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Abstract 

Nowadays near and mid-infrared reflectance (NIR, mid-IR) spectroscopy are recognized 

useful approaches for quantifying soil properties cost and time effectively. This work aimed at 

comparing predictions of soil carbon (C) and nitrogen (N) contents, C/N ratio, substrate 

induced respiration (SIR) and denitrifying enzyme activity (DEA) using NIR and mid-IR 

spectroscopy over a diverse set of 360 Malagasy topsoils. Partial least square regression was 

used for fitting NIR and mid-IR spectra to conventional data through procedures of 

calibration either global (one prediction model for all samples) or LOCAL (one prediction 

model per sample). Prediction accuracy was assessed according to validation r², standard error 

of prediction (SEP) in proportion of the mean, and ratio of standard deviation to SEP (RPD). 

Using both NIR and mid-IR spectroscopy, global calibration over the whole sample set 

yielded predictions that were excellent for C and N (r² > 0.9, SEP < 20%, RPD  3), good for 

C/N, acceptable for SIR, but poor for DEA. LOCAL calibration improved C/N and SIR 

predictions with both NIR and mid-IR spectroscopy, while DEA prediction became 

acceptable with NIR spectroscopy only. Additional improvement was achieved when LOCAL 

calibration was carried out over the fine-textured subset, especially for SIR (r² > 0.9, 

SEP < 20%, RPD > 3). By contrast, LOCAL calibration over the coarse-textured subset was 

not clearly useful for improving prediction accuracy. NIR outperformed mid-IR spectroscopy 

whatever the variable, the calibration procedure and the sample set (except for SIR over the 

coarse-textured subset, where both performed similarly), suggesting its possible superiority 

for tropical soils.  
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Introduction 

Soil organic matter (SOM) is now well-recognized as a major factor controlling the capacity 

of soil resources to deliver agricultural and environmental services and sustain human 

societies.
1
 Soil organic matter is an important component of soil fertility as it determines 

important soil functions such as nutrient mineralization or water retention. Recent concern 

about worldwide climate change has also increased interest for SOM and its role in the global 

carbon (C) and nitrogen (N) budgets through C sequestration and greenhouse gases (GHG) 

emissions. Thus, in agricultural systems, optimization of C and N cycling through SOM 

management can improve soil fertility and yields while reducing negative environmental 

impact. 

Soil organic status as defined by the C and N concentrations has often been considered a 

reliable indicator for soil quality.
2
 However, as soil microbiological properties are considered 

more sensitive than chemical and physical properties to changes in management and 

environmental conditions,
3
 microbial-based indicators have often been used to directly 

account for the functional status of the soil.
4,5

 Substrate-induced respiration (SIR) is a widely 

used physiological method for indirect measurement of soil microbial biomass.
6,7

 When easily 

degradable substrate is added to soil an immediate increase in respiration rate (CO2 emission) 

is obtained, the size of which is assumed to be proportional to the size of microbial biomass. 

Denitrifying enzyme activity (DEA, or potential denitrification) reflects the size of the pool of 

functionally active denitrifying enzymes in the soil. Denitrification is a major mechanism of 

loss of fertilizer N resulting in decreased efficiency of fertilizer use; it is also an important 

process of nitrous oxide (N2O) emission from the soil to the atmosphere.8 Measured in the 

laboratory under optimal conditions, the DEA assay reflects the enzymatic potential of the 

soil denitrifying bacteria to reduce nitrates (NO3
-
) to gaseous di-nitrogen (N2) or to nitrous 

oxide (N2O) when acetylene is added.
9
 Beyond indications on soil functional status, SIR and 

DEA also provide information on the potential of soils to emit CO2 and N2O, respectively, 

which are important GHG linked to climate change.
10 

The usefulness of near infrared reflectance (NIR) spectroscopy for determining total C and N 

contents is well established now;
11-13

 but its relevance has also been reported for 

characterizing soil biological properties such as microbial biomass,
11,14

 respiration rates,
15,16
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potential nitrification,
14,17

 and denitrification.
14,16

 Indeed, NIR spectroscopy is a physical non-

destructive, rapid, reproducible and low-cost method that characterizes materials according to 

their reflectance in the wavelength range between 800 and 2500 nm. It relies on calibration, 

which is a multivariate regression procedure that expresses a given property, determined 

using a conventional method, as a function of absorbance at all or selected wavelengths of the 

NIR region. The calibration equation can then be used to predict that property on new samples 

from their NIR spectra only, the acquisition of which is time- and cost-effective (< 1 min per 

sample, no consumables required). 

Mid-infrared reflectance (mid-IR) spectroscopy is a similar approach but based on sample 

reflectance in the wavelength range between 2500 and 25,000 nm (i.e. 4000 and 400 cm
-1

, 

respectively). In a review, Reeves
18

 compared NIR and mid-IR technologies for soil C 

analysis and addressed their specificities as regards instrumentation, conditions of use (e.g. 

sample size and moisture) and even commercial support. Though less extensively and more 

recently used (for quantitative purposes) than NIR, mid-IR spectroscopy has similarly proven 

relevant for determining total soil C and N,
19,20

 microbial biomass and mineralizable N.
20,21

 

To date, most studies comparing both spectral domains have reported more accurate 

predictions of soil properties with mid-IR than with NIR spectroscopy (e.g. for soil C and 

N),
22-26

 though the difference was sometimes slight. Superior performance of mid-IR 

spectroscopy has been reported to likely reflect higher information quality of on soil organic 

matter in the mid-IR spectral region.
27

 Indeed, comparison between soil NIR and mid-IR 

spectra clearly shows that mid-IR spectra consist of many more defined peaks that NIR ones, 

the latter consisting of many overlapping combination and overtone peaks from the mid-IR 

region.
18,24

 However, the published studies that compared predictions of soil properties using 

NIR and mid-IR spectroscopy often concerned rather homogeneous sample sets (e.g. 

collected in small areas or representing narrow textural ranges) and originated from temperate 

regions. It is worth noting that for Ferralsols originating from two distant Brazilian sites, 

Madari et al.
28

 reported more accurate predictions using NIR than mid-IR spectroscopy for 

total C, while total N was slightly more accurately predicted by mid-IR spectroscopy. 

Considering soils from subtropical China, Shao and He
29

 also reported that NIR outperformed 

mid-IR spectroscopy for predicting available N (but not available phosphorus and potassium; 

C was not studied). 

Due to contrasted climatic conditions, Madagascar provides the major soil types used for food 

production in the tropics. The objective of the present study was to compare predictions using 
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NIR and mid-IR spectroscopy for total C and N, C/N ratio, SIR and DEA over a wide range 

of Malagasy soils. 

