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Abstract 

This study tests the potential of near infrared reflectance spectroscopy (NIRS) for predicting 

soil fertility and management history from topsoil (0-10 cm depth) spectra. Soil fertility was 

assessed by measuring the growth of a test plant, and soil management history through 

inquiries with farmers. Moreover, NIRS predictive value was compared with that of a group 

of topsoil parameters: total carbon and nitrogen, nitrate, potential respiration and 

denitrification, and microbial biomass. Modelling used partial and modified partial least 

square regressions to ensure comparisons between predictions by NIRS vs. by soil 

parameters. Soil fertility and management history were well predicted by NIRS (Q² = 0.78 

and R² = 0.89 both; Q² and R² are cross-validation and calibration coefficient of 

determination, respectively), as were also the soil parameters (Q² = 0.79-0.92 and R² = 0.86-

0.98). Soil fertility and management history were more accurately predicted by NIRS than by 

the set of soil parameters. 
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Introduction 

The study of ecosystems and their components requires quantitative measurements of a 

diverse range of entities such as plants, animals, and the chemical components of soil or 
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water. The usefulness of near infrared reflectance spectroscopy (NIRS), as a non-destructive, 

quick and low-cost method to provide scientific expertise on a large scale, has been widely 

demonstrated up to now. The technique, originally adopted by agricultural and manufacturing 

industries, has progressively found applications in diverse scientific domains. From use on 

purely organic compounds, it evolved, for instance, towards soil and aquatic sediment 

analyses and proved in many cases very successful in these innovative uses. Several soil 

parameters have been investigated up to now, such as total carbon (C) and nitrogen (N) (Al-

Abbas et al., 1972; Morra et al., 1991; Barthès et al., 2006), C and N mineralization 

(Palmborg and Nordgren, 1993; Chang et al., 2001; Ludwig et al., 2002; Schimann et al., 

2007), microbial C and N (Reeves et al., 1999; Chang et al., 2001; Ludwig et al., 2002) or C 

and N distributions in particle size fractions (Barthès et al., 2008). However, although the use 

of NIRS has grown increasingly important for quantitative measurements, its application on 

more qualitative purposes has developed only very recently. There is a growing awareness 

that NIRS technology, providing wide and complex information, may be used successfully for 

evaluation of more integrative parameters of ecosystems functioning. Its use on multiple 

component materials, such as soil, requires multiple complex calibrations in order to extract 

the appropriate information from soil spectra. These complex procedures may unfortunately 

deter people from using the technique. It has nevertheless been used to examine phenomena 

as diverse as litter decomposition (Gillon et al., 1999), fodder digestibility (Park et al., 1998; 

Kitessa et al,. 1999), wild animal feeding impact on vegetation (Stolter et al., 2006), 

agricultural yields (Terhoeven-Urselmans et al., 2008), soil management type (Reeves et al., 

2001), and even past climate changes (Rosen et al., 2000).  

These attempts to apply NIRS technology to new fields of research have generally yielded 

promising results and encourage hopes for further innovative applications. The present study 

follows this line of thought by testing two integrative parameters, soil fertility and soil 

management history. Evaluating these parameters requires labour intensive procedures, 

unlikely to be conducted over large areas. Being able to predict accurately these parameters 

with NIRS would thus allow large scale (agro-)ecosystem assessment and would therefore 

benefit both agronomical and ecological research.  

The aim of the present work was: (1) to confirm the potential of NIRS to predict conventional 

soil parameters like total C and N, nitrate concentration, microbial biomass, basal respiration 

or denitrification potential; (2) to test the potential of NIRS to predict integrative parameters 

such as soil fertility and management history; and, in order to provide a benchmark of NIRS 

prediction relevance, (3) to compare the predictive value of NIRS with that of a group of 
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chemical and physiological variables of soil organic matter and microbial activity directly 

related to soil fertility and management history.  

