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INTRODUCTION

Agriculture is by far the main consumer of fresh water with about 70% of all withdrawals devoted to irrigation (UNESCO, 2015). With the multiplication of extreme weather events, irrigation has become essential to ensure a reliable, stable and profitable production. In a world where population is constantly increasing and with high climate extremes, a big challenge for agriculture will be to maintain a sufficient level of crop production while reducing the amount of water used, and therefore to increase its use efficiency [START_REF] Kijne | Water Productivity in Agriculture: Limits and Opportunities for Improvement[END_REF]. Indeed, an important amount of water allotted to irrigation is not efficiently used by crop [START_REF] Smith | Expert Consultation on Revision of FAO Methodologies for Crop Water Requirements[END_REF]. This naturally leads the scientific community to work on management tools to both ensure food security and meet environmental issues.

The present study was conducted in the south west of France on irrigated maize fields. In this region, maize crop (Zea mays) represents 60% of irrigated lands, consuming 70 to 80% of whole irrigation water (around 250.10 6 m 3 /year).

Several agronomical crop models are developed to assess specific agronomical needs like grain yield or irrigation demand prediction (e.g. DSSAT [START_REF] Jones | The DSSAT cropping system model[END_REF], STICS [START_REF] Brisson | An overview of the crop model stics[END_REF]).

However, if such crop models are quite suitable for monitoring plant development at the field scale, their implementation over larger areas is often limited by the availability of input data. To overcome these difficulties, a widely used solution is to integrate satellite observations into semi-empirical crop models (see Dorigo et al., 2007 for review). Halfway between complex and empirical approaches, these models combine the descriptions of the main biophysical processes and simple empirical parameterizations (e.g., AquaCrop [START_REF] Steduto | AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles[END_REF], AqYield [START_REF] Constantin | The soil-crop models STICS and AqYield predict yield and soil water content for irrigated crops equally well with limited data[END_REF], GRAMI [START_REF] Maas | GRAMI: a crop growth model that can use remotely sensed information[END_REF], Pilote [START_REF] Mailhol | Sorghum and sunflower evapotranspiration and yield from simulated leaf area index[END_REF], PolyCrop [START_REF] Nana | A model for crop yield and water footprint assessment: Study of maize in the Po valley[END_REF], SAFY [START_REF] Duchemin | A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index[END_REF][START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF]).

This approach combining remote sensing data and crop models has been made possible by the development of new sensors providing high resolution images, necessary to an accurate vegetation monitoring, and has been particularly popular for the monitoring of water resources and irrigation water supplies at the regional scale [START_REF] Duchemin | Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices[END_REF][START_REF] Zwart | WATPRO: A remote sensing based model for mapping water productivity of wheat[END_REF][START_REF] Droogers | Estimating actual irrigation application by remotely sensed evapotranspiration observations[END_REF][START_REF] Saadi | Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia)[END_REF][START_REF] Toureiro | Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition[END_REF]. Most of the models among the previously cited studies did not allow to estimate both the water needs and supplies, the biomass production and yields. In a previous study, [START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF] proposed a remote sensing driven approach to estimate the maize biomass production and yield for both irrigated and rainfed fields. An original methodology was developed specifically for large areas with a limited use of in situ information. In that purpose, we used a quite simple semi-empirical model, the SAFY (i.e. Simple Algorithm For Yield estimates) model [START_REF] Duchemin | A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index[END_REF] driven by high spatial and temporal resolution images, which is able to take into account the dynamic of vegetation without requiring information about soil characteristics. This last study led to a new formalism of the Effective Light Use Efficiency (ELUE) and the Specific Leaf Area (SLA) that was implemented in the original version of the SAFY model. Results revealed that the new version of the model improves yield estimates both at field scale (RRMSE = 13.7%) and at regional scale (RRMSE = 5%).

However, this new version of the model did not include a water balance module and, thus, did not give access to the crop water needs and supplies which knowledge is essential in a context of water management. The original version of the SAFY model had already been coupled with FAO methods on rainfed wheat crops [START_REF] Duchemin | Impact of sowing date on yield and water use efficiency of wheat analyzed through spatial modeling and Formosat-2 images[END_REF] and had led to good estimates of biomass, ETca and soil water content. We thus coupled the new version of the SAFY model with the FAO-56 method and a submodule simulating irrigation in which irrigation events are triggered according to the water stress level of the crop, in order to simulate both biomass production and water needs and supplies.