 

Materials and methods 

Soil collection 

Soils were collected in order to obtain a sample set representative of the main soil types used 

for agriculture in Madagascar; the soil types under concern cover ca. 95% of the surface area 

of Madagascar.
30

 The studied samples originated from eight sites from four regions with 

contrasted pedoclimatic conditions: the central Highlands (near the city of Antsirabe; sites 1, 

3 and 5 in Table 1), which are under highland tropical climate; the eastern subequatorial coast 

(Manakara; site 2); the sub-arid Southwest (Tulear; sites 4 and 8); and the Northwest lowlands 

around the Alaotra lake under mid-altitude tropical climate (sites 6 and 7). The soil sample set 

also offered a wide range of texture, from clayey to sandy. 

((Table 1)) 

Soil samples were collected in the experimental designs of the Tany sy Fampandrosoana 

(TAFA) NGO under cultivated systems with the local fallow serving as a control. Some soils 

were also sampled in adjacent farmer fields, especially when no fallow was available close to 

the experimental design. The agricultural systems consisted of rainfed rice (Oryza sativa L.) 

as the main crop in all sites, except at Tulear, where rainfalls are not sufficient for upland rice 

cultivation, and where maize (Zea mays L.) was cultivated. These crops were cultivated 

traditionally by local farmers without fertilization and after hand tillage. Agricultural practices 

in the experimental design comprised conventional tillage (CT) and direct seeding mulch-

based cropping systems (DMC). In DMC systems the main crop was usually associated with a 

legume cover crop except at Antsirabe-Andranomanelatra, where DMC systems were 

conducted with or without legume association. Agricultural systems had been established for 

at least 5 years and received annual application of cattle manure with or without mineral 

(NPK) fertilizers, depending on the sub-treatment. Moreover, depending on the site and main 

treatment (i.e. CT, DMC, farmer plot, and fallow), each sub-treatment was represented by one 

to four plots (replicates; Table 1). According to sub-treatment and plot size, three or six 

composite samples were collected per plot, yielding a total set of 360 samples. Each 

composite soil sample was made of ten soil cores collected at 0-5 cm depth, using a 5 cm 

diameter core sampler. On the whole, the sample set studied was thus heterogeneous but 

included eight subsets that were fairly homogeneous from mineralogical and textural 
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viewpoints. Soil samples were air dried, sieved at 2 mm, and an aliquot was finely ground to 

pass a 0.2 mm mesh sieve. 

 

Conventional analyses 

Conventional determinations of soil total carbon (C) and nitrogen (N) contents were carried 

out on finely ground (< 0.2 mm) and oven-dried (at 40°C during 24 h) aliquots by dry 

combustion using an Elemental Analyzer CHN Carlo Erba NA 2000 (Milan, Italy).  

Substrate induced respiration (SIR) was assayed using an adaptation of the method proposed 

by Anderson and Domsch.
6
 Twenty g of dry soil (< 2 mm) were placed into a 150 ml airtight 

vial. A solution containing 1.5 mg of C-glucose g
-1

 soil was added to ensure 60% of the soil 

water holding capacity. The flasks were then incubated at 25°C and the headspace volume 

was sampled after 2 and 4 hrs and analyzed for carbon dioxide (CO2) using a gas micro 

chromatograph (Varian 3900-GC, Varian Chromatography Group, Walnut Creek, CA, USA). 

SIR was expressed in µg C-CO2 h
-1

 g
-1

 dry soil. The CO2 emissions in the first hours after the 

addition of readily available substrate correspond to the maximal initial respiratory response 

of the microbial populations without significant microbial growth, and serve as a 

physiological estimate of the initial microbial biomass in soil.
6,7

 

Similarly, the denitrifying enzyme activity (DEA) test measures the initial activity of 

denitrifying enzymes from data on N2O accumulated over a short duration just after optimal 

conditions for denitrification have been achieved, i.e. without growth of denitrifying 

populations, as described by Lensi et al.
34 

Briefly, 30 g of dry soil (< 2 mm) were put in a 

150 ml airtight vial. The atmosphere of the vial was evacuated and replaced by a 90:10 

helium-acetylene mixture to provide anaerobic conditions and inhibition of the N2O reductase 

activity. Before incubation at 28°C, the soil was humidified at 100% of its water holding 

capacity with a nutritive solution containing potassium nitrate (0.2 mg N g
-1

 soil), glucose (1 

mg C g
-1

 soil) and glutamic acid (1 mg C g
-1

 soil). The N2O efflux was measured in the 

headspace atmosphere of the vials using a gas chromatograph equipped with an electron 

capture detector (Varian Star 3400 CX, Varian Chromatography Group, Walnut Creek, CA, 

USA). DEA was expressed in µg N-N2O h
-1

 g
-1

 dry soil. 

External soil samples serving as standards were included in each analytical series to estimate 

the reproducibility and accuracy of the measurements. Mean coefficient of variation (i.e. ratio 

of standard deviation to mean) was 7.3% for SIR and 10.6% for DEA. 
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Spectral analyses 

Sample reflectance in the NIR range was measured between 1100 and 2500 nm (i.e. 9091 and 

4000 cm
-1

, respectively) at 2 nm intervals with a Foss NIRSystems 5000 spectrophotometer 

(Laurel, MD, USA). The scan was performed on a 42 mm² area of a 5 g subsample (0.2 mm 

ground, oven-dried at 40°C) packed in a ring cup. Each spectrum, averaged from 32 co-added 

scans, was recorded as absorbance (log [1/reflectance]). Absorbance bands being much wider 

than 2 nm in general and recorded spectra thus including redundant information, spectral data 

sets were reduced to condense information and facilitate computational calculations
13

. This 

was done by keeping the first out of four adjacent spectral points, as proposed by the WinISI 

software, yielding 173 data points per spectrum. 

Sample reflectance in the mid-IR range was measured between 4000 and 400 cm
-1

 (i.e. 2500 

and 25,000 nm, respectively) at 3.86 cm
-1

 intervals with a Nicolet 6700 FT-IR 

spectrophotometer (Thermo Fischer Scientific, Madison, WI, USA). The scan was performed 

on a 12.6 mm² area of a 0.5 g subsample (0.2 mm ground, oven-dried at 40°C) packed in a 

well of an 18 well plate. As for NIRS, spectra resulted from the averaging of 32 co-added 

scans, were recorded as absorbance, and were condensed by keeping the first out of four 

adjacent spectral points. In addition, both spectrum ends were discarded due to noise, and the 

range 3961.14-439.70 cm
-1

 only was considered, yielding 229 data points per spectrum. 

