred to as “LAM field”) was instrumented in 2005 to monitor 208 

vegetation growth, soil water dynamics, turbulent energy, water and C02 fluxes. This 32.2 ha site is 209 

located close to a river in a large valley (Figure 1). It belongs to an experimental farm managed by the 210 

Purpan Engineering School and takes part of the European research infrastructure “Integrated Carbon 211 

Observation System” (ICOS, [https://icos-eco.fr/]) and of the “Regional Spatial Observatory” (OSR, 212 

[http://www.cesbio.ups-tlse.fr/fr/osr.html]). The LAM field is characterized by an irrigated silage 213 

maize/rainfed winter wheat rotation. We used four years of data over maize in 2006, 2008, 2010 and 214 

2012, which correspond to years when maize was sown. The LAM field has a homogenous clay (around 215 

50% clay, 36% loam and 14% sand) deep soil (around 1.5 m), presenting a large water storage capacity. 216 

We used a mean value of 0.36 m3.m-3 for the volumetric water content at field capacity (Hfc) and 0.17 217 

m3.m-3 for the wilting point (Hwp). We did not evaluate the automatic irrigation module over this field as 218 

irrigation practices were not representative of those usually done in the south west of France. Actual 219 

irrigation data were forced in the model instead. 220 

2.3.2. Flux data 221 

Turbulent fluxes of water vapour (actual crop Evapotranspiration, ETca) are measured continuously 222 

according to the Eddy-Covariance method (Moncrieff et al., 1997; Baldocchi, 2003; Aubinet et al., 2012). 223 

The flux tower was installed in the middle of the field and the Eddy-Covariance system set-up was 224 

designed in order to catch the turbulent fluxes from a representative area (footprint) of the whole crop 225 
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plot. The height of the instruments (3.65 m) was chosen to be higher than crops at their maximum 226 

development and optimize the footprint area (Béziat et al., 2009). The Eddy-Covariance system 227 

combined a 3D sonic anemometer (CSAT3) with a high frequency infrared gas analyzer (LI-7500, 20 Hz). 228 

Flux calculation, filtering, quality controls and gap filling were performed following the CarboEurope-IP 229 

recommendations (Aubinet et al., 2012).  230 

2.3.3. Meteorological data  231 

The LAM field is equipped with a standard weather station. It provides measurements of air 232 

temperature, relative humidity, global and net radiations, wind speed and direction at 3.65 m height, 233 

precipitation and atmospheric pressure. The total precipitation during the four experimental maize 234 

seasons (i.e. from date of emergence to harvest in 2006, 2008, 2010 and 2012) was 118, 188, 173 and 235 

125 mm, respectively. All flux and meteorological data were originally recorded and processed at half-236 

hourly time step. The data were thus integrated or averaged to obtain daily time scale estimates 237 

allowing the comparison with the model outputs. 238 

2.3.4. Biomass destructive measurements 239 

Dry Aboveground Mass (DAM) data were collected from LAM field with a destructive method 240 

during four maize growing seasons between 2006 and 2012 at the rate of five times a year. Each time, 241 

twenty plants were harvested within the footprint, dried at 55°C, during at least 72h, and then weighed.  242 

2.4. Validation datasets: the 18 fields and 3 irrigated zones 243 

A validation set of 18 maize fields (0.5 ha to 24 ha) have been monitored by the water manager 244 

(CACG, i.e. Compagnie d’Aménagement des Coteaux de Gascogne) during the 2013 growing season. The 245 

CACG is in charge of irrigation recommendations to the farmers. All fields were located in the Gers 246 

department (Figure 1). The irrigation practices including dates and applied water depth (in mm) were 247 

recorded and provided by farmers. The total irrigation depth applied during the growing season (in mm) 248 

was calculated for each field and compared with the simulations (automatic irrigation module). Water is 249 

http://www.carboeurope.org/


 
14 

applied to all these fields with sprinkler irrigation systems. 250 

Three irrigated zones (Miradoux, Saint-Sauvy and Poucharramet) (Figure 1) also monitored by the 251 

CACG have been used for the validation of the total irrigation depth. They correspond to associations of 252 

farmers sharing a global irrigation plan (hereafter referred to as “ASA” for “Authorised Syndical 253 

Association”). Poucharramet ASA’s irrigated water supplies have been studied since 2006. Miradoux and 254 

Saint-Sauvy ASA’s irrigated water supplies were studied for 2013 and 2014 growing seasons. 255 

Poucharramet, Miradoux and Saint-Sauvy ASA are respectively covered by about 450 ha, 165 ha and 135 256 

ha of irrigated grain maize. For these three ASA, applied irrigation water comes from surface resource 257 

(rivers recharged either by lakes, canals or mountains’ reservoirs depending on location). The water is 258 

collected in the river with a pumping station and then conveyed throughout the fields using a pipe 259 

network. Sprinkler irrigation systems are used in the three ASA. Meteorological data over the area have 260 

been estimated by Météo-France using the mesoscale atmospheric analysis system SAFRAN (i.e. 261 

Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie ; Durand et al., 1993). This 262 

dataset includes air temperature at 2m above the ground (Ta), incoming global radiation (Rg), reference 263 

evapotranspiration (ET0) and precipitation (P). ET0 is derived from climatic parameters according to the 264 

Penman-Monteith equation recommended by FAO (Allen et al., 1998). 265 

The data are available every 6h over a 8 km spatial resolution grid. Vidal et al. (2010) performed an 266 

evaluation of SAFRAN data all over the French territory and found an RMSE ≈ 40 W/m² for Rg and an 267 

