
HAL Id: ird-03850685
https://ird.hal.science/ird-03850685

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

R Programming and Development From Basics to
Advanced Topics

Emmanuel Paradis

To cite this version:
Emmanuel Paradis. R Programming and Development From Basics to Advanced Topics. ISEM,
pp.146-146, 2022. �ird-03850685�

https://ird.hal.science/ird-03850685
https://hal.archives-ouvertes.fr

R Programming and Development

From Basics to Advanced Topics

Emmanuel Paradis

x[]

Numeric

Logical Character

1

R Programming and Development

From Basics to Advanced Topics

Emmanuel Paradis

© 2022, Emmanuel Paradis
ISEM, IRD, CNRS, Univ. Montpellier, France

This work is licensed under Attribution 4.0 International. To view a copy of
this license, visit https://creativecommons.org/licenses/by/4.0/.

The use in this publication of registered names, trademarks, or similar terms
does not imply any explicit or implicit opinion on their status relative to pro-
prietary rights or else.

This is publication ISEM 2022-262.

https://creativecommons.org/licenses/by/4.0/

Contents

Preface vi

1 Introduction 1
1.1 Data Analysis, Open Source Software, and R 1
1.2 What Is (and What Is Not) in This Book 2
1.3 User Interfaces . 3
1.4 Conventions . 4

2 Data Structures in R 6
2.1 General Considerations . 6
2.2 Modes . 7

2.2.1 Data Modes . 7
2.2.2 Other Modes . 10
2.2.3 NULL . 10

2.3 Data Structures . 11
2.3.1 The Five Main Data Structures in R 12
2.3.2 Attributes . 17

2.4 Exercises . 18

3 Programming R Functions 20
3.1 Environments . 20
3.2 Arguments . 22

3.2.1 Matching Arguments in Function Calls 23
3.2.2 Missing and NULL Arguments 24
3.2.3 The ‘...’ Argument . 25

3.3 Return Value . 27
3.3.1 Implicit and Explicit Returns 27
3.3.2 Assignment and Superassignment 28

3.4 Recursive Functions . 30
3.5 Classes and Generic Functions 35

3.5.1 S3 . 35
3.5.2 S4 . 36
3.5.3 R6 . 40

3.6 Exercises . 42

iii

4 Data Manipulation 44
4.1 Missing Data . 44

4.1.1 Missing Values in Data Files 44
4.1.2 NA vs. NaN . 45
4.1.3 Missing Data in Data Analyses 46

4.2 Logical Vectors . 47
4.3 Character Strings and Text . 50

4.3.1 Encodings . 50
4.3.2 Regular Expressions . 52
4.3.3 Approximate String Distance 55
4.3.4 Building Strings in R vs. in Files 57

4.4 Indexing . 58
4.4.1 Recoding Data With Indexing 61

4.5 Exercises . 62

5 Special Topics 64
5.1 Expressions . 64
5.2 Formulas . 68
5.3 Dates and Times . 69
5.4 Numerical Precision . 74
5.5 Exercises . 78

6 Debugging 80
6.1 Strategies to Avoid Errors . 80
6.2 Interactive Execution of Functions 81
6.3 Using Standard Tools . 83
6.4 Catching Errors . 84
6.5 Exercises . 86

7 Performance Optimisation 87
7.1 Background . 87
7.2 Rprof . 90
7.3 Memory Usage . 94
7.4 Some Tricks to Write Efficient R Code 95

7.4.1 Avoid Simple for Loops 95
7.4.2 Prefer Numerical Indexing to Indexing with Names . . . 97
7.4.3 Unclass Objects . 97

7.5 Exercises . 98

8 R–C Interfaces 100
8.1 Why Use C With R . 100

8.1.1 Standard R Vector Operations Cannot Be Used 100
8.1.2 A C Program Already Exists 101

8.2 Basics on C . 101
8.2.1 Data Types in C . 102

iv

8.2.2 Memory and Pointers . 105
8.2.3 Numerical Operators in C 106

8.3 A Second Look at Data Structures in R 106
8.4 .C . 107
8.5 .Call . 110

8.5.1 Vectors . 111
8.5.2 Lists . 114
8.5.3 Character Vectors . 114
8.5.4 Long Vectors . 116
8.5.5 Missing and Special Values 117

8.6 .External . 118
8.7 Profiling C Code . 118
8.8 Exercises . 121

9 Parallel and High Performance Computing 123
9.1 A Basic Example . 123
9.2 Two Contrasting Examples With pvec 125
9.3 General Rules . 128
9.4 The Package parallel . 129
9.5 C-Level Parallelisations . 130
9.6 Running R on Clusters and Supercomputers 132
9.7 Exercises . 133

A Binary Coding of Numbers 135

B Computing More Precise Sums 138

References 143

Index 144

v

Preface

This book has its origins from several courses and workshops on R in which I
participated as instructor. I firmly believe in the saying “If you want to learn
something, teach it.” My background is in ecology and population biology, and
as a student I had little interest in statistics or in computer science. Neverthe-
less, like other PhD candidates, I had to learn from these fields to analyse my
field data. I cannot say that analysing data was an exciting experience at that
time: quite often running a computer without it crashing after ten minutes
was already a performance. After taking my position in Montpellier, R started
to spread slowly but surely in the academic world, and it was clear to me that
I had to learn it. So I taught it.

My early teaching experience convinced me to write R for Beginners, a doc-
ument first published in French (as R pour les débutants, a 16-page document)
in May 2000, then in a slightly longer version both in English and in French in
October 2000 (31 pages), and in an extended version in August 2002 in these
two languages again (58 pages). This third version was translated in Spanish
and in Basque. An improved and again extended version (76 pages) version
was published in September 2005, then translated in Chinese, in Romanian,
and in Thai. Looking back at these documents helps to see the changes done by
the R Core Team over the years. For example, one can read in the first version
that an executable version of R was available for the m68k-based computer
architecture running the NextStep operating system.

Undoubtedly, there has been a lot of things changed in the past 22 years. R
has extended in many ways: scope, relevance, efficiency, versatility, popularity,
and certainly others. In the meantime, I wrote two books on using R in two spe-
cialised fields of evolutionary biology (phylogenetics and population genomics).
The present book can be seen as the continuation—or complement—of R for
Beginners after exploring data analysis and statistical inference with R in my
own discipline.

The aim of R Programming and Development is to explore the basics of R
in order to improve both the understanding of these basics and the practice of
using R. The issues addressed in these pages have been selected with the aim
to be useful in a wide range of applications with R. The book is not intended
to beginners who look for information on how and where to start with R: there
is now a vast literature on this question, and it seems R for Beginners is still
relevant for this. Therefore, the readers will not find here information on how

vi

to install R or similar things. However, I believe that many novices with basic
knowledge in R will be able to find their way relatively easily in the pages
below because I tried to explain the concepts from their basics.

A consequence of the main objective of R Programming and Development
is that it focuses almost exclusively on the R recommended packages (such
as parallel in the chapter about high-performance computing). Chapter 1 is
an introduction with a brief overview on two general topics: the importance
of open source software in data analysis, and user interfaces. Chapters 2–5
treat subjects likely to interest a wide range of users and programmers: data
structure and manipulation, programming functions, and some specific data
types such as character strings, dates, and times. Chapters 6 on debugging
and 7 on code optimisation are for programmers and developers who want to
improve their work. Chapter 8 tackles an important topic: interfacing R and C
using the tools available in a default installation of R. Chapter 9 is an overview
of using R with high-performance computing (HPC) hardware. Finally, two
appendices look into the details of binary coding of numbers in computers
and the problem of numerical precision when computing sums. Chapters 2–9
end with exercises that invite the reader to further explore the issues exposed
there. The solutions will be published later on-line.

Most of the materials in these pages come from my own experience in
developing packages for R as well as using it for my own research. I also
benefited (and enjoyed) teaching R in several advanced courses, and I am
grateful to the organisers of these. Special thanks to Perine Sanglier for starting
the organisation of a permanent training on R in IRD, and to Soledad De
Esteban-Trivigno for organising the course “Phylogenetic analysis using R”
during ten years.

E.P.
November 2022

vii

viii

1

Introduction

1.1 Data Analysis, Open Source Software, and R

R was created in a period of renewed and intense software development: the rise
of Internet during the 1990’s combined with the increasing computing power
of widespread and affordable hardware (e.g., 32-bit processors) stimulated new
ideas, innovative projects, so that computers started to be used in many novel
applications. At the end of that decade, R was the only free computer program
for statistical analyses to be competitive in a field with many commercial
programs.

Free software received increasing acceptance in the late twentieth and early
twenty-first centuries. Linux, LATEX, and OpenOffice/LibreOffice are a few ex-
amples of generalist, free software that have gained wide popularity in the last
two decades with very significant and broad impacts. Successful free software
projects share three features:

� open source;

� scalability;

� versatility.

These three features take a special importance when considering statistical
methods and data analyses.

Open source leads to free software under the condition that they are prop-
erly distributed, and Internet has been critical for this. Open source is also
fundamental in stimulating development and collaborations (Internet has also
been critical for these). For scientific data analyses, open source has revolu-
tionised practices, especially for publications. Many journals now require that
software, scripts, and/or computer code be publicly released before acceptance,
or publication, of a scientific article. Re-use of previously released or published
code has stimulated a lot of new methodological developments.

1

Scalability is the ability of software to run efficiently on a wide range of
hardware. Clearly, being able to run the same program on a laptop or on a
supercomputer has tremendous advantage. Not many software have achieved
this: Linux and some programming languages (e.g., C, C++, Fortran, Python)
are remarkable examples.

Versatility is another critical feature that is likely to help some software to
be popular: if a program can be used to do many different things, then it will
be more likely to attract a large number of users and developers.

R checks all the three above features: it is free and open source; it can
be used on very different machines running different operating systems (OSs);
and a very wide range of statistical and computational methods have already
been implemented in R. A lot has been said or written to explain the success
of R: I think it simply arrived at the right moment to do the right things.

1.2 What Is (and What Is Not) in This Book

This book is for readers who wish to acquire a “less-than-superficial” knowledge
and understanding of R. Prior knowledge or experience with R will obviously
be useful but not a critical requirement since the basic concepts are detailed
before going deeper. For a beginner’s level introduction to R, the reader is
referred to R for Beginners (see Preface) or browse the numerous resources on
Internet. No knowledge on statistics or data analysis is required.

The following chapters explore most basic issues related to the use of R:
data structure and manipulation, code optimisation, debugging, R–C inter-
faces, and high-performance computing. The main objective is to acquire a
level of expertise sufficient to develop code and programs in R.

Almost all R resources used in this book come from the recommended R-
packages, so that these are likely to be useful for a very wide range of readers,
and no problem of installation should be encountered. On the other hand, the
development of R code for the specific aim of writing, releasing, and maintain-
ing a package is not treated—although the authors of R-packages will (I hope)
find some useful information in these pages.

There are a few important topics that I chose to not treat because I wanted
to keep this book within a reasonable length, and also because there are already
very valuable resources on these topics:

� Reading and writing files. This is a central topic but a good understand-
ing of data structures in R (see Chap. 2) is likely to help handling files
in general. Besides, there are numerous specialised R-packages to help
read a very diverse range of data file formats, and examining all of them
would certainly require a full textbook.

� Graphics is another central topic with basic resources provided by several
recommended packages (graphics, grDevices, and grid). The interested

2

Table 1.1. Some user interfaces that run on common OSs to use R interac-
tively. (ESS stands for “Emacs Speaks Statistics”.)