All spectral data analyses were conducted using the WinISI III-v.1.61 software (Infrasoft 

International, LCC, State College, PA, USA). 

Several mathematical pretreatments were evaluated for spectrum pre-processing in order to 

reduce baseline variations, enhance spectral features, reduce particle-size effect, remove 

linear or curvilinear trends of each spectrum, or remove additive or multiplicative signal 

effects:
22,35,36,37

 no derivation (denoted 01), first- or second-order derivation with 4, 5 or 

10 point gap and smoothing (denoted 14, 15, 110, 24, 25, and 210, respectively), alone 

(denoted None) or in conjunction with standard normal variate transform (SNV), detrending 

(D), both SNV and detrending (SNVD), or multiplicative scatter correction (MSC).  

A principal component analysis was carried out on the spectral data of all samples for 

calculating the Mahalanobis distance H, and samples with H > 3 were considered spectral 

outliers and eliminated from further investigations.
38

 The number of principal components 

used was that accounting for 99.9% of the total variance, and varied depending on the spectral 

range and the pretreatment (from 5 to 10 in the NIR, from 20 to 35 in the mid-IR). The 

sample set was then divided into a calibration subset, which included 150 samples, and a 

remaining validation subset. To optimize predictions on unknown samples originating from 
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the studied sites, the calibration subset was selected by the WinISI software to include the 

most representative samples of the set: based on H distance between all pairs of spectra, an 

algorithm identified the spectrum that had the most neighbouring spectra closer than a 

minimal distance, retained that spectrum and discarded its neighbours; the process was 

continued until no samples remained with neighbours closer than the minimal distance, which 

was calculated by the software so that the calibration subset included 150 samples.
39

, 

Validation was therefore external but not independent, which was not considered a problem 

because the objective was to compare the performances of NIR and mid-IR spectroscopy, not 

to maximize calibration robustness. Calibration models deriving reference values (e.g. soil C 

or N content) from absorbance spectra were built using partial least square (PLS) regression: 

PLS reduces the spectral data to a few orthogonal combinations of absorbance, called factors, 

that account for most spectral information and covary with reference values; cross validation 

being recommended for estimating the optimal number of factors in order to avoid 

overfitting.
39,40

 Cross validation was performed by dividing the calibration subset into four 

groups, all but one being used for developing the model and one for prediction, the procedure 

being performed four times to use all samples for both model development and prediction. 

The residuals of all predictions were pooled to calculate the standard error of cross validation 

(SECV). Calibration outliers (i.e. with residual > 2.5 times SECV) were removed and another 

cross validation was performed, the procedure being carried twice, as recommended by 

WinISI. The number of factors after which final SECV no longer decreased meaningfully 

determined the optimal number of factors of the model. The model performance was 

evaluated on the validation subset (which had not been used for model development), 

according to standard error of prediction between predicted and measured values (SEP), 

corresponding coefficient of determination (r²), and RPD (ratio of standard deviation to SEP); 

SEP was expressed in absolute value (e.g. g kg
-1

 for soil C) and as proportion of mean 

reference value over the validation subset (in %). According to Chang et al.,
12

 prediction 

models with RPD > 2 were considered accurate. 

The above-described calibration procedure has been called “global” because a unique model 

is used to predict a given property for all samples of the validation subset.
41

 In addition, 

LOCAL calibration was also carried out.
41

 In that procedure, proposed in the WinISI 

software, a specific calibration equation is built for each sample of the validation subset, using 

samples selected from the calibration subset according to their similarity with that sample. 

Similarity is assessed by correlation coefficient between the spectrum of the sample to be 

characterized and those of the calibration subset samples. The number of calibration samples 
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was varied from 25 to 35 in steps of 5 in order to determine its optimum, which was assessed 

according to r², SEP and RPD. The optimal number of factors used in PLS regression was not 

determined through cross validation, which is not appropriate for LOCAL calibration.
41

 

Instead, each prediction was calculated as the weighed average of the predicted values 

generated with four to 15 PLS factors, each weight being calculated as the inverse of the 

product of root mean square (RMS) of X-residuals (i.e. difference between actual spectrum 

and spectrum approximated using the considered number of PLS factors) and RMS of 

regression coefficients.
 41

 

In order to assess the effect of set homogeneity on model performance, the total set was 

divided into a fine-textured set (192 samples with clay > 28%; i.e. sites 1 to 5) and a coarse-

textured set (168 samples with clay < 28%; i.e. sites 6 to 8). Procedures for calibration 

(involving cross validation) and external validation were similar for the textural sets than for 

the total set, except that calibration subsets included 100 samples instead of 150. 

 

Results 

Conventional data 

Table 2 presents statistics for the measured soil properties over the total set, fine-textured 

soils (sites 1 to 5), coarse-textured soils (sites 6 to 8), and for each site separately.  

((Table 2)) 

Lowest C and N contents were observed in coarse-textured soils (sites 6 and 8), and highest 

values in the most clayey soil (site 1). The studied soil samples represented a quite wide range 

of C and N contents over the total set (from 6.4 to 59.1 g C kg
-1

 and from 0.75 to 4.67 g N kg
-

1
, respectively) but also within a site (see Table 2 for details). Even for site 3, which had the 

smallest sample size (n = 18), contrasted cultural practices resulted in a certain heterogeneity 

in soil properties (Table 1). When averaged per textural subset, the C and N contents were 

higher in fine- than in coarse-textured soils. The C-to-N ratio ranged from 6.9 to 14.8 with 

higher values in fine-textured soils. Substrate-induced respiration (SIR) varied from 0.3 to 

13.6 µg C-CO2 g
-1

 h
-1

,
 
and denitrifying enzyme activity (DEA) from values close to 0 to 

11.2 μg N-N2O g
-1

 h
-1

. The highest value of SIR was observed in a fine-textured soil (site 1) 

while DEA reached a maximum in a coarser-textured soil (site 6; Table 2). However, mean 

values for SIR or DEA did not differ significantly when samples were separated according to 

texture (Table 2). Over the total set, soil C and N contents were strongly correlated one to 

another (R
²
 = 0.96; p < 0.001; n = 360), but they correlated poorly with SIR and DEA 

(R² < 0.11; see Table 3 for details). Over the fine-textured set, C and N contents correlated 
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more closely though still weakly with DEA (R² = 0.40 and 0.43 respectively; p < 0.001; 

n = 192), but not with SIR (R
2
 = 0.03 and 0.05 respectively; p < 0.05; n = 192; Table 3). Over 

the coarse-textured set, most correlations between C or N and SIR or DEA were not 

significant (R² < 0.10; n = 168; Table 3). 