RMSE ≈ 0.6 °C for Ta. Data used to force the model (daily mean Ta, daily mean Rg, daily ET0 and 268 

cumulated daily P) were calculated for each field over the study area, by using the nearest grid point. 269 

Soil characteristics of the fields (Hfc, Hwp and SD; see Table 1) have been extracted from a soil map 270 

covering the two departments. This map (1/ 250 000) results from the IGCS (i.e. Inventaire, Gestion et 271 

Conservation des Sols) program, provided by GisSol (i.e. Groupement d'intérêt scientifique Sol) group 272 

[https://www.gissol.fr/le-gis/programmes/inventaire-gestion-et-conservation-des-sols-igcs-67], and 273 
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reports the main structural units of the area. The database related to the map provides for each class 274 

the soil depth and the percentage of clay, silt and sand. Soil texture was found using the French “Aisne” 275 

soil texture triangle (Jamagne et al., 1977; Baize and Jabiol, 1995). The volumetric water contents at field 276 

capacity (Hfc) and at wilting point (Hwp) were retrieved through the use of a class pedotransfer function 277 

(Bruand et al., 2003). For the 18 maize fields, the soil depth (SD) extracted from the map was compared 278 

to those provided by farmers. The impact of SD on the simulated total irrigation depth is presented in 279 

the results section. 280 

2.5. Remotely sensed GAI and FCOVER 281 

The Green Area Index (GAI in m2.m-2) and green cover fraction (FCOVER) time series were estimated 282 

from several high spatial and temporal resolution optical images (Figures 2 and 3) using the BVNet tool 283 

(i.e. Biophysical Variables neural NETwork, Weiss and  Baret, 1999; Weiss et al., 2002). BVNet enables 284 

the estimation of biophysical variables (GAI, FAPAR and FCOVER) from the inversion of the radiative 285 

transfer model PROSAIL (Baret et al., 1992) using artificial neural network. The BVNet tool uses the 286 

Green, Red and NIR spectral bands, and the SWIR band whenever available. It computes GAI taking into 287 

account the spectral and directional characteristics (illumination and viewing angles) of the remote 288 

sensing data. 289 

Formosat-2 (8 m resolution, daily revisit) and SPOT (20 m, monthly revisit) data have been available 290 

since 2006 over the LAM field and Poucharramet ASA. In addition, other satellite datasets covering a 291 

larger area including the 18 fields, Miradoux ASA and Saint-Sauvy ASA have been available since 2013. 292 

We thus combined Landsat-8 (30 m, 16-day revisit), Deimos-1 (22 m, 3-day revisit) and the SPOT4-Take5 293 

experiment (20 m, 5-day revisit) [http://www.cesbio.ups-tlse.fr/multitemp/] datasets. The combination 294 

of datasets permits to observe the whole maize growing seasons with a temporal resolution close to 295 

that provided by the Sentinel-2 data (A and B). The satellites have also been chosen for their high spatial 296 

resolution (30 m or less) which is an important criteria given the mean size of agricultural fields in the 297 
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study area (approximately 20 ha). 298 

The remotely sensed GAI time series were used in the previous study (Battude et al., 2016) to 299 

calibrate the SAFY model in order to provide daily GAI and biomass production estimates. The GAI and 300 

FCOVER were interpolated with a double logistic function (see Battude et al., 2016) providing daily time 301 

series used as inputs in the water balance module.   302 

 303 

Figure 2: Location of the various image scenes (Formosat-2 in grey; SPOT in orange; SPOT4-Take5 in blue; 304 

Landsat-8 in red; Deimos-1 in green). 305 
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 306 

Figure 3: Schedule of images acquisitions for the different sensors. Only the maize growing periods (April 307 

to October) are displayed.  308 

2.6. Calibration of model parameters 309 

2.6.1.  SAFY model parameters 310 

We use the sixteen SAFY model parameters (Table 1) calibrated in the previous study (see Battude 311 

et al., 2016). Some parameters were fixed according to a literature review (εc, Tmin, Topt, Tmax, β0, Kext, HI) 312 

and the remaining ones (D0, Pla, Plb, RS, STT, SLA0, LTC, ELUEp and PMI) were optimized using the remotely 313 

sensed GAI time series. This calibration leads to daily simulated GAI and biomass.   314 

2.6.2. Water balance model parameters  315 

The nine water balance model parameters (Table 1) include five soil parameters (SLT1, SD, Hfc, Hwp 316 

and β) and four vegetation parameters (Kcbmax, Etrp, Dft and Vpr). Except for the surface layer thickness 317 

(SLT1), the soil parameters needed for the definition of the storage capacity (Hfc, Hwp and SD) are field 318 
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specific. They vary spatially and depend on the soil type. Their values are determined with in situ 319 

measurements or information extracted from the soil map (see section 2.4). Kcbmax and Dft are fixed 320 

according to the FAO recommendations (Allen et al., 1998). The Vpr parameter is set according to the 321 

value used for maize crop in the STICS model (Brisson et al., 2003).  322 

The remaining two parameters (β and Etrp) were calibrated using ETca measured by the Eddy-323 