 

Materials and methods 

Site 

This study was conducted in Banh (14°04’N, 2°26’W), a village of the Lorum province, in the 

northern part of the Central Plateau of Burkina Faso. Banh is located in the southern Sahelian 

climatic zone, which is characterised by a 9-month dry season from September to May, and a 

3-month rainy season lasting from June to August. Climatic data from 1971 to 2000 indicated 

a mean annual rainfall of 591 mm and a mean annual temperature of 28.7°C (Ouahigouya 

meteorological station, ~60 km south of Banh). The soil of the study area is described as a 

ferralic arenosol (FAO, 1998).  

 

Plot characterization 

Inquiries with farmers of the village of Banh were conducted in order to identify fields where 

livestock were or had been corralled. Fifteen farmer fields with regular goat and sheep 

overnight corralling were chosen. Inside these fields, each plot corralled in the past was also 

identified. Soil type was equivalent in all chosen plots. A farm survey was also done in order 

to check the homogeneity of all cultivation practices and to obtain a more complete 

management history for each plot. Plots influenced by the presence of surrounding trees or 

bushes, former burning of crop residues, or ‘water drains’ during the rainy season, were 

dismissed. Thus, 45 corralling plots were characterized in detail for the study, with time since 

corralling ranging from one to 11 years. In addition, 12 cultivated control plots without 

corralling were sampled, as well as 10 uncultivated control plots representing soil status 

before any cultivation and sampled at the border of the farmer field considered. A description 

of the yearly use of the fields can be found in Freschet et al. (2008).  

 

Sampling 

Samples were collected during the dry season. Within each plot, six samples were taken at 

random positions from the 0-10 cm soil layer. As cropping ridges of about 20 cm high were 

still present on cultivated plots during the sampling period, sampling was done on the ridges. 

These ridges were considered to represent the 0-10 cm layer of the cultivated soil. In 

uncultivated plots plant litter was removed before sampling. The samples originating from the 

same plot were pooled together, air-dried and sieved at 2 mm. Straw, gravels and faeces were 
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separated from the > 2 mm fraction and weighed. Gravels and straw, representing a very 

small proportion of the samples (respectively 0.39% and 0.04% of sample weight, in 

average), were not taken into account in this study. Faeces fragments > 2 mm were considered 

part of soil organic matter and returned to the soil samples. Samples were stored air dried at 

20°C until further analyses. 

 

Soil fertility 

Soil fertility may be seen as the result of the combination of several parameters of soil organic 

matter, microbial activity and nutrient content. It is also quantifiable through the use of 

bioassays. The fertility of the soils under study was assessed using an experiment with a test 

plant (millet, Pennisetum glaucum) in small pots under greenhouse conditions. Each pot 

contained 150 g of soil and 10 seeds. Millet seeds were sorted before being sowed. Five 

replicate pots were established for each soil sample. Each pot received 25 ml of water daily 

during the 32 days of the experiment. After 32 days the entire plants (root and above-ground) 

were harvested and placed in a drying oven at 65°C. After 48 hours, the total dry biomass of 

each pot was weighed to determine the plant growth potential, expressed in grams. Millet 

growth potential was assumed to reflect soil fertility. 

 

Soil management history 

Soil management history may include very diverse information depending on the site, its use 

for agriculture, its climate and/or its socio-economical background. In the present context, soil 

is subject to ‘mining agriculture’. Since all agricultural residues are harvested as forage and 

no inorganic inputs are returned to the soil, the only consistent inputs to the system are 

manure additions through livestock corralling. Due to a limited amount of livestock unevenly 

allocated between farmers, localized corralling in the fields and long intervals between 

corralling periods are managed by most farmers. The clearly identifiable position and time of 

the corralling within the fields provided an opportunity to study soil organic matter dynamics 

in the field. “Time elapsed since last corralling period” was therefore identified as the factor 

most fully representative of the agricultural history of a plot. 

 

Soil organic carbon, total nitrogen and nitrate (NO3
-
) content 

Total soil was analysed for C and N by dry combustion on 0.2-mm ground sub-samples with a 

Fisons Na-2000 elemental analyser (Carlo Erba, Milano, Italy). Since there were no 

carbonates in these soils, soil total carbon (Ctot) was considered as equal to soil organic carbon 
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(Corg) and expressed in mg C g
-1

 soil. Total soil N (Ntot) was expressed in mg N g
-1

 soil. Soil 

nitrate content was determined colorimetrically in potassium chloride extracts (1 M) by flow 

injection analysis according to the method of Bremner (1965) and the result was expressed in 

μg N-NO3
-
 g

-1
 soil. 