Even though the FAO-56 methods are sometimes questioned, they remain the most commonly approach used for the estimation of crop evapotranspiration from field to global scales [START_REF] Pereira | Crop evapotranspiration estimation with FAO56: Past and future[END_REF] due to their relative simplicity. Indeed, the method allows estimating optimal crop Evapotranspiration (ETc) with a crop coefficient (Kc) applied to the reference evapotranspiration (ET 0 ). Such approach overcomes the difficulties encountered with direct measurements (e.g. Eddy-Covariance, Bowen ratio energy balance, lysimeters) for which applications are restrained to field scale because of the heavy and costly needed investment. The accurate estimation of actual crop Evapotranspiration (ETca) over large areas is essential to improve water resource management. Given their strong impact on ETca, the crop coefficient and the plant water availability must be correctly estimated which is one of the major difficulties of the application of the FAO approach over large areas. Indeed, the standard crop coefficient method based on tabulated values implies "standard conditions" that do not vary from field to field and that are not actual most of the time. As crop characteristics correlate well with spectral reflectances, numerous studies aimed at developing empirical relationships between Kc and remote sensing data that allowed improving ETca estimates and irrigation scheduling [START_REF] Bausch | Crop coefficients derived from reflected canopy radiation: a concept[END_REF][START_REF] Neale | Development of reflectance-based crop coefficients for corn[END_REF][START_REF] Hunsaker | Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index[END_REF][START_REF] Glenn | Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems[END_REF].

Beside the importance of an accurate estimation of Kc, the knowledge of the Storage Capacity (SC) of the soil is also useful as it is a widely used concept for a large panel of models. This integrative value relies on the knowledge of soil properties that are rarely available over large areas. Moreover, some sensitivity analyses have demonstrated the large impact of uncertainty of the SC values on yield estimates (Pachepsky and Acock, 1998;[START_REF] Lawless | Quantifying the effect of uncertainty in soil moisture characteristics on plant growth using a crop simulation model[END_REF] or on the soil hydraulic characteristics [START_REF] Baret | Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity[END_REF].

The objectives of this study were twofold. First, we aimed at reproducing the seasonal dynamics of ETca and total irrigation depth over large areas and various contrasted climatic years. For that, we used a water balance crop model combined with high spatial and temporal resolution remote sensing data.

Second, we aimed at evaluating the impact on simulated ETca and total irrigation depths of various methods used to determine the soil water storage capacity (SC) and the crop coefficient (Kc).

MATERIAL & METHODS

Model description

In this study, we used the SAFY-FAO model. This model combines the SAFY crop model [START_REF] Duchemin | A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index[END_REF][START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF] with a water balance model proposed by the FAO-56 method [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF] and a sub-module simulating irrigation events, hereafter referred to as "automatic irrigation module". The SAFY-FAO model simulates the dynamics of Green Area Index (GAI in m 2 .m -2 , ratio of the photosynthetically active plant area, without organ distinction, per meter square ground; Baret et al., 2010), Dry Aboveground Mass (DAM in g.m -2 ), actual crop Evapotranspiration (ETca in mm.day -1 ) and Current Available Water (CAW in mm) in three soil layers (i.e. top, intermediate and deep) at a daily time step from a date of plant emergence (D 0 ). It can be run in two different ways: using the real irrigation supplies (forced mode) or activating the automatic irrigation module (automatic mode). Remotely sensed GAI and green cover fraction (FCOVER), incoming global radiation (Rg in MJ.m -2 ), air temperature (Ta in °C), reference evapotranspiration (ET 0 in mm.day -1 ), precipitation and irrigation (in the forced mode case) are used as inputs. ET 0 is derived from climatic parameters according to the Penman-Monteith equation recommended by FAO [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF], which is adapted for a hypothetical grass reference surface.

The GAI (in m 2 .m -2 ) is simulated by the SAFY crop model [START_REF] Duchemin | A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index[END_REF]. In the present study, we used the new formulation of vegetation dynamics proposed in [START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF]. This new version of the SAFY model includes sixteen parameters (Table 1) allowing the seasonal variation of the Specific Leaf Area (SLA in m2.g-1) and the Effective Light Use Efficiency (ELUE in g.MJ-1) (see Battude et al., 2016 for details). The SLA is defined as the ratio of leaf area to dry mass and it allows converting daily leaf mass production into daily leaf area growth. The SLA increase with time is due to the increasing leaves thickness during the plant growth. The ELUE corresponds to the plant efficiency to convert radiation into aboveground biomass. The rise of ELUE during the plant growth may be due to several processes, among them the variation of the root-shoot ratio [START_REF] Amos | Maize Root Biomass and Net Rhizodeposited Carbon[END_REF]. The biomass production ( , [Eq. 1]) is based on the Monteith's light-use efficiency theory [START_REF] Monteith | Solar Radiation and Productivity in Tropical Ecosystems[END_REF]. It depends on the effective light-use efficiency (ELUE), on a stress factor (F T ) being function of the daily air temperature (Ta) and on the daily photosynthetically active radiation absorbed by canopy (APAR in MJ.m -2 ), and is limited by the water stress coefficient (Ks). The Ks ([Eq. 2]) daily value varies from 0 (complete stress) to 1 (no stress) and depends on a critical humidity parameter (Dft, for "Transpiration reduction coefficient") and on the soil maximal relative humidity (RHtot). The RHtot ([Eq.