Covariance method. The calibration procedure was performed in two successive steps with a cost 324 

function based on the Root Mean Square Error (RMSE) computation (Figure 4). We firstly calibrated β 325 

over the bare soil period. Then, we calibrated Etrp over the non-stressed vegetation period (based on the 326 

calculation of the relative humidity (RH) of the two first soil layers). The calibration was done for each 327 

year. As the values of each parameter were quite similar whatever the year, we decided to use the four-328 

year averaged value for each parameter. As simulation begins at 1st January, the soil water storage 329 

capacity is regarded as full at this date. Soil diffusive fluxes have not been taken into consideration. 330 

 331 

Figure 4: Calibration of β and Etrp parameters for the four studied years. The β parameter is calibrated on 332 

bare soil period measurements of ETca and the Etrp parameter is calibrated on non-stressed vegetation 333 

period ETca measurements. 334 

2.6.3. Automatic irrigation module parameters 335 

The irrigation parameters (DI, Iend) values are set according to mean agricultural practices. When the 336 
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“automatic mode” is activated, a 30 mm irrigation depth (DI) is applied at each irrigation event. 45-day 337 

delay before harvest (Iend) is set for irrigation ending. If the irrigation depth exceeds the total soil water 338 

storage capacity, the excess water is removed from the original 30 mm amount and a lower irrigation 339 

depth is simulated by the model. 340 

2.7. Model evaluation 341 

A four-year dataset of ETca was used to calibrate the model (i.e. calibration of β and Etrp 342 

parameters) and DAM destructive measurements were used for the validation. The 18 maize fields and 343 

three irrigated zones (ASA) were used to evaluate the automatic irrigation module, comparing the water 344 

supplies provided by the farmers with those simulated by the model. For the three ASA, the model was 345 

run over all maize fields located into the irrigated zone; irrigation depths were cumulated and the total 346 

depth for the growing season was thus compared to the data given by the water manager.   347 

In this study, we compared ETca and total irrigation depths simulated using the standard crop 348 

coefficient method and those obtained using the remotely sensed Kcb (i.e. the Kcb estimated from the 349 

daily GAI simulated by SAFY, optimized using the remotely sensed GAI). We also used a soil map that 350 

provides the soil depth and the soil water content limits (field capacity and wilting point). Root depth is 351 

closely linked to soil depth and depth of water infiltration. This value affects the amount of water 352 

available and the number of irrigation events needed to reach the crop needs. Thus we evaluated the 353 

impact of the use of soil properties estimated from the soil map on ETca estimates and on total 354 

irrigation depths, comparing to results obtained using in situ estimates of the SC. 355 

The model was run using the interpolated GAI estimated for each sampled area (i.e. LAM field, 18 356 

fields or ASA) using the methodology presented in the previous study (Battude et al., 2016). The model 357 

evaluation was performed using several statistical criterions including correlation coefficient (R), bias, 358 

Root Mean Square Error (RMSE) and Relative Root Mean Square Error (RRMSE), calculated by dividing 359 

the RMSE by the mean of the observed data. 360 
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3. RESULTS AND DISCUSSION  361 

3.1. Results over the LAM field : Evapotranspiration and Biomass 362 

The dynamics of daily simulated GAI and DAM over the four maize growing seasons were 363 

respectively compared to remotely sensed GAI and in situ measurements of DAM performed over the 364 

LAM field.  Results are presented in Figure 5. In this section, the model was run with the forced mode 365 

(i.e. using the total water supplies: rainfall and real irrigation). Results show an overall good adequacy of 366 

the GAI and DAM from the emergence date to the harvest for the four years. The DAM dynamics of the 367 

four years is correctly reproduced by the model (R = 0.97; RRMSE = 23%).  368 

ETca measurements performed over the LAM field during the four years according to the Eddy-369 

Covariance method have been used for the calibration of two model parameters (β and Etrp). The daily 370 

simulated ETca was compared to these measurements. Results (Figure 6) show that the dynamics of 371 

ETca correlates well with measured values. The correlation analysis (Figure 7a) shows a good linear 372 

relationship between measured and estimated values of ETca during the growing period (R = 0.88; 373 

RRMSE = 20%). We observe an overall underestimation of ETca before plant emergence and after 374 

harvest. These two periods correspond to bare soil in the model. However, if the model considers a total 375 

absence of vegetation, it may be actually different. Indeed, we found a delay between the actual 376 

emergence date and that observed by the remote sensors. Furthermore, some crop residues still cover 377 

the soil after harvest and they are not simulated by the model. This can explain the observed 378 

underestimation of simulated ETca. However, the main goal is to accurately reproduce the ETca during 379 

the growing period in order to have good estimates of the plant water needs. Focusing on the growing 380 

season, some discrepancies are observed, such as at the beginnings of the years 2008 and 2010, when 381 

the model underestimates the ETca. In both cases, it happens when FCOVER is lower than 0.5 and when 382 

no significant water supply (neither rain nor irrigation event) occurs for a long time (up to 1 month). 383 
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During these periods, the simulated soil evaporation is underestimated. The activation of the diffusive 384 

fluxes [Eq. 11 with Edif = 1 and Kdif = 3.5] helped to reduce the water scarcity in the top and 385 

intermediate soil layers and to increase ETca during these periods (see Figure 6). However, as the ratio 386 

between evaporation and transpiration decreases while the vegetation grows, the activation of diffusive 387 

fluxes did not change significantly the ETca estimates for the whole growing season. Given that the 388 

activation of diffusive fluxes would imply the calibration of two more parameters and that it did not 389 

bring significant improvement of the cumulative ETca values, we chose not to activate it for the 390 

following work.  391 

 392 

Figure 5: Dry Aboveground Mass (DAM) and Green Area Index (GAI) dynamics for the four maize growing 393 

seasons over the LAM field using the forced mode. Simulated GAI is compared to remotely sensed GAI 394 