((Table 3)) 

 

Predictions of soil properties on the total sample set using global calibration 

Over the total set and using global calibration, the mathematical pretreatment that provided 

most accurate predictions with NIR spectroscopy was None 14, while most accurate 

predictions with mid-IR spectroscopy were achieved with SNV 01 for C, SIR and DEA, and 

with MSC for N and C/N (data not shown). With these pretreatments, the number of spectral 

outliers was 4 for NIR (i.e. ~1% of set size) and 0 or 1 for mid-IR ( 0.3%), depending on the 

variable considered. The number of calibration outliers ranged from 6 to 11 for NIR (i.e. 4-

8% of calibration subset) and from 7 to 13 for mid-IR (5-9%), in the range reported by studies 

that have mentioned this information.
13,27

 

As shown in Table 4, predictions of C and N using NIR and mid-IR spectroscopy were 

excellent using global calibration, and NIR outperformed mid-IR (r² = 0.93-0.97 vs. 0.92, 

SEP = 10-11% vs. 14-17%, RPD = 3.8-5.5 vs. 3.0-3.3, respectively). In addition, C was more 

accurately predicted than N using NIR spectroscopy (e.g. r² = 0.97 vs. 0.93), but this was less 

clear using mid-IR spectroscopy (e.g. r² = 0.92 vs. 0.92). The C/N ratio was accurately 

predicted too, though to a lesser extent, and NIR again outperformed mid-IR (e.g. r² = 0.83 vs. 

0.78). The prediction of SIR was less satisfactory: it remained fairly accurate using NIR but 

not using mid-IR (r² = 0.79 vs. 0.66, SEP = 24% vs. 31%, RPD = 2.2 vs. 1.6). By contrast, 

DEA was poorly predicted, with mid-IR especially (e.g. r² = 0.28). Figure 1 compares 

measured vs. predicted values of SIR with NIR and mid-IR spectroscopy using global 

calibration over the total set. 

((Table 4)) 

((Figure 1)) 

 

Predictions of soil properties on the total sample set using LOCAL calibration 

Over the total set and using LOCAL calibration, best predictions using NIR spectroscopy 

were achieved with pretreatment None 14 for C, N, C/N and DEA, but with None 01 for SIR; 

best predictions using mid-IR spectroscopy were always achieved with SNV 01 (data not 

shown). With these pretreatments, the number of spectral outliers was 3 or 4 for NIR (i.e. 
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~1% of set size), and was 1 for mid-IR (0.3%). No calibration outliers are identified in the 

calibration subset through LOCAL calibration as properties are predicted for each sample 

separately, using samples selected from the calibration subset according to their spectral 

proximity with that particular sample. 

Whatever the variable considered, LOCAL calibration improved predictions when compared 

with global calibration (Table 4): predictions of C and N using NIR and mid-IR spectroscopy, 

which were very accurate using global calibration, became even better (e.g. for NIR 

prediction of C yielded r² = 0.99, SEP = 6%, and RPD > 8); the prediction of C/N became 

excellent with NIR (r² = 0.92) and fairly accurate with mid-IR (r² = 0.84), as became also 

predictions of SIR with NIR and mid-IR (r² = 0.86 and 0.76, respectively); the prediction of 

DEA became acceptable with NIR (r² = 0.61, RPD = 1.5) but not with mid-IR (r² = 0.35, 

RPD = 1.3). The accuracy of predictions with both NIR and mid-IR decreased as follows: C > 

N > C/N > SIR > DEA. In addition, using LOCAL calibration over the total set still resulted 

in more accurate predictions using NIR than mid-IR. Figure 2 compares measured vs. 

predicted values of SIR with NIR and mid-IR spectroscopy using LOCAL calibration over the 

total set. 

((Figure 2)) 

Improvement upon LOCAL calibration was clearer with mid-IR than with NIR spectroscopy 

as regarded C (e.g. r² increased from 0.92 to 0.97 for mid-IR and from 0.97 to 0.99 for NIR); 

but the trend was opposite for N (e.g. r² increased from 0.92 to 0.94 for mid-IR and from 0.93 

to 0.97 for NIR), C/N and DEA (e.g. r² increased from 0.28 to 0.35 for mid-IR and from 0.41 

to 0.61 for NIR), while no clear trend could be seen for SIR. 

 

Predictions of soil biological properties on textural subsets using LOCAL calibration 

Attempts were made to improve prediction accuracy for SIR and DEA by increasing set 

homogeneity through textural distinction (< 28% vs. > 28% clay), again using LOCAL 

calibration (Table 5). This was not done for C, N and C/N, which were already predicted 

accurately using LOCAL calibration without this distinction. For NIR, most useful 

pretreatments for coarse- and fine-textured subsets were SNV 01 and None 01 for SIR, and 

SNV 14 and SNV 01 for DEA, respectively; for mid-IR, None 01 was the most useful 

pretreatment for SIR and DEA in both textural subsets (data not shown). With these 

pretreatments, the number of spectral outliers in the coarse-textured subset was 5 for NIR (i.e. 

3% of subset size) and 0 or 1 for mid-IR ( 0.6%); in the fine-textured subset, it ranged from 
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0 to 2 for NIR and mid-IR ( 1%). There are no calibration outliers in LOCAL calibration 

(see previous section). 

((Table 5)) 

Both variables were more accurately predicted over the fine-textured subset than over the 

total set: predictions of SIR using NIR and mid-IR spectroscopy became excellent (r² = 0.93-

0.95 vs. 0.76-0.86, SEP = 15-18% vs. 20-24% of the mean, RPD = 3.4-4.3 vs. 2.0-2.5, 

respectively); DEA prediction became fairly accurate with NIR (r² = 0.74 vs. 0.61, RPD = 1.9 

vs. 1.5) but not with mid-IR (r² = 0.45, RPD = 1.3). 

By contrast, predictions were not improved over the coarse-textured subset using NIR 

spectroscopy: for SIR they were worse than over the total set (e.g. r² = 0.77 vs. 0.86), and for 

DEA they were similar than over the total set. Regarding mid-IR, SIR prediction tended to be 

more accurate over the coarse-textured subset than over the total set (e.g. r² = 0.80 vs. 0.76), 

but this was less clear for DEA. As a consequence, predictions of SIR using NIR and mid-IR 

had similar accuracy over the coarse-textured subset. 

Predictions were more accurate over the fine- than over the coarse-textured subset, especially 

for SIR and/or using NIR. Moreover, in both textural subsets SIR remained more accurately 

predicted than DEA using a given approach (NIR or mid-IR spectroscopy), and on the whole, 

NIR again outperformed mid-IR (except for SIR on the coarse-textured set as mentioned 

above). 