 

Basal respiration and microbial biomass 

Soil sub-samples (30 g of 2-mm sieved dry soil) were incubated at 100% of their water-

holding capacities (80 µl of water per g of dry soil) in closed flasks (120 ml), maintained in 

the dark at 28°C during 7 days. During the incubation period, the carbon dioxide (CO2) 

respired in the flasks was analysed using direct injection into a micro gas chromatograph. 

After each CO2 determination, the headspaces were flushed with fresh air. After 7 days of 

incubation, soil sub-samples were used for determination of microbial biomass. Potential 

basal respiration, expressed in µg CO2-C g
-1

 soil d
-1

, was calculated when microbial 

respiration was stabilized, i.e. during the 3 last days of incubation. Microbial biomass N was 

determined by the fumigation-extraction method (Amato and Ladd, 1988) by measuring 

ninhydrin-reactive N compounds extracted from soils after 10 days of fumigation. Microbial 

biomass C (Cmic) was estimated from the gain in ninhydrin-reactive N after fumigation per g 

of dry soil, multiplied by 21 (Amato and Ladd, 1988) and expressed in μg C g
-1 

soil.  

 

Denitrification potential 

Denitrification potential was determined by measuring nitrous oxide (N2O) concentration in 

closed flasks after 48 hours of soil incubation at 28°C in the dark. Ten grams of 2-mm sieved 

dry soil sample were placed in a 60 ml flask with chloramphenicol (2.5 g per g of dry soil) 

and humidified at 100% of their water-holding capacity (80 µl of water per g of dry soil). 

After 30 min to avoid priming effect, the air of the flask was replaced by a 90% helium, 10% 

acetylene gas mixture to ensure anaerobic conditions and inhibit N2O-reductase (Lensi et al., 

1995). Five millilitres of a solution containing glucose (1 mg C-glucose per g of dry soil), 

glutamic acid (1 mg C-glutamic acid per g of dry soil) and sodium nitrate (100 µg N-NO3 per 

g of dry soil) were added to the soil. Air sample of each flask was measured by gas 

chromatograph. Denitrification potential was expressed in µg N2O-N g
-1

 soil d
-1

. 

 

NIRS analyses 

Reflectance of the soil samples was measured between 1100 and 2500 nm at 2 nm intervals 

with a Foss NIRSystems 5000 spectrometer (Silver Spring, MD, USA), on two 5-g 
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subsamples per sample (2-mm sieved, oven-dried at 40°C). Each spectrum, averaged from 

32 scans, was recorded as absorbance (log [1/reflectance]). Data analyses were conducted 

using the WinISI III-v.1.61 software (Infrasoft International, LCC, State College, PA, USA). 

Several mathematical pre-treatments were evaluated for spectrum pre-processing, in order to 

reduce baseline variations, enhance spectral features, reduce particle size effect and/or remove 

linear or curvilinear trends (Geladi et al., 1985; Barnes et al., 1989; Reeves et al., 2002): first 

or second derivatives with 4- or 5-point gap and smoothing (denoted 14, 15, 24 and 25, 

respectively), standard normal variate transform (SNV), detrending (D), and/or standard 

multiplicative scatter correction (MSC). A principal component analysis was carried out on 

spectral data for calculating the Mahalanobis distance H, and samples with H > 3 were 

considered spectral outliers and eliminated from further investigations (Mark and Tunnell, 

1985). Calibration models deriving reference values from absorbance spectra were built using 

modified partial least square regression (mPLS): the mPLS regression reduces the spectral 

data to a few orthogonal combinations (or factors) of absorbance that account for most 

spectral information and relate to reference values, cross validation being recommended to 

estimate the optimal number of factors in order to avoid overfitting (Shenk and Westerhaus, 

