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Phytoplankton biomass exhibits significant year-to-year changes and understanding these 

changes is crucial to fisheries management and projecting future climate. These annual 

changes result partly from low-frequency climate modes that also lead to variations in sea 

surface temperature (SST). Here we evaluate the contribution of small scales to annual 

fluctuations based on a global analysis of satellite observations of sea surface chlorophyll 

(SChl), an indicator of phytoplankton biomass, and of SST, from 1999 to 2018. We 

disentangle the spatio-temporal scales of variability in the timeseries, and find that besides 

the prominent seasonal cycle, SChl is dominated by high-frequency fluctuations (<3 months) 

at small spatial scales (<50 km) —which accumulates over annual scales, in contrast to SST. 

The results suggest that observations and models with high spatio-temporal resolutions are 

necessary to understand annual changes in SChl. The rapid response of SChl to small-scale 

physical processes, combined with intrinsic ecosystem interactions and air-sea interaction 

feedbacks, may explain the differences between annual variations in SST and SChl.  

 

Predicting the response of phytoplankton to climate change has important implications for 

biogeochemical cycling and ecosystem management1-3 due to the key role phytoplankton play in 

marine food webs4. The continuous daily monitoring of surface chlorophyll-a (SChl), a proxy of 

phytoplankton biomass, from satellite radiometric measurements has been an invaluable tool to 

observe phytoplankton variability at the global scale over the past two decades5-12. As the satellite 

SChl timeseries grows, attempts have been made to detect climate change-driven trends11-16. 

However, this detection is made difficult by the large amplitude of natural variations, which 

overwhelm the long-term changes16-18. It is therefore essential to fully characterize natural SChl 

variability in order to attribute long-term changes to climate variability and/or anthropogenic 

forcing. 



	

Because the primary mode of natural variability in SChl is the seasonal cycle19, annual changes 

(i.e. changes from year-to-year) are the natural frame of reference for quantifying and attributing 

long-term trends. Previous attempts to explain year-to-year SChl changes have essentially focused 

on the role of large-scale, low-frequency climate modes; this has proved effective in the tropics. 

For example, climate modes such as El-Nino Southern Oscillation (ENSO) or the Indian Ocean 

Dipole (IOD) have been shown to explain most of phytoplankton variability in the tropical 

Pacific20-23 and tropical Indian Ocean24, respectively. But at higher latitudes, only modest 

correlations have been found between year-to-year SChl anomalies and the North Atlantic 

Oscillation25,26 (NAO) or the Southern Annular Mode27,28 (SAM). 

Here we argue that annual changes in phytoplankton cannot be fully explained by climate modes 

because year-to-year SChl variations reflect processes occurring across a range of temporal scales 

from sub-seasonal to multi-annual. Satellite SChl timeseries indeed reveal that SChl fluctuations 

cover a large range of temporal scales, that can be shorter (sub-seasonal) or longer (multi-annual) 

than seasonality6,19. We quantify how fluctuations at sub-seasonal and seasonal frequencies, which 

are not necessarily related to climate modes, can lead to annual anomalies, and thus project onto 

the annual mean. 

Sub-seasonal fluctuations in phytoplankton are large in many regions, with magnitudes that can be 

greater than twice the climatological mean24,29-33. For instance, over wide regions of the Southern 

Ocean31 and along the deep convection zone of the Mediterranean Sea34,35, the majority of SChl 

variance occurs at sub-seasonal timescales. In tropical cyclone-prone regions, synoptic-scale 

patches of increased productivity can account for 20-30% of the annual primary production36. 

These sub-seasonal SChl fluctuations are often the consequence of intermittency in surface 



	

stratification, which can suppress or dilute the surface blooms or trigger transient phytoplankton 

growth by supplying nutrients to the euphotic zone34,35,37,38. Such high-frequency SChl fluctuations 

may be driven by sub-seasonal atmospheric variability including storms and (extra-) tropical 

cyclones39-41, by sub-seasonal climate modes24,43, or by mesoscale and sub-mesoscale eddies44,45. 

High-frequency SChl fluctuations may also reflect intrinsic variability in the biological system due 

to predator-prey interactions or resource competition46,47. All of these potential forcings operate 

over very different spatial scales, from <1 km in the case of intrinsic variability, 1-100 km for sub-

mesoscale processes, 100-1000 km for cyclones and storms, to >1000 km for climate modes. 