Figure 3 compares measured vs. predicted values of SIR with NIR and mid-IR spectroscopy 

using LOCAL calibration over each textural subset. 

((Figure 3)) 

 

Discussion 

Accuracy of predictions of soil properties with NIR and mid-IR spectroscopy using 

global calibration 

Using global calibration and PLS regression, predictions of soil C and N with NIR and mid-

IR spectroscopy were excellent, as reported in reviews by Malley et al.
42

 for NIR and by 

Viscarra Rossel et al.
24

 for NIR and mid-IR. It is worth noting that the set studied here was 

heterogeneous geographically and texturally while accurate predictions reported in the 

literature have often concerned more homogeneous sample sets (e.g. originating from one 

site); knowing that the accuracy of prediction models tends to increase with set homogeneity
43

 

even though minimum variability is required for calibration.
44

 Using global calibration, soil 

C/N was fairly accurately predicted, and this is consistent with literature data, which are much 
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less numerous than regarding C and N contents: for example, with NIR, validation r², SEP 

and RPD of 0.88, 12% and 3.1, respectively, were reported by Chang and Laird
45

 for a set 

including mixtures of five Midwest USA topsoils with limestone and organic materials, and 

values of 0.88, 11% and 3.5, respectively, were reported by Barthès et al.
46

 for a range of 

sandy tropical topsoils (vs. 0.83, 7% and 2.4 in the present study, respectively); with mid-IR, 

cross-validation R², SECV and RPD of 0.70, 6% and 1.8 respectively (vs. 0.78, 8% and 2.1 

for validation in the present study), were reported by McCarty and Reeves
23

 for a sample set 

originating from a 20 ha field, while cross-validation R² of 0.96 was reported by Ludwig et 

al.
21

 for a set of topsoil and litter samples originating from 16 sites in north-western Europe. 

Soil microbial activities were less accurately predicted that C, N and C/N. Nevertheless, the 

prediction of SIR was satisfactory with NIR (validation r² = 0.79, SEP = 24%, RPD = 2.2). 

This agrees with literature results regarding the prediction of soil respiration, which mostly 

involved VisNIR (visible and NIR, i.e. 400-2500 nm): Chodak et al.
47

 and Schimann et al.
16

 

achieved acceptably accurate predictions of SIR on smaller sets (calibration R² = 0.86 and 

0.73, SECV = 39-40% and RPD = 1.6-1.7, for 80-100 forest topsoils from different sites in 

Poland, and for two reforestation chronosequences in French Guiana, respectively); Palmborg 

and Nordgren
15

 obtained better prediction of SIR but on a small homogeneous set (cross-

validation R² = 0.88 for 30 forest topsoil samples at one site). By contrast, DEA was poorly 

predicted by NIR spectroscopy in the present study (validation r² = 0.41, SEP = 114%, 

RPD = 1.3). Using global calibration for soil DEA prediction, Cécillon et al.
14

 also obtained 

poor results on a smaller set (cross-validation R² = 0.38, SECV = 67% and RPD = 1.3 for 

50 topsoil and earthworm cast samples from forest plots affected by wildfire), while 

Schimann et al.
16

 reported good results on reforestation chronosequences (cf. above; 

calibration R² = 0.85, SECV = 59% and RPD = 2.2). As regarded predictions using mid-IR 

spectra and global calibration, results were barely acceptable for SIR and disappointing for 

DEA. No comparable studies were found in the literature. It is worth noting that part of 

prediction imprecision attributed to NIR or mid-IR spectroscopy actually resulted from the 

variability of conventional data: indeed, laboratory replication carried out on external samples 

yielded coefficients of variation of ca. 7% for SIR and 11% for DEA. 

 

Prediction improvement through LOCAL calibration and sample stratification 

LOCAL calibration improved predictions of C, N, C/N, SIR and DEA for both NIR and mid-

IR spectroscopy. For a given variable, LOCAL calibration builds a prediction model for each 

sample separately using spectral neighbours selected in the calibration subset, while global 
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calibration uses the whole calibration subset to build a unique prediction model for all 

samples. Several authors have reported more accurate prediction of soil properties with 

LOCAL than with global PLS calibration using NIR spectra: for organic C, N, clay, silt and 

sand over a large and diverse set from Italy;
48

 and for organic C, clay and cation exchange 

capacity (CEC) over a large and diverse set from Belgium.
49

 LOCAL PLS regression even 

outperformed least squares support vector machine regression (based on supervised learning) 

for predicting C and CEC, but not N, for the Belgium set.
50

 Igne et al.
25

 did not report clearly 

better predictions of C, N and texture with a kind of LOCAL PLS calibration than with global 

PLS calibration, but the set they studied was rather homogeneous (315 topsoils from five 

fields in Maryland), which does not highlight the advantages of LOCAL-like methods. 

Sample stratification on the basis of soil texture was partially satisfactory. For the fine-

textured subset, predictions of SIR and DEA were more accurate than for the total set. 

Stratification effect was less clear for the coarse-textured subset, as change in prediction 

accuracy depended on the soil property and spectral range: for SIR, improvement with mid-IR 

but degradation with NIR; for DEA, little change with either NIR or mid-IR. Schimann et 

al.
16

 used VisNIR spectroscopy to predict SIR and DEA on soils from two reforestation 

chronosequences and also performed textural stratification. Regarding SIR, they reported that 

cross validation was better in the clayey subset (R² = 0.89) than in the total set (RPD = 0.73), 

but that it was worse in the sandy subset (R² = 0.31). Regarding DEA, cross validation were 

similar in the clayey subset (R² = 0.84) and the total set (R² = 0.85), and slightly worse than in 

the sandy subset (R² = 0.87). According to Schimann et al.
16

, textural stratification had thus 

variable effects on SIR prediction depending on the texture, and little effect on DEA 

prediction. Along with the results of the present study, this suggests that textural stratification 

is useful for fine-textured samples but not for coarse-textured ones. Moreover, less accurate 

predictions of biological properties in coarse-textured samples could be caused by their lower 

content in organic matter and the greater heterogeneity of its spatial distribution, which might 

lead to discrepancies between subsamples used for conventional and spectral analyses.
46

 

Studying organic C in a set of 1626 soil samples from northern Belgium grasslands, 

Van Waes et al.
51

 also observed that the accuracy of prediction using NIR spectroscopy 

decreased as follows: clayey set > total set > sandy set. 

