
HAL Id: ird-03883594
https://ird.hal.science/ird-03883594

Submitted on 3 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reproducible Summary Tables with the gtsummary
Package

Daniel D. Sjoberg, Karissa Whiting, Michael Curry, Jessica A Lavery, Joseph
Larmarange

To cite this version:
Daniel D. Sjoberg, Karissa Whiting, Michael Curry, Jessica A Lavery, Joseph Larmarange. Repro-
ducible Summary Tables with the gtsummary Package. The R Journal, 2021, 13 (1), pp.570-580.
�10.32614/RJ-2021-053�. �ird-03883594�

https://ird.hal.science/ird-03883594
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CONTRIBUTED RESEARCH ARTICLES 570

Reproducible Summary Tables with the
gtsummary Package
by Daniel D. Sjoberg, Karissa Whiting, Michael Curry, Jessica A. Lavery, Joseph Larmarange

Abstract The gtsummary package provides an elegant and flexible way to create publication-ready
summary tables in R. A critical part of the work of statisticians, data scientists, and analysts is
summarizing data sets and regression models in R and publishing or sharing polished summary tables.
The gtsummary package was created to streamline these everyday analysis tasks by allowing users
to easily create reproducible summaries of data sets, regression models, survey data, and survival
data with a simple interface and very little code. The package follows a tidy framework, making it
easy to integrate with standard data workflows, and offers many table customization features through
function arguments, helper functions, and custom themes.

Introduction

Table summaries are a fundamental tool in an analyst’s toolbox that help us understand and commu-
nicate patterns in our data. The ability to easily create and export polished and reproducible tables is
essential. The gtsummary (Sjoberg et al., 2020) package provides an elegant and flexible framework
to create publication-ready analytical and summary tables in R. This package works to close the gap
between a reproducible RMarkdown report and the final report. Specifically, gtsummary allows the
user to fully customize and format summary tables with code, eliminating the need to modify any
tables by hand after the table has been exported. Removing the need to modify tables after the table
has been created eliminates an error-prone step in our workflow and increases the reproducibility of
our analyses and reports.

Using gtsummary, analysts can easily summarize data frames, present and compare descriptive
statistics between groups, summarize regression models, and report statistics inline in RMarkdown
reports. After identifying these basic structures of most tables presented in the medical literature (and
other fields), we wrote gtsummary to ease the creation of fully-formatted, ready-to-publish tables.

Additionally, gtsummary leverages other analysis and tidying R packages to create a complete
analysis and reporting framework. For example, we take advantage of the existing broom (Robinson
et al., 2020) tidiers to prepare regression results for tbl_regression() and use gt (Iannone et al., 2020)
to print gtsummary tables to various output formats (e.g., HTML, PDF, Word, or RTF). Furthermore, gt-
summary functions are designed to work within a "tidy" framework, utilizing the magrittr (Bache and
Wickham, 2020) pipe operator and tidyselect (Henry and Wickham, 2020) functions used throughout
the tidyverse (Wickham et al., 2019).

While other R packages are available to present data and regression model summary tables, such
as skimr, stargazer, finalfit, and tableone, gtsummary is unique in that it is a one-stop-shop for
most types of statistical tables and offers diverse features to customize the content of tables to a high
degree. The default gtsummary table is suitable to be published in a scientific journal with little
or no additional formatting. For example, gtsummary has specific internal algorithms to identify
variable data types, so there is no need for users to specify whether a variable should be displayed
with categorical or continuous summaries, which yields summary tables with minimal code.

Along with descriptive summaries, gtsummary summarizes statistical models, survey data, sur-
vival data and builds cross-tabulations. After data are summarized in a table, gtsummary allows users
to combine tables, either side-by-side (with tbl_merge()) , or on top of each other (with tbl_stack()).
The table merging and stacking abilities allows analysts to easily synthesize and compare output from
several tables and share information in a compact format. All tables in this manuscript were created
using gtsummary v1.4.1.

