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Methods for mapping regional trends of
HIV prevalence from Demographic and
Health Surveys (DHS)
Introduction

1 The main epidemiological indicator for tracking the AIDS epidemic in sub-Saharan Africa is
HIV prevalence, i.e. the proportion of people infected1. This is the figure UNAIDS2 uses in
its two-yearly report on the global epidemic to estimate the annual number of new infections
and deaths in each country. The way national HIV prevalence is estimated has been revised a
number of times in recent years (Larmarange, 2009) following the development in the early
2000s of national surveys in the general population with collection of blood samples and
HIV screening. Most of them are Demographic and Health Surveys (DHS) to which an HIV
screening module has been added. The DHSs have made it possible to refine estimates of HIV
prevalence among adults (aged 15-49) both nationally and regionally3 and are usually the only
source of data in the general population.

2 Most DHSs also collect geographical coordinates (longitude and latitude) for the survey zones.
So it is theoretically possible to use these surveys to estimate and represent spatial variations in
HIV prevalence at a scale lower than the region. This sort of mapping would be a public health
tool for revealing the zones worst affected by the epidemic, guiding the implementation of
AIDS programmes and gaining a better understanding of the discrepancies observed between
the DHSs and the sentinel surveillance of pregnant women4, another major source of data used
in estimating prevalence figures (Boerma, Ghys and Walker, 2003).

Demographic and Health Surveys (DHSs)
3 Demographic and Health Surveys (DHSs) are a major survey programme carried out in over

75 countries in the global South. Since 1984, more than 200 surveys have been held at regular
intervals. Questions about fertility, family planning and infant-child mortality have gradually
been supplemented, depending on the country and survey, by modules on mother and child
health, knowledge and behaviour concerning HIV/AIDS and sexually transmitted infections
(STIs), domestic violence, female genital cutting, child growth measurements, anaemia tests,
HIV prevalence, etc. The questionnaires are standardised so that comparisons can be made
between countries and over time.

4 The surveys are held at regular intervals by national statistical institutes with technical support
from Macro International, Inc. All the final reports and databases are available free online
from a dedicated site: http://www.measuredhs.com.

5 The DHSs in each country use a similar stratified two-stage sample design. The country
is divided into a number of strata, one per administrative region and urban-rural place of
residence. The master sample of primary units is made up of the enumeration areas of the
most recent population census. In the first stage, the primary units or clusters are randomly
selected, separately in each stratum, with a probability proportional to their number of ordinary
households5 in the census. After an exhaustive enumeration of the households in each cluster,
a predetermined number of households are selected in the second stage using a simple random
sampling. Depending on the country, only part (one-third or one-half) of these households are
then eligible for the HIV survey. To allow for the complex DHS sample design, each database
contains a weighting variable making the sample representative at national and regional level.
This variable is proportional to the inverse sampling probability of each household, namely
the probability that the household will be surveyed. Table 1 compares the samples of various
recent DHSs.

http://www.measuredhs.com/
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6 Some DHSs also use GPS to collect the geographical coordinates of each survey cluster.
Since HIV screening modules have been introduced, in order to ensure the anonymity of
respondents, these coordinates are randomly offset by up to two kilometres in urban areas and
five kilometres in rural areas6.

7 From 2004, surveys specific to HIV/AIDS but similar to the DHS were designed, with a shorter
questionnaire: the AIDS Indicator Surveys7 (AISs).
Table 1: Samples for HIV screening from 25 DHSs or AISs

Country Year Type Clusters
Individuals
aged 15-49
tested for HIV

Average
number tested
per cluster

National HIV
prevalence, age
15-49 (%)

Burkina Faso 2003 DHS 400 7,244 18.1 1.8

Cameroun 2004 DHS 466 9,900 21.2 5.5

Côte d’Ivoire 2005 AIS 249 8,436 33.9 4.7

Democratic
Republic of
Congo

2007 DHS 300 8,504 28.3 1.3

Ethiopia 2005 DHS 540 10,540 19.5 1.4

Ghana 2003 DHS 412 9,144 22.2 2.2

Guinea 2005 DHS 297 6,388 21.5 1.5

Kenya 2003 DHS 400 6,001 15.0 6.7

Kenya 2008-09 DHS 400 6,707 16.8 6.3

Lesotho 2004 DHS 405 5,043 12.5 23.4

Liberia 2007 DHS 300 11,733 39.1 1.6

Malawi 2004 DHS 522 5,150 9.9 12.0

Mali 2001 DHS 403 6,475 16.1 1.8

Mali 2006 DHS 407 8,141 20.0 1.3

Niger 2006 DHS 345 7,262 21.0 0.7

Rwanda 2005 DHS 462 10,016 21.7 3.0

Senegal 2005 DHS 377 7,503 19.9 0.7

Sierra Leone 2008 DHS 353 6,174 17.5 1.5

Swaziland 2006-07 DHS 275 8,187 29.8 25.9

Tanzania 2003-04 AIS 345 10,747 31.2 7.0

Tanzania 2007-08 AIS 475 15,044 31.7 5.7

Uganda 2004-05 AIS 417 16,906 40.5 6.4

Zambia 2001-02 DHS 320 3,807 11.9 15.6

Zambia 2007 DHS 320 10,444 34.8 14.3

Zimbabwe 2005-06 DHS 400 12 796 32.0 18.1

AIS: AIDS Indicator Survey (or AIDS Impact Survey); DHS: Demographic and Health Survey
Sources: survey final reports available at http://www.measuredhs.com.