(used for the model calibration) and simulated DAM is compared to in situ measurements. 395 
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 396 

Figure 6: Comparison of measured (black line) and simulated (red line) actual crop Evapotranspiration 397 

(ETca) dynamics for the four maize growing seasons over the LAM field using the forced mode Dotted 398 

line represents reference evapotranspiration (ET0). Grey line is the simulated evaporation (E). Dashed red 399 

and grey lines represent the simulated ETca and E when activating the diffusive fluxes. The two vertical 400 

black lines correspond to the simulated emergence date and to the actual harvest date, respectively. 401 

ETca measurements have been used for the calibration of two model parameters (β and Etrp). 402 
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3.2. Effect of the use of the soil map and standard Kcb values on ETca 403 

estimates over the LAM field 404 

Since measurements of soil characteristics (Hfc, Hwp and SD) are rarely available over large areas, we 405 

used a 1/250 000 soil map that was available over the whole study area. Its coarse resolution implies 406 

that the soil characteristics estimated from the map differ from local conditions. To evaluate the 407 

potential effects of this difference on ETca estimates, we ran the model over the LAM field using the soil 408 

characteristics provided by both the soil map and in situ data. The soil water storage capacity (SC) is 409 

equal to 285 mm using in situ measurements and 172.5 mm using the soil map. This difference led to a 410 

slight decrease and larger dispersion of ETca estimates when using the soil map (Figure 7b) compared to 411 

the use of local soil measurements (Figures 7a). 412 

To estimate crop water needs, the CACG uses standard Kcb (i.e. basal crop coefficient) values based 413 

on the knowledge of the phenological stages of the crop under standard conditions (i.e. tables proposed 414 

by Arvalis - Institut du Végétal). This method presents two major limitations: the phenological stages are 415 

not accessible over large areas and “standard conditions” do not mean “actual conditions”. As an 416 

alternative, we propose to estimate the Kcb from the daily GAI simulated by SAFY [Eq. 10] optimized 417 

using the remotely sensed (RS) GAI. The use of remotely sensed Kcb, hereafter referred to as “RS Kcb”, 418 

permits to access differences that might occur between fields as demonstrated by several studies 419 

(Bausch et al., 1987; Neale et al., 1989; Hunsaker et al., 2003; Glenn et al., 2011). We compared ETca 420 

estimates over the LAM field using both methods. Results (Figures 7a and 7c) show that the use of the 421 

standard Kcb leads to poorer ETca estimates (R = 0.77 instead of 0.88; RRMSE = 28% instead of 20%).  422 

 423 
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 424 

Figure 7: Comparison of measured and simulated daily ETca [mm] of maize for the four growing seasons 425 

(vegetation period) over the LAM field with the forced mode, when using a) the in situ soil depth and the 426 

remotely sensed (RS) Kcb, b) the map soil depth and the RS Kcb and c) the in situ soil depth and the 427 

standard Kcb.   428 

3.3. Validation over 18 maize fields : total irrigation depth 429 

The model was run by activating the automatic irrigation module over a set of 18 maize fields to 430 

evaluate its ability to trigger irrigations events according to the water stress level assessment. We used 431 
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the RS Kcb and the maximal soil depth (SD). SD was initialized using values provided by farmers. Hfc and 432 

Hwp parameters were extracted from the soil map.  433 

Figure 8a shows the comparison between the total irrigation depths provided by farmers during the 434 

growing season and those recommended by the model. Overall, despite an observed bias of 20 mm, the 435 

activation of the automatic mode resulted in a good reproduction of the farmers’ practices in terms of 436 

total water amount (R = 0.79; RRMSE = 18.8%). The negative bias can be explained by the fact that the 437 

model triggers irrigation when crop water stress occurs, while farmers are more careful and tend to 438 

irrigate before water stress occurs. In addition, farmers follow the advice of the water manager who 439 

calculates the crop water requirement using the standard Kcb and this method can potentially 440 

overestimate the water need. 441 

3.3.1. Effect of the use of the soil map on the total irrigation depth 442 

We then evaluated the impact of the use of the soil map on the simulated total irrigation depth 443 

over the 18 fields using the soil depth (SD) provided by the soil map and that provided by farmers. 444 

Figure 8b shows an overall decrease of the amount of total irrigation depths when using the soil map 445 

compared to the use of local farmer-provided soil depth values (Figure 8a) (bias of -55 mm instead of -446 

20 mm). This occurs because the value of soil water storage capacity (SC) [Eq. 5] was larger using soil 447 

map: 150 mm on average vs. 80 mm using farmers’ data. As the SC is almost full at the plant emergence 448 

(only the first layer can be incomplete since evaporation occurs), the use of a higher value for SC leads 449 

to less water supplies. 450 

3.3.2. Effect of the use of the standard Kcb values on the total irrigation depth 451 

Finally, we looked at the total irrigation water supplies simulated over the 18 maize fields using the 452 

standard Kcb values. Figure 8c shows that the use of the standard Kcb values led to a larger dispersion of 453 

the total irrigation depths compared to those obtained with RS Kcb (Figure 8a) (R = 0.68 with standard 454 