Name Comments

ESS/Emacs Emacs has many integrated tools for editing
and software development

Jupyter Appropriate for teaching
RKWard User-friendly
RStudio User-friendly; customer support
Visual Studio Code Easy to use

reader is referred to the classic R Graphics by Paul Murrell (now in its
third edition).

� The development, release, and maintenance of a package written in R has
become an important output of many scientific projects. The manual
Writing R Extensions is the central resource for package developers and
should be consulted regularly since it is regularly updated by the R Core
Team.1

� Hadley Wickham and his collaborators have released a number of popular
packages that are presented in his books and additional resources can be
found on his web site.2

� Rcpp would have been introduced in Chapter 8 if Dirk Eddelbuettel would
have not written an extensive documentation with this package, several
open-access papers, and several books.3

1.3 User Interfaces

There are two basic ways to use R: either interactively, or by running a program
written with R code. In an interactive session, the user starts R and then
executes commands to perform their analyses (by typing them or using the
menus of a graphical user-interface). In this situation, the user is likely to
choose the analyses depending on the progress of the session (as typical in
an interactive work). On the other hand, with an R program the commands
are executed successively without intervention from the user. The separation
between these two ways is not clear-cut, however; for instance, an R program
can be run during an interactive session (e.g., with the function source).

During an interactive session, an additional software can be used to interact
more easily with R. Table 1.1 lists a selection of these interfaces: using one or
another is mainly a question of personal preference (there are probably others

1https://cran.r-project.org/manuals.html
2https://hadley.nz/
3https://dirk.eddelbuettel.com/

3

https://cran.r-project.org/manuals.html
https://hadley.nz/
https://dirk.eddelbuettel.com/

that can be found on the Internet). However, a few points might be considered
when choosing one such program:

� The interface must handle (open, edit, and save) R code in simple text
in order to be compatible with other interfaces. Indeed, if you want to
be able to choose your interface, this should not be at the expense of
compatibility with your colleagues.

� The interface is itself a program and must run on the computer in addi-
tion to R, so it must be as economic as possible in terms of resource use
for your machine.

Additionally to the programs listed in Table 1.1, there are several OS-
specific user-interfaces delivered with R for Windows and for MacOS X: they
include several basic features such as drop-down menus to access some common
commands (e.g., change the working directory).

There are a number of specific commands which are always run non-
interactively that we will see in the some chapters of this book. They are run
from the command line of the computer with R CMD <command>, where the
possible commands are listed in Table 1.2. Other uses of R non-interactively
are detailed below when discussing high performance computing (Chap. 9).

1.4 Conventions

In the text, R input commands and output results are printed inside boxes
with the standard R prompt symbol (>) before the commands:� �

1 > 1 + 2

2 [1] 3� �
Occasionally, commands are simply printed without the prompt symbol:� �

1 ls()� �
C code (always in a file) are printed on a light blue background:

1 #include <R.h>

Commands to be typed on the system (e.g., in a command shell) are printed
on a light grey background:

1 R CMD BATCH script.R

Contents of file other than C source code are also shown on a light grey back-
ground.

R objects are written in monospace font (e.g., x, DF), package names in
sans serif font (e.g., parallel), and file names are written within single quotes
(e.g., ‘data.txt’).

4

Table 1.2. Commands when R is used non-interactively with R CMD

<command>.

<command> Effect

BATCH Run R in batch mode
COMPILE Compile files for use with Ra

SHLIB Build shared library for dynamic loadinga

INSTALL Install packages
REMOVE Remove packages
build Build packages
check Check packages
LINK Front-end for creating executable programsa

Rprof Post-process R profiling files
Rdconv Convert Rd format to various other formats
Rd2pdf Convert Rd format to PDF
Rd2txt Convert Rd format to pretty text
Stangle Extract S/R code from Sweave documentation
Sweave Process Sweave documentation
Rdiff Diff R output ignoring headers
config Obtain configuration information about R
javareconf Update the Java configuration variables
rtags Create Emacs-style tag files from C, R, and Rd files
aSee Chap. 8.

Three kinds of quotation marks (often simply called “quotes”) are used
in the R syntax: straight double or single quote, and backtick (Table 1.3).
When printing R code, the straight single quotes are typeset as right (closing)
single quotation marks, whereas backticks are typeset as left (opening) single
quotation marks. To avoid confusion, the context is explicit about the use of
these single quotes.

Table 1.3. The three types of quote used in R code. The second column
shows the aspect of these symbols on most keyboards (their locations vary a
lot with the keyboard layout).

Type of quote On keyboards R code in this book

Straight double quote " or “ "

Straight single quote ′ or ‘ ’

Backtick ′ ‘

5

2

Data Structures in R

2.1 General Considerations

Data are everywhere in our modern world. Phones, computers, sensors, cam-
eras, and other devices, generate enormous quantities of data. Yet, when it
comes to analyse data, whatever their origins, a very general rule is to ar-
range them in a rectangular table with rows representing the observations and
columns representing the variables.1 The observations may be persons, animal
or plant species, atoms, planets, and so on; the variables are measures on these
observations, for instance, body mass, energy, temperature, genome size, di-
ameter, and so on. Clearly, such a data table is asymmetric: it makes no sense
to consider a variable as an observation, or an observation as a variable.2

Another general rule about data structure is that a variable can be con-
sidered as either quantitative or qualitative. In practice, this dichotomy is not
strict: a quantitative variable can be considered as discrete (e.g., number of
individuals in a group) or continuous (e.g., body length). Qualitative variables
can be also of many different subtypes: the number of categories (or classes, or
levels) may be fixed or not; the categories may be ordered (e.g., the choices in
a customer satisfaction survey) or not. A quantitative variable may be trans-
formed into a qualitative one by defining intervals, for instance, age classes, or
concentration classes of a chemical in blood.

These two principles, asymmetric data table and quantitative vs. qualita-
tive variables, are so general that almost all data analysis computer programs
implement them in one way or another; and R is no exception as we will see
in this chapter. It should be pointed out here that the vocabulary used for

1See Fig. 2.3 (p. 14) for a view of such a data table.
2There are some exceptions: in ecology, a table with counts of species by sites is symmetric

and can be transposed: we may consider species as observations which are characterized by
their distributions over sites, or the sites as observations characterized by their species
compositions.

6

these concepts vary a lot with the software: in the case of R, the basic type
of a variable is called the mode, and the data structures are called objects. In
practice, things are slightly more complicated and we will need to understand
both modes and objects to have a general understanding of data structure in
R.

Before detailing the R specifics on data structure, it is interesting to note
that the idea of a variable is so important in scientific research that this word
is used with four distinct meanings:

� A variable is a mathematical entity which can take several values, typ-
ically in a mathematical function or an equation. For instance, in the
linear function f(x) = 2x + 3, x is a variable which can take values
between −∞ and +∞; however, there is here no implication on the dis-
tribution of x.

� A variable is a quantity (or quality) measured or observed which can
take different values. For instance, the temperature on the surface of our
planet is a variable. On the other hand, the temperature at which water
boils under atmospheric pressure is a constant.

� A random variable is a quantity following a specific distribution. Random
variables may be real (e.g., the number of heads from several coin tosses)
or abstract (e.g., a binomial variable).

� A variable is a part of the memory of a computer used to store some
information which may change during the execution of a program. For
instance, the temperatures measured every week during one year consti-
tute a set of 52 variables stored on a computer.

2.2 Modes

All computer languages, systems, or applications have their own ways to code
basic data. In R, this is called the mode. Every data in R are characterised by
their mode which is the basic type of the data stored. The concept of mode
in R is actually broader and applies also to objects which are not data. The
next section details how modes are defined for data in R, and the following one
gives an overview of other uses of mode in R.

2.2.1 Data Modes

The mode is usually defined implicitly when some data are input. For instance,
if we create two vectors named x and z:� �

1 > x <- 1:5

2 > z <- c("Homo", "Pan", "Gorilla")� �
Their respective mode can be printed with the function mode:

7

� �
1 > mode(x)

2 [1] "numeric"

3 > mode(z)

4 [1] "character"� �
In simple objects such as x or y, all elements are of the same mode. At this
point it is useful to introduce another characteristic of data in R: the length
which is printed with the function length:� �

1 > length(x)

2 [1] 5

3 > length(z)

4 [1] 3� �
The length is the number of elements in an object. Together with the mode,
these two characteristics represent the intrinsic attributes of the data in R:
they are mandatory and therefore always set (Fig. 2.1). We will see more
about attributes in Section 2.3.2.

Before going further about modes, it may useful to note a remarkable fea-
ture about R’s operations: they return R data which have, obviously, a mode
and a length:� �

1 > mode(mode(x))

2 [1] "character"

3 > length(mode(x))

4 [1] 1

5 > mode(length(x))

6 [1] "numeric"

7 > length(length(x))

8 [1] 1� �
We will see more about objects returned by R’s functions in the next chapter.

There are five main modes for data in R: numeric, character, logical, com-
plex, and raw (Table 2.1). In practice, it is mainly the first one which is used
to store data. Indeed, the mode numeric is used to store both quantitative
variables (as numeric vectors) and qualitative ones (as factors). We will see
these details in Section 2.3; for the moment we only need to know that all sorts
of numbers (reals, integers, complex) are stored as mode numeric in R.

The mode character is somewhat special in R: each element of a vector
of this mode is a character string, not a single character (Fig. 2.1). The
reason for this is because, in most applications, these vectors are used as
labels or identifiers of data stored with the mode numeric. Of course, there are
exceptions: researchers working in linguistics undoubtedly manipulate data as
character strings. But the fact that vectors of mode character store character
strings instead of single characters makes data manipulation particularly easy

8

1

3

5

4

2

length (= 5)

mode (= "numeric")

"Homo"

"Pan"

"Gorilla"

mode (= "character")

length (= 3)

} Attributes

Fig. 2.1. A representation of two vectors in R: a numeric vector (left) and a
character vector (right). Their respective intrinsic attributes are shown below
them.

and powerful (see Chap. 4). Furthermore, text and characters have some
specificities that will be examined later (Sect. 4.3).

The mode logical codes values which are either TRUE or FALSE. They may
be used to store some data (which are known as binary or Boolean variables),
but their usefulness resides in the fact that are powerful tools to manipulate
data (see Sect. 4.2).

The mode complex can hardly code for (real) data, but they are very
important in computing where operations potentially output complex numbers
(e.g., Fourier transform, eigendecomposition).

Finally, the mode raw stores single bytes (e.g., integer values between 0
and 255; see p. 135). Like for the mode complex, it is rarely used to store
some data, but in some specific applications this can be useful.

To summarise, among the five main data modes in R (Table 2.1), the mode
numeric is the most frequently used one to store data. The mode character
is used to store identifiers and labels, whereas the mode logical is used for
data manipulation. The modes complex and raw are used in some specific
applications.

Table 2.1. The five main (data) modes in R.

Mode Data Comments

numeric numbers Can be integers or real numbers
character text strings Strings may be of different lengths
logical Boolean Stored as integers
complex complex numbers Stored as two numeric values
raw bytes Missing value are not allowed

9

Table 2.2. Other modes in R.

Mode Description

function The basic engines in Ra

expression R command(s) after parsing textb

environment A subset of memory containing R objects with distinct
symbol namesa

formula Relations (models) among variablesc

list A list of object(s)
aSee Chap. 3.
bSee Sect. 5.1.
cSee Sect. 5.2.