Objective
8 Although there are many publications concerning the DHSs, spatial analysis based on them are

less numerous. Of more than 650 scientific papers identified on the MeasureDHS website as
relating to DHS data, only 13 are classified under “spatial modelling”8. Most of them are atlases
of choropleth maps (TACAIDS, 2006); national or regional maps, as with the online tool
HIVmapper9; or multi-level analysis including one or more geographical variables (distance
to a road or infrastructure, spatial typology, etc.). This has been made easier in recent years by
the uploading of georeferenced map underlays of the administrative units used in the DHSs10.

9 Chloropleth maps by administrative region are not always appropriate for displaying
the spatialisation of a phenomenon, since administrative boundaries rarely correspond to
variations inherent in that phenomenon. Furthermore, for densely populated regions that are
consequently extensively sampled, maps by region lead to a loss of information at a more local
level: infraregional differences are obscured.

http://www.measuredhs.com/
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10 Our objective is thus to estimate from DHS data, irrespective of administrative divisions, a
prevalence surface that reveals the main spatial variations in the epidemic, while retaining an
infraregional local accuracy for the adequately surveyed areas.

11 In order to test various methodological approaches, we devised a fictitious country for which
we simulated DHSs: this makes it possible to compare the prevalence surface estimated from
survey data with the model’s original prevalence surface. Three approaches were tested:
a spatial smoothing based pn circles of equal number of persons surveyed before spatial
interpolation; an adaptation of Davies and Hazelton (2010) using kernel estimators with
adaptive bandwidths; and a kernel estimation with adaptive bandwidths calculated from circles
of equal number of persons surveyed. Finally, these approaches were applied to real data from
Burkina Faso’s 2003 DHS.

Methods

Devising a model country
12 Benin, Burkina Faso and Ghana were combined to create a fictitious country to be used

as a model. Togo was deliberately excluded in order to obtain a concave shape to make
the estimation more complex, since the “missing” part was not surveyed. A shape of this
sort can be found in the outline of countries such as Senegal. Data from the Global Rural-
Urban Mapping Project (GRUMP) were used to distribute the population over the territory:
population densities from the year 2000 at a resolution of 30 arcseconds (CIESEN et al., 2005a)
and territorial divisions in urban and rural areas (CIESEN et al., 2005b). The territory was
then divided into 9,137 primary units (7,818 rural and 1,319 urban) distributed regularly at
an average resolution of 2 arcminutes in urban areas and 5 arcminutes in rural areas. Then
the area, average density and population (obtained by multiplying density by area) of each
unit were calculated. The country was divided into 11 administrative units and the main urban
centres were identified by the letters A to I (see Figure 1).
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Figure 1: Urban areas and regions in the model

13 Next, we created a prevalence surface (Figure 2) by spatial interpolation11 from points chosen
ad hoc for the surface to present various diffusion patterns: major town with prevalence
concentrated within it and low outside (D); major and mid-sized towns (G and H) with gradual
diffusion; localised peak in sparsely populated rural area in the north; discontinuity between
the shores of a major lake; gradient inland from the coast in the south, with two major
conurbations (A and I) and two mid-sized towns (B and C); diffusion from the western border
and a city across the border to the east.

14 National prevalence was obtained from the average prevalence of the primary units12 weighted
by population. In order to obtain a national prevalence of 10% we multiplied the prevalence
in each unit by the same scale factor. The surface obtained is so constructed as to be spatially
continuous and highly self-correlated.
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Figure 2: Surface of HIV prevalence in the model (national prevalence of 10%, created ad
hoc by spatial interpolation)

Data format and DHS simulation
15 DHS data come in the form of a scatter plot corresponding to the various clusters surveyed.

Since the clusters are selected with a probability proportional to their number of households,
this scatter plot reflects variations in population density: the points are numerous and close
together in densely populated areas and, conversely, few and far between in sparsely populated
areas. For each individual tested we have their serological status, cluster membership and
statistical weight. All the individuals in a cluster are spatially located in the same point.

16 DHS simulations were carried out to reproduce data comparable with actual surveys, using
three parameters: national prevalence, total number of persons surveyed and the number of
first-level clusters. In order to obtain the chosen value for national prevalence, the prevalence
in each of the primary units is multiplied by the same appropriate scale factor. Each of the
eleven regions is divided into two strata, urban and rural. The number of clusters selected by
stratum is proportional to their total population13. The clusters are selected randomly, stratum
by stratum from the primary units, with a sampling probability proportional to their population.

17 Next, the number of persons surveyed per cluster is determined randomly by a normal
distribution, in order to reproduce the variability in the number of persons surveyed per cluster
that can be observed in DHSs14. The number is corrected to ensure that the total corresponds
to the target figure. Then the number of HIV-positive people in each cluster is determined
randomly by a binomial distribution. A weighting factor, similar to that used for the DHSs,
is calculated and applied to individuals.

18 The data generated by simulation are comparable to the actual data from the Demographic
and Health Surveys. The reason is that the distribution of observed prevalence generated
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by simulation presents the same profile as those observed in a number of DHSs (table not
reproduced). Figure 3 shows the spatial distribution of the clusters obtained by the simulation
we use as an example in this article.
Figure 3: Distribution of clusters obtained by simulating a DHS.

Simulation parameters: national prevalence 10%, 8,000 people surveyed, 400 clusters (rounding means that the actual
figure is 401).