It is worth noting that whatever the sample set, R² for the relationship between SIR or DEA 

and C or N (cf. Table 3) was much lower than corresponding validation r² for prediction of 

SIR or DEA using NIR spectroscopy (cf. Tables 4 and 5; e.g. in the fine-textured set: 

R² = 0.40 between C and DEA vs. validation r² = 0.74 for the prediction of DEA using NIR 
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spectroscopy). Thus predictions of SIR and DEA using NIR spectroscopy could not be 

considered as resulting from the prediction of C or N and correlation between C or N and SIR 

or DEA. Similarly, correlations between SIR or DEA and C or N were not close enough for 

explaining indirect prediction of SIR and DEA as a result of C or N prediction. 

 

Comparison between predictions of soil properties using NIR and mid-IR spectroscopy 

Whatever the variable, the calibration procedure and the set considered, NIR provided more 

accurate predictions than mid-IR for the studied soil samples (except for SIR in the coarse-

textured subset, where both domains yielded similarly accurate predictions). This contrasts 

with most published comparisons between spectral domains, which have concluded that mid-

IR produced more accurate predictions than NIR for soil C and N contents in general.
20,22-28

 It 

is worth noting that most of these comparisons concerned soils from temperate regions such 

as Maryland
20,22,23,25 

or west central North America
26,27

, and that results regarding soils from 

tropical areas were not very conclusive. For example, in a representative range of Brazilian 

soils, Madari et al.
52

 reported that mid-IR generally outperformed NIR for C prediction except 

when prediction was carried out on fairly homogeneous textural sets. On a sample set 

originating from two Brazilian Ferralsols, Madari et al.
28

 obtained slightly more accurate N 

predictions with mid-IR (calibration R² = 0.99 vs. 0.97) but clearly more accurate C 

predictions with NIR (0.99 vs. 0.93). For a range of topsoils from subtropical China, Shao and 

He
29

 observed better predictions of available N with NIR than with mid-IR, but they observed 

the opposite for available phosphorus and potassium (C was not studied). Moreover, for 

Maryland soils, Reeves et al.
20

 reported that mid-IR outperformed NIR for soil C and N 

predictions but that both provided similarly accurate predictions for soil mineralizable N and 

microbial biomass N. Ludwig et al.
21

, who studied topsoil and litter samples from 16 sites in 

north-western Europe, concluded that mid-IR was not superior to NIR for predicting soil and 

litter properties: indeed, when compared with mid-IR, NIR yielded more accurate predictions 

for C, N, lignin content and N mineralization, but less accurate for microbial biomass and 

C/N. Also studying Maryland topsoils, Igne et al.
25

 reported better C and texture predictions 

with mid-IR but better N predictions with NIR, when using comparable bench-top devices. 

For a range of topsoils from temperate China, Dong et al.
53

 similarly reported that some 

variables were better predicted with mid-IR, such as pH in water and concentrations in 

organic matter, arsenic, copper, while others were better predicted with NIR, such as zinc, 

lead and chromium concentrations. In a comparable way, Yang et al.
54

, who studied particle-

size fraction C and N in a Canadian clay loam gleysol, concluded that fine-fraction C and N 
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were better predicted with mid-IR but coarse-fraction C and N with NIR. Though the review 

of Reeves
18

 emphasizing soil C analysis mentioned that mid-IR is often more accurate and 

produces more robust calibrations than NIR when analyzing dried ground samples, this does 

not seem generalizable for all soils and soil properties. 

The higher accuracy of mid-IR compared to NIR spectroscopy predictions of soil properties 

has been attributed to the considerably more details that exist in mid-IR spectra allowing more 

robust calibrations.
22,27

 Furthermore, as stated by Ludwig et al.,
21 

it is generally assumed that 

the mid-IR region is more useful than the NIR region because the former is dominated by 

intensive vibration fundamentals and the latter by weaker and broader signals from vibration 

overtones and combination bands. The superiority of mid-IR spectroscopy has mainly been 

inferred from studies on soils from temperate regions but it may possibly not hold for soils 

from tropical regions. Mineralogy often represents an important difference between soils from 

both regions, and minerals such as iron (Fe) and/or aluminium (Al) sesquioxides (mainly 

hematite, goethite and/or gibbsite) are abundant in tropical regions, especially in Madagascar 

but much less frequently in temperate regions. Moreover, it is well established that minerals 

have a much greater signature in the mid-IR region than in the NIR one, as the latter contains 

primarily information from the organics and from hydroxyls.
18,20,24

 In addition, minerals and 

organics may absorb in similar mid-IR regions. For instance, metal oxides may absorb in the 

regions 1020-970 cm
-1

 (when more than one oxygen atom is bound to a single metal atom) 

and 1100-825 cm
-1

 (when containing a metal-to-oxygen double bound).
55

 Carbohydrates 

absorb in the regions 1080-1030 and 960-730 cm
-1

, and polysaccharides in the region 1170-

950 cm
-1

.
56

 Silica also absorbs at 1130-1110 cm
-1

, but is not specific to soils from tropical 

regions.
55

 Such proximity or overlap of absorption regions relating to mineral and organic 

components may represent obstacles for prediction of soil organic properties with mid-IR. We 

suggest the hypothesis that information useful for the prediction of soil organic and biological 

properties could be partially masked in mid-IR spectra, due to the abundance of minerals such 

as Fe and Al sesquioxides. This might explain why NIR outperformed mid-IR in the present 

study. 

It is worth noting that some cited studies
24,29

 compared  predictions using mid-IR spectra of 

finely ground samples and NIR spectra of more coarsely prepared samples, while others did 

not clearly specify sample preparation.
20,25,27

 Difference in sample preparation might be an 

artifactual reason for more accurate predictions with mid-IR than with NIR. Indeed, as often 

reported for soil C and N contents, fine grinding increases the accuracy of predictions in 

general.
13,22,43

 Most comparisons between predictions of soil properties using mid-IR and NIR 
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spectra of similarly ground samples, as in the present study, did not demonstrate clearly the 

superiority of mid-IR spectroscopy.
21,28,52,53,54

 In the present study, another possible artifactual 

reason for more accurate predictions with NIR than mid-IR could be the larger area scanned 

for the former (42 mm²) than for the latter (12.6 mm²). However, as scanned samples were 

finely ground (< 0.2 mm) thus homogenised, the influence of scanned area on prediction 

accuracy was probably limited; but it could not be excluded completely. This possible artefact 

was hardly avoidable because scanning similar area with both types of spectrometers is not 

easy. By contrast, preparing samples similarly (e.g. < 0.2 mm) is easily achievable and should 

always be the rule when comparing predictions of soil properties using NIR and mid-IR 

spectra. 