1991a, 1991b). Cross validation was performed by dividing the sample set into six subsets, 

five being used for developing the model and one for prediction, the procedure being 

performed six times to use all samples for both model development and prediction. The 

residuals of the six predictions were pooled to calculate the standard error of cross validation 

(SECV) and the corresponding coefficient of determination Q² (i.e. cross-validated coefficient 

of determination between predicted and measured values). Calibration outliers (i.e. with 

residual > 2.5 times SECV) were removed and another cross validation was performed, the 

procedure being carried out twice. The number of factors after which final SECV no longer 

decreased meaningfully determined the optimal number of factors of the model (Bjørsvik and 

Martens, 2001). The cross validation was appreciated by SECV, Q² and RPD (ratio of 

standard deviation to SECV; the meaning of the abbreviation varies with authors). Then, all 

remaining samples (i.e. outliers being removed) were used to calculate the final calibration 

model, which was evaluated by its standard error of calibration (SEC) and corresponding R² 

(coefficient of determination).  

The main indicators used in this study to judge of the goodness of the results were: (1) Q², 

which is a measure of the goodness of fit of the cross validation, before the elimination of 

calibration outliers; (2) R², which is the coefficient of determination of the calibration model, 

once calibration outliers have been eliminated – both Q² and R² represent the predictive 
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quality of the model – and (3) RPD, which represents the predictive quality of the model 

through the standardization of the prediction error (SECV) against the variability of reference 

data. 

 

Statistical analyses  

To compare the capacity of NIR spectra vs. soil organic and biological variables to predict 

plant growth potential and time since corralling, partial least square (PLS) regressions (see 

Carrascal et al., 2008, for an insight into the test and its applications) and mPLS regressions 

were applied on both data sets (NIR absorbances vs. six soil variables). The mPLS regressions 

were processed with WinISI III-v.1.61 software (see sub-chapter on NIRS analyses) and PLS 

regressions were performed using the XLSTAT 2008 software (Addinsoft™).  

 

Results 

The effect of corralling on soil properties was analyzed in Freschet et al. (2008). In short, soil 

organic matter, microbial activities and plant growth decreased exponentially with an increase 

in time since corralling, with duration and magnitude of the effect depending on the initial 

input of organic matter. 

 

NIRS prediction of soil properties (Table 1) 

The proportion of spectral outliers depended on the mathematical pre-treatment and 

represented 3% of the sample set in general (except in the absence of pre-treatment: 4.5%). 

The proportion of calibration outliers ranged from 10 to 20%, in general. The mathematical 

pre-treatment allowing the best calibration depended on the studied property (e.g. no pre-

treatment for Ctot and Ntot, SNVD14 for N-NO3 and Cmic).  

According to the soil property, the best cross validation yielded Q² values that ranged from 

0.79 to 0.92, SECV from 24 to 85% of the mean, and RPD from 2.2 to 3.4. Best cross 

validations were very accurate for Ctot and Ntot (Q² = 0.90-0.92, SECV = 24-26%, RPD = 3.1-

3.4), accurate for N-NO3, C-CO2 and Cmic (Q² = 0.81-0.86, SECV = 25-41%, RPD = 2.3-2.6), 

and acceptable for N-N2O (Q² = 0.79, SECV = 85%, RPD = 2.2). After discarding calibration 

outliers, best calibrations always yielded R²  0.86 and SEC  35% of the mean, and even 

R²  0.93, except for Cmic, and SEC  22%, except for N-N2O. 
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NIRS prediction of soil fertility and management history (Table 1) 

Soil fertility was assessed by millet growth for all 67 samples, from which 3% in general were 

spectral outliers (but 4.5% in the absence of pre-treatment), and 8 to 23% calibration outliers 

depending on the pre-treatment. The best calibration was achieved with SNV14.  