Spatial interpolation approach
19 Spatial interpolation techniques use a scatter plot to produce the surface of a phenomenon. For

each point on the map where the value of the phenomenon is unknown, that value is estimated
from those points for which the information is available. These various techniques assume that
the variations of the interpolated variable are spatially continuous and give greater weight to
nearer observations over more distant ones, under the hypothesis that neighbouring points are
similar. These techniques are used to estimate a phenomenon over an entire territory on the
basis of fragmentary information restricted to a finite number of points.

20 The general formula for determining the estimated value ŝ(x,y) of surface s at point x,y, given
the values of s at n points xi,yi where i varies from 1 to n, is as follows:

21 Equation 1

22 where di represents the geometric distance between observation i and point x,y and w a
weighting function diminishing for distant observations. Most of the weighting functions used
retain the observed values, in other words, the estimated value at point k remains equal to its
observed value: ŝ(xk,yk) = s(xk,yk).
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23 To use these techniques it is necessary to have two items of information for each point
observed: its position and the prevalence value at that point. However, the observed prevalence
for each survey cluster, the prevalence calculated from the people tested in the cluster, presents
high variance and margin of error. This is because the number of persons tested in each cluster
is small, from 10 to 40 on average (see Table 1). In fact, the observed prevalence is more a
reflection of random sampling variations than of the extent of the epidemic.

24 We have already described (Larmarange, 2007; Larmarange et al., 2006) a methodological
approach smoothing the prevalence for each cluster in advance, before executing standard
spatial interpolation.

25 Taking inspiration from moving average smoothing techniques based on circles of equal radius
(Griffin, 1949; Krumbein, 1956; Nettleton, 1954), a circle is drawn around each cluster and
the prevalence of the central cluster is then recalculated from all the people tested within that
circle15. Spatial interpolation can then be applied to these smoothed prevalence values.
Figure 4: Number of persons surveyed within a radius of 50 and 100 kilometres

N.B. For each point on the map is shown the number of persons surveyed within 50 and 100 kilometres of that point,
for the DHS simulation in Figure 3.

26 However, the use of circles of equal radius is inappropriate, since the clusters are very unevenly
distributed (Figure 4). A sufficiently large radius needs to be determined for the smoothed
prevalence values to be calculated from a sufficient number of individuals, especially in those
areas where the clusters are widely dispersed. At the same time, in densely populated survey
areas, smaller circles could be used, since the numbers are amply sufficient. The accuracy of
an estimated proportion is related to the number of observations. It is consequently better to
use circles not of equal radius but of equal number of persons surveyed.

27 So once a number of persons surveyed N is fixed, the smoothed prevalence for each cluster
is calculated from observations located within a circle such that the number of persons
surveyed within it is at least N. If we denote as cumi(r) the function that gives the cumulative
total of observations located within a radius r of the observed cluster i, then the radius
ri of the smoothing circle for that cluster, with a minimum number of individuals N, is
min[r | cumi(r) ≥ N].

28 To produce a prevalence surface, the smoothed prevalences are then spatially interpolated
by ordinary kriging. Kriging (Krige, 1951; Matheron, 1963) has the advantage of taking into
account the spatial dependence structure of the data (Baillargeon, 2005). Variance as a function
of the distance between points is measured empirically as a semivariogram, which is then
modelled. The unknown values are then estimated from adjacent known values, weighted by
this semivariogram in order to obtain an unbiased forecast with minimum variance.
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Kernel estimator approaches
29 Another field of geostatistical analysis is based on estimating density surfaces from kernel

estimators (Silverman, 1986; Wand and Jones, 1994). These techniques are designed to
construct a surface from a scatter plot, where each point represents an observed case. The
surface obtained may be expressed as the number of cases per surface unit (intensity surface)
or by reducing the integral to one (density surface).

30 A density surface is constructed around each observed case in such a way that the density is
highest at that point and diminishes with distance. The estimated intensity surface corresponds,
therefore, to the sum of these density surfaces (see Figure 5 for a one-dimensional example).
In mathematical terms, the intensity surface ŝ at point (x,y) is estimated by the following
expression:

31 Equation 2

32 where n is the number of observed cases, di the geometrical distance between case i and point
(x,y), K a density function (called the kernel) within an integral equal to 1, and hi the bandwidth
used for case i. The density surface is obtained by dividing the intensity surface by the number
of observed cases (n).

33 The bandwidth makes it possible to apply greater or lesser smoothing to the data. The estimate
will be a fixed-bandwidth estimate if it uses a constant (∀i, hi = h) or an adaptive bandwidth
estimate if hi varies according to the observed case (Ǝ a,b | ha ≠ hb).
Figure 5: Example calculation of an intensity function with a Gaussian adaptive bandwidth
kernel estimator (one dimension)

N.B. Estimation from 4 observed points at x1, x2, x3 and x4. The estimated intensity function (solid curve) is the sum
of the 4 density functions (dotted curves) calculated with a Gaussian kernel for each observed point and centred on
that point. h1 and h4 represent the width of bandwidth used to calculate the density functions.

34 Various researchers have used kernel estimators for spatial epidemiology (Gatrell, Bailey,
Diggle and Rowlingson, 1996), such as estimating a surface of relative risks (Bithell,
1990; Davies and Hazelton, 2010; Kelsall and Diggle, 1995). The surface of relative risks
corresponds to the ratio between the density surface of positive cases and the density surface
of control cases (the population exposed to the risk). The two density surfaces are estimated
separately from two independent scatter plots. The scatter plot of positive cases is usually
taken from epidemiological monitoring. The control cases may be determined in various ways:
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random selection from telephone directories in Gatrell, sample of postcodes in Davies and
Hazelton, etc.