2.2.2 Other Modes

Every object in R has a mode. For instance, a function has mode "function";
an environment has mode "environment":� �

1 > mode(environment)

2 [1] "function"

3 > mode(environment())

4 [1] "environment"� �
Some of these objects are used internally by R and knowing their details is

rarely useful to most users, even if they develop packages. Nevertheless, there
are a few modes outside of data objects which are good to know because they
can be manipulated in the usual way in R (Table 2.2). For instance, a series of
formulas can be stored in a list to fit a series of models. This emphasizes the
need to have a good understanding of what is a list since this type of object
can store any objects as we will see in the next section.

2.2.3 NULL

The object NULL deserves a special mention because it is often used in practice,
for example to delete an element in a data frame or a list. However, NULL has
a double usage in R. First, it can be used to create an object with its name
but no other feature:� �

1 > y <- NULL

2 > mode(y)

3 [1] "NULL"

4 > length(y)

5 [1] 0� �
Even though y has length zero and mode NULL, it can be combined with an
existing object, which is useful in operations within a loop where different

10

values have to be combined successively:� �
1 > x <- 1

2 > y <- c(y, x)

3 > y

4 [1] 1

5 > mode(y)

6 [1] "numeric"

7 > length(y)

8 [1] 1� �
The second usage of NULL is to delete elements in a list: this is often used

to delete columns in data frames. However, it is also sometimes useful to have
an empty element in a list: in that case NULL should be included in a list before
being assigned into the list:� �

1 > z <- list(a = 1:2, b = 3)

2 > z

3 $a

4 [1] 1 2

5

6 $b

7 [1] 3

8

9 > z[1] <- list(NULL)

10 > z

11 $a

12 NULL

13

14 $b

15 [1] 3� �
Note that the name ("a") is not deleted. If instead NULL is not included in
list(), the element is deleted from the list:� �

1 > z[1] <- NULL

2 > z

3 $b

4 [1] 3� �
The commands z[[1]] <- NULL and z$a <- NULL have the same effect than
the last one.

2.3 Data Structures

We now have all the ingredients to see how R builds complicated data struc-
tures from the simple objects. We first examine the five main data structures

11

Table 2.3. The five main data structures in R.

R object Data stored

vector quantitative variable (or text)
factor qualitative variable
matrix matrix
data frame table of vector(s) and/or factor(s)
list vector of objects

in R, then see more details about the importance of attributes.

2.3.1 The Five Main Data Structures in R

Numeric vectors are our starting point: they are used to code quantitative
variables (Table 2.3). A numeric vector can be viewed as similar to a column
in a data matrix which stores a quantitative variable.

The second type of data is the factor and is used to code qualitative vari-
ables. A factor is actually a numeric vector with only integer values, and with
each distinct value (1, 2, . . .) coding for a specific category. In order to not
confuse a factor with a quantitative variable, R needs an additional informa-
tion which is provided by the attribute “levels”, a vector of mode character
giving names (or labels) to each category (Fig. 2.2).

Now that we know how to code both quantitative and qualitative variables,
the next step is to combine them to build a data table. Before doing that, we
have to see the object named matrix. Contrary to what is suggested by its
name, a matrix in R is not a combination of different variables arranged along
its columns, but a vector arranged as a rectangle. So, all elements of a matrix
are of the same mode. The matrix is actually a special case of another data
structure in R: the array; the difference is that a matrix has two dimensions
(its rows and columns), whereas an array can have any number of dimensions.
Below is an example with three objects: x1 is a matrix with four rows and two
columns, x2 is a matrix with two rows and four columns, and x3 is an array
with three dimensions; however, all three object have the same data. We first
create these objects as three identical vectors with the values 1, . . . 8:� �

1 > x1 <- x2 <- x3 <- 1:8� �
We then give them dimensions as explained above:� �

1 > dim(x1) <- c(4, 2)

2 > dim(x2) <- c(2, 4)

3 > dim(x3) <- c(2, 2, 2)

4 > x1

5 [,1] [,2]

6 [1,] 1 5

12

1

1

2

2

1

attr(, "levels")

"Female"

"Male"

2

2

1

1

2

attr(, "levels")

"Male"

"Female"

"Hermaphrodite"

A B

Fig. 2.2. Two examples of the same data, a sample of 5 individuals with 3
♀ and 2 ♂, coded in two different factors. (A) A factor with two levels where
the first level is ‘Female’ and the second one is ‘Male’. (B) A factor with three
levels: ‘Male’, ‘Female”, and ‘Hermaphrodite’ (the last one is not observed in
the data).

7 [2,] 2 6

8 [3,] 3 7

9 [4,] 4 8

10 > x2

11 [,1] [,2] [,3] [,4]

12 [1,] 1 3 5 7

13 [2,] 2 4 6 8

14 > x3

15 , , 1

16

17 [,1] [,2]

18 [1,] 1 3

19 [2,] 2 4

20

21 , , 2

22

23 [,1] [,2]

24 [1,] 5 7

25 [2,] 6 8� �
We can check that the data stored by these three objects are still the same:� �

1 > identical(as.vector(x1), as.vector(x2))

2 [1] TRUE

3 > identical(as.vector(x1), as.vector(x3))

4 [1] TRUE� �
We note that for all arrays (including matrices), the following always returns
TRUE:� �

13

Brain Body Family

Homo

Pongo

Macaca

Ateles

Galago

4.1

3.6

2.4

2.0

−1.5

4.7

3.3

3.4

2.9

2.3

"Hominidae"

"Hominidae"

"Cercopithecidea"

"Atelidae"

"Galagidae"

names

row.names

Fig. 2.3. A data frame with five rows and three variables.

1 prod(dim(x)) == length(x)� �
We have seen that vectors and factors code for quantitative and qualitative

variables, respectively. We can now combine them to create data frames, the
R data structure coding for a data table. To fix ideas, let us take three vectors
with five values each (Fig. 2.3). The data may be read from a file in a specific
format; to simplify this step, they are simply input at the keyboard:� �

1 > x <- c(4.1, 3.6, 2.4, 2, -1.5)

2 > y <- c(4.7, 3.3, 3.4, 2.9, 2.3)

3 > z <- c("Hominidae", "Hominidae", "Cercopithecidea", "Atelidae"

, "Galagidae")

4 > names(x) <- c("Homo", "Pongo", "Macaca", "Ateles", "Galago")

5 > data.primates <- data.frame(Brain = x, Body = y, Family = z)� �
The three columns do not have all the same mode:� �

1 > sapply(data.primates, mode)

2 Brain Body Family

3 "numeric" "numeric" "character"� �
Note that the labels associated with the rows and the columns are stored in
their respective attributes:� �

1 > row.names(data.primates)

2 [1] "Homo" "Pongo" "Macaca" "Ateles" "Galago"

3 > names(data.primates)

4 [1] "Brain" "Body" "Family"� �
We notice that these two attributes are vectors of mode character.

14

list()

list(NULL)
vector("list", 1)

vector("list", 3)

list(1:5, 2:1)1 2 3 4 5

2 1

A
B

L <− list(A = y ~ x, B = 5:1)y ~ x

5 4 3 2 1

B L[2]
L["B"]

5 4 3 2 1

L[[2]]
L[["B"]]
L$B

5 4 3 2 1

Fig. 2.4. Several examples of lists with the R code to create them (see text
for the actual outputs). The list ‘skeleton’ is in red; names are in blue (see
Fig. 2.3).

The final step to build data structures is to relax the constraint of equal
length and make possible to combine all types of objects: this is possible with
a list. In fact, a data frame is stored as a list:� �

1 > mode(data.primates)

2 [1] "list"

3 > is.list(data.primates)

4 [1] TRUE� �
Figure 2.4 represents schematically several lists to illustrate the basic features
of this data structure; the R inputs and outputs to produce these examples
are:� �

1 > list()

2 list()

3 > list(NULL)

4 [[1]]

5 NULL

15

6

7 > vector("list", 1)

8 [[1]]

9 NULL

10

11 > vector("list", 3)

12 [[1]]

13 NULL

14

15 [[2]]

16 NULL

17

18 [[3]]

19 NULL

20

21 > list(1:5, 2:1)

22 [[1]]

23 [1] 1 2 3 4 5

24

25 [[2]]

26 [1] 2 1

27

28 > L <- list(A = y ~ x, B = 5:1)

29 > L[2]

30 $B

31 [1] 5 4 3 2 1

32

33 > L["B"]

34 $B

35 [1] 5 4 3 2 1

36

37 > L[[2]]

38 [1] 5 4 3 2 1

39 > L[["B"]]

40 [1] 5 4 3 2 1

41 > L$B

42 [1] 5 4 3 2 1� �
These small examples show a few things about lists that are useful to keep in
mind:

� Lists behave like vectors: they have a length, can be indexed with the [
operator, and can have (optional) names.

� The two operators [and [[behave differently: the first one indexes the
list and thus returns a list; the second one extracts an element of the

16

Table 2.4. Common attributes. Mandatory attributes are marked with *;
the others are optional.

Object Attribute(s)

vector names
factor names, levels*
matrix, array dim*, dimnames
data frame row.names*, names*
list names

list and can return any type of object. Thus, [can be given a vector
with several values whereas [[accepts only a single value (i.e., L[[1:2]]
gives an error).

� Since a data frame is stored as a list, its columns are the elements of the
list, so the labels of the variables are given by the names (see above).

Note the difference between the [[and $ operators when extracting with a
variable name—which both have the same side effect—since the former can
accept a vector of mode character storing the name of the list element:� �

1 > v <- "B"

2 > L[[v]] # same output than with L$B� �
2.3.2 Attributes

We can now offer a (almost) complete description of an R data object [2]:

1. a character string naming the object (a symbol),

2. a vector or a list,

3. a list of attributes.

The second element of this description can be empty (NULL). Consequently,
the third element, which is itself a list, can also be NULL. To be complete, we
should add a short internal description of the object which is used only by R.3

Table 2.4 lists the attributes commonly used in practice.
To summarise, with R all data are in vectors, either standard vectors (also

called “atomic vectors” in R), or lists (“generic vectors”). Attributes, which
are themselves vectors, give additional information so that R knows how to
treat the data in the appropriate way (Fig. 2.5). With the exception of the
length and the mode, these attributes are optional.

3See the R Internals manual delivered with R or on CRAN’s web site.

17

• vector

→ If vector of integers + attributes ‘class’ (1) and ‘levels’ (2) ⇒ factor

→ If attribute ‘dim’ ⇒ matrix (3)

• list (vector of objects)

→ If list of vectors and/or of factors all of same length + attributes
‘class’ (4), ‘names’ (2) and ‘row.names’ (2) ⇒ data frame

(1) class = "factor"
(2) vector of mode character
(3) if length(dim) > 2 ⇒ array
(4) class = "data.frame"

Fig. 2.5. Overview of R data objects.

2.4 Exercises

1. Give examples, relevant to your field, of quantitative and qualitative
variables. Search the answer to this question to some of your colleagues
who work in different fields and compare their answers with yours.

2. Create a vector with the values 1, 2, and 3. Transform this vector as a
factor and store the result in a different object. Compare the character-
istics of these two objects and explain the usefulness of the additional
attributes attached to the factor.

3. What are the mode and length of the results returned by the functions
mode and length?

4. Look at the example at the beginning of Section 2.2.2: explain why the
parentheses changed the result returned by the function mode. (Hint:
you may have a look at the next chapter for help.)

5. What is the difference between data read from files and data input from
the keyboard?

6. Look at the help page of the function attributes. Try this function on
the objects created in the small examples above. Compare this function
with the function attr.