3]) depends on the relative humidity of the two first layers (RH 1 and RH 2 ), those in which the roots develop. The relative humidity of a soil layer (RH x, [Eq. 4]) corresponds to the ratio between the current available water in the soil layer (CAW in mm) and its water storage capacity (SC in mm). SC ([Eq. 5])

depends on the soil layer thickness (SLT x in mm) and on the water content at field capacity (H fc in m 3 .m -3 ) and at wilting point (H wp in m 3 .m -3 ). The SLT of the intermediate layer (SLT 2 in mm) increases with the root depth (RD in mm, [Eq. 6]), constrained by the soil maximal depth (SD in mm) and depending on the air temperature (Ta in °C), the minimal temperature for growth (Tmin in °C), the Ks coefficient and the root growth rate (Vpr in mm.°C).
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When activated, the automatic irrigation module triggers an irrigation event at a fixed depth determined by the D I parameter, when the Ks coefficient is lower than 1. This happens when the relative humidity (RHtot) reaches a defined threshold (Dft) [Eq. 2]. The simulated irrigation is then used as an input into the SAFY-FAO model. The period when irrigation can be triggered ranges from the plant emergence until the beginning of the senescence phase (i.e. when the sum of temperature reaches a growing degree day threshold called S TT , in °C). After that day, irrigations are allowed only if the time before harvest is higher than a specific number of days defined by I end parameter. 188 

Name

Study area

The study was carried out in the south west of France, near Toulouse (Figure 1). We focused on two departments (i.e. division of the French territory according to administrative boundaries): Haute-Garonne and Gers. The climate is temperate mild, with rainy springs and warm and dry summers (temperature often exceeding 35°C). The Haute-Garonne department is characterized by a wide plain stretching across the north and a mountainous region in the south that is a part of the Pyrenean range.

The Gers department is characterized by hilly landscapes. Half of Haute-Garonne and up to 70% of Gers are covered by agricultural land. Haute-Garonne and Gers are respectively covered by about 20 000 ha and 48 000 ha of irrigated maize. In the study area, maize fields are sown from mid-April to early June, and harvest takes place from mid-August (mainly for silage maize) to late October. 

Dataset over the LAM field

Site description

The "Lamothe" experimental field (referred to as "LAM field") was instrumented in 2005 to monitor vegetation growth, soil water dynamics, turbulent energy, water and C0 2 fluxes. This 32.2 ha site is located close to a river in a large valley (Figure 1). It belongs to an experimental farm managed by the Purpan Engineering School and takes part of the European research infrastructure "Integrated Carbon Observation System" (ICOS, [https://icos-eco.fr/]) and of the "Regional Spatial Observatory" (OSR, [http://www.cesbio.ups-tlse.fr/fr/osr.html]). The LAM field is characterized by an irrigated silage maize/rainfed winter wheat rotation. We used four years of data over maize in 2006, 2008, 2010 and 2012, which correspond to years when maize was sown. The LAM field has a homogenous clay (around 50% clay, 36% loam and 14% sand) deep soil (around 1.5 m), presenting a large water storage capacity.

We used a mean value of 0.36 m 3 .m -3 for the volumetric water content at field capacity (H fc ) and 0.17 m 3 .m -3 for the wilting point (H wp ). We did not evaluate the automatic irrigation module over this field as irrigation practices were not representative of those usually done in the south west of France. Actual irrigation data were forced in the model instead.

Flux data

Turbulent fluxes of water vapour (actual crop Evapotranspiration, ETca) are measured continuously according to the Eddy-Covariance method [START_REF] Moncrieff | A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[END_REF][START_REF] Baldocchi | Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future[END_REF][START_REF] Aubinet | Eddy Covariance: A practical guide to measurement and data analysis[END_REF].

The flux tower was installed in the middle of the field and the Eddy-Covariance system set-up was designed in order to catch the turbulent fluxes from a representative area (footprint) of the whole crop plot. The height of the instruments (3.65 m) was chosen to be higher than crops at their maximum development and optimize the footprint area [START_REF] Béziat | Carbon balance of a three crop succession over two cropland sites in South West France[END_REF]. The Eddy-Covariance system combined a 3D sonic anemometer (CSAT3) with a high frequency infrared gas analyzer (LI-7500, 20 Hz).

Flux calculation, filtering, quality controls and gap filling were performed following the CarboEurope-IP recommendations [START_REF] Aubinet | Eddy Covariance: A practical guide to measurement and data analysis[END_REF].

Meteorological data

The LAM field is equipped with a standard weather station. It provides measurements of air temperature, relative humidity, global and net radiations, wind speed and direction at 3.65 m height, precipitation and atmospheric pressure. The total precipitation during the four experimental maize seasons (i.e. from date of emergence to harvest in 2006, 2008, 2010 and 2012) was 118, 188, 173 and 125 mm, respectively. All flux and meteorological data were originally recorded and processed at halfhourly time step. The data were thus integrated or averaged to obtain daily time scale estimates allowing the comparison with the model outputs.

Biomass destructive measurements

Dry Aboveground Mass (DAM) data were collected from LAM field with a destructive method during four maize growing seasons between 2006 and 2012 at the rate of five times a year. Each time, twenty plants were harvested within the footprint, dried at 55°C, during at least 72h, and then weighed.