35 With fixed bandwidths, some researchers (Bithell, 1990; Kelsall and Diggle, 1995) suggest
using the same constant h to estimate the two density surfaces (positive cases and control
cases). However, some research (Bithell, 1990, Carlos, Shi, Sargent, Tanski and Berke, 2010;
Davies and Hazelton, 2010) suggests that use of an adaptive bandwidth is more appropriate
for health-related matters in order to correspond more closely to the spatial distribution of
population and thus reduce the smoothing of information.

36 The main difficulty with kernel estimators is choosing the right value for the smoothing
bandwidth. Kelsall and Diggle (1995) explore various approaches for automatically
determining the value of the bandwidth from data for fixed bandwidths. Other research covers
this question for adaptive bandwidths (Sain, 1994; 2002) to estimate a single surface but
without investigating the question of the ratio of two surfaces estimated simultaneously.

37 In a recent article, Davies and Hazelton (2010) propose an approach for estimating a surface
of relative risks using adaptive bandwidths whose values are determined from observed data.
First, the authors determine a pilot value for the bandwidth, the same for both positive and
control cases, using the Maximal Smoothing Principle16 proposed by Terrell (1990). Then
they determine the local values of the smoothing bandwidth from this pilot value separately
for positive and control cases. Their approach has been tested on six different theoretical
situations and compared, using the ISE criterion (Integrated Squared Error), with estimators
using a fixed bandwidth determined by the maximal smoothing principle: their adaptive
bandwidth approach turns out generally to be more efficient, particularly with large samples.
This approach is used in a package called sparr for the statistics software R (Davies, Hazelton
and Marshall, 2010).

38 In our case we are seeking not to produce a surface of relative risks (ratio of two density
surfaces) but rather a surface of prevalence (ratio of two intensity surfaces). The functions in
the sparr package can be used to calculate both density surfaces and intensity surfaces. So we
tested Davies and Hazelton’s approach adapted to calculate the ratio of two intensity surfaces
instead of two density surfaces.

39 Davies and Hazelton address two independent scatter plots of positive and control cases, each
based on simple random sampling: the location of the positive cases differs, therefore, from
that of the control cases. In the case of DHSs, the data come from two-level sampling and the
scatter plots correspond to level-one sampling. The positive cases (people tested HIV-positive)
and the control cases (people tested irrespective of result) in a given cluster have the same
spatial location. Consequently it is more appropriate to use a single bandwidth hi for cases
in a single cluster.

40 We therefore tested another approach using adaptive bandwidth kernel estimators so that
the bandwidth used for cases in a single cluster would depend solely on their location and
specifically the number of observations in the vicinity of that cluster. For the estimation of the
intensity surface of observed cases, the principle is similar to the nearest neighbour technique
described by Silverman (1986) and Altman (1992) among others, and tested by Bithell (1990).
A minimum number of observations N is set and the radius hi of the smoothing bandwidth
is therefore proportional to the radius of the circle to be drawn around the cluster in order to
capture this minimum number. These are in fact the radii ri of the smoothing circles of equal
number described above in the spatial interpolation approach. In the special case of DHS data,
the control cases in a particular cluster are given the same bandwidth: if points i and j belong to
the same cluster k, then hi = hj = λrk (where λ is a scale factor). For the positive cases we apply
the same bandwidth as that calculated for the control cases in the same cluster, namely λrk.

41 A number of density functions may be used for kernel K. It is generally agreed that the choice
of function is less important than the size of the bandwidth. Davies and Hazelton (2010)
report that Gaussian kernels (using the normal distribution) are often used to estimate two-
dimensional surfaces, although the use of finite extent kernels17 (such as the biweight function)
is also common. Although finite extent kernels have a theoretical advantage for adaptive
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bandwidths, in practice the Gaussian kernel is more suitable when the distribution of points is
highly uneven, particularly in regions where the number of observations is small.

42 We consequently opted for the Gaussian kernel, using a scale factor λ of 0.5: the bandwidth
hi of a case located in cluster k is thus hi = rk/2. This means that 86% of the kernel’s intensity
lies within a circle of radius rk.

Choice of a comparison indicator
43 In order to compare estimated prevalence surfaces with the prevalence surfaces in the

model, we used the MISD indicator (Mean Integrated Squared Difference) (Anderson and
Titterington, 1997), an indicator similar to the MISE (Mean Integrated Squared Error) (Wand
and Jones, 1994). The MISD corresponds to the expected value of the squared difference at
each point on the surface. Take two spatial surfaces ŝ1(x,y) and ŝ2(x,y). The MISD between
ŝ1 and ŝ2 is calculated as follows18:

44 Equation 3

45 The MISD may be approximated from a fine matrix of p regularly spaced points:
46 Equation 4

47 In this way the MISD quantifies the deviation at each point between the estimated surface and
the model surface. Consequently the best estimate will be the one that minimises the MISD.

Software used
48 The calculations were done with R statistics software (R Development Core Team, 2007).

We used the kriging function in the gstat package (Pebesma, 2004) for spatial interpolation
by ordinary kriging. The approach adapted from Davies and Hazelton was implemented with
the sparr package (Davies, Hazelton and Marshall, 2010) developed by the authors. For the
kernel estimator approach we used the KernSur function in the GenKern package (Lucy and
Aykroyd, 2010). We also developed our own functions, available in a package called prevR19.

49 The surfaces in this article were drawn with Quantum GIS20.
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Results

Comparison of approaches
Figure 6: Model prevalence surface and estimated prevalence surfaces using three different
approaches based on the same DHS simulation.