7. Explain, as simply as possible, the difference between these two operators
in R: [[and $.

8. Explain, using your knowledge (not only about R), why single characters
are not commonly used as data in R.

18

9. Create a matrix, say X, with three rows, three columns, and nine values
of your choice so that they are all distinct. Execute the command X[9]

and explain its result. What other command could give the same result?

10. Create a list with the command L <- list(a = NULL). Compare the
outputs from the commands L$a and L$b. Do the same with the com-
mands L[["a"]] and L[["b"]].

19

3

Programming R Functions

Functions are the working engines of R: all commands and operations are done
with functions. Even the simple operators (+, -, *, /, . . .) are functions; for
example, here are two ways to use the + operator like a usual R function, either
with the function get or with the backtick operator:� �

1 > get("+")(1, 2)

2 [1] 3

3 > ‘+‘(1, 2)

4 [1] 3� �
In this chapter, we will see some details about using and programming R

functions. Many of these details are not really useful for a daily use of R,
but knowing them is very useful for advanced users and developers. We will
first see how R manages objects in memory before examining how function
arguments are defined and used. The subsequent sections look at some impor-
tant aspects of function programming: return values, recursive functions, and
generic functions.

3.1 Environments

This section is concerned with some aspects of how R manages objects in
memory. Although this is an important point when using or programming
functions, it is also important for other aspects of how R works. Thus, some
of the discussions here are general and go beyond the topic of this chapter.

An environment can be seen as a portion of the memory of the computer
where objects with distinct names (the symbols) are stored. A crucial feature
of environments in R is that they have a parent : an environment where R will
look for objects if they are not found in the current environment.

Because assignment with the <- operator is done in the current environ-
ment, we have to use the function assign to create an object inside another

20

0 1
e

2
e

2
x

3
e

2
x

1
x

4
e

1
x R´s GlobalEnv

e´s environment
scoping relation

Fig. 3.1. Representation of the objects in memory when executing the exam-
ple in the text. 0 There is initially no object in memory. 1 The environment
e is created. 2 The vector x is created inside e. 3 The vector x is created in
the global global environment. 4 x inside e is deleted.

environment. From Section 2.2.2, we remember that environments are objects
in R, so we can create and manipulate them with the appropriate functions:� �

1 > e <- new.env()

2 > assign("x", 2, envir = e)

3 > x <- 1 # same than assign("x", 1)� �
With these three commands, we have created an environment e, then a vector
x inside e using the function assign, and a vector x using the usual <- operator
(Fig. 3.1). We have two objects with the same name, x, but they are in distinct
environments:� �

1 > ls.str()

2 e : <environment: 0x27d7648>

3 x : num 1

4 > get("x", envir = e)

5 [1] 2

6 > get("x") # same than x

7 [1] 1� �
Now let us see the mechanism of enclosing frame into action. We first

21

delete x inside e (the one with the value 2), and then try to print this value
from this same environment as we did above:� �

1 > rm(x, envir = e)

2 > get("x", envir = e)

3 [1] 1� �
R has found the object x stored in the global environment. The reason for this
is that the parent environment of e is precisely the global environment:� �

1 > parent.env(e)

2 <environment: R_GlobalEnv>� �
And what would happen if the object is not in the global environment? R
would then follow the search path which can be displayed with the function
search, for instance from a newly started R session:� �

1 > search()

2 [1] ".GlobalEnv" "package:stats" "package:graphics"

3 [4] "package:grDevices" "package:utils" "package:datasets"

4 [7] "package:methods" "Autoloads" "package:base"� �
However, this search path applies only for the objects manipulated by the

user. Things are different for objects manipulated inside a package. When a
package (say ape) is loaded into memory, three environments are created:

� namespace:ape containing all objects created by ape’s R code;

� package:ape containing the objects exported by ape;

� an environment containing the objects imported by ape.

The search path for ape’s R code is:

1. namespace:ape

2. package:ape

3. ape’s imports

4. package:base

5. the normal search path

3.2 Arguments

The arguments represent the main way to give information to a function. They
are defined when the function is created, although they are optional. Here is
an example of a simple function with zero argument:

22

� �
1 > f <- function() cat("Hello World!\n")

2 > f()

3 Hello World!� �
We note that the parentheses are needed to execute the function even if there
is no argument. A function can have:

� no argument;

� a fixed number of argument(s);

� an undefined number of arguments;

� some (or all) arguments defined with a default value;

� some arguments may be left missing.

Arguments have names which represent objects within the environment of
the function. Consider these two commands:� �

1 hist(x = rnorm(1000))

2 hist(x <- rnorm(1000))� �
Both commands are valid and will produce similar plots (although not iden-
tical), but they will have different effects with respect to the object x: in the
first command x is created in the environment of the function hist and then
lost once the histogram is drawn; whereas in the second command, x is created
and stored in the global environment of R. Note also that the first command
works without error because the function hist has an argument called x:� �

1 > args(hist)

2 function (x, ...)

3 NULL� �
It is more typical to use of this function with something like:� �

1 y <- rnorm(1000)

2 hist(x = y)� �
When hist() is called (or any function), an environment is created which in-
cludes the object(s) passed as argument(s) together with the object(s) created
within the function. In the last example, y is a vector in the global environ-
ment (a.k.a. the workspace); on the other hand, x is in the environment of the
function: as long as x is not modified by the code within hist(), both objects
are identical.

3.2.1 Matching Arguments in Function Calls

R has two ways to match the objects or values passed as arguments with those
in the function definition: by position or by name. Both ways can be used

23

together. For instance, the four commands below have exactly the same effect
("lightgray" is the default value of col):� �

1 hist(y)

2 hist(x = y)

3 hist(col = "lightgray", x = y)

4 hist(y, col = "lightgray")� �
Matching by position is slightly more efficient than matching by names,

but a significant difference in performance can be noticed only for functions
with many arguments (several tens) and if they are called a larger number of
times (several thousands) .

We will see below that hist is a generic function and that it calls, most of
the times, its default method, hist.default:� �

1 > args(hist.default)

2 function (x, breaks = "Sturges", freq = NULL, probability = !

freq,

3 include.lowest = TRUE, right = TRUE, density = NULL, angle =

45,

4 col = "lightgray", border = NULL, main = paste("Histogram of

",

5 xname), xlim = range(breaks), ylim = NULL, xlab = xname,

6 ylab, axes = TRUE, plot = TRUE, labels = FALSE, nclass =

NULL,

7 warn.unused = TRUE, ...)

8 NULL� �
This is a typical example of an R function: only the first argument is manda-
tory. In many functions, the first argument specifies the data to be analysed
and is commonly named x. It is a very common practice to use these functions
without naming the first argument (e.g., hist(y)).

3.2.2 Missing and NULL Arguments

There are two mechanisms in R to handle an argument with no well-defined
default value: either define the default value for this argument as NULL, or
detect that the argument is missing when the function is called. The latter
works with the function missing (which also avoids an error if the argument
has no default value):� �

1 > foo <- function(x) if (missing(x)) cat("’x’ is missing\n")

2 > foo()

3 ’x’ is missing� �
The code with x defined as NULL by default is:� �

1 > bar <- function(x = NULL) if (is.null(x)) cat("’x’ is NULL\n")

24

2 > bar()

3 ’x’ is NULL� �
It is not trivial whether to use one or the other, but they can be more or less
equivalent thanks to the two functions missing and is.null.

A subtle fact is that an argument appears to be present in the environment
of the function as shown by the output from exists or ls; however, printing
the object might fail if it is missing with no default value:� �

1 > f <- function(x)

2 + {

3 + print(exists("x"))

4 + print(ls())

5 + print(x)

6 + }

7 > f()

8 [1] TRUE

9 [1] "x"

10 Error in print(x) : argument "x" is missing, with no default� �
This error can be solved by assigning a value to the object if it is left missing
during the call:� �

1 > g <- function(x)

2 + {

3 + print(exists("x"))

4 + if (missing(x)) x <- NULL

5 + print(x)

6 + }

7 > g()

8 [1] TRUE

9 NULL� �
3.2.3 The ‘...’ Argument

The ‘...’ (pronounce “dot-dot-dot”) argument is a powerful way to specify
arguments which are not defined a priori. There are several usages of this.

The first usage is to pass arguments from one function to another which
is called by the first one. Let us take a simple example: suppose we want to
show some data that always vary between 1 and 1000. We thus write a custom
plot function where the x-axis is always from 1 and to 1000. That would be
something like:� �

1 customplot <- function(x, y)

2 plot(x, y, xlim = c(1, 1000))� �
25

However, plot is a very rich function with many options (see ?plot.default)
and it would be good to be able to use them in customplot(). A simple
modification of the previous code can make this possible:� �

1 customplot <- function(x, y, ...)

2 plot(x, y, xlim = c(1, 1000), ...)� �
With this new version, all arguments which are not named x or y are “collected”
in the ‘...’ and passed to plot(). If xlim is one of them, then an error
happens. To avoid this, a further modification is to move this argument as an
option:� �

1 customplot <- function(x, y, xlim = c(1, 1000), ...)

2 plot(x, y, xlim = xlim, ...)� �
The second usage of the ‘...’ is to define a function where the number

of arguments is unlimited as is illustrated below with the simplest case where
‘...’ is the only argument of foo:� �

1 > foo <- function(...) print(list(...))

2 > foo(1)

3 [[1]]

4 [1] 1

5

6 > foo(1, 1:3)

7 [[1]]

8 [1] 1

9

10 [[2]]

11 [1] 1 2 3

12

13 > foo(1, 1:3, 1:5)

14 [[1]]

15 [1] 1

16

17 [[2]]

18 [1] 1 2 3

19

20 [[3]]

21 [1] 1 2 3 4 5� �
We note that the ‘...’ is first “captured” in a list before being manipulated.
This can also be useful in the first usage of the ‘...’ to check the names of
the arguments, for instance:� �

1 > foo(col = "blue")

2 $col

3 [1] "blue"� �
26

The ‘...’ is now a list with names so its elements can be assessed individually.
Alternatively, the list can be created (and manipulated if needed) before calling
the function, and passed efficiently by using the function do.call with:� �

1 > L <- list(col = "blue")

2 > do.call(foo, L)

3 $col

4 [1] "blue"

5

6 > L$lty <- 1 # add an element to the list

7 > do.call(foo, L) # repeat the do.call

8 $col

9 [1] "blue"

10

11 $lty

12 [1] 1� �
3.3 Return Value

Functions are used to make calculations and, if the calculations are successful,
return a result. This last one is a single object and called the return value of
the function.