Validation datasets: the 18 fields and 3 irrigated zones

A validation set of 18 maize fields (0.5 ha to 24 ha) have been monitored by the water manager (CACG, i.e. Compagnie d'Aménagement des Coteaux de Gascogne) during the 2013 growing season. The CACG is in charge of irrigation recommendations to the farmers. All fields were located in the Gers department (Figure 1). The irrigation practices including dates and applied water depth (in mm) were recorded and provided by farmers. The total irrigation depth applied during the growing season (in mm) was calculated for each field and compared with the simulations (automatic irrigation module). Water is applied to all these fields with sprinkler irrigation systems.

Three irrigated zones (Miradoux, Saint-Sauvy and Poucharramet) (Figure 1) also monitored by the CACG have been used for the validation of the total irrigation depth. They correspond to associations of farmers sharing a global irrigation plan (hereafter referred to as "ASA" for "Authorised Syndical Association"). Poucharramet ASA's irrigated water supplies have been studied since 2006. Miradoux and Saint-Sauvy ASA's irrigated water supplies were studied for 2013 and 2014 growing seasons.

Poucharramet, Miradoux and Saint-Sauvy ASA are respectively covered by about 450 ha, 165 ha and 135 ha of irrigated grain maize. For these three ASA, applied irrigation water comes from surface resource (rivers recharged either by lakes, canals or mountains' reservoirs depending on location). The water is collected in the river with a pumping station and then conveyed throughout the fields using a pipe network. Sprinkler irrigation systems are used in the three ASA. Meteorological data over the area have been estimated by Météo-France using the mesoscale atmospheric analysis system SAFRAN (i.e. Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie ; [START_REF] Durand | A meteorological estimation of relevant parameters for snow models[END_REF]. This dataset includes air temperature at 2m above the ground (Ta), incoming global radiation (Rg), reference evapotranspiration (ET 0 ) and precipitation (P). ET 0 is derived from climatic parameters according to the Penman-Monteith equation recommended by FAO [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF].

The data are available every 6h over a 8 km spatial resolution grid. [START_REF] Vidal | A 50-year high-resolution atmospheric reanalysis over France with the Safran system[END_REF] performed an evaluation of SAFRAN data all over the French territory and found an RMSE ≈ 40 W/m² for Rg and an RMSE ≈ 0.6 °C for Ta. Data used to force the model (daily mean Ta, daily mean Rg, daily ET 0 and cumulated daily P) were calculated for each field over the study area, by using the nearest grid point. Soil characteristics of the fields (H fc , H wp and SD; see Table 1) have been extracted from a soil map covering the two departments. This map (1/ 250 000) results from the IGCS (i.e. Inventaire, Gestion et Conservation des Sols) program, provided by GisSol (i.e. Groupement d'intérêt scientifique Sol) group [https://www.gissol.fr/le-gis/programmes/inventaire-gestion-et-conservation-des-sols-igcs-67], and reports the main structural units of the area. The database related to the map provides for each class the soil depth and the percentage of clay, silt and sand. Soil texture was found using the French "Aisne" soil texture triangle [START_REF] Jamagne | Quelques données sur la variabilité dans le milieu naturel de la réserve en eau des sols[END_REF][START_REF] Baize | Guide pour la description des sols[END_REF]. The volumetric water contents at field capacity (H fc ) and at wilting point (H wp ) were retrieved through the use of a class pedotransfer function [START_REF] Bruand | Use of class pedotransfer functions based on texture and bulk density of clods to generate water retention curves[END_REF]. For the 18 maize fields, the soil depth (SD) extracted from the map was compared to those provided by farmers. The impact of SD on the simulated total irrigation depth is presented in the results section.

Remotely sensed GAI and FCOVER

The Green Area Index (GAI in m 2 .m -2 ) and green cover fraction (FCOVER) time series were estimated from several high spatial and temporal resolution optical images (Figures 2 and3) using the BVNet tool (i.e. Biophysical Variables neural NETwork, [START_REF] Weiss | Evaluation of Canopy Biophysical Variable Retrieval Performances from the Accumulation of Large Swath Satellite Data[END_REF][START_REF] Weiss | Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data[END_REF]. BVNet enables the estimation of biophysical variables (GAI, FAPAR and FCOVER) from the inversion of the radiative transfer model PROSAIL [START_REF] Baret | Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity[END_REF] We thus combined Landsat-8 (30 m, 16-day revisit), Deimos-1 (22 m, 3-day revisit) and the SPOT4-Take5 experiment (20 m, 5-day revisit) [http://www.cesbio.ups-tlse.fr/multitemp/] datasets. The combination of datasets permits to observe the whole maize growing seasons with a temporal resolution close to that provided by the Sentinel-2 data (A and B). The satellites have also been chosen for their high spatial resolution (30 m or less) which is an important criteria given the mean size of agricultural fields in the study area (approximately 20 ha).

The remotely sensed GAI time series were used in the previous study [START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF] to calibrate the SAFY model in order to provide daily GAI and biomass production estimates. The GAI and FCOVER were interpolated with a double logistic function (see [START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF] providing daily time series used as inputs in the water balance module. 

Calibration of model parameters

SAFY model parameters

We use the sixteen SAFY model parameters (Table 1) calibrated in the previous study (see [START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF]. Some parameters were fixed according to a literature review (ε c , T min , T opt , T max , β 0 , K ext, HI)

and the remaining ones (D 0, Pl a , Pl b , RS, S TT , SLA 0 , LTC, ELUE p and PMI) were optimized using the remotely sensed GAI time series. This calibration leads to daily simulated GAI and biomass.