Time since corralling was studied for cultivated plots only, which represented 57 samples, 

including those without corralling in order to increase the size of the sample set. The 12 

cultivated plots without corralling were considered as plots where corralling had occurred a 

long time ago and was not detectable anymore through soil analyses. To estimate the period 

after which corralling effect was not detectable anymore, several values of time since 

corralling were tested for cultivated plots without corralling. The value that maximized 

spectrum fitting to time since corralling over the population of 57 cultivated plots was 

considered to represent the average period after which corralling was not detectable anymore. 

This period was found to be 15 years. Cross validation and calibration were subsequently 

performed considering that cultivated plots without corralling had been corralled 15 years 

ago. The proportion of spectral outliers was 3.5% and that of calibration outliers ranged from 

5 to 18%. The best calibration was achieved with SNVD24. For both soil fertility and time 

since corralling, best calibrations were reasonably accurate (Q² = 0.78, R² = 0.89, SECV = 35-

41%, SEC = 25-29%, RPD = 2.1-2.2; Figures 1 and 2). 

 

Prediction of soil fertility and management history using NIR spectra vs. soil properties 

Cross validation and calibration of millet growth were similarly accurate when performing 

PLS regression using NIR spectra and soil properties (Ctot, Ntot, Cmic, etc.): 0.69 vs. 0.66 for 

Q² and 0.76 vs. 0.78 for R², respectively (Figure 3). Performing mPLS regression yielded 

much more accurate cross validation and calibration using NIR spectra than using soil 

properties: 0.78 vs. 0.37 for Q² and 0.89 vs. 0.47 for R², respectively (data not shown). As for 

NIRS variables and mPLS regression (see above), several values of time since corralling were 

tested for cultivated plots without corralling for NIRS and soil variables, using PLS 

regression. For both NIRS and soil variables, the period that yielded the best results when 

cross validating and calibrating against time since corralling was 10 years and thus used as 

such for cultivated plots without corralling. When performing PLS regression, time since 

corralling was much less accurately cross validated and less accurately calibrated using NIR 

spectra than using soil properties: 0.15 vs. 0.50 for Q² and 0.42 vs. 0.54 for R², respectively 

(Figure 4). On the contrary, performing similar mPLS regression yielded much more accurate 

cross validation and calibration of time since corralling using NIR spectra than using soil 
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variables: 0.78 vs. 0.37 for Q² and 0.89 vs. 0.37 for R², respectively (data not shown). On the 

whole, NIRS and mPLS clearly yielded the most accurate cross validation and calibration of 

millet growth potential and time since corralling. 

 

Discussion and conclusion 

NIRS predictive potential 

All studied soil properties were accurately cross validated and calibrated using NIRS and 

mPLS, with Q² values ranging from 0.79 to 0.92. Accurate NIRS predictions of Ctot and Ntot 

have been extensively reported (e.g. Al-Abbas et al., 1972, and Morra et al., 1991), especially 

for soil sample sets having rather homogeneous texture, where Q²  0.90 has frequently been 

observed (Brunet et al., 2007), as in the present study. Accurate NIRS predictions of soil basal 

respiration (Palmborg and Nordgren, 1993; Chang et al., 2001; Terhoeven-Urselmans et al., 

2008) and potential denitrification (Schimann et al., 2007) have also been reported, with 

0.82  Q²  0.94 ( 0.87 in general) and 2.0  RPD  2.3, which is consistent with the results 

of the present study. By contrast, the present results regarding NIRS prediction of microbial 

biomass C were more accurate than most published ones, which often displayed Q²  0.6-0.7 

(Chang et al., 2001; Ludwig et al., 2002; Coûteaux et al., 2003; Terhoeven-Urselmans et al., 

2006, 2008). Previous NIRS predictions of soil NO3 have reported Q² < 0.55 and often < 0.4 

(Malley et al., 2004; Viscarra Rossel et al., 2006), which contrasts strongly with the present 

study, possibly because it involved a rather homogeneous sample set. 