Data Summaries

To showcase gtsummary functions, we will use a simulated clinical trial data set containing baseline
characteristics of 200 patients who received Drug A or Drug B, as well as the outcomes of tumor
response and death. Each variable in the data frame has been assigned an attribute label with the
labelled package (Larmarange, 2020), e.g., trial %>% set_variable_labels(age = "Age"), that will
be shown in the summary tables. These labels are displayed in the gtsummary tables by default, and
had labels not been assigned, the variable name would have been shown.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=gtsummary
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=gt
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=tidyselect
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=skimr
https://CRAN.R-project.org/package=stargazer
https://CRAN.R-project.org/package=finalfit
https://CRAN.R-project.org/package=tableone
https://CRAN.R-project.org/package=gtsummary
https://CRAN.R-project.org/package=gtsummary

CONTRIBUTED RESEARCH ARTICLES 571

colname label class values

trt Chemotherapy Treatment character Drug A, Drug B
age Age numeric 6, 9, 10, 17, ...
marker Marker Level (ng/mL) numeric 0.003, 0.005, 0.013, 0.015, ...
stage T Stage factor T1, T2, T3, T4
grade Grade factor I, II, III
response Tumor Response integer 0, 1
death Patient Died integer 0, 1
ttdeath Months to Death/Censor numeric 3.53, 5.33, 6.32, 7.27, ...

Table 1. Example data frame, trial

tbl_summary()

The default output from tbl_summary() is meant to be publication-ready. The tbl_summary() function
can take, at minimum, a data frame as the only input, and returns descriptive statistics for each column
in the data frame. This is often the first table of clinical manuscripts and describes the characteristics of
the study cohort. A simple example is shown below. Notably, by specifying the by= argument, you can
stratify the summary table. In the example below, we have split the table by the treatment a patient
received.

trial %>%
select(age, grade, response, trt) %>%
tbl_summary(by = trt)

The function is highly customizable, and it is initiated with sensible default settings. Specifically,
tbl_summary() detects variable types of input data and calculates descriptive statistics accordingly. For
example, variables coded as 0/1, TRUE/FALSE, and Yes/No are presented dichotomously. Additionally,
NA values are recognized as missing and listed as unknown, and if a data set is labeled, the label
attributes are utilized.

Default settings may be customized using the tbl_summary() function arguments.

Argument Description

label= specify the variable labels printed in table
type= specify the variable type (e.g., continuous, categorical, etc.)
statistic= change the summary statistics presented
digits= number of digits the summary statistics will be rounded to
missing= whether to display a row with the number of missing observations
missing_text= text label for the missing number row
sort= change the sorting of categorical levels by frequency
percent= print column, row, or cell percentages
include= list of variables to include in summary table

Table 2. tbl_summary() function arguments

For continuous variables, tables display one row of statistics per variable by default. This can be
customized, and in the example below, the age variable is cast to "continuous2" type, meaning the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 572

continuous summary statistics will appear on two or more rows in the table. This allows the number
of non-missing observations and the mean to be displayed on separate lines.

In the example below, the "age" variable’s label is updated to "Patient Age". Default summary
statistics for both continuous and categorical variables are updated using the statistic= argument.
gtsummary uses glue (Hester, 2020) syntax to construct the statistics displayed in the table. Function
names appearing in curly brackets will be replaced by the evaluated value. The digits= argument is
used to increase the number of decimal places to which the statistics are rounded, and the missing row
is omitted with missing = "no".

trial %>%
select(age, grade, response, trt) %>%
tbl_summary(
by = trt,
type = age ~ "continuous2",
label = age ~ "Patient Age",
statistic = list(age ~ c("{N_nonmiss}", "{mean} ({sd})"),

c(grade, response) ~ "{n} / {N} ({p}%)"),
digits = c(grade, response) ~ c(0, 0, 1),
missing = "no"

)

A note about notation: Throughout the gtsummary package, you will find function arguments
that accept a list of formulas (or a single formula) as the input. In the example above, the label for the
age variable was updated using label = age ∼ "Patient Age"—equivalently, label = list(age
∼ "Patient Age"). To select groups of variables, utilize the select helpers from the tidyselect and
gtsummary packages. The all_continuous() selector is a convenient way to select all continuous
variables. In the example above, it could have been used to change the summary statistics for all
continuous variables—all_continuous() ∼ c("{N_nonmiss}","{mean} ({sd})"). Similarly, users
may utilize all_categorical() (from gtsummary) or any of the tidyselect helpers used throughout
the tidyverse packages, such as starts_with(), contains(), etc.

In addition to summary statistics, the gtsummary package has several functions to add additional
information or statistics to tbl_summary() tables.