Water balance model parameters

The nine water balance model parameters ( [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF]. The Vpr parameter is set according to the value used for maize crop in the STICS model [START_REF] Brisson | An overview of the crop model stics[END_REF].

The remaining two parameters (β and E trp ) were calibrated using ETca measured by the Eddy-Covariance method. The calibration procedure was performed in two successive steps with a cost function based on the Root Mean Square Error (RMSE) computation (Figure 4). We firstly calibrated β over the bare soil period. Then, we calibrated E trp over the non-stressed vegetation period (based on the calculation of the relative humidity (RH) of the two first soil layers). The calibration was done for each year. As the values of each parameter were quite similar whatever the year, we decided to use the fouryear averaged value for each parameter. As simulation begins at 1 st January, the soil water storage capacity is regarded as full at this date. Soil diffusive fluxes have not been taken into consideration. 

Automatic irrigation module parameters

The irrigation parameters (D I , I end ) values are set according to mean agricultural practices. When the "automatic mode" is activated, a 30 mm irrigation depth (D I ) is applied at each irrigation event. 45-day delay before harvest (I end ) is set for irrigation ending. If the irrigation depth exceeds the total soil water storage capacity, the excess water is removed from the original 30 mm amount and a lower irrigation depth is simulated by the model.

Model evaluation

A four-year dataset of ETca was used to calibrate the model (i.e. calibration of β and E trp parameters) and DAM destructive measurements were used for the validation. The 18 maize fields and three irrigated zones (ASA) were used to evaluate the automatic irrigation module, comparing the water supplies provided by the farmers with those simulated by the model. For the three ASA, the model was run over all maize fields located into the irrigated zone; irrigation depths were cumulated and the total depth for the growing season was thus compared to the data given by the water manager.

In this study, we compared ETca and total irrigation depths simulated using the standard crop coefficient method and those obtained using the remotely sensed Kcb (i.e. the Kcb estimated from the daily GAI simulated by SAFY, optimized using the remotely sensed GAI). We also used a soil map that provides the soil depth and the soil water content limits (field capacity and wilting point). Root depth is closely linked to soil depth and depth of water infiltration. This value affects the amount of water available and the number of irrigation events needed to reach the crop needs. Thus we evaluated the impact of the use of soil properties estimated from the soil map on ETca estimates and on total irrigation depths, comparing to results obtained using in situ estimates of the SC.

The model was run using the interpolated GAI estimated for each sampled area (i.e. LAM field, 18 fields or ASA) using the methodology presented in the previous study [START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF]. The model evaluation was performed using several statistical criterions including correlation coefficient (R), bias, Root Mean Square Error (RMSE) and Relative Root Mean Square Error (RRMSE), calculated by dividing the RMSE by the mean of the observed data.

RESULTS AND DISCUSSION

Results over the LAM field : Evapotranspiration and Biomass

The dynamics of daily simulated GAI and DAM over the four maize growing seasons were respectively compared to remotely sensed GAI and in situ measurements of DAM performed over the LAM field. Results are presented in Figure 5. In this section, the model was run with the forced mode (i.e. using the total water supplies: rainfall and real irrigation). Results show an overall good adequacy of the GAI and DAM from the emergence date to the harvest for the four years. The DAM dynamics of the four years is correctly reproduced by the model (R = 0.97; RRMSE = 23%).

ETca measurements performed over the LAM field during the four years according to the Eddy-Covariance method have been used for the calibration of two model parameters (β and E trp ). The daily simulated ETca was compared to these measurements. Results (Figure 6) show that the dynamics of ETca correlates well with measured values. The correlation analysis (Figure 7a) shows a good linear relationship between measured and estimated values of ETca during the growing period (R = 0.88; RRMSE = 20%). We observe an overall underestimation of ETca before plant emergence and after harvest. These two periods correspond to bare soil in the model. However, if the model considers a total absence of vegetation, it may be actually different. Indeed, we found a delay between the actual emergence date and that observed by the remote sensors. Furthermore, some crop residues still cover the soil after harvest and they are not simulated by the model. This can explain the observed underestimation of simulated ETca. However, the main goal is to accurately reproduce the ETca during the growing period in order to have good estimates of the plant water needs. Focusing on the growing season, some discrepancies are observed, such as at the beginnings of the years 2008 and 2010, when the model underestimates the ETca. In both cases, it happens when FCOVER is lower than 0.5 and when no significant water supply (neither rain nor irrigation event) occurs for a long time (up to 1 month).

During these periods, the simulated soil evaporation is underestimated. The activation of the diffusive fluxes [Eq. 11 with Edif = 1 and Kdif = 3.5] helped to reduce the water scarcity in the top and intermediate soil layers and to increase ETca during these periods (see Figure 6). However, as the ratio between evaporation and transpiration decreases while the vegetation grows, the activation of diffusive fluxes did not change significantly the ETca estimates for the whole growing season. Given that the activation of diffusive fluxes would imply the calibration of two more parameters and that it did not bring significant improvement of the cumulative ETca values, we chose not to activate it for the following work. 