N.B. The colour scale is identical to that in Figure 2.
50 Figures 6.b, 6.c and 6.d represent prevalence surfaces estimated by the three approaches.

Figures 8.b, 8.c and 8.d display the deviations between the estimated prevalence surfaces
and the model prevalence surface: each point on the surface corresponds to the mathematical
difference between estimated and model prevalence, namely ŝe(x,y) - sm(x,y). The MISD is
the mean of these deviations squared.

51 The adapted Davies and Hazelton approach (Figure 6.d) gives an MISD of 28.1, considerably
greater than the MISDs obtained with approaches using circles of equal number of persons
surveyed (spatial interpolation and kernel estimators, see Figure 7). Prevalence values are
overestimated by at least five points over most of the surface (Figure 8.d). The smoothing
produces “stripes” on the prevalence surface in sparsely surveyed areas (west of E, south of
F, between G and H, etc.). The estimated prevalence values are heavily smoothed around D
and between G and F, and do not reproduce the variations on the model surface.
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Figure 7: MISD for various values of N

N.B. See Appendix Table 1 for value details.
52 The two approaches based on circles of equal number of persons surveyed behave similarly:

the MISD indicator diminishes as parameter N increases, down to a minimum before the
smoothing becomes excessive and the MISD rises (see Figure 7). At low values of N, the kernel
estimator approach yields an MISD higher than the spatial interpolation approach, but its
MISD diminishes faster. The kernel estimator approach’s MISD bottoms out at 5.0 at N=300,
whereas for the spatial interpolation approach the minimal MISD is 6.4 at N=275.

53 Figures 6.b and 6.c show estimated prevalence surfaces with these optimum values of N.
Overall, the main variations in the model prevalence surface are reproduced. The gradient from
the south coast northwards is there, with sharper contrast due to overestimation (Figures 8.b
and 8.c) for conurbations A and I. Conurbation D still shows a more concentrated prevalence
than its vicinity, a “concentration” better revealed by kernel estimators. Similarly the kernel
estimators more closely reproduce the gradient on the western border and the diffusion of
prevalence around conurbation G. On either side of the major lake, where a clear break was
introduced into the model, prevalence is overestimated to the west and underestimated to the
east, since neither approach allows for natural borders.

54 Finally, the variations in sparsely surveyed areas are not reproduced: the epidemic peak in the
north of the country, the diffusion around conurbation H and starting at the eastern border.
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Figure 8: Model prevalence surface and deviations (mathematical differences) between the
surfaces estimated by the three approaches and the model surface

Restricting the size of the smoothing circles: addition of parameter R
55 Smoothing with circles of equal number of persons surveyed can be used to estimate

prevalence from a sufficient number of observations and produces spatial smoothing that
varies by region. In densely observed areas the radius of the smoothing circles is relatively
small. Conversely, in sparsely surveyed areas, particularly near the borders, smoothing covers
more widely dispersed clusters and the radius of the smoothing circles increases considerably
(see Appendix Table 2).

56 In previous publications (Larmarange, 2007; Larmarange et al., 2006), we suggested the
possibility of adding a second parameter R corresponding to a maximum radius for the
smoothing circles. This second parameter in practice only affects the clusters located in
sparsely surveyed areas: if the number of persons surveyed N is not achieved within a radius
of less than R, the radius of the smoothing circle is set at R.
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Figure 9: MISD for various values of parameter R (fixed N)

N.B. Since the maximum radius of smoothing circles is 269 kilometres without parameter R (see table in Appendix 2), the
prevalence surfaces obtained with a value of R of 275 kilometres are identical to those obtained without parameter R.

57 Figure 9 shows the MISDs obtained for various values of parameter R (where parameter N
is fixed at the minimum MISD obtained without parameter R, namely 275 for the spatial
interpolation approach and 300 for the kernel estimator approach.).

58 Although adding parameter R to the spatial interpolation approach slightly reduces the MISD
(minimum obtained for R at 150 kilometres), there is no gain for the kernel estimator approach.
In both cases a low value for R considerably increases the MISD.

59 The most effective approach for this simulation is consequently the kernel estimator approach
with adaptive bandwidths of equal number of persons surveyed. Here the addition of a
maximum radius for the smoothing circles does not improve the estimated prevalence surface.

Discussion

Choice of parameter N
60 The kernel estimator approach with adaptive bandwidths of equal number of persons surveyed

reproduces the main variations in the model prevalence surface. The main difficulty in
applying this method to real data comes from determining the right value of parameter N to
use. For DHS simulations an MISD could be calculated because the prevalence surface to be
estimated was known. Where real data are used, this prevalence surface is unknown and an
MISD cannot be calculated.

61 Altman (1992) suggests that one way of determining the value for a smoothing parameter
is to make a number of estimates with different values and subjectively select the one that
best corresponds to the expected result. If the aim is to reveal the general outlines of the
phenomenon, a high value for the smoothing parameter will be appropriate. Conversely, in
order to examine local extreme values, a low value for that parameter is to be preferred.
Subjective choice of the smoothing parameter is highly flexible and gives a general overview
of the data. However, Altman points out that an objective method for selecting the smoothing
parameter may be preferable for producing an automatic smoothing technique or for greater
consistency of results among a number of investigators.