Importantly, annual changes in eddy activity48 or in the number of atmospheric storms49, for 

instance, can alter annual mean SChl by influencing sub-seasonal SChl over the full year50. 

Seasonality in phytoplankton biomass is controlled by seasonal variations of solar irradiance, winds, 

and surface stratification, which modulate nutrient availability, light exposure and dilution rates51-

55. The seasonal cycle is not strictly reproducible because the timing, number and magnitude of 

blooms vary from year-to-year56,57. Annual variability in the seasonal cycle (termed the delta-

seasonal component hereafter) may be due to changes in the nutrient inventory and/or timing of 

mixed-layer shoaling, among other factors56,57. 

To demonstrate the contribution of sub-seasonal and delta-seasonal variations to annual changes, 

we decompose SChl timeseries over the global ocean into four distinct components: the annually 

repeating climatological seasonal component and three non-seasonal components, separated into 

sub-seasonal, delta-seasonal and multi-annual frequency ranges. Each non-seasonal component 

contributes to year-to-year changes. We evaluate the contribution of each non-seasonal component 

to the non-seasonal SChl variance. We also examine the associated spatial scales, which provide 



	

information on the possible driving mechanism. We then repeat the same analysis for sea surface 

temperature (SST), another oceanic property observable by satellite at similar resolution for which 

longer timeseries are available. Trying to relate non-seasonal changes in SChl to those in SST is 

motivated by the fact that climate modes have a strong imprint on SST58, and that phytoplankton 

distribution is modulated by some of the same transport processes as SST. However, we show that 

there are significant regional differences in the dominant temporal and spatial scales of SChl and 

SST non-seasonal variability. High-frequency subseasonal fluctuations dominate the non-seasonal 

part of SChl variability across vast regions of the ocean, and project onto the annual mean, while 

the low-frequency, multi-annual component governs SST. These results emphasize that sub-

seasonal SChl events, and to a lesser extent delta-seasonal variations, should not be ignored when 

seeking to explain year-to-year changes in SChl or identify climate change-driven trends in primary 

productivity.  

Decomposing SChl and SST temporal variations 

We use the merged SChl product at 8-day temporal resolution distributed by European Space 

Agency Ocean Color Climate Change Initiative59 (ESA OC-CCI), which gathers more than two 

decades of observations from multiple satellites and has good coverage (>70%) in most regions 

(Extended Data Fig. 1). For SST, we used the Optimum Interpolation Sea Surface Temperature 

(OISST) data distributed by NOAA, averaged over the same 8-day temporal grid as SChl. The 

amplitude of temporal SChl fluctuations varies at the global scale and mirrors the patterns in the 

annual mean (Extended Data Fig. 1). Namely, large values are observed in the high-latitude spring 

bloom regions, in boundary current regions and along the equator, where permanent and/or 

seasonal convection or upwelling supply nutrients to the surface layer; conversely, low values are 

observed over the nutrient-poor subtropical gyres15. 



	

The magnitude of SChl fluctuations results from the combined variability across a range of 

timescales. In order to isolate these signals, we use an iterative band-pass filter algorithm35 adapted 

from the census X11 technique6 that separates local timeseries Xt into sub-seasonal (SSt, ~0.5-3 

months), seasonal (St, ~3-12 months) and multi-annual (MAt, ~12-120 months) constituents, such 

that Xt = SSt + St + MAt (see Methods). This method allows for small overlaps in the frequency 

ranges associated with each component to account for regional variations in the dominant 

frequencies of the seasonal cycle (some regions being dominated by one or two annual blooms, for 

example). The method also allows the seasonal constituent St to vary from year-to-year. Hence St 

can be further separated into a repeating climatological seasonal cycle CSt and a residual delta-

seasonal component defined as DSt = St - CSt which captures annual variations in the seasonal cycle 

(see Methods). At each grid cell, the local time-series is thus decomposed into four constituents Xt 

= SSt + DSt + CSt + MAt. In the following, we examine the non-seasonal part of Xt, which we 

define as NSt = Xt - CSt = SSt + DSt + MAt, and which thus includes a sub-seasonal SSt, a delta-

seasonal DSt and a multi-annual MAt component. Extended Data Fig. 2 shows the decomposition 

at a station where the non-seasonal variability of SChl is particularly large. We can see that CSt is 

positive, while SSt, DSt and MAt oscillate around zero but have a non-zero annual mean; the annual 

mean of CSt is constant and the annual means of SSt, DSt and MAt vary from year-to-year. Extended 

Data Fig. 3 and 4 show examples of SChl and SST timeseries from different regions and their 

corresponding power spectra, illustrating the wide range of frequencies in their non-seasonal 

components.  