Function Description

add_p() add p-values to the output comparing values across groups
add_overall() add a column with overall summary statistics
add_n() add a column with N (or N missing) for each variable
add_difference() add column for difference between two group, confidence interval, and p-value
add_stat_label() add label for the summary statistics shown in each row
add_stat() generic function to add a column with user-defined values
add_q() add a column of q-values to control for multiple comparisons

Table 3. tbl_summary() functions to add information

In the example below, descriptive statistics are shown by the treatment received and overall, as
well as a p-value comparing the values between the treatments. Default statistical tests are chosen
based on data type, and the statistical test performed can be customized in the add_p() function.
p-value formatting can be adjusted using the pvalue_fun= argument, which accepts both a proper
function, as well the formula shortcut notation used throughout the tidyverse packages.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=glue

CONTRIBUTED RESEARCH ARTICLES 573

trial %>%
select(age, grade, response, trt) %>%
tbl_summary(by = trt) %>%
add_overall() %>%
add_p(test = all_continuous() ~ "t.test",

pvalue_fun = ~style_pvalue(., digits = 2))

tbl_svysummary()

The tbl_svysummary() function is analogous to tbl_summary(), except a survey (Lumley, 2020) object
is supplied rather than a data frame. The summary statistics presented take into account the survey
weights, as do any p-values presented.

convert trial data frame to survey object
svy_trial <- survey::svydesign(data = trial, ids = ~ 1, weights = ~ 1)

tbl_svysummary_1 <-
svy_trial %>%
tbl_svysummary(by = trt, include = c(trt, age, grade)) %>%
add_p()

tbl_cross()

The tbl_cross() function is a wrapper for tbl_summary() and creates a simple, publication-ready
cross tabulation.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=survey

CONTRIBUTED RESEARCH ARTICLES 574

trial %>%
tbl_cross(row = stage, col = trt, percent = "cell") %>%
add_p(source_note = TRUE)

tbl_survfit()

The tbl_survfit() function parses and tabulates survival::survfit() objects presenting survival
percentile estimates and survival probabilities at specified times.

library(survival)

list(survfit(Surv(ttdeath, death) ~ trt, trial),
survfit(Surv(ttdeath, death) ~ grade, trial)) %>%

tbl_survfit(times = c(12, 24),
label_header = "**{time} Month**") %>%

add_p()

Customization

The gtsummary package includes functions specifically made to modify and format the summary
tables. These functions work with any table constructed with gtsummary. The most common uses
are changing the column headers and footnotes or modifying the look of tables through bolding and
italicization.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 575

Function Description

modify_header() update column headers
modify_footnote() update column footnote
modify_spanning_header() update spanning headers
modify_caption() update table caption/title
bold_labels() bold variable labels
bold_levels() bold variable levels
italicize_labels() italicize variable labels
italicize_levels() italicize variable levels
bold_p() bold significant p-values

Table 4. Functions to style and modify gtsummary tables

The gtsummary package utilizes the gt package to print the summary tables. The gt package
exports approximately one hundred functions to customize and style tables. When you need to add
additional details or styling not available within gtsummary, use the as_gt() function to convert the
gtsummary object to gt and continue customization.

The example below is a common table reported in clinical trials and observational research where
two treatments are compared. The treatment differences were added with the add_difference()
function. The table includes customization using both gtsummary and gt functions. The gtsummary
functions are utilized to bold the variable labels, update the column headers, and add a spanning
header. Additional gt customization was utilized to add table captions and source notes.

trial %>%
select(marker, response, trt) %>%
tbl_summary(by = trt,

missing = "no",
statistic = marker ~ "{mean} ({sd})") %>%

add_difference() %>%
add_n() %>%
add_stat_label() %>%
bold_labels() %>%
modify_header(list(label ~ "**Variable**", all_stat_cols() ~ "**{level}**")) %>%
modify_spanning_header(all_stat_cols() ~ "**Randomization Assignment**") %>%
as_gt() %>%
gt::tab_header(
title = gt::md("**Table 1. Treatment Differences**"),
subtitle = gt::md("_Highly Confidential_")

) %>%
gt::tab_source_note("Data updated June 26, 2015")

Model Summaries

Regression modeling is one of the most common tools of medical research. The gtsummary package
has two functions to help analysts prepare tabular summaries of regression models: tbl_regression()
and tbl_uvregression().