Kcb instead of R = 0.79 with RS Kcb). Figure 9 shows the comparison of standard and RS Kcb time series 455 
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for the 18 maize fields: the RS Kcb evolves in the same way as the simulated GAI, whereas the standard 456 

Kcb evolves gradually according to the phenological stages. Furthermore, we can see for some fields 457 

that the standard Kcb value is higher than the RS Kcb at the beginning of the growing season. This can 458 

lead to a higher estimation of crop water needs and thus increase the number of simulated irrigation 459 

events. Figure 10 shows the effect of the different Kcb estimates: standard Kcb values higher than RS 460 

Kcb (near day 200 and day 220) led to an increase of simulated water needs followed by two additional 461 

irrigations. 462 

 463 

Figure 8: Comparison of total irrigation depth [mm] applied by farmers over 18 maize fields and the 464 

recommended irrigation of the combined SAFY-FAO model. For modeling we used a) in situ soil depth 465 

provided by farmers and RS Kcb, b) soil depth provided by the soil map and RS Kcb and c) in situ soil 466 

depth provided by farmers and standard Kcb. 467 
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 468 

Figure 9: Comparison of standard Kcb (in red) and remotely sensed Kcb (in blue) for the 18 maize fields in 469 

year 2013. Standard Kcb ends in the middle of September, when the irrigation period ends (several weeks 470 

before harvest). 471 
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 472 

Figure 10: Comparison of standard Kcb (in red) and remotely sensed Kcb (in blue) for a maize field in year 473 

2013. Vertical red and blue lines represent the irrigation events simulated for the two cases (6 irrigation 474 

events in case of standard Kcb and 4 irrigation events when using the RS Kcb). Standard Kcb ends in the 475 

middle of September, when the irrigation period ends (several weeks before harvest). 476 

3.4. Validation over 3 irrigated zones: total irrigation depth 477 

We ran the model over three irrigated zones (ASA) and compared the total irrigation depth 478 

simulated (in mm) to the actual total irrigation depth (in mm). Water managers estimate there is an 479 

average water loss of 12% due either to leaks during the transport of the water in the pipes (around 1-480 

2%) or to the sprinkler irrigation system (around 3-10%). We thus removed 12% from the recorded 481 

annual irrigation depths. 482 

In this section, we ran the model with the soil data provided by the soil map. For Miradoux and 483 

Saint-Sauvy ASA, the soil water storage capacity (SC) extracted from the soil map varies from 24 mm to 484 

195 mm (Figure 11). For all the fields of the ASA of Poucharramet, the map provides a SC value higher 485 

than 170 mm. A high underestimation of the irrigation water amount by the model is observed in this 486 

ASA (Figure 12a). Simulated total irrigation depths for the two other irrigated zones (Miradoux and 487 

Saint-Sauvy) are closer to the observed depths. Given the results obtained over the 18 maize fields in 488 

the previous section and the impact of the SC, we chose to limit the soil depth and thus the root depth 489 
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[Eq. 6] at a maximum value of 80 cm considered as more likely by farmers. For the ASA of Miradoux and 490 

Saint-Sauvy, many of the fields are located on shallow soils (<80 cm) with low SC. For this reason, the 491 

limitation of the soil depth (SD) had a lower impact on the estimated total irrigation depth. For the ASA 492 

of Poucharramet, the modeled total irrigation depths are still lower than the observed values, but the 493 

mean bias is a bit reduced using lower SC (-93 mm instead of -108 mm; Figure 12b). Part of the negative 494 

bias may be explained by the SC that may remain too high for some fields despite the applied reduction. 495 

The underestimation may also be partly due to over-irrigation practices carried out by farmers, linked 496 

with an overestimation of water needs by water managers that use the standard Kcb. Despite this bias, 497 

the model reproduces correctly the inter-annual variability observed across years and ASA (R = 0.8). 498 

 499 

Figure 11: Soil water storage capacity of the three ASA (black polygons) extracted from the soil map. 500 

a)                                  b)  501 
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Figure 12: Comparison of total irrigation depth [mm] applied by farmers and the recommended irrigation 502 

of the combined SAFY-FAO model over irrigated maize fields of the three ASA for different years using a) 503 

the soil depth provided by the soil map b) a maximum soil depth of 80 cm.  504 

4. CONCLUSION 505 

 One main objective of this study was to evaluate the potential of the SAFY-FAO model combined 506 

with remote sensing optical imagery to provide reliable estimations of water needs and total irrigation 507 

depths of irrigated maize crop over large areas. For that purpose, we used a new version of the SAFY 508 

model proposed by Battude et al. (2016) coupled with a water balance module adapted from FAO-56 509 

method (Allen et al., 1998). The SAFY-FAO model was chosen for its suitablility for spatial approaches 510 

through the use of remotely sensed GAI time series. Another objective was to evaluate the impact of 511 

different methods used to determine the soil water storage capacity (SC) and the basal crop coefficient 512 

(Kcb) on simulated ETca and total irrigation depths. 513 

After calibration over the experimental field using a four-year in situ ETca dataset, the model 514 

outputs were evaluated over 18 maize fields and three irrigated zones (ASA) for which the total 515 

irrigation depth applied during the growing season were known. Overall, good results were obtained for 516 

biomass production (R = 0.97; RRMSE = 23%) and ETca estimates (R = 0.88; RRMSE = 20%) after 517 

calibration over the experimental field. The model also reproduced well the total irrigation depths over 518 

the 18 maize fields (R = 0.79; RRMSE = 18.8%). We observed an underestimation of the total irrigation 519 

depth (-93 mm) for the three ASA. This might be explained by either the use of the standard Kcb by 520 

water managers (leading to an overestimation of water needs), over-irrigation practices or even the SC 521 

values that might be too high when using the soil map. Despite this, the model reproduces correctly the 522 

trends observed between years and ASA (R = 0.8). 523 

This work permitted to highlight the impact of different methods to estimate the SC and the Kcb on 524 