Strikingly for SChl, the variance of the non-seasonal part NSt exceeds the variance of the 

climatological seasonal part SCt in many places (Fig. 1). For example, in some tropical and 

subpolar regions, non-seasonal variability contributes more than 70% of the total SChl variance 



	

(Fig. 1a). Also, notably, the non-seasonal part of SST variability is much smaller (generally <20%) 

than that of SChl, except in the equatorial region (Fig. 1b). In the following, we examine the relative 

contribution of each of the three components of the non-seasonal SChl and SST variability, bearing 

in mind that the non-seasonal variance is much larger for SChl than for SST.  

Non-seasonal SChl and SST variability 

The relative contribution of each component to the non-seasonal SChl and SST variance exhibits 

clear regional and latitudinal patterns (Fig. 2). In most regions, non-seasonal SChl variability is 

dominated (>50%) by the sub-seasonal component, whereas non-seasonal SST variability is 

dominated by its multi-annual component (>40%). For SChl, delta-seasonal variations explain only 

a small part of the non-seasonal variance (~10-20%). Multi-annual SChl variations are also 

generally modest and account for less than 30% of the non-seasonal variance in most locations. A 

notable exception to this is in the tropical Pacific, where multi-annual fluctuations largely dominate 

over the well-known horseshoe pattern of ENSO9; this is also reflected in the region’s SST 

variability (Fig. 2c,g). Despite this, when averaged over the entire tropical band (20°N-20°S), 

multi-annual variability contributes less to the non-seasonal SChl variance (~25%) than the sub-

seasonal (~50%) component (Fig. 2d). Compared to SChl, sub-seasonal events contribute much 

less to the non-seasonal SST variance (Fig. 2e-h). Sub-seasonal SST variability is largest within 

western boundary currents, along the equator, and in the Indian Ocean, but elsewhere, the multi-

annual component dominates the non-seasonal SST variance.  

Next, we examine the spatial scales associated with each non-seasonal component of the 

decomposition (Fig. 3). We estimate these by computing the distance over which a signal remains 

self-coherent using cross-correlation (see Methods). For both SChl and SST, the largest spatial 



	

scales correspond to the multi-annual component, and the smallest to the sub-seasonal component. 

This provides insight into the relevant forcings operating at each timescale. For example, in the 

tropics, the spatial scales associated with the multi-annual component (>500 km), are consistent 

with the scales of tropical climate modes (e.g. ENSO, IOD). The spatial scales of the delta-seasonal 

component are about ~100-200 km for SChl and ~200-400 km for SST, consistent with scales of 

year-to-year variations in stratification and radiative forcing (i.e. linked to spatial scales of 

atmospheric variability); they are smaller for SChl than for SST, reflecting differences in biological 

and thermal response to this physical forcing, such as the fact that phytoplankton phenology, unlike 

SST, may respond non-monotonically to changes in stratification60.  

The sub-seasonal component, on the other hand, has much smaller spatial scales, ~50 km for SChl 

and ~100-200 km for SST. These scales are consistent with variability driven by mesoscale and 

submesoscale eddies. Nevertheless, while frontal scales <100 km dominate the SChl sub-seasonal 

variance, there are locations where a significant portion has spatial scales >100 km (Extended Data 

Fig. 5). These regions are primarily found at high-latitudes where the larger scales may reflect 

synoptic storms32,41 and in the tropics where they may reflect intraseasonal climate modes such as 

Madden Julian Oscillation61,62, Kelvin waves63, or tropical instability waves64.  

The differences between SST and SChl sub-seasonal variations in both spatial scale and relative 

magnitude are striking given that both are influenced by the same ocean circulation and mixing. 