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 576

tbl_regression()

The tbl_regression() function takes a regression model object in R and returns a formatted table
of regression model results. Like tbl_summary(), tbl_regression() creates highly customizable
analytic tables with sensible defaults. Common regression models, such as logistic regression and Cox
proportional hazards regression, are automatically identified, and the tables headers are pre-filled
with appropriate column headers (i.e., Odds Ratio and Hazard Ratio).

In the example below, the logistic regression model is summarized with tbl_regression(). Note
that a reference row for grade has been added, and the variable labels have been carried through into
the table. Using exponentiate = TRUE, we exponentiate the regression coefficients, yielding the odds
ratios. The helper function add_global_p() was used to replace the p-values for each term with the
global p-value for grade.

glm(response ~ age + grade, trial, family = binomial) %>%
tbl_regression(exponentiate = TRUE) %>%
add_global_p()

The tbl_regression() function leverages the huge effort behind the broom, parameters (Lüdecke
et al., 2020), and broom.helpers (Larmarange and Sjoberg, 2021) packages to perform the initial
formatting of the regression object. Because tbl_regression() utilizes these packages, there are many
model types that are supported out of the box, such as lm(), glm(), lme4::lmer(), lme4::glmer(),
geepack::geeglm(), survival::coxph(), survival::survreg(), survival::clogit(), nnet::multinom(),
rstanarm::stan_glm(), models built with the mice package (van Buuren and Groothuis-Oudshoorn,
2011), and many more. A custom tidier may be specified as well, which is helpful when you need to
present non-standard modifications to your model results such as Wald confidence intervals or results
with modified variance-covariance standard errors.

tbl_uvregression()

The tbl_uvregression() function is a wrapper for tbl_regression() that is useful when you need a
series of univariate regression models. The user passes a data frame to tbl_uvregression(), indicates
what the outcome is, what regression model to run, and the function will return a formatted table of
stacked univariate regression models.

trial %>%
select(response, age, grade) %>%
tbl_uvregression(
y = response,
method = glm,
method.args = list(family = binomial),
exponentiate = TRUE,
pvalue_fun = ~style_pvalue(., digits = 2)

) %>%
add_nevent() %>%
add_global_p()

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=parameters
https://CRAN.R-project.org/package=broom.helpers

CONTRIBUTED RESEARCH ARTICLES 577

Inline Reporting

Reproducible reports are an important part of good analytic practices. We often need to report the
results from a table in the text of an R markdown report. The inline_text() function reports statistics
from gtsummary tables inline in an R markdown document.

Imagine you need to report the results for age from the univariate table above. Typically, the
odds ratio, confidence interval, and p-value would be hard-coded into a report, which can lead to
reproducibility issues if the data is updated and the hard-coded statistics are not amended. A simple
call to the inline_text() function will dynamically add the model results to an RMarkdown report.

The odds ratio for age was `r inline_text(uvreg, variable = age)`.

Here is how the line will appear in your report.

The odds ratio for age was 1.02 (95% CI 1.00, 1.04; p=0.091).

The default pattern to display for a regression table is "{estimate} ({conf.level*100}% CI
{conf.low},{conf.high}; {p.value})" (again using glue syntax), and can be modified with the
inline_text(pattern=) argument.

Merging and Stacking

The gtsummary tables shown above are often ready for publication as they are; however, it is common
that more complex tables need to be constructed. This can be achieved by merging or stacking
gtsummary tables using the tbl_merge() and tbl_stack() functions. For example, in cancer research
we often report models predicting a tumor’s response to treatment and risk of death side-by-side in
publications. This type of table is simple to construct using tbl_merge(). First, build a table for each
regression model using tbl_regression(), then merge the two tables with tbl_merge(). Any number
of gtsummary tables can be merged with this function.

tbl1 <-
glm(response ~ age + grade, trial, family = binomial) %>%
tbl_regression(exponentiate = TRUE)

tbl2 <-
coxph(Surv(ttdeath, death) ~ age + grade, trial) %>%
tbl_regression(exponentiate = TRUE)

tbl_merge_1 <-
tbl_merge(
tbls = list(tbl1, tbl2),
tab_spanner = c("**Tumor Response**", "**Time to Death**")

)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 578

Similarly, any number of gtsummary tables may be stacked using the tbl_stack() function.