The present study demonstrated that, beyond allowing the characterization of “intrinsic” soil 

properties such as Ctot or even Cmic, NIR spectra include information that involves numerous 

factors, such as plant growth potential or land management. Crop yield prediction using NIRS 

has rarely been reported in the literature. Van Groenigen et al. (2003) failed to predict rice 

yield and total vegetal biomass using NIRS (R² < 0.1), and argued that the small range of 

variability within the field they studied might be the limiting factor in predicting these 

parameters. By contrast, Terhoeven-Urselmans et al. (2008) achieved accurate predictions of 

winter cereal yields on a range of soils: Q² = 0.77-0.90, RPD = 2.1-2.4 (depending on sample 

preparation), which is in line with present results. Using topsoil NIR spectra for predicting 

land management, as was done satisfactorily in the present study (Q² = 0.78, R² = 0.89), has 

been mentioned by Reeves et al. (1999) but they obtained poor cross validations for tillage 

(plow tillage vs. no-till) and N fertilization rate (Q²  0.52, R²  0.67). For the same sample 

set, Reeves et al. (2001) obtained much better results in the mid-infrared range (i.e. 2500-
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25,000 nm) for tillage (Q² = 0.73-0.86; R² = 0.87), but not for N fertilization rate (Q² = 0.55, 

R² = 0.69). 

 

Relevance of the use of NIRS in ecosystem studies 

The promising perspectives offered by NIRS predictions of land management variables led to 

further test the robustness of NIR spectra. This was done by comparing it to the information 

contained in selected variables measured by routine laboratory analyses. It seems clear from 

these analyses that information contained in NIR spectra could be more informative than the 

routinely measured variables. The six variables chosen to define the soils were undoubtedly 

very informative but far from comprehensive in depicting soil fertility or management history. 

The NIR spectra, without being exhaustive either, seemed nevertheless better in this regard, 

their predictive value being seemingly robust despite integrating a range of varied 

phenomena.  

Considering these results, it may be argued that the PLS regression used on soil variables may 

have been less powerful than the whole mPLS procedure used on spectral data. Indeed, if both 

methods allowed outlier elimination through principal component analysis and distance 

calculation, only the latter involved noise reduction and optimisation of spectral data through 

mathematical pre-treatments (derivation, etc.). The PLS regression gave better predictions 

than the mPLS regression when using soil variables, but a slight bias might have been 

introduced, coming possibly from the lower efficiency of mPLS regression on small data sets. 

Nevertheless, these statistical tests could be considered the most appropriate tools for 

providing the fairest possible comparisons.  

 

Perspectives in the use of infrared spectroscopy 

The primary advantage of NIRS is to allow comprehensive sampling schemes and high levels 

of replication by greatly improving the cost effectiveness of analyses. Its main benefit, as 

underlined by Foley et al. (1998), may however rest on its use as a complementary tool to 

explore areas hardly reachable with conventional means. In the present study, the use of NIRS 

permits the analysis of spectral properties of soils, which are related to chemical or biological 

soil properties that may not have been revealed by conventional analyses, and which have an 

influence on the parameter to be predicted (here millet yield or soil use). Besides, it should be 

remembered that reductionist approaches, although crucial in the understanding of process 

determinants and mechanisms, are often guided by the impossibility of directly observing 

integrative parameters. For instance, the choice of soil variables that were the focus the initial 
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study of Freschet et al. (2008) was partly guided by the goal of obtaining an integrative 

picture of soil ‘health’, ‘quality’, or ‘fertility’. This example, among many others, stresses the 

fact that the overall aim of many studies rests in the understanding of how the different parts 

of a system are connected to work as a whole. In this respect, NIRS may be a powerful 

integrative tool in many agronomical or ecological studies. Exciting perspectives are still 

wide open for new ideas and concepts, hopefully facilitating a future large-scale use of NIRS 

in ecosystem studies.  

The benefit of using of infrared spectroscopy in ecosystem studies can be further increased by 

combining it with geographic information system (GIS) techniques. Indeed, combining GIS 

and statistical methods with infrared spectroscopy assessments allows large scale mapping of 

ecosystem properties with good accuracy (Odlare et al., 2005; Wetterlind et al., 2008).  