ETca and on the total irrigation depth over large areas. The use of a standard Kcb led to a larger 525 
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dispersion on ETca compared to results found using a remotely sensed (RS) Kcb (R = 0.77 with standard 526 

Kcb and R = 0.88 with RS Kcb). Same conclusions were drawn for the total irrigation depth over the 18 527 

maize fields (R = 0.68 with standard Kcb and R = 0.79-0.87 with RS Kcb). Furthermore, the standard Kcb 528 

requires the knowledge of the phenological stages of the crop that are not available over large areas and 529 

even difficult to accurately obtain at field scale. Such results highlight the potential of the RS Kcb to 530 

improve irrigation water management. 531 

The impact of various SC estimations (soil map vs in situ measurements or farmers’ values) on ETca 532 

and total irrigation depths was also investigated. Results highlighted that the soil depth (SD) provided by 533 

the soil map induced negative bias on simulated ETca and total irrigation depth because of a high 534 

imprecision on soil properties (SD, Hfc and Hwp) partly due to its coarse spatial resolution. Future work 535 

will investigate ways to retrieve SD, for example using the future Global Soil Map given at 90 m spatial 536 

resolution ([http://www.globalsoilmap.net/]). 537 

This work also points out some limitations that should be investigated in future work. We chose to 538 

calibrate the water module using four-year averaged parameters based on ETca measurements. The 539 

validation using ETca measurements over other fields or years may allow evaluating the robustness of 540 

the calibrated parameters and the associated error.  541 

We also chose to disable the diffusive fluxes in soils as results showed minor improvement on 542 

simulated ETca during the whole growing season. However, this process should be taken into account 543 

when simulating annual soil water budget. 544 

The model was used on irrigated crops with a diagnostic approach. In the future, we planned to 545 

investigate its prognostic potential and enlarge its application on rainfed crops. This study demonstrates 546 

the high potential of an agro-meteorological crop model combined with high spatial and temporal 547 

resolution remote sensing data for a large-scale monitoring of total irrigation depths over maize fields. It 548 

offers encouraging perspectives when using Sentinel-2 images in the near future. The Sentinel-2 dataset,  549 
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available since May 2015, covering the whole globe and freely available, will be really interesting for 550 

future applications over large areas.  551 

ACKNOWLEDGMENTS 552 

This work is part of the MAISEO project (four-year FUI program, 2012-2016 financed by FEDER and 553 

BPI France). Observation data were collected at the Regional Spatial Observatory (OSR). OSR facilities 554 

and staff are funded and supported by the Observatory Midi-Pyrenean, the University Paul Sabatier  of 555 

Toulouse (UPS) and CNRS (Centre National de la Recherche Scientifique), CNES (Centre National 556 

d’Etudes Spatiales), IRD (Institut de Recherche pour le Développement). We are grateful to the team of 557 

the Lamothe experimental farm for facilitating access to their field. Thanks to Météo France and 558 

specially François Besson and Sébastien Prats for the supply of SAFRAN meteorological data covering the 559 

study area. We are also grateful to the members of the IGCS program and ENSAT (particularly Maritxu 560 

Guiresse) providing the soil map and Laurent Rigou (A.S.U.P.) for his support. Thank to Richard Escadafal 561 

for proofreading the paper. Special thank to the CESBIO team (Claire Marais Sicre, Bartosz Zawilski, 562 

Nicole Ferroni and Jean-François Dejoux) and CACG team (Mathieu Lasserre, Nicolas Laborde and Céline 563 

Joandet-Péraut) and all the persons who participated in the collection of data.  564 

REFERENCES 565 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing 566 

crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 333 pp. 567 

Amos, B., Walters, D. T., 2006. Maize Root Biomass and Net Rhizodeposited Carbon. Soil Science Society 568 

of America Journal 70(5), 1489–1503. doi:10.2136/sssaj2005.0216 569 

Aubinet, M., Vesala, T., Papale, D., 2012. Eddy Covariance: A practical guide to measurement and data 570 

analysis. Springer Atmospheric Sciences.  571 

Baize, D., Jabiol, B., 1995. Guide pour la description des sols. INRA, éditions Quae. 572 



 
33 

Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange 573 

rates of ecosystems: past, present and future. Global Change Biology 9, 479–492. doi:10.1046/j.1365-574 

2486.2003.00629.x 575 

Baret, F., de Solan, B., Lopez-Lozano, R., Ma, K., Weiss, M., 2010. GAI estimates of row crops from 576 

downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: Theoretical 577 

considerations based on 3D architecture models and application to wheat crops. Agricultural and 578 

Forest Meteorology 150, 1393–1401. doi:10.1016/j.agrformet.2010.04.011 579 

Baret, F., Jacquemoud, S., Guyot, G., & Leprieur, C., 1992. Modeled analysis of the biophysical nature of 580 

spectral shifts and comparison with information content of broad bands. Remote Sensing of 581 