Effect of the use of the soil map and standard Kcb values on ETca estimates over the LAM field

Since measurements of soil characteristics (H fc , H wp and SD) are rarely available over large areas, we used a 1/250 000 soil map that was available over the whole study area. Its coarse resolution implies that the soil characteristics estimated from the map differ from local conditions. To evaluate the potential effects of this difference on ETca estimates, we ran the model over the LAM field using the soil characteristics provided by both the soil map and in situ data. The soil water storage capacity (SC) is equal to 285 mm using in situ measurements and 172.5 mm using the soil map. This difference led to a slight decrease and larger dispersion of ETca estimates when using the soil map (Figure 7b) compared to the use of local soil measurements (Figures 7a).

To estimate crop water needs, the CACG uses standard Kcb (i.e. basal crop coefficient) values based on the knowledge of the phenological stages of the crop under standard conditions (i.e. tables proposed by Arvalis -Institut du Végétal). This method presents two major limitations: the phenological stages are not accessible over large areas and "standard conditions" do not mean "actual conditions". As an alternative, we propose to estimate the Kcb from the daily GAI simulated by SAFY [Eq. 10] optimized using the remotely sensed (RS) GAI. The use of remotely sensed Kcb, hereafter referred to as "RS Kcb", permits to access differences that might occur between fields as demonstrated by several studies [START_REF] Bausch | Crop coefficients derived from reflected canopy radiation: a concept[END_REF][START_REF] Neale | Development of reflectance-based crop coefficients for corn[END_REF][START_REF] Hunsaker | Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index[END_REF][START_REF] Glenn | Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems[END_REF]. We compared ETca estimates over the LAM field using both methods. Results (Figures 7a and7c) show that the use of the standard Kcb leads to poorer ETca estimates (R = 0.77 instead of 0.88; RRMSE = 28% instead of 20%). 

Validation over 18 maize fields : total irrigation depth

The model was run by activating the automatic irrigation module over a set of 18 maize fields to evaluate its ability to trigger irrigations events according to the water stress level assessment. We used the RS Kcb and the maximal soil depth (SD). SD was initialized using values provided by farmers. H fc and H wp parameters were extracted from the soil map.

Figure 8a shows the comparison between the total irrigation depths provided by farmers during the growing season and those recommended by the model. Overall, despite an observed bias of 20 mm, the activation of the automatic mode resulted in a good reproduction of the farmers' practices in terms of total water amount (R = 0.79; RRMSE = 18.8%). The negative bias can be explained by the fact that the model triggers irrigation when crop water stress occurs, while farmers are more careful and tend to irrigate before water stress occurs. In addition, farmers follow the advice of the water manager who calculates the crop water requirement using the standard Kcb and this method can potentially overestimate the water need.

Effect of the use of the soil map on the total irrigation depth

We then evaluated the impact of the use of the soil map on the simulated total irrigation depth over the 18 fields using the soil depth (SD) provided by the soil map and that provided by farmers.

Figure 8b shows an overall decrease of the amount of total irrigation depths when using the soil map compared to the use of local farmer-provided soil depth values (Figure 8a) (bias of -55 mm instead of -20 mm). This occurs because the value of soil water storage capacity (SC) [Eq. 5] was larger using soil map: 150 mm on average vs. 80 mm using farmers' data. As the SC is almost full at the plant emergence (only the first layer can be incomplete since evaporation occurs), the use of a higher value for SC leads to less water supplies.

Effect of the use of the standard Kcb values on the total irrigation depth

Finally, we looked at the total irrigation water supplies simulated over the 18 maize fields using the standard Kcb values. Figure 8c shows that the use of the standard Kcb values led to a larger dispersion of the total irrigation depths compared to those obtained with RS Kcb (Figure 8a) (R = 0.68 with standard Kcb instead of R = 0.79 with RS Kcb). Figure 9 shows the comparison of standard and RS Kcb time series for the 18 maize fields: the RS Kcb evolves in the same way as the simulated GAI, whereas the standard Kcb evolves gradually according to the phenological stages. Furthermore, we can see for some fields that the standard Kcb value is higher than the RS Kcb at the beginning of the growing season. This can lead to a higher estimation of crop water needs and thus increase the number of simulated irrigation events. Figure 10 shows the effect of the different Kcb estimates: standard Kcb values higher than RS Kcb (near day 200 and day 220) led to an increase of simulated water needs followed by two additional irrigations. 

Validation over 3 irrigated zones: total irrigation depth

We ran the model over three irrigated zones (ASA) and compared the total irrigation depth simulated (in mm) to the actual total irrigation depth (in mm). Water managers estimate there is an average water loss of 12% due either to leaks during the transport of the water in the pipes (around 1-2%) or to the sprinkler irrigation system (around 3-10%). We thus removed 12% from the recorded annual irrigation depths.