Themes

We love themes. The default styling (e.g., statistics displayed in tbl_summary(), how p-values are
rounded, decimal separator, and more) follow the reporting guidelines from European Urology, The
Journal of Urology, Urology, and the British Journal of Urology International (Assel et al., 2019).
However, you will likely submit to another journal, or your personal preferences differ from the
defaults. The gtsummary package is unique from other table building packages with the ability to set
fine-grained customization defaults with themes. Themes were created to make these customizations
easy to navigate and reuse across documents or projects. With themes, users can control default
settings for existing functions (e.g., always present means instead of medians in tbl_summary()), as
well as other changes that are not modifiable with function arguments. Several themes are available to
follow various journals’ reporting guidelines, reduce cell padding and font size, and language themes
to translate gtsummary tables to more than 14 languages.

For example, using the theme for The Journal of the American Medical Association (JAMA), large
p-values are rounded to two decimal places, confidence intervals are shown as "lb to ub" instead of
"lb,ub", and the confidence interval is displayed in the same column as the model coefficients.

theme_gtsummary_journal("jama")

glm(response ~ age + grade, trial, family = binomial) %>%
tbl_regression(exponentiate = TRUE)

The language theme can be used to translate the table to another language and allows users to
specify the decimal and big mark symbols. For example, theme_gtsummary_language(language =
"es",decimal.mark = ",",big.mark = ".") will translate the output to Spanish and format numeric
results as 1.000,00 instead of 1,000.00 (the default formatting).

A custom theme was used to construct the gtsummary tables shown in this manuscript to match
the R Journal font and reduce the default cell padding. Themes are an evolving feature, and we
welcome additions of new journals’ reporting guidelines or other themes useful to users. A full
glossary of customizable theme elements is available in the package’s themes vignette (http://www.
danieldsjoberg.com/gtsummary/articles/themes.html).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

http://www.danieldsjoberg.com/gtsummary/articles/themes.html
http://www.danieldsjoberg.com/gtsummary/articles/themes.html

CONTRIBUTED RESEARCH ARTICLES 579

Print Engines

Tables printed with gtsummary can be seamlessly integrated into RMarkdown documents and knitted
into various output types using a number of print engines. The package was written to be a companion
to the gt package from RStudio and is optimized to leverage the advanced customization features
of this print engine, but offers compatibility with a variety of popular printing methods, including
knitr::kable() (Xie, 2020), flextable (Gohel, 2020), huxtable (Hugh-Jones, 2020), and kableExtra
(Zhu, 2020). While gt is used as the default for most outputs, you can easily use your print engine
of choice with the conversion helper functions provided in the package (e.g., as_flex_table()). It is
possible to get results in HTML, PDF (via LATEX), RTF, Microsoft Word, PowerPoint, Excel, and others,
utilizing the various print engines. The package is designed to interact with these print engines behind
the scenes to reduce the burden on users, and you generally only need to be aware of them if you want
to add advanced customizations.

Summary

The functions in the gtsummary package were designed to reduce the burden of reporting and to work
together to easily construct both simple and complex tables. It is our hope that the user-friendly syntax
and publication-ready tables will aid analysts in preparing reproducible and high-quality findings.

Bibliography

M. Assel, D. Sjoberg, A. Elders, X. Wang, D. Huo, A. Botchway, K. Delfino, Y. Fan, Z. Zhao, T. Koyama,
et al. Guidelines for reporting of statistics for clinical research in urology. European urology, 75(3):
358, 2019. [p578]

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2020. URL https://CRAN.R-
project.org/package=magrittr. R package version 2.0.1. [p570]

D. Gohel. flextable: Functions for Tabular Reporting, 2020. URL https://CRAN.R-project.org/package=
flextable. R package version 0.6.1. [p579]

L. Henry and H. Wickham. tidyselect: Select from a Set of Strings, 2020. URL https://CRAN.R-project.
org/package=tidyselect. R package version 1.1.0. [p570]

J. Hester. glue: Interpreted String Literals, 2020. URL https://CRAN.R-project.org/package=glue. R
package version 1.4.2. [p572]

D. Hugh-Jones. huxtable: Easily Create and Style Tables for LaTeX, HTML and Other Formats, 2020. URL
https://CRAN.R-project.org/package=huxtable. R package version 5.1.1. [p579]

R. Iannone, J. Cheng, and B. Schloerke. gt: Easily Create Presentation-Ready Display Tables, 2020.
https://gt.rstudio.com/, https://github.com/rstudio/gt. [p570]