 

Conclusions 

The studied sample set was representative of most agricultural soils from Madagascar and 

covered wide ranges of SOM content and texture. Over this large and heterogeneous set, 

global calibration of NIR and mid-IR spectra using PLS regression resulted in predictions that 

were excellent for C and N contents, good for C/N ratio, acceptable for SIR, but poor for 

DEA. LOCAL calibration over the whole set improved prediction accuracy for all variables: 

predictions became excellent or good for C/N and SIR; they became acceptable for DEA with 

NIR but not with mid-IR. Considering two textural subsets separately had variable effects. 

Predictions were more accurate for the fine-textured subset compared to the total set, being 

excellent for SIR with both NIR and mid-IR, and acceptable for DEA with NIR (but not with 

mid-IR). By contrast, predictions were not clearly better for the coarse-textured subset 

compared to the total set. Improvement of prediction accuracy using LOCAL calibration 

and/or for fine-textured soils only is consistent with the few papers that have addressed 

comparable questions.  

This work shows that NIR provided more accurate predictions than mid-IR whatever the 

variable, the calibration procedure, and the sample set considered (except for SIR in the 

coarse-textured subset, where both domains yielded similarly accurate predictions). A priori, 

this contrasts with a number of published studies which have often reported more accurate 

predictions of soil properties with mid-IR than with NIR. However, as far as it does not 

depend on artefacts such as finer grinding of subsamples scanned in the mid-IR range, the 

reported superiority of mid-IR may be limited to soils from temperate areas; indeed, the few 

studies on tropical soils have not observed it clearly. We suggest that the possible superiority 

of NIR for predicting the organic and biological properties of tropical soils could result from 
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the abundance of some minerals, and as a consequence, the possible masking of organic 

matter peaks by the mineral component peaks in the mid-IR spectra. Further investigations are 

necessary for addressing the influence of mineralogy on the predictions of soil organo-

biological properties using NIR and mid-IR spectroscopy. In addition, further work should 

address the accuracy of predictions for samples originating from new Malagasy sites, as 

proposed by Brown et al.
57

, in order to test the robustness of predictions using the present 

sample set for calibration. 
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Table 1. Presentation of the study sites and soil samples (0-5 cm depth). 

 

a
 according to the CPCS

30
 and FAO

31
 classifications. 

b
 from Razafimbelo

32
. 

c
 conventional tillage (CT), direct seeding mulch-based cropping systems (DMC); the figures refer to: 

(i) the number of “input” sub-treatments per treatment  (ii) the number of plot replicates per sub-

treatment  (iii) the number of composite samples per plot, respectively. 

       Site  

No. 

Site location Elevation 

(m) 

Mean rainfall 

(mm yr
-1

) / air 

temperature (°C) 

Soil type
a
 

(CPCS / FAO) 

Average 

clay-silt-

sand (%)
b
 

Land use
c
 

       
1 Antsirabe - 

Andranomanelatra  

19°46’ S, 47°06’ E 

N = 48 

1650 1600 / 16 Ferrallitic soil 

/ Ferralsol 

60-20-20 CT (126), 

DMC (146), 

fallow (123), 

farmer plot (123) 

       
2 Manakara - Andasy  

22°12’ S, 47°50’ E 

N= 60 

50 2500 / 23 Ferrallitic soil 

/ Ferralsol 

45-40-15 

 
DMC (246), 

fallow (123), 

farmer plot (123) 

       
3 Antsirabe - 

Antsapanimahazo  

19°40’ S, 47°09’ E 

N= 18 

1700 1600 / 16 Ferrallitic soil 

/ Ferralsol 

35-40-25 

 
CT (116), 

DMC (116), 

fallow (123) 

       
4 Tulear - Andranovory 

23°07’ S, 44°13’ E 

N = 36 

440 700 / 28 Fersiallitic soil 

/ Cambisol 

30-25-45 

 
DMC (233), 

fallow (123), 

farmer plot (123) 

       
5 Antsirabe – Ivory  

19°33’ S, 46°24’ E 

N= 30 

940 1200 / 16 Ferrallitic soil 

/ Ferralsol 

30-35-35 

 
CT (116), 

DMC (126), 

fallow (123), 

farmer plot (123) 

       
6 Alaotra Lake - 

Marololo Baiboho  

17°32’ S, 48°31’ E 

N = 78 

770 1200 / 20 Alluvial soil 

/ Fluvisol 

20-20-60 

 
CT (236), 

DMC (236), 

farmer plot (123) 

       
7 Alaotra Lake - 

Marololo Tanety  

17°32’ S, 48°32’E 

N = 54 

800 1200 / 20 Ferrallitic soil 

/ Ferralsol 

20-35-45 

 
CT (216), 

DMC (236), 

fallow (123) 

       
8 Tulear - Sakaraha  

22°54’ S, 44°37’ E 

N = 36 

640 800 / 28 Ferruginous soil 

/ Arenosol 

10-10-80 

 
DMC (243), 

fallow (123), 

farmer plot (123) 
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Table 2. Total carbon (C, g kg
-1

) and nitrogen (N, g kg
-1

), C-to-N ratio, substrate induced respiration (SIR, µg C-CO2 g
-1

 h
-1

), and denitrifying enzyme activity 

(DEA, μg N-N2O g
-1

 h
-1

) in the studied samples, as determined by conventional methods (n: number of samples per set; Min: minimum; Max: maximum; SD: 

standard deviation) 

 

               Variable    Total Site 1 Site 2 Site 3 Site 4 Site 5 Fine-textured Site 6 Site 7 Site 8 Coarse-textured 

               
                 n  360 48 60 18 36 30 192 78 54 36 168 

C  Min  6.4 24.5 32.2 28.7 11.0 9.4 9.4 6.4 12.2 6.6 6.4 

  Max  59.1 59.1 47.4 47.0 23.6 21.8 59.1 19.6 24.6 29.1 29.2 

  Mean  24.0 41.7 39.8 36.7 17.8 16.0 32.2 12.1 17.0 15.6 14.5 
  SD  13.0 8.9 3.6 5.1 2.7 4.3 12.4 3.6 2.9 5.1 4.3 
               

N  Min  0.75 1.95 2.20 2.08 1.21 1.09 1.09 0.74 1.38 0.75 0.75 
  Max  4.67 4.67 3.58 3.63 1.86 1.82 4.67 2.03 2.51 2.36 2.51 
  Mean  2.04 3.20 3.04 2.81 1.56 1.37 2.52 1.28 1.81 1.45 1.49 
  SD  0.86 0.71 0.32 0.42 0.18 0.22 0.88 0.29 0.29 0.37 0.39 
               