3.3.1 Implicit and Explicit Returns

The most common way to return a value is to write the name of an object
(or an expression) at the end of the code of the function (the body): in that
case there is no need to use the function return (this is an implicit return).
On the other hand, it is possible to do an explicit return by using the latter:
in this case the called function is stopped and the value is returned. The two
following function definitions have the same effect:� �

1 foo <- function(x)

2 {

3 if (!is.numeric(x)) return(NULL)

4 ##

5 x

6 }� �� �
1 foo <- function(x)

2 {

3 if (!is.numeric(x)) return(NULL)

4 ##

5 return(x)

6 }� �
27

A function always returns something, even if nothing is done during its
execution in which case NULL is returned invisibly:� �

1 > foo <- function() if (FALSE) 1

2 > foo()

3 > o <- foo()

4 > o

5 NULL� �
It may be needed to perform some commands before returning the return

value. This can be done by writing some lines of code before the last command;
however, the code might not be executed if there is an error, or an a call to
return, before it is reached. The function on.exit takes one or several lines
of commands, and delays their execution until when the function call is closed:� �

1 > bar <- function()

2 + {

3 + on.exit({

4 + cat("End.\n")

5 + cat("Goodbye!\n")

6 + })

7 cat("Starting... ")

8 + 0

9 + }

10 > bar()

11 Starting... End.

12 Goodbye!

13 [1] 0� �
3.3.2 Assignment and Superassignment

In addition to returning a single object, a function can modify or create objects
at any step of its execution. There are two ways to do this: either with the
function assign or with the superassignment operator <<-. We have already
seen assign(), let us see its arguments now:� �

1 > args(assign)

2 function (x, value, pos = -1, envir = as.environment(pos),

inherits = FALSE, immediate = TRUE)� �
The arguments pos and envir are alternative ways to specify where the object
should be created: the latter is the name of the environment, whereas the
former is its position in the search list. From the previous section, we remember
that assign("x", 1) is similar to x <- 1. On the other hand, assign cannot
be used to modify an element of x (i.e., there is no equivalent of x[1] <- 1).
Instead, x can be read with get, modified locally, and then (back-)copied with
assign.

28

Funnily, assign(), or the backtick operator ‘, makes possible to create
objects with non-conventional names (i.e., which would give an error with the
standard assignment operators) so that we can show that 2 + 2 = 5:� �

1 > ‘2‘ <- 3

2 > ‘2‘ + 2

3 [1] 5� �
The superassignment operator is a practical short-cut to assign an object

in the parent environment:� �
1 foo <- function(x)

2 {

3 y <<- 0 # y is created in the parent environment

4 x

5 }� �
After loading this function in R, we can try it with:� �

1 > ls()

2 [1] "foo"

3 > foo(x = 1)

4 [1] 1

5 > ls()

6 [1] "foo" "y"

7 > y

8 [1] 0� �
Initially, foo is the only object in memory. After executing the command
foo(x = 1),1 an object named y has been created; but we note that there is
no object x.

By contrast to assign(), an existing object can be modified directly by
<<-.� �

1 bar <- function(x)

2 {

3 ## y must exist in the parent environment:

4 y[] <<- 1

5 x

6 }� �
After loading bar, we can try it with:� �

1 > bar(2)

2 [1] 2

3 > y

4 [1] 1� �
1This could have been foo(1); see Sect. 3.2.

29

This is particularly relevant for recursive functions (see next section).

3.4 Recursive Functions

A recursive function is a function that can call itself. The concept of recursion
applied to computer programming must not be confused with the concept of a
mathematical recursive function usually written as xi+1 = f(xi). Such math-
ematical formulas can usually be programmed efficiently without a recursive
function.

Almost all modern computer languages implement recursive functions. A
common exercise for programming a recursive function is to apply this concept
to the mathematical factorial which is denoted with an exclamation mark (x!)
and defined as:

x! = 1× 2× 3× . . . x.

It is indeed recursive:

(x+ 1)! = (x+ 1)× x!,

so that an R function can easily be written as:� �
1 fact <- function(x)

2 {

3 if (x <= 1) return(1)

4 fact(x - 1) * x

5 }� �
As mentioned above, this is not the most efficient way to program the factorial
in R. Three alternatives, with exactly the same outputs, are:� �

1 fact1 <- function(x)

2 {

3 if (x <= 1) return(1)

4 res <- 1

5 i <- 2

6 while (i <= x) {

7 res <- res * i

8 i <- i + 1

9 }

10 res

11 }

12

13 fact2 <- function(x)

14 {

15 if (x <= 1) return(1)

16 res <- 1

30

17 for (i in 2:x)

18 res <- res * i

19 res

20 }

21

22 fact3 <- function(x)

23 {

24 if (x <= 1) return(1)

25 prod(2:x)

26 }� �
In practice, the mathematical factorial is rarely used directly for two rea-

sons. First, the product grows very quickly with x so that it can be computed
only for x ≤ 170:2� �

1 > prod(1:170)

2 [1] 7.257416e+306

3 > prod(1:171)

4 [1] Inf� �
Second, the factorial is used in some probability density functions (e.g., the
Poisson distribution: λxe−λ/x!) which are mostly used in likelihood functions;
however, the likelihood (a product of probability densities) is usually trans-
formed on a logarithmic scale, so that products are transformed into sums and
we need to compute the log-factorial:

lnx! = ln 1 + ln 2 + ln 2 + · · ·+ lnx.

R has the functions factorial and lfactorial to perform these calculations
efficiently (actually using the Γ function since x! = Γ(x+ 1)):� �

1 > factorial(171)

2 [1] Inf

3 > lfactorial(171)

4 [1] 711.7147� �
After these considerations, we can define two simple guidelines before con-

sidering coding a recursive function in R:

� Do not build a recursive function to program a simple mathematical
recursive function: they are usually efficiently coded with simple itera-
tions, either with vectorisation, or with a for loop. In some common
cases, they may be already implemented directly in R (see factorial

and lfactorial).

2We will see in Section 5.4 why 171!, which is obviously a finite integer number, is
considered as +∞ by R.

31

� Recursive calls of R functions are useful—and sometimes indispensable—
when there are nested (for) loops and their number cannot be deter-
mined a priori.

The fact is that recursive functions are rarely needed, but when this hap-
pens they are the only solution to the problem and are particularly efficient.
Here are some examples I encountered in practice:

1. We want to create a random binary tree by splitting a set of n units: the
first step is to choose two random integers, say a and b, so that a+b = n.
Then the same step is applied, separately to a and b, until each is equal
to one (or two). The number of required iterations is unknown because
it depends on the sequence of a’s and b’s.

2. ZIP files are compressed archives of one or several files. Sometimes ZIP
files contain files which are themselves ZIP files. The function unzip can
list and extract files from a ZIP archive, but what if some are also ZIP
files? A conditional for loop can be used if we are sure that there is not
more than two levels, but this will not work if there are more levels.

3. We want to list all possible combinations of a number of units which can
take different states (say A, B, and so on). The number of units can vary.
A combination can have the same unit several times and their order is
not important (i.e., AAB, ABA, and BAA are the same).

All these problems can be solved with a recursive function. In practice
there are a few points to keep in mind to implement a recursive function:

� The recursive function is generally included in another function which is
called by the user.

� The recursions are controlled by a conditional command (e.g., if) in
order to avoid infinite recursions.

� The final result is usually modified by superassignment (<<-) so that
the successive recursions modify the same object which, in the end, is
returned by the main function called by the user.

The last point is important and makes recursive functions very useful in
R. Figure 3.2 shows the structure of a hypothetical code. The left-hand side
shows the outline of an imaginary function, foo, which is called by the user.
foo includes a recursive function, bar. The final result, res, is created before
calling bar which does some operations resulting in modifying res by superas-
signment. If the size of res is known in advance, this could be res[i] <<-

.... instead. Finally, bar calls itself or not depending on some conditions
specific to the task. res is returned by foo by an implicit return. We note
that bar has no explicit return value.

32

R code In memory

foo <- function(x) {
bar <- function(x) {

y <-
res <<- c(res,
if (.....) bar(y)

}
res <- numeric()
bar(x)
res

}

dat <-
foo(dat)

dat foo

etc.

x y
x y
x y
x y
x y
x y

x

bar

res

scoping relation
bar´s environment
foo´s environment
R´s GlobalEnv

1
Fig. 3.2. A recursive function (bar) within another function (foo). The red
arrows show the exchange of data between the user and foo. The stack of
bar’s environments represents the recursive calls (from bottom to top).

The trick of recursive functions in R is that the parent environment (see
Sect 3.1) of a function is set to the environment when it is created—not the
environment when it is called. In Fig. 3.2, bar is created in foo, so the parent
environment of bar is the environment of foo whatever the level of recursions.
Therefore, the object res is unique and located in the environment of foo. On
the other hand, the formal arguments of bar (x) and the objects eventually
created inside bar (y) are all different for each call of this function.

To give an example of the use of a recursive function in R, let’s take the
last example from the above list. In practice this problem arises with genetic
data when enumerating all possible genotypes. A human individual has two
chromosomes, one from each parent, so that they have two copies of all genes.
The genotype is the composition of these two genes which may or may not
be different (the variants of the same gene are called alleles). Although many
living beings, like humans, have a pair of each chromosome, some have four,
six, eight (rarely three) copies of the same chromosomes, and many have a
single copy. Besides, the number of alleles very greatly with the genes. Thus it
is of interest to be able to list the possible genotypes in all cases. The following
code defines k the number of alleles, and ploidy the number of chromosomes.
The number of possible genotypes is given by the number of combinations of
ploidy out of k + ploidy - 1. Let’s take an example with three alleles and
four chromosomes:� �

1 > k <- 3

33

2 > ploidy <- 4

3 > (N <- choose(k + ploidy - 1, ploidy))

4 [1] 15� �
So there are 15 possible genotypes. The recursive function to list all of them,
bar, is:� �

1 bar <- function(i, a) {

2 for (x in a:k) {

3 g[i] <<- x

4 if (i < ploidy) {

5 bar(i + 1L, x)

6 } else {

7 j <<- j + 1

8 ans[j,] <<- g

9 }

10 }

11 }� �
It can now be called after setting the required objects:� �

1 > ans <- matrix(NA, N, ploidy)

2 > j <- 0

3 > g <- integer(ploidy)

4 > bar(1L, 1L)� �
The execution of bar on the last line modified the objects already created
(ans, j, and g), so nothing is returned or printed. We finally check that ans
now stores the results:� �

1 > ans

2 [,1] [,2] [,3] [,4]

3 [1,] 1 1 1 1

4 [2,] 1 1 1 2

5 [3,] 1 1 1 3

6 [4,] 1 1 2 2

7 [5,] 1 1 2 3

8 [6,] 1 1 3 3

9 [7,] 1 2 2 2

10 [8,] 1 2 2 3

11 [9,] 1 2 3 3

12 [10,] 1 3 3 3

13 [11,] 2 2 2 2

14 [12,] 2 2 2 3

15 [13,] 2 2 3 3

16 [14,] 2 3 3 3

17 [15,] 3 3 3 3� �
34

This application is further explored in the exercises at the end of this chapter.

3.5 Classes and Generic Functions

In Chapter 2, we have seen that the attributes of an object have an important
role by storing additional information about the data stored by this object.
One of these attributes is widely used in this respect: the class. It is an
optional attribute; however, it is very useful to learn a few details about it
since many functions in R are generic (e.g., print, summary, plot).

There are three distinct mechanisms that make use of the class in R: S3,
S4, and R6. Before exploring them in the following sections, let us define a
few terms used in this section:

class: an optional attribute made of a vector of mode character with length
≥ 1 (rarely more than 3).

generic: a function which operates depending on the class of its argument.

method: a function which is called by a generic function.

3.5.1 S3

This is the basic system of class used in R and is implemented in the package
base. The idea behind the S3 system, and S4 and R6 as well, is the concept of
object-oriented programming : it is very common that some analyses or com-
putations depend on the type of data under consideration. This is, according
to the above definition, what a generic function does.

To illustrate this mechanism, let’s take the simple operation of printing an
object in R which is done by the function print. Because a function is an
object, we can print it in R:� �

1 > print

2 function (x, ...)

3 UseMethod("print")

4 <bytecode: 0x5555ce3a76c8>

5 <environment: namespace:base>� �
print is a generic function: it looks for another function that does the actual
work of printing the object given as argument. This latter function is a method
and its name is print.toto to print objects of class "toto", or print.titi
to print objects of class "titi", etc.