In this section, we ran the model with the soil data provided by the soil map. For Miradoux and Saint-Sauvy ASA, the soil water storage capacity (SC) extracted from the soil map varies from 24 mm to 195 mm (Figure 11). For all the fields of the ASA of Poucharramet, the map provides a SC value higher than 170 mm. A high underestimation of the irrigation water amount by the model is observed in this ASA (Figure 12a). Simulated total irrigation depths for the two other irrigated zones (Miradoux and Saint-Sauvy) are closer to the observed depths. Given the results obtained over the 18 maize fields in the previous section and the impact of the SC, we chose to limit the soil depth and thus the root depth [Eq. 6] at a maximum value of 80 cm considered as more likely by farmers. For the ASA of Miradoux and Saint-Sauvy, many of the fields are located on shallow soils (<80 cm) with low SC. For this reason, the limitation of the soil depth (SD) had a lower impact on the estimated total irrigation depth. For the ASA of Poucharramet, the modeled total irrigation depths are still lower than the observed values, but the mean bias is a bit reduced using lower SC (-93 mm instead of -108 mm; Figure 12b). Part of the negative bias may be explained by the SC that may remain too high for some fields despite the applied reduction.

The underestimation may also be partly due to over-irrigation practices carried out by farmers, linked with an overestimation of water needs by water managers that use the standard Kcb. Despite this bias, the model reproduces correctly the inter-annual variability observed across years and ASA (R = 0.8). 

CONCLUSION

One main objective of this study was to evaluate the potential of the SAFY-FAO model combined with remote sensing optical imagery to provide reliable estimations of water needs and total irrigation depths of irrigated maize crop over large areas. For that purpose, we used a new version of the SAFY model proposed by [START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF] coupled with a water balance module adapted from FAO-56 method [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF]. The SAFY-FAO model was chosen for its suitablility for spatial approaches through the use of remotely sensed GAI time series. Another objective was to evaluate the impact of different methods used to determine the soil water storage capacity (SC) and the basal crop coefficient (Kcb) on simulated ETca and total irrigation depths.

After calibration over the experimental field using a four-year in situ ETca dataset, the model outputs were evaluated over 18 maize fields and three irrigated zones (ASA) for which the total irrigation depth applied during the growing season were known. Overall, good results were obtained for biomass production (R = 0.97; RRMSE = 23%) and ETca estimates (R = 0.88; RRMSE = 20%) after calibration over the experimental field. The model also reproduced well the total irrigation depths over the 18 maize fields (R = 0.79; RRMSE = 18.8%). We observed an underestimation of the total irrigation depth (-93 mm) for the three ASA. This might be explained by either the use of the standard Kcb by water managers (leading to an overestimation of water needs), over-irrigation practices or even the SC values that might be too high when using the soil map. Despite this, the model reproduces correctly the trends observed between years and ASA (R = 0.8).

This work permitted to highlight the impact of different methods to estimate the SC and the Kcb on ETca and on the total irrigation depth over large areas. The use of a standard Kcb led to a larger dispersion on ETca compared to results found using a remotely sensed (RS) Kcb (R = 0.77 with standard Kcb and R = 0.88 with RS Kcb). Same conclusions were drawn for the total irrigation depth over the 18 maize fields (R = 0.68 with standard Kcb and R = 0.79-0.87 with RS Kcb). Furthermore, the standard Kcb requires the knowledge of the phenological stages of the crop that are not available over large areas and even difficult to accurately obtain at field scale. Such results highlight the potential of the RS Kcb to improve irrigation water management.

The impact of various SC estimations (soil map vs in situ measurements or farmers' values) on ETca and total irrigation depths was also investigated. Results highlighted that the soil depth (SD) provided by the soil map induced negative bias on simulated ETca and total irrigation depth because of a high imprecision on soil properties (SD, H fc and H wp ) partly due to its coarse spatial resolution. Future work will investigate ways to retrieve SD, for example using the future Global Soil Map given at 90 m spatial resolution ([http://www.globalsoilmap.net/]).

This work also points out some limitations that should be investigated in future work. We chose to calibrate the water module using four-year averaged parameters based on ETca measurements. The validation using ETca measurements over other fields or years may allow evaluating the robustness of the calibrated parameters and the associated error.

We also chose to disable the diffusive fluxes in soils as results showed minor improvement on simulated ETca during the whole growing season. However, this process should be taken into account when simulating annual soil water budget.

The model was used on irrigated crops with a diagnostic approach. In the future, we planned to investigate its prognostic potential and enlarge its application on rainfed crops. This study demonstrates the high potential of an agro-meteorological crop model combined with high spatial and temporal resolution remote sensing data for a large-scale monitoring of total irrigation depths over maize fields. It offers encouraging perspectives when using Sentinel-2 images in the near future. The Sentinel-2 dataset,
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 1 Figure 1: Location of the study area. Haute-Garonne and Gers departments are in orange and green,