Environment 41(2-3), 133-142. doi:10.1016/0034-4257(92)90073-S 582 

Baroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., van Dam, J.C., 2010. Uncertainty in the 583 

determination of soil hydraulic parameters and its influence on the performance of two hydrological 584 

models of different complexity. Hydrology and Earth System Sciences 14(2), 251-270. 585 

doi:10.5194/hess-14-251-2010 586 

Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Marais Sicre, C., Le Dantec, V., Demarez, V., 2016. 587 

Estimating maize biomass and yield over large areas using high spatial and temporal resolution 588 

Sentinel-2 like remote sensing data. Remote Sensing of Environment 184, 668-681.  589 

doi:10.1016/j.rse.2016.07.030 590 

Bausch, W.C., Neale, C.M.U., 1987. Crop coefficients derived from reflected canopy radiation: a concept. 591 

Transactions of ASAE 30(3), 703-709. doi : 10.13031/2013.30463 592 

Béziat, P., Ceschia, E., Dedieu, G., 2009. Carbon balance of a three crop succession over two cropland 593 

sites in South West France. Agricultural and Forest Meteorology 149, 1628–1645. 594 

doi:10.1016/j.agrformet.2009.05.004 595 

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., 596 



 
34 

Burger, P., Bussière, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillère, J.P., Hénault, C., Maraux, 597 

F., Seguin, B., Sinoquet, H., 2003. An overview of the crop model stics. European Journal of Agronomy 598 

18, 309–332. doi:10.1016/S1161-0301(02)00110-7 599 

Bruand, A., Fernández, P.P., Duval, O., 2003. Use of class pedotransfer functions based on texture and 600 

bulk density of clods to generate water retention curves. Soil Use and Management 19, 232–242. 601 

doi:10.1111/j.1475-2743.2003.tb00309.x 602 

Cavero, J., Farré, I., Debaeke, P., Faci, J.M., 2000. Simulation of maize yield under water stress with the 603 

EPICphase and CROPWAT models. Agronomy Journal 92, 679–690. doi:10.2134/agronj2000.924679x 604 

Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D., Marais Sicre, C., Dejoux, J.-F., Huc, M., 605 

Keravec, P., Béziat, P., Fieuzal, R., Ceschia, E., Dedieu, G., 2012. Maize and sunflower biomass 606 

estimation in southwest France using high spatial and temporal resolution remote sensing data. 607 

Remote Sensing of Environment 124, 844–857. doi:10.1016/j.rse.2012.04.005 608 

Constantin, J., Willaume, M., Murgue, C., Lacroix, B., Therond, O., 2015. The soil-crop models STICS and 609 

AqYield predict yield and soil water content for irrigated crops equally well with limited data. 610 

Agricultural and Forest Meteorology 206, 55–68. doi:10.1016/j.agrformet.2015.02.011 611 

Dorigo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R., Schaepman, M.E., 2007. A review on 612 

reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. 613 

International Journal of Applied Earth Observation and Geoinformation 9, 165–193. 614 

doi:10.1016/j.jag.2006.05.003 615 

Droogers, P., Immerzeel, W.W., Lorite, I.J., 2010. Estimating actual irrigation application by remotely 616 

sensed evapotranspiration observations. Agricultural Water Management 97, 1351–1359. 617 

doi:10.1016/j.agwat.2010.03.017 618 

Drouet, J.-L., Pagès, L., 2003. GRAAL: a model of GRowth, Architecture and carbon ALlocation during the 619 

vegetative phase of the whole maize plant: Model description and parameterisation. Ecological 620 



 
35 

Modelling 165, 147–173. doi:10.1016/S0304-3800(03)00072-3 621 

Duchemin, B., Fieuzal, R., Rivera, M.A., Ezzahar, J., Jarlan, L., Rodriguez, J.C., Hagolle, O., Watts, C., 2015. 622 

Impact of sowing date on yield and water use efficiency of wheat analyzed through spatial modeling 623 

and Formosat-2 images. Remote Sensing 7, 5951–5979. doi:10.3390/rs70505951 624 

Duchemin, B., Maisongrande, P., Boulet, G., Benhadj, I., 2008. A simple algorithm for yield estimates: 625 

Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environmental 626 

Modelling & Software 23, 876–892. doi:10.1016/j.envsoft.2007.10.003 627 

Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., Escadafal, R.G., Ezzahar, 628 

J., Hoedjes, J.C.B., Kharrou, M.H., Khabba, S., Mougenot, B., Olioso, A., Rodriguez, J.-C., Simonneaux, 629 

V., 2006. Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships 630 

between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation 631 

indices. Agricultural Water Management 79, 1–27. doi:10.1016/j.agwat.2005.02.013 632 

Durand, Y., Brun, E., Mérindol, L., Guyomarc’h, G., Lesaffre, B., Martin, E., 1993. A meteorological 633 

estimation of relevant parameters for snow models. Annals of Glaciology 18, 65–71. 634 

Glenn, E.P., Neale, C.M.U., Hunsaker, D.J., Nagler, P.L., 2011. Vegetation index-based crop coefficients to 635 

estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrological 636 

Processes 25(26), 4050-4062. doi:10.1002/hyp.8392 637 

Hunsaker, D.J., Pinter, P.J., Barnes, E.M., Kimball, B.A., 2003. Estimating cotton evapotranspiration crop 638 

coefficients with a multispectral vegetation index. Irrigation science 22, 95-104. doi:10.1007/s00271-639 

003-0074-6 640 

Jamagne, M., Betremieux, R., Begon, J.C., Mori, A., 1977. Quelques données sur la variabilité dans le 641 

milieu naturel de la réserve en eau des sols. Bulletin Technique d’Information 324–325, 627–641. 642 