However, there are several elements that can explain these differences. First of all, those same 

dynamics act over different tracer gradients. It is likely that phytoplankton concentration is more 

sensitive to vertical exchanges than is SST because of the strong vertical gradients of phytoplankton 

and nutrients resulting from the fact that photosynthesis is limited to the euphotic layer. It has been 



	

observed that SChl is particularly sensitive to episodic nitrate injection over fronts and frontal areas 

between eddies65 with relative changes of order 40% for SChl but less than 5% for SST66. On the 

other hand, both SST and SChl anomalies are observed in the core of eddies67. This is consistent 

with the spatial scales for sub-seasonal variability (Fig. 3), which are closer to the 

frontal/submesoscale/mesoscale for SChl and to the mesoscale for SST. Another factor that might 

generate SChl sub-seasonal variations (but not SST) are ecological processes. For instance, 

predator-prey interactions68, resource competition69, and the interplay between the two46, can lead 

to oscillations in phytoplankton biomass on short timescales (<3 months). On the other hand, air-

sea heat fluxes could damp the variability for SST; for example, through the air-sea turbulent heat 

flux feedback over mesoscale eddies, which has been recently identified in high resolution coupled 

ocean-atmosphere models70,71 and quantified72. This effect could contribute to part of the 

differences observed in both the sub-seasonal and delta-seasonal components. In summary, the 

strong contribution of sub-seasonal variations, unique to SChl, may reflect submesoscale-driven 

vertical exchanges73-75, amplified by storm-driven mixing76,77 and the effects of ecological 

processes, while the much weaker sub-seasonal SST variations may be the consequence of damping 

by air-sea fluxes.  

Implications for year-to-year and longer-term variations 

Year-to-year fluctuations in SChl are largely captured by the multi-annual component of SChl, but 

our result show that sub-seasonal and delta-seasonal fluctuations also contribute to variations in 

the annual mean. To quantify their relative importance, we define an annual mean low-frequency 

index as the correlation between annual mean SChl and the annual mean multi-annual component 

of SChl (Fig. 4). The index is close to one where annual mean changes are governed by low-

frequency variations (>1 year, i.e. multi-annual). The index decreases as variability at higher 



	

frequencies (<1 year, i.e. sub-seasonal plus delta-seasonal) contributes to the annual mean changes. 

For SChl, we find that the index is close to one in parts of the tropics and subtropics but decreases 

(down to 0.5) in the equatorial Atlantic and subpolar regions where sub-seasonal variability and an 

irregular seasonal cycle become larger. Notably, the regions where high-frequency variability 

contributes the most to year-to-year variations are those where the eddy and frontal activity are 

known to be large, such as in the Southern Ocean, in Western boundary current regions, or in 

Eastern boundary upwelling systems. Thus, across large swaths of the global ocean, year-to-year 

changes in SChl are not synonymous with low-frequency variability. Our result contrast with 

previous understanding of SChl year-to-year changes, which have often conflated year-to-year 

changes with low-frequency variability9,23,26,28,78. We should emphasize that previous studies have 

not necessarily precluded the influence of high-frequency variability, but rather have assumed that 

the combined effect of short-term variability is one manifestation of climate modes. Indeed, there 

is growing evidence that the intensity of submesoscale circulations is modulated by large-scale 

climate modes79-82. But our results demonstrate the importance of the intrinsic chaotic nature of 

small-scale physical84-86 and biological87-89 oceanic processes that can project onto timescales 

longer than a year with no correlation to climate modes. Our analysis provides a global 

quantification of this more chaotic contribution of small spatio-temporal scales of variability to 

year-to-year changes in SChl.  

In contrast to SChl, the annual mean low-frequency index computed for SST is close to one 

everywhere (global average of 0.987), which means that year-to-year changes in annual mean SST 

are primarily driven by low-frequency variability. This suggests that attempts to extend SChl 

timeseries beyond the satellite ocean color record using SST as a predictor variable7,89,90 may be 

biased, particularly in extra-tropical regions. Previous studies have successfully reconstructed SChl 



	

variability from SST in the tropical Pacific90, which is a region of weak sub-seasonal SChl 

variability. But our results imply that SST cannot be used to project SChl temporal variability in 

places, such as high latitude and subpolar oceans, where sub-seasonal SChl variance is large. 