C/N  Min  6.9 12.3 12.2 12.5 9.1 8.5 8.4 6.9 8.3 8.7 6.9 
  Max  14.8 14.8 14.6 13.8 13.6 14.4 14.8 11.6 10.8 12.3 12.4 
  Mean  11.2 13.1 13.1 13.1 11.4 11.5 12.5 9.3 9.4 10.6 9.6 
  SD  1.9 0.6 0.5 0.4 1.1 1.8 1.2 1.2 0.4 1.0 1.1 
               

SIR  Min  0.3 2.6 0.8 3.0 5.7 1.6 0.8 2.5 2.2 0.4 0.4 
  Max  13.6 11.3 4.2 8.7 13.6 7.1 13.6 11.5 6.3 9.5 12.5 
  Mean  5.2 5.9 2.1 4.9 9.2 4.0 4.9 6.7 4.4 4.6 5.5 
  SD  2.7 2.1 0.9 1.7 1.8 1.4 3.0 2.1 1.1 2.4 2.3 
               

DEA  Min  0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 
  Max  11.2 7.8 6.1 4.1 0.3 0.1 7.8 11.2 1.0 5.2 11.2 
  Mean  1.2 1.6 2.0 1.1 0.1 0.0 1.2 2.0 0.2 0.8 1.2 
  SD  1.7 1.7 1.7 1.3 0.1 0.0 1.7 2.2 0.2 1.0 1.7 
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Table 3. Coefficient of determination (R
2
) between some soil properties (total content in 

carbon, C, and nitrogen, N; substrate induced respiration, SIR; and denitrifying enzyme 

activity, DEA) for total, coarse- and fine-textured sample sets. 

 

           
Sample set  C vs. N  C vs. SIR  C vs. DEA  N vs. SIR  N vs. DEA 

           
           
Total (n = 360)  0.96***  0.02*  0.10***  NS  0.11*** 

Coarse-textured (n = 168)  0.94***  0.09***  NS  NS  NS 

Fine-textured (n = 192)  0.98***  0.03*  0.40***  0.05**  0.43*** 

           
Asterisks indicate the statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001; NS: not 

significant). 
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Table 4. Validation results regarding the predictions of total soil carbon (C) and nitrogen 

(N), substrate induced respiration (SIR) and denitrifying enzyme activity (DEA) with NIR 

and mid-IR spectroscopy using global or LOCAL calibration over the total set. 

 

Variable 
 

Parameter 
 

Global calibration  LOCAL calibration 

 
 

 
 

NIR mid-IR  NIR mid-IR 

                  
C  n

a
  206 209  206 209 

  SEP
b
 (g kg

-1
)  2.1 3.1  1.4 1.7 

  SEP
b
 (%)  10 17  6 9 

  bias (g kg
-1

)  0.2 -0.5  -0.4 0.3 

  r²  0.97 0.92  0.99 0.97 

  RPD
c
  5.5 3.3  8.6 6.1 

         
N  n  206 210  206 209 

  SEP (g kg
-1

)  0.21 0.25  0.14 0.18 

  SEP (%)  11 14  7 10 

  bias (g kg
-1

)  -0.01 0.11  -0.05 0.02 

  r²  0.93 0.92  0.97 0.94 

  RPD  3.8 3.0  5.6 4.0 

         
C/N  n  206 210  206 208 

  SEP  0.8 0.8  0.5 0.7 

  SEP (%)  7 8  5 6 

  bias  -0.0 -0.4  0.0 -0.0 

  r²  0.83 0.78  0.92 0.84 

  RPD  2.4 2.1  3.4 2.5 

         
SIR  n  194 196  194 196 

  SEP (µg C-CO2 g
-1

 h
-1

)  1.2 1.7  1.0 1.3 

  SEP (%)  24 31  20 24 

  bias (µg C-CO2 g
-1

 h
-1

)  0.1 0.6  0.1 0.2 

  r²  0.79 0.66  0.86 0.76 

  RPD  2.2 1.6  2.5 2.0 

         
DEA  N  185 187  185 179 

  SEP (μg N-N2O g
-1

 h
-1

)  1.3 1.6  1.1 1.4 

  SEP (%)  114 130  105 121 

  bias (μg N-N2O g
-1

 h
-1

)  0.3 0.4  0.1 0.4 

  r²  0.41 0.28  0.61 0.35 

  RPD  1.3 1.2  1.5 1.3 

         a 
n is the number of samples of the validation subset. 

b 
SEP is the standard error of prediction, either expressed in the variable unit or in proportion of the 

validation subset mean (conventional determinations). 
c 
RPD is the ratio of standard deviation (of the validation subset) to SEP. 
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Table 5. Validation results regarding the predictions of substrate induced respiration (SIR) 

and denitrifying enzyme activity (DEA) with NIR and mid-IR spectroscopy using LOCAL 

calibration in the coarse- and fine-textured subsets. 

 

Variable Parameter  Coarse-textured subset  Fine-textured subset 

   NIR mid-IR  NIR mid-IR 

                
SIR n

a
  54 58  88 88 

 SEP
b
 (µg C-CO2 g

-1
 h

-1
)  1.1 1.0  0.7 0.9 

 SEP
b
 (%)  18 19  15 18 

 bias (µg C-CO2 g
-1

 h
-1

)  -0.0 0.2  -0.1 -0.1 

 r²  0.77 0.80  0.95 0.93 

 RPD
c
  2.1 2.2  4.3 3.4 

        
DEA n  57 61  74 75 

 SEP (μg N-N2O g
-1

 h
-1

)  1.2 1.2  0.7 1.2 

 SEP (%)  97 114  90 102 

 bias (μg N-N2O g
-1

 h
-1

)  -0.2 0.2  0.1 0.31 

 r²  0.60 0.37  0.74 0.45 

 RPD  1.5 1.3  1.9 1.3 

        a 
n is the number of samples of the validation subset. 

b 
SEP is the standard error of prediction, either expressed in the variable unit or in proportion of the 

validation subset mean (conventional determinations). 
c 
RPD is the ratio of standard deviation (of the validation subset) to SEP. 
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Figure 1. Comparisons between measured and predicted SIR values for the validation 

subset of the total set, predictions resulting from global calibration using NIR (A) or mid-

IR (B) spectra. 

 

 

 

Figure 2. Comparisons between measured and predicted SIR values for the validation 

subset of the total set, predictions resulting from LOCAL calibration using NIR (A) or 

mid-IR (B) spectra. 
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Figure 3. Comparisons between measured and predicted SIR values for the validation 

subset of the textural subsets, predictions resulting from LOCAL calibration using NIR in 

the fine- (A1) and coarse-textured (A2) subsets or from LOCAL calibration using mid-IR 

in the fine- (B1) and coarse-textured (B2) subsets. 
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