It’s a simple matter to set the class of an object: use the function class to
do it. The class is an optional attribute, so it can also be created or modified
like other optional attributes (Sect. 2.3.2). The class is a vector of mode
character which can be of length one or more. In other words, an object can
have several classes. In that case, the order of these classes is important.
Suppose the class is something like:

35

� �
1 > class(x)

2 [1] "class1" "class2" "class3" "classn"� �
Then the command print(x) will first search for the function print.class1:
if it exists (to be more accurate, if it is loaded in memory), then it is used to
print x and the operation is done; otherwise, print.class2 is searched for,
and so on until print.classn. If none of these functions are available, the
function print.default is searched for: if this last function is not available,
an error happens.3

Although simple, the S3 class system can become tricky if little care is
taken in building the chain of classes.

3.5.2 S4

In the late 1990’s, another scheme was defined: S4 classes (see Chambers’s
book [1] for a historical account). Two main reasons motivated the develop-
ment of S4. First, when an object of a given S3 class is created, R does not
check whether its contents is correct or matches with what some functions
might expect. For instance, nothing prevents us to create an object of class
“dist” which is not a distance matrix:� �

1 > x <- 1

2 > class(x) <- "dist"

3 > str(x)

4 ’dist’ num 1

5 > x

6 Error in matrix(0, size, size) : non-numeric matrix extent� �
Clearly, the function print.dist cannot handle x—and surely other functions
will have the same issue.

The second problem is more subtle and is related to class inheritance in
S3. We can give a simplified example of this by adding a class to the object x
(say “toto”), and writing an appropriate print method:� �

1 > class(x) <- c("toto", "dist")

2 > print.toto <- function(x, ...) print.default(x)� �
x can now be printed with no error:� �

1 > x

2 [1] 1

3 attr(,"class")

4 [1] "toto" "dist"� �
3In this hypothetical example of a composite class, the default method print.default

actually exists in the package base. If you create an S3 generic function, it is up to you to
create its default method.

36

As mentioned above, the order of the classes is important and inverting them
results in the same problem as above:� �

1 > class(x) <- c("dist", "toto")

2 > x

3 Error in matrix(0, size, size) : non-numeric matrix extent� �
This becomes more difficult to track down with more than two classes. This
problem is called inconsistent class inheritance by Chambers [1].

The functions needed to handle S4 classes are in the package methods which
is loaded by default when R starts. By contrast to S3, an S4 class must be
defined explicitly in R before we can create an object. This is done with
the function setClass. As a simple example, we want to create a database of
scientists with the names and dates of birth, and we call this S4 class “persons”:� �

1 setClass("persons",

2 representation(Name = "character",

3 Year = "numeric",

4 Month = "numeric",

5 Day = "numeric"))� �
Loading the above code defines the class “persons” stored in an object named
. C persons (hence hidden to ls() by default):� �

1 > ls(all.names = TRUE)

2 [1] ".__C__persons"

3 > .__C__persons

4 Class "persons" [in ".GlobalEnv"]

5

6 Slots:

7

8 Name: Name Year Month Day

9 Class: character numeric numeric numeric� �
The elements of an S4 class are called slots. An S4 object is created with the
function new. Let’s try with two famous naturalists:� �

1 > x <- new("persons",

2 + Name = c("Charles_Darwin", "Alfred_Wallace"),

3 + Year = c(1809, 1823),

4 + Month = c(2, 1),

5 + Day = c(12, 8))

6 > x

7 An object of class "persons"

8 Slot "Name":

9 [1] "Charles_Darwin" "Alfred_Wallace"

10

11 Slot "Year":

37

12 [1] 1809 1823

13

14 Slot "Month":

15 [1] 2 1

16

17 Slot "Day":

18 [1] 12 8� �
The slots are extracted with the @ operator:� �

1 > x@Name

2 [1] "Charles_Darwin" "Alfred_Wallace"

3 > x@Year

4 [1] 1809 1823� �
What happens if we try to create an object with an incorrect element?� �

1 > new("persons", Name = "Charles_Darwin",

2 + Year = 1809, Month = "Feb", Day = 12)

3 Error in validObject(.Object) :

4 invalid class "persons" object: invalid object for slot "Month

" in class "persons": got class "character", should be or

extend class "numeric"� �
We can now avoid this obvious mistake, but we can still create invalid objects:� �

1 > new("persons", Name = "Charles_Darwin",

2 + Year = 1809, Month = 15, Day = 12)

3 An object of class "persons"

4 Slot "Name":

5 [1] "Charles_Darwin"

6

7 Slot "Year":

8 [1] 1809

9

10 Slot "Month":

11 [1] 15

12

13 Slot "Day":

14 [1] 12� �
setClass defines the slot Month as a numeric but it does not say that it
should be in the range 1–12. The function setValidity allows us to define
what should be a valid S4 “persons” object. We first create a function to
perform the tests on the object; we can give it any name:� �

1 valid.persons <- function(object) {

2 if (!is.character(object@Name)) {

38

3 cat("slot ’Name’ not character\n")

4 return(FALSE)

5 }

6 if (!is.numeric(object@Year)) {

7 cat("slot ’Year’ not numeric\n")

8 return(FALSE)

9 }

10 if (!is.numeric(object@Month)) {

11 cat("slot ’Month’ not numeric\n")

12 return(FALSE)

13 }

14 if (object@Month < 1 || object@Month > 12) {

15 cat("’Month’ value invalid\n")

16 return(FALSE)

17 }

18 if (!is.numeric(object@Day)) {

19 cat("slot ’Day’ not numeric\n")

20 return(FALSE)

21 }

22 if (object@Day < 1 || object@Day > 31) {

23 cat("’Day’ value invalid\n")

24 return(FALSE)

25 }

26 TRUE

27 }� �
The function must return a single logical value. We then associate this validity
checker with the class (after loading valid.persons in memory):� �

1 > setValidity("persons", valid.persons)

2 Class "persons" [in ".GlobalEnv"]

3

4 Slots:

5

6 Name: Name Year Month Day

7 Class: character numeric numeric numeric� �
If we try again the previous operation, this now returns an error:� �

1 > new("persons", Name = "Charles_Darwin",

2 + Year = 1809, Month = 15, Day = 12)

3 ’Month’ value invalid

4 Error in validObject(.Object) : invalid class "persons" object:

FALSE� �
Of course, we can still create an invalid object as long as it passes the tests
defined in valid.persons(). Further tests can be added to avoid this and

39

other problems, for instance testing the number of days with respect to each
month.

Generic functions and their associated methods are defined with the func-
tions setGeneric and setMethod, respectively. We may thus create a way to
display our S4 object in a more compact way than printed above:� �

1 > printPerson <- function(object)

2 + cat("Database with", length(object@Name), "person(s)\n")

3 > setMethod("show", "persons", printPerson)

4 > x

5 Database with 2 person(s)� �
If an S4 class inherits from another class, this must be defined in the call to

setClass with the option contains: in this case all the slots of the inherited
class are included in the new one. Suppose we wish to create a new database of
British naturalists, so that the new class, “British persons”, extends the class
“persons” with the additional slot “PlaceOfBirth”:� �

1 setClass("British_persons",

2 representation(PlaceOfBirth = "character"),

3 contains = "persons")� �
A new object can be created in the same way than above:� �

1 > xb <- new("British_persons",

2 + PlaceOfBirth = c("Shrewsbury", "Llanbadoc"),

3 + Name = c("Charles_Darwin", "Alfred_Wallace"),

4 + Year = c(1809, 1823),

5 + Month = c(2, 1),

6 + Day = c(12, 8))

7 > xb

8 Database with 2 person(s)� �
We can see that the print method for the class “persons” has been used, thus
avoiding to write explicitly the hierarchy of class like in S3 and preventing
inconsistent class inheritance. Alternatively, the function as can be used to
create a new object from x and then modify the slot “PlaceOfBirth” in the
usual way:� �

1 > y <- as(x, "British_persons")

2 > y@PlaceOfBirth <- c("Shrewsbury", "Llanbadoc")

3 > identical(y, xb)

4 [1] TRUE� �
3.5.3 R6

The package R6 is based on S3. Its main function, R6Class, creates an envi-
ronment which includes objects related to the new class.

40

To see the basic functioning of R6, let us start with a simple generator that
returns an empty object:� �

1 > library(R6)

2 > X <- R6Class("X")� �
We may check that this is an environment:� �

1 > class(X)

2 [1] "R6ClassGenerator"

3 > mode(X)

4 [1] "environment"

5 > is.environment(X)

6 [1] TRUE� �
There are only two methods related to this class:� �

1 > methods(class = "R6ClassGenerator")

2 [1] format print

3 see ’?methods’ for accessing help and source code� �
X has the required information to create an object of class "X":� �

1 > ls.str(envir = X)

2 active : NULL

3 class : logi TRUE

4 classname : chr "X"

5 clone_method : function (deep = FALSE)

6 cloneable : logi TRUE

7 debug : function (name)

8 debug_names : chr(0)

9 get_inherit : function ()

10 has_private : function ()

11 inherit : NULL

12 is_locked : function ()

13 lock : function ()

14 lock_class : logi FALSE

15 lock_objects : logi TRUE

16 new : function (...)

17 parent_env : <environment: R_GlobalEnv>

18 portable : logi TRUE

19 private_fields : NULL

20 private_methods : NULL

21 public_fields : NULL

22 public_methods : List of 1

23 $ clone:function (deep = FALSE)

24 self : Class ’R6ClassGenerator’ <X> object generator

25 Public:

41

26 clone: function (deep = FALSE)

27 Parent env: <environment: R_GlobalEnv>

28 Locked objects: TRUE

29 Locked class: FALSE

30 Portable: TRUE

31 set : function (which = NULL, name = NULL, value, overwrite =

FALSE)

32 undebug : function (name)

33 unlock : function ()� �
The object is created by calling the function new which is inside the environ-
ment X:� �

1 > x <- X$new()

2 > x

3 <X>

4 Public:

5 clone: function (deep = FALSE)

6 > class(x)

7 [1] "X" "R6"

8 > is.R6(x)

9 [1] TRUE� �
Currently (2022-10-03), 439 packages on CRAN rely on R6.

3.6 Exercises

1. Create an environment e in your workspace. Create another environment
f which is inside e. Explain, eventually with a picture, the scoping
relation of these environments.

2. Suppose there is a function with two arguments. How many ways are
there to pass these arguments when calling this function? Answer the
question by supposing first that there are no default values, then that
both arguments have a default value.

3. Write a function that “captures” the ‘...’ argument into a list, modifies
this list, and returns it. Explain the usefulness of this manipulation.

4. Explain why the function foo at the end of Section 3.3.1 “does nothing”.

5. Explain as simply as possible what is happening when executing the code
that demonstrates that 2 + 2 = 5 on page 29.

6. Assess the performances of the different R implementations of the facto-
rial function given on page 30. You will also comment on the memory
resources required by these functions. (Hint: you may need to use some
resources from Chap. 7.)

42

7. The Fibonacci series is defined by: f0 = 0, f1 = 1, and fi = fi−1 + fi−2

for i ≥ 2. Propose R functions to implement Fibonacci series either
with or without a recursive function. Compare the performances of both
functions. (See the hint of the previous question.)

8. Write a function solving the example of nested ZIP archives on page 32.

9. Draw a picture similar to Fig. 3.2 applied to the recursive function listing
all genotypes (p. 34).

10. Give the logic (or, better, the algorithm) explaining how the recursive
function listing all genotypes (p. 34) works.