J. Larmarange. labelled: Manipulating Labelled Data, 2020. URL https://CRAN.R-project.org/package=
labelled. R package version 2.7.0. [p570]

J. Larmarange and D. D. Sjoberg. broom.helpers: Helpers for Model Coefficients Tibbles, 2021. URL
https://CRAN.R-project.org/package=broom.helpers. R package version 1.3.0. [p576]

T. Lumley. survey: Analysis of Complex Survey Samples, 2020. URL https://CRAN.R-project.org/
package=survey. R package version 4.0. [p573]

D. Lüdecke, M. S. Ben-Shachar, I. Patil, and D. Makowski. Extracting, computing and exploring the
parameters of statistical models using R. Journal of Open Source Software, 5(53):2445, 2020. doi:
10.21105/joss.02445. [p576]

D. Robinson, A. Hayes, and S. Couch. broom: Convert Statistical Objects into Tidy Tibbles, 2020. URL
https://CRAN.R-project.org/package=broom. R package version 0.7.2. [p570]

D. D. Sjoberg, M. Curry, M. Hannum, K. Whiting, and E. C. Zabor. gtsummary: Presentation-
Ready Data Summary and Analytic Result Tables, 2020. URL https://CRAN.R-project.org/
package=gtsummary. R package version 1.3.6, https://github.com/ddsjoberg/gtsummary,
http://www.danieldsjoberg.com/gtsummary/. [p570]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=huxtable
https://CRAN.R-project.org/package=kableExtra
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=tidyselect
https://CRAN.R-project.org/package=tidyselect
https://CRAN.R-project.org/package=glue
https://CRAN.R-project.org/package=huxtable
https://CRAN.R-project.org/package=labelled
https://CRAN.R-project.org/package=labelled
https://CRAN.R-project.org/package=broom.helpers
https://CRAN.R-project.org/package=survey
https://CRAN.R-project.org/package=survey
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=gtsummary
https://CRAN.R-project.org/package=gtsummary

CONTRIBUTED RESEARCH ARTICLES 580

S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r.
Journal of Statistical Software, 45(3):1–67, 2011. URL https://www.jstatsoft.org/v45/i03/. [p576]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
tidyverse. Journal of Open Source Software, 4(43):1686, 2019. doi: 10.21105/joss.01686. [p570]

Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R, 2020. URL https://CRAN.R-
project.org/package=knitr. R package version 1.30. [p579]

H. Zhu. kableExtra: Construct Complex Table with ’kable’ and Pipe Syntax, 2020. URL https://CRAN.R-
project.org/package=kableExtra. R package version 1.3.1. [p579]

Daniel D. Sjoberg
Memorial Sloan Kettering Cancer Center
1275 York Ave., New York, New York 10022
USA
ORCiD: 0000-0003-0862-2018
sjobergd@mskcc.org

Karissa Whiting
Memorial Sloan Kettering Cancer Center
1275 York Ave., New York, New York 10022
USA
ORCiD: 0000-0002-4683-1868
whitingk@mskcc.org

Michael Curry
Memorial Sloan Kettering Cancer Center
1275 York Ave., New York, New York 10022
USA
ORCiD: 0000-0002-0261-4044
currym1@mskcc.org

Jessica A. Lavery
Memorial Sloan Kettering Cancer Center
1275 York Ave., New York, New York 10022
USA
ORCiD: 0000-0002-2746-5647
laveryj@mskcc.org

Joseph Larmarange
Centre Population & Développement, IRD, Université de Paris, Inserm
45 rue des Saints-Pères 75006 PARIS
France
ORCID: 0000-0001-7097-700X
joseph.larmarange@ceped.org

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://www.jstatsoft.org/v45/i03/
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=kableExtra
https://CRAN.R-project.org/package=kableExtra
mailto:sjobergd@mskcc.org
mailto:whitingk@mskcc.org
mailto:currym1@mskcc.org
mailto:laveryj@mskcc.org
mailto:joseph.larmarange@ceped.org

	Reproducible Summary Tables with the gtsummary Package
	Introduction
	Data Summaries
	tbl_summary()
	tbl_svysummary()
	tbl_cross()
	tbl_survfit()
	Customization

	Model Summaries
	tbl_regression()
	tbl_uvregression()

	Inline Reporting
	Merging and Stacking
	Themes
	Print Engines
	Summary