Much of what we know about decadal and longer-term trends in primary productivity relies on 

biogeochemical models. Based on our results, there is an urgent need to evaluate the capabilities 

of the most recent models to simulate sub-seasonal variability, an aspect that, to our knowledge, 

has not received much attention. If our models fail to reproduce sub-seasonal SChl fluctuations, 

their ability to capture year-to-year variability and long-term trends is likely biased due to the role 

of high-frequency events in determining the annual mean values. Future work should also explore 

how changes in the prevalence of extreme atmospheric events, such as heat waves, storms, and 

tropical cyclones, which are predicted as a result of climate change49,91-93, together with ocean 

mesoscale and submesoscale activity, whose intensity is also projected to be modified in a warmer 

ocean81,94, might affect long-term changes in SChl. Such changes would project onto sub-seasonal 

variability, although being driven by anthropogenic forcing. Thus, our results suggest that high-

frequency events must be considered and understood in the context of detecting long-term trends 

and understanding the response of phytoplankton to climate change. 
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Figure Legends: 

Figure 1: Seasonal and nonseasonal variance of SChl and SST.  (Left Column) (a) Percentage 

of SChl variance explained by its nonseasonal (NSt) components and (b) Percentage of SChl 

variance explained by its seasonal (St) and nonseasonal (NSt) components in each latitudinal band. 

(Right Column) Same for SST 

 

Figure 2: Time-scale decomposition of nonseasonal variance. (Left Column) Percentage of the 

nonseasonal SChl variance explained by its (a) Sub-seasonal (SSt), (b) year to year varying 

seasonal (ΔSt), and (c) Multi-annual (MAt) components. (d) Percentage of the nonseasonal SChl 

variance explained by its three components in each latitudinal band. (Right Column) Same for 

SST. 

 

Figure 3: Spatial scales of nonseasonal variations. Boxplot showing the spatial scales associated 



	

to sub-seasonal (SSt, yellow), delta- seasonal (ΔSt, green), and multi-annual (MAt, blue) variations 

in different latitudinal bands for (a) SChl and (b) SST. The black line within each box denotes the 

median, the limits of the box represent the 25th and 75th percentiles, and the lines extending above 

and below represent the 10th and 90th percentile. The sample size (n) in each latitudinal band is 

greater than 500. 

 

Figure 4: Small spatio-temporal scales can drive annual variations in SChl.  Annual mean low-

frequency index for SChl, which is defined as the correlation square between annual mean and 

annual mean of the multi-annual component. When the index is close to one, year-to-year 

fluctuations in the annual mean reflect low frequency variability. The value of the index decreases 

as high-frequency variability (i.e., with timescales < 1 year, delta-seasonal plus subseasonal) 

contributes more to year-to-year variations. Thus, small spatio-temporal scales contribute the most 

to annual variations in SChl in dark blue regions.  
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Methods 

Sea-surface Chlorophyll (SChl) data: We use the Level 3 Mapped 25 x 25 km resolution 8-day 

averaged product (release 4.1) from January 1999 to December 2018 distributed by the European 

Space Agency Ocean Color Climate Change Initiative95 (ESA OC-CCI; available at 

http://www.oceancolour.org/). This product merges data from several ocean color satellite 

missions: the Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua, the Sea-Viewing 

Wide Field-of-View Sensor (SeaWiFS), the MEdium Resolution Imaging Spectrometer (MERIS) 

and the Visible Infrared Imaging Radiometer Suite (VIIRS). 



	

This product has good data coverage that exceeds 85% over most of the low and mid latitudes 

(Extended Data Fig. 1a). However, the coverage is lower in areas characterized by high annual or 

seasonal cloud cover such as the Intertropical Convergence Zone (ITCZ), Arabian Sea, and Bay of 

Bengal. Poleward of about 50° in both hemispheres, the data coverage rapidly falls below 60% and 

data availability becomes restricted mostly to the summer period as a consequence of the high solar 

angle, elevated cloudiness during winter and sea ice cover96. In view of these limitations, we 

restricted our analysis from 60°S to 60°N. Still, the merged ocean color product used here has better 

coverage, and extends over a longer time period, than any individual satellite product. 

A further dilemma is whether the sub-seasonal SChl variability captured by the merged satellite 

product is reliable or is strongly aliased by noise/temporal under-sampling. Previous comparison 

with high-frequency in-situ mooring observations in the Mediterranean Sea revealed that the 

merged satellite product was accurate at sub-seasonal timescales35, although it is unclear whether 

this holds true at other locations. It is also important to recognize that variations in SChl do not 

always reflect changes in depth-integrated biomass39. High-frequency, continuous, depth-resolved 

in-situ observations from a range of locations are needed to further characterize temporal variability 

in SChl and its relationship to net primary productivity. 