62 The adapted Davies and Hazelton approach has the advantage of proposing an automatic
selection of bandwidth size on the basis of the available data. However, the prevalence surface
produced is unsatisfactory in the present case, with a relatively high MISD. This is largely due
to the fact that the Davies and Hazelton approach was developed for situations in which the
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distribution of the two scatter plots (positive and control cases) was independent, which does
not hold for the DHS data.

63 For approaches with circles of equal number of persons surveyed, the MISD varies relatively
little about its minimum (see Figure 7). It is therefore reasonable to consider that the surfaces
obtained, with values of N within plus or minus 50 of the value minimising the MISD, are
acceptable.

64 In previous publications (Larmarange, 2007; Larmarange et al., 2006), we attempted to model
the optimal value of N (denoted No) as a function of the observed national prevalence (p),
the number of persons tested (n) and the number of clusters surveys (g), namely the three
parameters used to simulate a DHS. To that end we simulated 22,000 DHSs with various
values for the three parameters and calculated the optimal value of N for each simulation.
For reasons of time and computer power, the criterion used for determining the optimal value
of N for a given simulation did not consist of minimising the MISD calculated over the
entire prevalence surface. The indicator used was the minimisation of the average absolute
deviation between estimated prevalence and model prevalence, calculated solely from the
survey clusters. Compared with the MISD calculated from the entire prevalence surface,
this indicator gives more weight to the most densely populated areas (since they contain
more survey clusters). Use of absolute deviation increases the importance of clusters where
deviations are small compared with square deviation, which increases the importance of large
deviations. In practice, the optimal values for N calculated with this indicator are lower than the
optimal values calculated by minimising MISD. Modelling, by regression, the results obtained
produces the following formula:

65 Equation 5
66 No = 2,688 ∙ n0.419 ∙ p-0.361 ∙ g0.037 - 91.011
67 This result is purely illustrative. It depends on the prevalence surface imposed on the model.

Other prevalence surfaces would produce other optimal values. However, this equation can
be used to guide the choice of parameter N when applied to real data, by providing an order
of magnitude.

Estimated prevalence surfaces and trend surfaces
68 The model prevalence surface is highly organised. It was constructed ad hoc to be multi-

polarised and have continuous, regular gradients. It is only logical that this structure will be
reproduced in general lines from a sufficient sample.

69 In order to test the results obtained from a less regular initial prevalence surface, we devised
a second model adding localised random variations to the first model. A variation surface
(Figure 10.a) was generated from 800 randomly selected points, each with a randomly
defined bandwidth of action and a randomly determined positive or negative contribution.
A correction was made to ensure that Model 2’s prevalence surface21 (Figure 10.b) had no
negative prevalence values and national prevalence (allowing for population density) was
always 10%. This new surface in fact contains many irregularities while having an underlying
spatial structure (that of Model 1).
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Figure 10: Random variations added to Model 1 and prevalence surface of Model 2

70 A further DHS was simulated from Model 222. Figure 11 shows the prevalence surface
estimated by the kernel estimator approach with N=300.

71 This surface is relatively similar to the one obtained by applying the same method to a DHS
simulation based on Model 1 (Figure 6.b). This smoothing method filters out local variations
to reveal underlying regional variations.
Figure 11: Prevalence surface estimated by kernel estimator approach (N=300) from DHS
simulation from Model 2
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72 This result evokes the trend surface analysis (Chorley and Haggett, 1965; Griffin, 1949;
Haggett, 1973; Krumbein, 1956) developed in the mid-20th century. These cartographic
filtering techniques are applied to known surfaces and are designed to decompose the surface
of the studied phenomenon into the sum of a surface of regional trends and a surface of local
residuals. The regional trend surface is calculated so as to filter out the local details and reveal
the main variations in the phenomenon. The local residual surface is simply the difference
between the raw data surface and the regional trend surface.

73 One cartographic filtering method for calculating regional trends is known as the “ring”
method (Griffin, 1949; Krumbein, 1956; Nettleton, 1954) similar to a moving spatial mean. For
each data point a circle of set radius is drawn around that point and the indicator is calculated
for the area within that circle.

74 Figure 12 shows various trend surfaces calculated from the Model 2 prevalence surface by
the ring method with radii from 25 to 150 kilometres. They gradually reveal the model’s
underlying spatial structure.

75 The prevalence surface estimated from a DHS simulation (Figure 11) is closer to these trend
surfaces than to the Model 1 prevalence surface. The MISD between the estimated surface
and the Model 2 surface is 10.3, but 9.1 (other values 7.5, 6.9 and 10.6) between the estimated
surface and trend surfaces using a radius of 25 kilometres (50, 100 and 150 kilometres).
Figure 12: Trend surfaces calculated from Model 2 with rings of radius 25, 50, 100 and 150
kilometres

76 The smoothing circles used to define the value of the bandwidths in the kern estimator
approach are similar to those in the “ring” method, but use adaptive bandwidths of equal
number of persons surveyed and not set radii. This adaptive bandwidth concept can be
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applied to calculating a trend surface. For that the radius of the rings to be used must be
determined for each data point. Using the survey scatter plots in the DHS simulation for which
a smoothing radius has been determined (for a given value of N), a radius surface is generated
by spatial interpolation (Figure 13.b). An adaptive bandwidth trend surface (Figure 13.a) is
then calculated using for each data point a bandwidth defined by the radius surface. The result
obtained looks rather like the prevalence surface estimated by the kernel estimator approach
(Figure 11). The MISD between the two surfaces is only 6.0.
Figure 13: Trend surface using adaptive bandwidths and spatial interpolation of the
smoothing circle radii (N=300)

77 The kernel estimator approach with adaptive bandwidths of equal number of persons surveyed
cannot reproduce local variations on the model’s prevalence surface. Some loss of information
is inevitable because of the DHS sampling design. This approach cannot reproduce the actual
prevalence surface.