11. Create a data structure which associates a similarity matrix with a factor.
Give a class (with the name of your choice) to this structure, and write a
printmethod for it. Use this method, then delete it from your workspace
and print the structure. Explain what you observe.

43

4

Data Manipulation

Data manipulation is a vast topic. Although there are many particularities
depending on the field of interest, it is possible to define some important,
general topics about data manipulation that are addressed in this chapter. We
first explore some general issues before treating indexing1, the powerful tool
for manipulating data in R.

4.1 Missing Data

There is no ideal solution on how to handle missing data in statistical analyses,
and how this issue is approached varies a lot from a field of research to another.

4.1.1 Missing Values in Data Files

With the exception of the "raw" mode, all modes in R have a specific internal
coding for missing values (Table 2.1). By contrast, many data coding systems
use a specific value to code for missing data (for instance, many standards
use −9 for missing data if the possible values are positive, such as body mass,
population size, . . .)

Because there is no universal rule to code missing values in data files,
functions such as read.table or scan have the option na.strings. For these
two functions, the default of this option is "NA" (and not NA; see next section
for the difference). This option accepts a vector of length two or more, for
example, na.strings = c("NA", "na", "Na").

1Indexing is usually defined as “the act of classifying and providing an index in order to
make items easier to retrieve” (https://wordnet.princeton.edu/). In R, indexing is the
operation to manipulate data using the [operator.

44

https://wordnet.princeton.edu/

Table 4.1. How special values are tested.

x is.na(x) is.nan(x) is.finite(x) is.infinite(x)

NA TRUE FALSE FALSE FALSE

Infa FALSE FALSE FALSE TRUE

NaNb TRUE TRUE FALSE FALSE
aE.g., log(0), 1/0.
bE.g., log(−1).

4.1.2 NA vs. NaN

NA (Not Available) is the code for missing data, whereas NaN is returned by
operations that produce ‘Not a Number’. However, it makes sense to treat
the latter as missing values, so is.na(NaN) returns TRUE while is.nan(NA)

returns FALSE (Table 4.1). We note that to be a missing value, NA should not
be quoted (see Sect. 4.3 for more details on defining character strings in R):� �

1 > is.na(NA)

2 [1] TRUE

3 > is.na("NA")

4 [1] FALSE

5 > is.na("")

6 [1] FALSE� �
The default mode of NA is logical, and it is eventually converted when

assigned into a vector of a different mode:� �
1 > y <- NA

2 > mode(y)

3 [1] "logical"

4 > x <- 1:2

5 > x[2] <- y

6 > x

7 [1] 1 NA

8 > mode(x)

9 [1] "numeric"

10 > is.na(x[2])

11 [1] TRUE

12 > is.na(y)

13 [1] TRUE� �
There are built-in NA’s of different storage modes which can be used for more
efficiency:� �

1 > L <- list(NA_character_, NA_complex_, NA_integer_, NA_real_)

2 > unlist(L)

45

3 [1] NA NA NA NA

4 > sapply(L, mode)

5 [1] "character" "complex" "numeric" "numeric"

6 > sapply(L, storage.mode)

7 [1] "character" "complex" "integer" "double"

8 > sapply(L, is.na)

9 [1] TRUE TRUE TRUE TRUE� �
4.1.3 Missing Data in Data Analyses

With a brief experience in data analysis, a researcher quickly learns that the
occurrence of missing data is a rule rather than an exception. This raises a
number of issues, although most of these are field-specific (we will see a small
example below in the case of regression models).

We have seen that missing values are stored with a special value (NA) what-
ever the data mode. When operating on a vector “value-wise” (i.e., so that
the result is a vector of the same length than the input vector), things seem
to be straightforward: a missing value which is transformed is still a missing
value:� �

1 > x <- c(1, NA)

2 > log(x)

3 [1] 0 NA� �
As a side-note, the logarithm is able to generate all kinds of special values:� �

1 > log(c(-1, 0, 1, NA))

2 [1] NaN -Inf 0 NA

3 Warning message:

4 In log(y) : NaNs produced� �
But what happens if we use a function that returns a single value, for instance,
the sum of the values in x?� �

1 > sum(x)

2 [1] NA� �
Indeed, the addition of a number with an unknown value is, quite logically,
also unknown. The function sum, like several others,2 have the option na.rm

(which is always FALSE by default):� �
1 > sum(x, na.rm = TRUE)

2 [1] 1� �
2These other functions are: mean, var, median, quantile, max, min, range, prod. Note

that mean is a generic function which does not have the option na.rm but mean.default

has it.

46

The occurrence of missing values but also their arrangement in a data set
are important. Consider the following data frame:� �

1 x y z

2 Ind1 11 -0.4 1

3 Ind2 12 1.8 2

4 Ind3 13 -1.2 NA� �
A linear regression performed with lm(y ~ x) will use the three rows of the
table, whereas adding z as a predictor in the model (i.e., lm(y ~ x + z)) will
imply to remove the third row when fitting this second model. A consequence
is that both model fits are not comparable (the function anova gives a warning
if the comparison is attempted). However, if the first fitted model were lm(y

~ z), then the comparison would be valid. Numerical methods usually do not
handle missing data, so that lm removes rows with at least one NA. This step
can be handled explicitly by the user with the generic function na.omit.

4.2 Logical Vectors

Logical operations exist in all computer languages in order to control com-
putations with statements such as if, else, or while. In R, additionally to
this, logical values can be stored in vectors making them a powerful way to
manipulate data.

Logical vectors are returned mainly by two operations:

� Comparison operators which are all binary:3

== equal to
!= different
> greater than
< less than
>= greater than or equal
<= less than or equal

� A function which tests a feature of a vector or another object with a
name usually starting with is. (is.na, is.numeric, . . .)

Logical values are internally coded with 0 (FALSE) and 1 (TRUE) resulting
in efficient storage and handling. To illustrate this, let’s simulate ten million
random normal variates and test how many are greater than five:� �

1 > x <- rnorm(1e7)

2 > system.time(test.x <- x > 5)

3 user system elapsed

4 0.019 0.016 0.035� �
3The arity of an operator (or a function) is its number of argument(s). An operator is

unary, binary, or ternary, if it takes one, two, or three arguments, respectively.

47

This is a fast operation considering that 107 values were tested. We may then
be interested to count the numbers of TRUE and of FALSE values in test.x.
An intuitive solution might be to do this with table():� �

1 > system.time(tabx <- table(test.x))

2 user system elapsed

3 1.908 0.160 2.073� �
Using tabulate() is a much more efficient solution to count logical values:� �

1 > system.time(tabx2 <- tabulate(test.x + 1L))

2 user system elapsed

3 0.054 0.008 0.062

4 > system.time(tabx2 <- tabulate(test.x + 1L, 2L))

5 user system elapsed

6 0.034 0.020 0.054� �
This is because logical values are stored as integers. Note that we added one to
test.x because tabulate handles only strictly positive integers. The results
are identical to those returned by table but without the names:� �

1 > tabx

2 test.x

3 FALSE TRUE

4 9999997 3

5 > tabx2

6 [1] 9999997 3� �
In the present situation, tabulate is simpler and faster than table as the
former accepts a single integer vector as its main argument:� �

1 > args(tabulate)

2 function (bin, nbins = max(1L, bin, na.rm = TRUE))� �
In practice, there are two other possibilities to obtain the same result: either
using sum (remember that TRUE is 1 and FALSE is 0), or first calling which()

which returns the indices of the TRUE’s then simply calling length():� �
1 > sum(test.x)

2 [1] 3

3 > length(which(test.x))

4 [1] 3� �
How these two solutions perform in terms of running times?� �

1 > system.time(sum(test.x))

2 user system elapsed

3 0.007 0.000 0.007

4 > system.time(length(which(test.x)))

48

5 user system elapsed

6 0.007 0.000 0.008� �
sum is slightly faster than which, but the latter also gives the positions of the
TRUE values in test.x.

In many cases, data selection or manipulation requires multiple criteria:
one way to approach this is to use several logical vectors. There are three
operators and one function to combine logical vectors:4

& returns TRUE if both values are TRUE (AND)
| returns TRUE if at least one value is TRUE (inclusive OR)
! inverts logical values

xor() returns TRUE if only one value is TRUE (exclusive OR)

The last one is itself built on the previous operators as shown by its code:� �
1 > xor

2 function (x, y)

3 {

4 (x | y) & !(x & y)

5 }� �
This also shows that & and | are binary while ! is unary (see above footnote
about arity). All four return a logical vector of the same length than the
arguments.

If there are several criteria, it is best to compute the logical vectors sepa-
rately first, then combine them as needed. Below is an example similar to the
previous one but this time with two vectors (a and b) each with 105 random
values; we then create two logical vectors by testing the values greater than
2, and perform different tests combining these two logical vectors in order to
address the question given as comment after each command:� �

1 > a <- rnorm(1e5)

2 > b <- rnorm(1e5)

3 > test.a <- a > 2

4 > test.b <- b > 2

5 > sum(test.a & test.b) # both a and b > 2

6 [1] 41

7 > sum(test.a | test.b) # either a or b (or both) > 2

8 [1] 4517

9 > ## the next one gives the difference of the two previous ones:

10 > sum(xor(test.a, test.b)) # either only

11 [1] 4476

12 > sum(!test.a & test.b) # a <= 2 and b > 2

13 [1] 2220� �
4The double versions && and || are used only in control statements such as if () or

while ().

49

Table 4.2. Three ways to initialise a character vector in R.

Command length(x) is.na(x)

x <- character() 0 logical(0)

x <- "" 1 FALSE

x <- NA character 1 TRUE

These operators can be combined in the usual way so that more than two
selection criteria can be used together (e.g., test1 & test2 & test3 & ...).

4.3 Character Strings and Text

We have seen that character strings are stored in R so that each element of a
vector is a string (p. 9). This has a number of consequences on manipulating
strings and characters. Table 4.2 shows the distinction between a character
vector of length zero, an empty string, and a missing value (all of mode char-
acter).

4.3.1 Encodings

Defined simply, an encoding is a mapping between the computer bits and the
characters printed on a screen or on a printer. Although that sounds simple,
encoding is complicated because there are many ways to define this mapping.
Besides, there are a very large number of characters used by humans, and they
may use different encodings.

One of the most well-known encoding is called ASCII (American standard
code for information interchange): it uses 7 bits and was defined around 1965.
Shortly after, around 1967, manufacturers of computers agreed to standardise
their products so that the smallest quantity of information manipulated simul-
taneously is 8 bits. A consequence of this was that ASCII-encoded characters
had an unused bit; this was used to define new encodings based on 8 bits, for
instance Latin-1 widely used in Western Europe. Many of these encodings are
known under different names because they went through different processes of
standardisation. For instance, Latin-1 is also known as ISO-8859-1.

Unicode is a standard aimed at providing a unified encoding for all char-
acters recognized in human writing systems, including those not in use today
(e.g., Egyptian hieroglyphs). Initially, a system based on 16 bits (= 2 bytes)
was defined, but the 216 = 65 536 combinations were filled quickly (e.g., Chi-
nese has around 50 000 characters used in different periods). Another encoding
based on 32 bits was eventually defined giving more than four billion combi-
nations.