Sea surface temperature (SST) data: We use the daily 25 x 25 km resolution Optimum 

Interpolation Sea Surface Temperature (OISST) data distributed by NOAA (available 

https://www.ncdc.noaa.gov/oisst/optimum-interpolation-sea-surface-temperature-oisst-v20) for 

the period January 1999 to December 2018. OISST data are constructed by combining observations 

from satellites, ships, buoys and Argo floats. SST was averaged over the same 8-day temporal grid 

as SChl. 



	

Temporal decomposition: At each grid point, SChl and SST raw timeseries Xt were decomposed 

into four components Xt = SSt + DSt + CSt + MAt. (sub-seasonal SSt, delta-seasonal DSt, 

climatological seasonal CSt and multi-annual MAt), in two steps. The first step is the decomposition 

method based on the Census X11 algorithm, which was initially developed by the U.S. Bureau of 

the Census6 and adapted by Keerthi et al.,35. The first step ensures that Xt =SSt +St +MAt at every 

location. The seasonal component (St) reflects variability with a period of 3 months to 1 year, while 

multi-annual component (MAt) comprises variability with a timescale longer than 8 months. 

Finally, the sub-seasonal component (SSt) captures variability in the 8-88 days frequency range, 

plus all irregular variability outside of that range. The X11 method requires continuous timeseries, 

thus gaps in the data were filled by linear interpolation in time before the application of the 

decomposition and were then masked. The filters used for the multi-annual component include a 

centered annual running average applied once, and a Henderson filter (of weight representative of 

a year) applied twice. The filters used for the seasonal component are a weighted running average 

over three consecutive 8-day timesteps of the given year and from the previous and consecutive 

years, applied twice, and an 88-day low-pass filter (corresponding to ~3 months given the 8-day 

resolution of the data). 

In a second step, the seasonal constituent St is further separated into a repeating climatological 

seasonal cycle CSt and a delta-seasonal component St = CSt. + DSt. At each 8-day time step, CSt is 

computed as the mean value of St over the 20 years of data. DSt captures annual deviations in the 

seasonal cycle, such as different timing of blooms. The non-seasonal part of Xt, defined as NSt = 

Xt - Ct can thus be expressed as the exact sum of the sub-seasonal component (SSt), the delta-

seasonal component (DSt.) and the multi-annual component (MAt).  



	

Extended Data Fig. 2 shows an illustration of the decomposition of Xt for SChl in a station where 

the four components co-exist. Fourier power spectrum of each component show that there are 

several harmonics in the seasonal cycle, with frequencies from 3 months to over one year, that the 

frequency range of the sub-seasonal is less than one year, and that of the multi-annual component 

is more than 8 months. This illustrate that the X11 decomposition is not based on a clear frequency 

cut, in particular all components are present at a frequency close to 1 year. The frequency range of 

the seasonal component overlaps with the sub-seasonal on its high-frequency side, and with the 

multi-annual on its low frequency side. The advantage of iterative filtering over frequency cuts is 

that it captures the different harmonics of the seasonal cycle, which vary regionally19, and adapts 

to them.  

Variance explained: The total variance explained by the non-seasonal SChl timeseries is equal to 

the sum of the variance explained by its three different components, plus the covariance between 

these components. In practice, the covariance terms are small and we neglect them. The relative 

contribution of each component (delta-seasonal, multi-annual and sub-seasonal) to the non-

seasonal variance is expressed as a percentage. 

Spatial scale of coherence: It is defined as the spatial scale over which each component (delta-

seasonal, multi-annual and sub-seasonal) remains self-coherent. In practice, we cross-correlated 

each component at a given grid cell with the same component at all other grid cells within a 300 

km radius, and counted the number of grid cells for which the cross–correlation was larger than 

0.8, and converted this number into a distance. The threshold value chosen here (0.8) is the same 

than in Keerthi et al.,35. 

Spatial decomposition: To quantify the relative contribution of spatial scales smaller than 100km 



	

and larger than 100 km to the sub-seasonal signal, we performed a spatial decomposition at each 

time step. The spatial decomposition that we used is based on an iterative application of the heat 

diffusion equation described in Weaver and Courtier97, and has been previously applied in Keerthi 

et al.35,43,98. 