78 However, the estimated prevalence surface does reflect certain real features of epidemics
and is similar to an adaptive bandwidth trend surface in revealing underlying regional
variations in the phenomenon. It is therefore important to take into account the variations in
smoothing circle radii when interpreting the estimated prevalence surface. In order to facilitate
interpretation, it is possible to display both datasets by overlaying the contours23 for smoothing
circle radius values on the prevalence surface (Figure 14).
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Figure 14: Prevalence surface estimated by the kernel estimator approach (N=300) from a
DHS simulation on Model 2 with contours of smoothing circle radius values

Application to real data: the Burkina Faso 2003 DHS
79 We applied the kernel estimator approach with adaptive bandwidths of equal number of

persons surveyed to the Burkina Faso 2003 DHS data. The survey tested 7,244 people (aged
15-49) in 400 clusters. The national HIV prevalence measured in the survey was 1.8% (see
Table 1).

80 The distribution of survey clusters is shown in an insert in Figure 15. The main surface is
an estimated prevalence surface with parameter N=500, a value chosen using Equation 524.
National HIV prevalence values at end 2003 are also given for Burkina Faso’s bordering
countries, according to UNAIDS estimates (2006). The smoothing circle radius contours and
Burkina Faso’s main roads and conurbations have also been added.
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Figure 15: Regional HIV prevalence (age 15-49) estimated by kernel estimator approach
(N=500) applied to the Burkina Faso 2003 DHS

81 The prevalence surface estimated from the DHS is relatively consistent. First, the epidemic is
worse in the south-western part of the country, near high-prevalence countries (Côte d'Ivoire,
Ghana) than in the Sahelian north-east, sparsely populated and bordering low-prevalence
countries (Mali, Niger). The worst affected regions are mostly around the main conurbations
(Ouagadougou, Bobo-Dioulasso) and along the main roads to Côte d'Ivoire and Mali (via
Dedougou). The region between Diebougou and Gaoua, where the epidemic has a local peak,
is known for its gold mining, involving a relatively high number of seasonally migrant males
and a non-negligible number of sex workers. The regions in the south-west are also those that
received most returnees from Côte d'Ivoire at the end of 2002 and beginning of 2003 (SP/
CONASUR, 2004).

82 This association of high-prevalence areas, areas of migration, gold mining and main urban
centres cannot be used to establish a link between the phenomena, since mere geographical
proximity does not count as evidence. However, these results are consistent with Georges
Rémy’s research (1999) in sub-Saharan Africa showing that “cities, particularly the largest
ones, are especially exposed to infection at all stages of the disease… But rural sites are also
vulnerable. They are marked by various cash-earning businesses: mining centres, road stops,
agri-food areas, markets.”25

Conclusion
83 The samples of Demographic and Health Surveys are designed to achieve a certain accuracy

in calculating HIV prevalence nationally and regionally. The numbers of persons surveyed,
however, are too small to enable accurate estimations of prevalence in each survey cluster or
at a finely grained local level.
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84 The use of adaptive bandwidths of equal number of persons surveyed makes it possible to
achieve a smoothing effect that adapts to the high irregularity of spatial distribution among
the survey clusters, selecting the clusters according to population distribution. The surfaces
thus generated are relatively accurate for densely populated areas and strongly smoothed in
sparsely surveyed areas.

85 The DHS simulation of a fictitious country revealed that the kernel estimator approach with
adaptive bandwidths of equal number of persons surveyed was more effective for this purpose
than a spatial interpolation of prevalence values previously smoothed with the same smoothing
circles. Similarly, there is no significant gain from adding a maximum radius as a second
smoothing criterion.

86 Model 2 showed that, although local variations in the epidemic were filtered out by this type
of technique, the regional component in the spatial variation of prevalence was generally
reproduced, and the estimated prevalence surfaces could be interpreted as regional trend
surfaces with adaptive bandwidths. A surface of this sort, by construction, is necessarily
spatially continuous and self-correlated and in no way implies any potential discontinuities
and local variations in the real surface of the epidemic, which remains inaccessible in the DHS
data.

87 The disadvantage of this approach is that it does not provide an automated technique for
selecting an optimal value for the smoothing parameter. Although some specialist research
is being done in this field, relatively little of it concerns the ratio between two density
surfaces. We tested one of these approaches, adapted from Davies and Hazelton (2010). It was
ineffective for our purposes. DHS data have the particularity that the location of observed data
is based on a two-level cluster sampling and not a one-level random sampling, since the scatter
plot of positive cases is not in practice independent of the scatter plot of observed cases.

88 However, although Equation 5 is determined from simulations of the fictitious country and
cannot strictly be generalised to other situations, it does provide an order of magnitude for the
parameter to be used in practice. Application to Burkina Faso’s 2003 DHS data produced a
plausible map of regional prevalence values.

89 Although a map of this sort must be interpreted with caution, it does provide a descriptive
indication of the state of the epidemic in a country independent of administrative divisions. It is
a useful tool for displaying the main spatial variations of the phenomenon and identifying the
worst affected regions. Although DHSs are insufficient for analysing the spatial determinants
of HIV epidemics, they do make it possible to sketch out a preliminary picture in the absence
of more specific surveys with better geographical coverage.
 