At present, great benefit would be derived from expanding the soil spectral library, notably by 

scanning previously characterized state and national soil archives (Brown et al., 2006). Using 

this data for NIRS calibration would allow extensive soil properties assessments, precision 

soil mapping and eventually soil properties monitoring through time. This approach should 

not be restrained to the soil compartment only. Its use is theoretically possible on components 

as diverse as soil microbes, plant litter or living plants. In the present context of rapid climatic 

and human-induced changes worldwide (Millenium Ecosystem Assessment, 2005), the 

potential of infrared spectroscopy to monitor changes in soil and plant properties through time 

and on large scales is of particular interest and needs to be thoroughly considered.  
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Table 1. Best results (depending on mathematical pre-treatment) for cross validation and 

calibration of soil total C (Ctot) and N (Ntot), potential respiration (C-CO2) and denitrification 

(N-N2O), nitrate-N (N-NO3), microbial biomass C (Cmic), vegetal growth potential of millet, 

and time since corralling, using NIRS, outliers removed. 

 

      Cross validation  Calibration 

Variable Pre- N Mean SD  SECV Q² RPD  SEC R² 

(unit) treatment     (absol. (%)    (absol. (%)  

      value)     value)   

              
Ctot (mg g

-1
 soil) none 52 7.05 5.78  1.68 24 0.92 3.4  1.28 18 0.95 

Ntot (mg g
-1

 soil) none 55 0.68 0.54  0.18 26 0.90 3.1  0.14 21 0.93 

N-NO3 (μg g
-1

 soil) SNVD14 56 32.08 30.25  13.07 41 0.81 2.3  6.50 20 0.95 

C-CO2 (µg g
-1

 soil d
-1

) MSC25 53 5.51 4.36  1.66 30 0.86 2.6  0.55 10 0.98 

N-N2O (µg g
-1

 soil d
-1

) SNVD24 56 3.35 6.14  2.85 85 0.79 2.2  1.16 35 0.96 

Cmic (µg C g
-1

 soil) SNVD14 58 95.71 55.92  23.84 25 0.82 2.3  21.18 22 0.86 

              
Vegetal growth (g) SNV14 60 0.33 0.29  0.14 41 0.78 2.2  0.10 29 0.89 

Time since 

corralling (yr) 
SNVD24 46 7.04 5.25  2.49 35 0.78 2.1  1.75 25 0.89 

               

N is the number of samples after outlier elimination. 

SD is the standard deviation. 

SECV and SEC are standard error of cross validation and of calibration, respectively; they are expressed as 

absolute values or as proportions of the mean. 

Q² and R² are coefficients of determination for cross validation and calibration, respectively. 

RPD is the ratio of standard deviation to SECV. 

SNVD and SNV are standard normal variate transforms with and without detrend, MSC is multiplicative scatter 

correction, 14 is first derivatization with 4-point gap and smoothing, 24 and 25 are second derivatizations with 4- 

or 5-point gap and smoothing, respectively. 
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Figure 1. Comparison of plant growth potential as measured vs. as predicted by mPLS 

regression on NIR soil spectra, outliers removed. 

 

 

 

Figure 2. Comparison of time since corralling as reported by farmers vs. as predicted by 

mPLS regression on NIR soil spectra, outliers removed. 

 

Measured values of 

plant growth potential (g)

P
re

d
ic

te
d

 v
a

lu
e

s
 o

f 

p
la

n
t 

g
ro

w
th

 p
o

te
n

ti
a

l 
(g

)

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

R2 =0.89 

Q2 =0.78 

Reported values of 

time since corralling (yr)

P
re

d
ic

te
d

 v
a

lu
e

s
 o

f 

ti
m

e
 s

in
c

e
 c

o
rr

a
ll
in

g
 (

y
r)

0

5

10

15

20

0 5 10 15 20

R2 =0.89 

Q2 =0.78 



 17 

Figure 3. Comparison of plant growth potential as measured vs. as predicted by PLS 

regression on NIR soil spectra (left) or on soil organic and biological variables (right), outliers 

removed. 

 

 

 

 

Figure 4. Comparison of time since corralling as reported by farmers vs. as predicted by PLS 

regression on NIR soil spectra (left) or on soil organic and biological variables (right), outliers 

removed. 
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