  using artificial neural network. The BVNet tool uses the Green, Red and NIR spectral bands, and the SWIR band whenever available. It computes GAI taking into account the spectral and directional characteristics (illumination and viewing angles) of the remote sensing data. Formosat-2 (8 m resolution, daily revisit) and SPOT (20 m, monthly revisit) data have been available since 2006 over the LAM field and Poucharramet ASA. In addition, other satellite datasets covering a larger area including the 18 fields, Miradoux ASA and Saint-Sauvy ASA have been available since 2013.
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 2 Figure 2: Location of the various image scenes (Formosat-2 in grey; SPOT in orange; SPOT4-Take5 in blue;
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 3 Figure 3: Schedule of images acquisitions for the different sensors. Only the maize growing periods (April
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 4 Figure 4: Calibration of β and E trp parameters for the four studied years. The β parameter is calibrated on
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 5 Figure 5: Dry Aboveground Mass (DAM) and Green Area Index (GAI) dynamics for the four maize growing
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 6 Figure 6: Comparison of measured (black line) and simulated (red line) actual crop Evapotranspiration
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 7 Figure 7: Comparison of measured and simulated daily ETca [mm] of maize for the four growing seasons
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 8 Figure 8: Comparison of total irrigation depth [mm] applied by farmers over 18 maize fields and the
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 9 Figure 9: Comparison of standard Kcb (in red) and remotely sensed Kcb (in blue) for the 18 maize fields in
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 10 Figure 10: Comparison of standard Kcb (in red) and remotely sensed Kcb (in blue) for a maize field in year
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 1112 Figure 11: Soil water storage capacity of the three ASA (black polygons) extracted from the soil map.

  

  water balance model includes nine parameters that can be related to soil characteristics (H fc , H wp , SD, SLT 1 , β) or vegetation characteristics (Vpr, Kcb max , E trp , Dft) (Table1). Only vertical water transfers are taken into account and surface runoff is neglected. ETca calculation is based on the dual-Kcb max corresponding to the maximal transpiration coefficient and the Etrp being the exponent of the

	crop coefficient FAO-56 method, splitting the Kc parameter into Ke (i.e. soil water evaporation
	coefficient) and Kcb (i.e. basal crop coefficient) [Eq. 7 and Eq. 9] (Allen et al., 1998), the Ks being as
	defined previously. Soil evaporation (E, [Eq. 7]) depends on the reference evapotranspiration (ET 0 ) and
	on the Ke coefficient. The Ke ([Eq. 8]) is function of the green cover fraction (FCOVER), the top soil layer
	relative humidity (RH 1 ) and limited by a function. Unlike Duchemin et al. (2015), the FCOVER, useful
	for the calculation of evaporation [Eq. 8], is estimated with the BVNet tool (see section 2.5. "Remote
	sensing GAI and FCOVER"). Plant transpiration (T, [Eq. 9]) depends on the Kcb, the ET 0 and the Ks as
	defined previously. The Kcb ([Eq. 10]) involved in the transpiration process is related to the GAI; the

transpiration. Soil evaporation (E) is calculated according to the relative humidity of the top soil layer (RH 1 ) [Eq. 7 and Eq. 8], whereas both top and intermediate layers are used for the computation of the plant transpiration (T) [Eq. 9, Eq. 2 and Eq. 3]. Soil diffusive fluxes are simulated with

[Eq. 11]

.

Table 1 :

 1 

		Rate of senescence	RS	°C.day	-1	-	linked to S TT
							(Battude et al., 2016)
							Literature
		Soil top layer thickness	SLT 1	m		0.1
							(FAO-56 Allen et al., 1998)
		Soil maximal depth	SD	m		Measured	Measurements or Soil Map
		Humidity	H fc	m 3 .m -3	Measured	Measurements or Soil Map
	SOIL	at field capacity				
		Humidity	H wp	m 3 .m -3	Measured	Measurements or Soil Map
		at wilting point				
							Calibrated (ETca meas.; bare
		Evaporative reduction coefficient	β	-		0.94
							soil period)
							Literature
		Maximal transpiration coefficient	Kcb max	-		1.15
							(FAO-56 Allen et al., 1998)
							Calibrated (ETca meas.; non-
	VEGETATION	Exponent of the transpiration Transpiration reduction coefficient TION	E trp Dft	--		0.34 0.45	stressed vegetation period) Literature
							(FAO-56 Allen et al., 1998)
							Literature
		Root growth rate	Vpr	m.°C		0.0015
							(STICS Brisson et al., 2003)
		Irrigation depth	D I	mm		30	Agricultural practices
	IRRIGATION	Number of days before harvest for irrigation ending	I end	day of year	45	Agricultural practices

[START_REF] Battude | Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data[END_REF] 

List of the 27 parameters of the crop model (i.e. 16 for the SAFY model, 9 for the water balance 189 model and 2 for the automatic irrigation module) with their initial value or range and the source of data. 190

Table 1 )

 1 include five soil parameters (SLT 1 , SD, H fc , H They vary spatially and depend on the soil type. Their values are determined with in situ measurements or information extracted from the soil map (see section 2.4). Kcb max and Dft are fixed according to the FAO recommendations

wp and β) and four vegetation parameters (Kcb max , E trp , Dft and Vpr). Except for the surface layer thickness (SLT 1 ), the soil parameters needed for the definition of the storage capacity (H fc , H wp and SD) are field specific.

available since May 2015, covering the whole globe and freely available, will be really interesting for future applications over large areas.
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