Interpretation: for 60% of clusters, the radius of the smoothing circles is equal to or less than 87 kilometres.
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Annexe

Appendix Table 1: MISD for various values of N for the spatial interpolation approach and kernel estimator
approach

N Spatial interpolation Kernel estimators
25 8,54 35,50
50 7,37 18,85
75 7,12 11,92
100 7,33 9,52
125 7,62 8,00
150 7,20 6,99
175 6,78 6,37
200 6,68 5,79
225 6,70 5,45
250 6,46 5,21
275 6,41 5,21
300 6,50 4,99
325 6,68 5,04
350 6,99 5,04
375 6,88 5,08
400 7,32 5,17
425 7,77 5,25
450 8,03 5,26
475 8,69 5,37
500 9,15 5,42

Appendix Table 2: Quantiles of smoothing circle radii with N=300

Quantile 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% Max
Value
(km) 74 80 87 93 102 108 114 129 138 159 269

Notes

1 In epidemiology, the prevalence of a disease may be expressed in either absolute terms (number of
cases) or relative terms (proportion of people infected in the study population). Throughout this paper
we shall systematically use “prevalence” in its relative sense.
2 Joint United Nations Programme on HIV/AIDS.
3 In the sense of major administrative divisions within a country.
4 The sentinel surveillance of pregnant women consists of selecting antenatal clinics throughout a country
and taking and testing blood samples from each woman attending her first antenatal appointment. These
relatively cheap and easily implemented surveys have been held each year in a number of countries since
the late 1980s and early 1990s.

http://www.measuredhs.com/pubs/pdf/GS5/GS5.pdf
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5 “Ordinary” households exclude people living in institutions (prison, hospital, barracks, boarding
school, convent, etc.). The definition of an ordinary household may vary from one census to another.
6 http://www.measuredhs.com/aboutsurveys/gis/methodology.cfm, web page consulted 15 September
2010.
7 http://www.measuredhs.com/aboutsurveys/ais/start.cfm, web page consulted 15 September 2010.
8 http://www.measuredhs.com/pubs/articles/start.cfm?selected=2, web page consulted 15 September
2010.
9 http://www.hivmapper.com/
10 HIV Spatial Data Repository: http://www.hivspatialdata.net/
11 This technique is explained below.
12 More precisely, the interpolated prevalence at the centroid of each primary unit was applied to the
entire primary unit.
13 Because of rounding in the calculation of the number of clusters to be drawn from a stratum, the total
may differ slightly (± 1) from the target figure.
14 The number of persons tested per cluster is not spatially self-correlated (Larmarange, 2007).
15 Taking into account the relative weighting of each individual.
16 Terrell’s Maximal Smoothing Principle for fixed-bandwidth kernels consists of using the largest
bandwidth from a set of optimal bandwidths estimated from the observed variance of the sample.
17 The Gaussian kernel produces a density surface covering the entire surface (∀ (x,y), K(di/hi) > 0),
whereas finite extent kernels have a nil density outside the bandwidth (di > hi ⇒ K(di/hi) = 0).
18 This equation differs from the MISE one only in comparing two known surfaces rather than an
estimated surface and an unknown density surface.
19 On line at http://www.ceped.org/prevR.
20 Version 1.5.0-Tethys, http://www.qgis.org.
21 Obtained by adding together Model 1’s prevalence surface and the variation surface.
22 With the same simulation parameters: national prevalence 10%, 8,000 people surveyed in 400 clusters.
23 Isolines calculated from the radius surface obtained by spatial interpolation of the radii of the
smoothing circles for the survey clusters.
24 Equation 5 applied to the 2003 DHS data provides an optimal value for N of 502, which we rounded
to 500.
25 Original text in French: “les villes, notamment les plus grandes, sont spécialement exposées à
l’infection à toutes les étapes de sa dynamique… Mais des sites ruraux sont également vulnérables. Ils
se distinguent par leur participation à des activités économiques variées, à caractère monétaire : centres
miniers, étapes routières, périmètres agro-industriels, marchés.”
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Résumés

 
In many countries, particularly in sub-Saharan Africa, Demographic and Health Surveys
(DHSs) are the main way of estimating HIV prevalence nationally in the general population.
Some DHSs record the longitude and latitude of the survey clusters.
We present three methodological approaches for mapping spatial variations in HIV prevalence
using the DHSs. These approaches are applied to simulated DHS samplings from a model
country. The estimated surfaces are then compared with the model’s initial surface.
We demonstrate that a method using kernel estimators with adaptive bandwidths size of equal
number of persons observed can be used to estimate the main regional trends in epidemics.
Application to Burkina Faso’s 2003 DHS data provides a plausible image of that country’s
epidemiological situation.
 
Pour de nombreux pays, en particulier en Afrique subsaharienne, les Enquêtes
Démographiques et de Santé (EDS) constituent la principale estimation de la prévalence du
VIH au niveau national et en population générale. Plusieurs EDS collectent la longitude et la
latitude des grappes enquêtées.
Dans cet article, nous présentons trois approches méthodologiques pour cartographier les
variations spatiales de la prévalence du VIH à partir des EDS. Ces approches sont appliquées à
des simulations d’EDS échantillonnées à partir d’un pays modèle. Les surfaces estimées sont
alors comparées à la surface initiale du modèle.
Nous montrons qu’une méthode utilisant des estimateurs à noyau à fenêtres adaptatives
de même effectif permet d’estimer les principales tendances régionales des épidémies. Son
application aux données de l’EDS 2003 du Burkina Faso fournit une image plausible de la
situation épidémiologique dans ce pays.
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