Annual mean low-frequency index: It is defined as the correlation square between annual mean 

of the raw timeseries and annual mean of the multi-annual component. 

	Annual	mean	low	frequecy	index = r!	(𝑋"666	, MA#666666) 

Where 𝑋"666 is the annual (yearly) mean of the raw time series at each grid point and MA#666666 is the annual 

(yearly) mean of the multi-annual component at each grid point. 

 

All figures were generated with the SAXO package based on IDL 

(http://forge.ipsl.jussieu.fr/saxo/download/xmldoc/whatissaxo.html). 

 

Data Availability: All data analyzed in this study are freely available from the respective websites 

mentioned in the Methods Section. 
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Figure 1: Seasonal and nonseasonal variance of SChl and SST.  (Left Column) (a) Percentage 

of SChl variance explained by its nonseasonal (NSt) components and (b) Percentage of SChl 

variance explained by its seasonal (St) and nonseasonal (NSt) components in each latitudinal band. 

(Right Column) Same for SST 

 

	 	



	

	

Figure 2: Time-scale decomposition of nonseasonal variance. (Left Column) Percentage of the 

nonseasonal SChl variance explained by its (a) Sub-seasonal (SSt), (b) year to year varying 

seasonal (ΔSt), and (c) Multi-annual (MAt) components. (d) Percentage of the nonseasonal SChl 

variance explained by its three components in each latitudinal band. (Right Column) Same for 

SST. 

	 	



	

	

Figure 3: Spatial scales of nonseasonal variations. Boxplot showing the spatial scales associated 

to sub-seasonal (SSt, yellow), delta- seasonal (ΔSt, green), and multi-annual (MAt, blue) variations 

in different latitudinal bands for (a) SChl and (b) SST. The black line within each box denotes the 

median, the limits of the box represent the 25th and 75th percentiles, and the lines extending above 

and below represent the 10th and 90th percentile. The sample size (n) in each latitudinal band is 

greater than 500. 

	 	



	

	

Figure 4: Small spatio-temporal scales can drive annual variations in SChl.  Annual mean low-

frequency index for SChl, which is defined as the correlation square between annual mean and 

annual mean of the multi-annual component. When the index is close to one, year-to-year 

fluctuations in the annual mean reflect low frequency variability. The value of the index decreases 

as high-frequency variability (i.e., with timescales < 1 year, delta-seasonal plus subseasonal) 

contributes more to year-to-year variations. Thus, small spatio-temporal scales contribute the most 

to annual variations in SChl in dark blue regions.  

	 	



	

 
 

Extended Data Figure 1:  SChl data distribution. SChl data coverage (percentage of time steps with 

data in each pixel with respect to the total number of time steps), (b) Annual mean and (c) Standard deviation, 

over the period 1999-2018. 



	

 
 

Extended Data Figure 2: Time series decomposition. (Left Panels) Decomposition of SChl timeseries 

at the Seychelles-Chagos Thermocline Ridge station (SCTR) - (a) full Signal Xt, (b) climatological seasonal 

cycle CSt, (c) nonseasonal variability NSt, and the different components of nonseasonal variability (d) sub-

seasonal SSt, (e) delta-seasonal DSt and (f) multi-annual MAt. In a), the blue curve shows the un-interpolated 

raw ESA OC-CCI SChl and the red curve shows the linearly interpolated SChl values. (Right panels) 

Associated power spectrum of the timeseries shown in the left panel. PSD is power spectral density. The 

SCTR station is marked on Supplementary Figure 1c. 



	

 
 

Extended Data Figure 3: SChl timeseries decomposition at specific locations. (Left panels) SChl time 

series for the stations marked in Supplementary Figure 1c. The blue curve shows the un-interpolated raw 

ESA OC-CCI SChl and the red curve denotes the linearly interpolated SChl on which the decomposition is 

applied. The power spectrum of the seasonal (middle panels) and non-seasonal (right panels) component 

for each station is shown. PSD is power spectral density. 

 

 



	

 
Extended Data Figure 4: SST timeseries decomposition at specific locations. Same as Extended Data 

Figure 3 but for SST. 



	

	
	

	

Extended Data Figure 5: Spatial scales of sub-seasonal SChl variations. Percentage of the sub-

seasonal SChl variance explained by sub-seasonal variations with spatial scales >100 km. Regions where 

sub-seasonal variations explain less than 30% of the total SChl variance is masked. 