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, 643 

U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model. European journal of 644 



 
36 

agronomy 18, 235–265. 645 

Kijne, J.W., Barker, R., Molden, D.J., 2003. Water Productivity in Agriculture: Limits and Opportunities for 646 

Improvement. CABI. 647 

Lawless, C., Semenov, M.A., Jamieson, P.D., 2008. Quantifying the effect of uncertainty in soil moisture 648 

characteristics on plant growth using a crop simulation model. Field Crops Research 106(2), 138-147. 649 

doi:10.1016/j.fcr.2007.11.004 650 

Maas, S.J., 1992.  GRAMI: a crop growth model that can use remotely sensed information. ARS-91 USDA, 651 

Washington, DC. 652 

Mailhol, J.C., Olufayo, A.A., Ruelle, P., 1997. Sorghum and sunflower evapotranspiration and yield from 653 

simulated leaf area index. Agricultural Water Management 35, 167–182. doi:10.1016/S0378-654 

3774(97)00029-2 655 

Moncrieff, J.B., Massheder, J.M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., 656 

Soegaard, H., Verhoef, A., 1997. A system to measure surface fluxes of momentum, sensible heat, 657 

water vapour and carbon dioxide. Journal of Hydrology 188, 589–611. doi:10.1016/S0022-658 

1694(96)03194-0 659 

Monteith J.L., 1972. Solar Radiation and Productivity in Tropical Ecosystems. The Journal of Applied 660 

Ecology 9(3), 747–766. doi:10.2307/2401901 661 

Nana, E., Corbari, C., Bocchiola, D., 2014. A model for crop yield and water footprint assessment: Study 662 

of maize in the Po valley. Agricultural Systems 127, 139–149. doi:10.1016/j.agsy.2014.03.006 663 

Neale, C.M.U., Bausch, W.C., Heermann, D.F., 1989. Development of reflectance-based crop coefficients 664 

for corn. Transactions of ASAE 32(6), 1891-1899. doi:10.13031/2013.31240 665 

Pachepskya, Y., Acockb, B., 1998. Stochastic imaging of soil parameters to assess variability and 666 

uncertainty of crop yield estimates. Geoderma 85(2-3), 213-229.  667 

Pereira, L.S., Allen, R.G., Smith, M., Raes, D., 2015. Crop evapotranspiration estimation with FAO56: Past 668 



 
37 

and future. Agricultural Water Management 147, 4–20. doi:10.1016/j.agwat.2014.07.031 669 

Saadi, S., Simonneaux, V., Boulet, G., Raimbault, B., Mougenot, B., Fanise, P., Ayari, H., Lili-Chabaane, Z., 670 

2015. Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration 671 

and Validation in the Kairouan Plain (Tunisia). Remote Sensing 7, 13005–13028. 672 

doi:10.3390/rs71013005 673 

Smith, M., Allen, R.., Monteith, J.L., Perrier, A., Santos Pereira, L., Segeren, A., 1992. Expert Consultation 674 

on Revision of FAO Methodologies for Crop Water Requirements. Presented at the Expert 675 

Consultation on Revision of FAO Methodologies for Crop Water Requirements. Rome (Italy). 28-31 676 

May 1990. 677 

Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., 2012. Crop yield response to water - FAO Irrigation and 678 

drainage paper 66. FAO, Rome 505 pp. 679 

Steduto, P., Hsiao, T.C., Raes, D., Fereres, E., 2009. AquaCrop—The FAO Crop Model to Simulate Yield 680 

Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101, 426. 681 

doi:10.2134/agronj2008.0139s 682 

UNESCO, 2015. The United Nations world water development report 2015: water for a sustainable 683 

world. UNESCO Publishing, Paris. 684 

Toureiro, C., Serralheiro, R., Shahidian, S., Sousa, A., 2016. Irrigation management with remote sensing: 685 

Evaluating irrigation requirement for maize under Mediterranean climate condition. Agricultural 686 

Water Management. 687 

Varlet-Grancher, C., Bonhomme, R., Chartier, M., Artis, P., 1982. Efficience de la conversion de l’energie 688 

solaire par un couvert vegetal. Acta Oecologica Oecologia Plantarum 3, 3–26. 689 

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., Soubeyroux, J.-M., 2010. A 50-year high-resolution 690 

atmospheric reanalysis over France with the Safran system. International Journal of Climatology 30, 691 

1627–1644. doi:10.1002/joc.2003 692 



 
38 

Weiss, M., Baret, F., 1999. Evaluation of Canopy Biophysical Variable Retrieval Performances from the 693 

Accumulation of Large Swath Satellite Data. Remote Sensing of Environment 70, 293-306. doi: 694 

10.1016/S0034-4257(99)00045-0 695 

Weiss, M., Baret, F., Leroy, M., Hautecœur, O., Bacour, C., Prévot, L., Bruguier, N., 2002. Validation of 696 

neural net techniques to estimate canopy biophysical variables from remote sensing data. 697 

Agronomie, 22, 547-553. doi:10.1051/agro:2002036 698 

Zwart, S.J., Bastiaanssen, W.G.M., de Fraiture, C., Molden, D.J., 2010. WATPRO: A remote sensing based 699 

model for mapping water productivity of wheat. Agricultural Water Management 97, 1628–1636. 700 

doi:10.1016/j.agwat.2010.05.017 701 