Having an encoding based on 32 bits implies that all characters are stored
on four bytes. However, in practice it is rather uncommon to mix Roman

50

letters with Egyptian hieroglyphs and Nordic runes. Besides, this makes all
ASCII-encoded files incompatible with any of the 16- or 32-bit encodings.
A compromise is given by UTF-8: in this encoding, the first byte indicates
whether a character is coded on one or several bytes. If the last bit of this
byte is 0, then the character is only coded by this byte. This makes UTF-
8 compatible with ASCII, but not with Latin-1, although Latin-1 is itself
compatible with ASCII.5

Because of its flexibility, UTF-8 is widely used nowadays and the default
encoding of many computer applications, including R. The function iconv

converts a character vector among different encodings. Unfortunately, because
of the difficulties and complications outlined above, its use can be complicated.
It depends on libraries installed on the machine. For instance, on a Linux
system, there could be more than one thousand encodings:� �

1 > length(iconvlist())

2 [1] 1173� �
It is not a common to change the encoding of a character vector, but we

can try it in order to see that non-ASCII characters are, as explained above,
coded on more than one byte with the UTF-8 encoding:� �

1 > nchar("é")

2 [1] 1

3 > nchar("é", type = "bytes")

4 [1] 2

5 > z <- iconv("é", "UTF-8", "Latin1")

6 > z

7 [1] "\xe9"

8 > nchar(z, type = "bytes")

9 [1] 1� �
The function nchar returns by default the number of characters in each string
of a vector of mode character; the option type = "bytes" asks this function
to return the number of bytes instead of the number of characters. Because the
encoding in usage in the present session of R is UTF-8, the vector z (which is
encoded in Latin-1) is printed as an escape sequence with the prefix \x followed
by the byte coded in hexadecimal. From Table A.1 (p. 136), we can find that
the hexadecimal sequence e9 corresponds to the bit sequence 11101001. This
can found also with the following command:� �

1 > rev(rawToBits(charToRaw(z)))

2 [1] 01 01 01 00 01 00 00 01� �
The functions scan and read.table (among others) have the options

fileEncoding = "" and encoding = "unknown" which help to read character
strings correctly.

5To be more accurate, ASCII is a subset of UTF-8 and also a subset of Latin-1.

51

Encoding() makes possible to extract or to change the encoding attribute
of a vector of mode character without changing the sequence of bits:� �

1 > x <- "é"

2 > Encoding(x)

3 [1] "UTF-8"� �
From the previous example, we know that ‘é’ is coded with two bytes under
UTF-8. We now change the encoding attribute of x to Latin-1 so that these
two bytes will be interpreted as two characters under this new encoding:� �

1 > Encoding(x) <- "Latin1"

2 > x

3 [1] "~A©"

4 > Encoding(x)

5 [1] "latin1"� �
We can check that x is now made of two characters coded by two bytes:� �

1 > nchar(x)

2 [1] 2

3 > nchar(x, type = "bytes")

4 [1] 2� �
Finally, we change the encoding of x—this time not only its attribute—to
UTF-8:� �

1 > y <- iconv(x, "Latin1", "UTF-8")

2 > y

3 [1] "~A©"

4 > nchar(y)

5 [1] 2

6 > nchar(y, type = "bytes")

7 [1] 4� �
Since these two characters are not part of the ASCII set, they are coded each
by two bytes in UTF-8.

4.3.2 Regular Expressions

Regular expressions (often abbreviated ‘regexp’) is a powerful tool to search
patterns in character strings or text files. In R, grep() provides a way to do
search tasks that cannot be performed with operations such as logical compar-
isons. For instance, the operator == compares strings and returns TRUE only if
they are identical. Consider the following vector of mode character:� �

1 > x <- c("Homo sapiens", "Homo erectus",

2 + "Pan troglodytes", "Pan paniscus",

3 + "Gorilla gorilla", "Gorilla beringei")� �
52

Table 4.3. Common simple regular expressions.

Regexp Meaning

. any character
[fghjkmo] any one of the character within brackets
[a-e] or [0-9] same than [abcde] or [0123456789]
[^a] any character but a
a{5} same than aaaaa

a{5,} a is repeated five times or more
a* same than a{0,}
a+ same than a{1,}
a{n,m} a is repeated between n and m times
^aze start of the string
rty$ end of the string

They are the names of six closely related species of humans and apes. It is
possible to find which one is identical to “Homo sapiens” with ==:� �

1 > which(x == "Homo sapiens")

2 [1] 1� �
But this operator cannot find the strings that contain “Homo” only. However,
grep does exactly this:� �

1 > grep("Homo", x)

2 [1] 1 2� �
The first argument is a single character string (i.e., a vector of mode character
and length one) and gives the regexp; the second argument is a vector of mode
character.

In a regexp, the patterns (repetitions, alternatives, . . .) are coded with
special characters. Table 4.3 gives the most commonly used of these codes.
In practice, and with a little bit of experience, these different codings can be
combined, increasing the usefulness of regexps. For instance, the last search
could have been done with grep("^Homo", x) to make sure to not match
“Homo” in the middle of a string. Table 4.4 gives more codes for regexps.

In practice, it is easier to build a regexp step by step and test it while
building it on a simple character vector to check that it works as expected.

Finding regexps can be complicated in practical applications, but the po-
tential gains are important. For instance, it is not rare that data files have
minor errors created during data input such as extra spaces before or after
the text.6 In these situations, regexps can be powerful to check the data. If

6Numeric data usually do not have this problem since leading and trailing spaces are
ignored.

53

Table 4.4. Regular expressions with classes.

Regexp Meaning

[:alpha:] upper- and lowercase letters
[:digit:] digits
[:lower:] lowercase letters
[:space:] spaces, tabulations and new lines
[:upper:] uppercase letters
[:alnum:] [:alpha:] and [:digit:]

we suspect that extra spaces have been inadvertently typed when entering the
above names, the search could be done with grep("^ *Homo", x).

Regexps are not only used for pattern searching, but also for operations
such as pattern replacement or splitting strings (Table 4.5). Let’s see the
options of grep with their default values because most of them are common
with other functions:� �

1 > args(grep)

2 function (pattern, x, ignore.case = FALSE, perl = FALSE, value =

FALSE,

3 fixed = FALSE, useBytes = FALSE, invert = FALSE)� �
ignore.case: whether to distinguish uppercase and lowercase letters (e.g.,

"A" and "a" are considered identical if TRUE).

perl: whether to use regexp PERL code.

value: whether to return the values of the vector instead of the indices.

fixed: whether to not interpret the first argument as a regexp; e.g., the two
following commands have the same effect:� �

1 grep("\\^Homo", x)

2 grep("^Homo", x, fixed = TRUE)� �
useBytes: whether to match the regexp byte-wise instead of character-wise.

Table 4.5. Functions accepting a regular expression.

Function Description

apropos Search for object names loaded
gsub Substitute pattern(s) in strings
sub As above but only the first occurrence is replaced
strsplit Split character strings

54

invert: whether to invert the search (i.e., return the indices of the elements
that do not match the regexp if TRUE).

Finally, the functions regexec, gregexec, and regexpr return more details
about the occurrence of the pattern within the strings, with information on
their locations as additional attributes (see Table 4.6 below).

4.3.3 Approximate String Distance

The approximate string distance (or generalized Levenshtein distance) is tightly
connected to the idea of pattern searching with regexps. This distance is de-
fined by the minimal number of changes needed to modify a character string
into another; it is implemented in the function adist. This function is flexi-
ble and can accept a single vector, in which case the distances are calculated
between each of its strings, or two vectors, in which case the distances are
calculated between each string from each vector (so the output matrix can be
rectangular). Its arguments are:� �

1 adist(x, y = NULL, costs = NULL, counts = FALSE, fixed = TRUE,

2 partial = !fixed, ignore.case = FALSE, useBytes = FALSE)� �
Several of the options are similar to those of grep (fixed, ignore.case, and
useBytes). For instance, we have the trivial result:� �

1 > adist(LETTERS[1:3])

2 [,1] [,2] [,3]

3 [1,] 0 1 1

4 [2,] 1 0 1

5 [3,] 1 1 0� �
Another simple example is to find how many changes are needed to convert

the string “Julien” into “Julia” (we use here the option counts):� �
1 > adist("Julien", "Julia", counts = TRUE)

2 [,1]

3 [1,] 2

4 attr(,"counts")

5 , , ins

6

7 [,1]

8 [1,] 0

9

10 , , del

11

12 [,1]

13 [1,] 1

14

55

15 , , sub

16

17 [,1]

18 [1,] 1

19

20 attr(,"trafos")

21 [,1]� �
Alternatively, we can input the two strings into a single vector:� �

1 adist(c("Julien", "Julia"), counts = TRUE)

2 [,1] [,2]

3 [1,] 0 2

4 [2,] 2 0

5 attr(,"counts")

6 , , ins

7

8 [,1] [,2]

9 [1,] 0 0

10 [2,] 1 0

11

12 , , del

13

14 [,1] [,2]

15 [1,] 0 1

16 [2,] 0 0

17

18 , , sub

19

20 [,1] [,2]

21 [1,] 0 1

22 [2,] 1 0

23

24 attr(,"trafos")

25 [,1] [,2]

26 [1,] "MMMMMM" "MMMMSD"

27 [2,] "MMMMSI" "MMMMM"� �
We notice that the attribute "counts" is an array.

The functions agrep, agrepl, and aregexec are similar to grep, grepl,
and regexec but based on the approximate string distance: they have the
option max.distance = 0.1.

Table 4.6 gives an overview of the functions for regexp search in R. Using
these different functions depend on the context, and they complement each
others. For example, which(grepl(pat, x)) is the same than grep(pat,

x). So, the output from grepl can be combined with other logical operations.

56

Table 4.6. Overview of the functions doing regular expression search.

Function Description

agrep Pattern search using approximate distance with a threshold
agrepl Same than agrep but returns a logical vector
aregexec Same than gregexec using approximate distance
gregexec Same than regexec with indices returned in a matrix
gregexpr Same than regexpr but with disjoint matches
grep Pattern search using regexp
grepl Same than grep but returns a logical vector
grepRaw Same than grep with raw vectors
regexec Same than regexpr but with multiple matches of

parenthesized subexpressions
regexpr Same than grep but returns positions of the regexp within

each string

4.3.4 Building Strings in R vs. in Files

We known that text strings can be input directly in R by typing them within
straight quotes. But there are a few subtleties, for example including quotes
themselves in the string. The quotes are delimiters of the string and are not
included in it; only straight quotes are allowed (see Table 1.3), but other types
of quotes (e.g., guillemets) can be inside the string if the encoding allows them.
The opening and closing delimiters must be identical: if they are double quotes,
then straight single quotes can be included inside the string without escaping
them, and vice versa.

The backslash character \ is used to include special characters in strings
when they are built interactively in R. More precisely, the character following
a backslash is interpreted in a specific way by R according to a syntax which is
summarised in Table 4.7. The function cat interprets these special characters
and prints them as they look like in a file.

For example, \n codes for a new line (a.k.a. linebreak) and is considered as
a single character (and it requires one byte to be stored):� �

1 > cat("\n") # blank line follows

2

3 > nchar("\n")

4 [1] 1

5 > nchar("\n", type = "bytes")

6 [1] 1� �
We note the particular behaviours of \r and \b:� �

1 > cat("aaa\r")

2 > cat("aaa\b")

57

3 aa> cat("aaa\b\n")

4 aa� �
Also it is sometimes necessary to combine these escaped characters in a single
string. For instance, if several backslashes must be printed in a row, they must
all be doubled inside the string:� �

1 > cat("\\\\\\\t\\\\\t\\\n")

2 \\\ \\ \� �
Table 4.7. Special (escaped) characters in R’s strings and how they appear
in a file (LF: linefeed; CR: carriage-return).

R string build In file

"\"" or ’"’ "

"’" or ’\’’ ’

"\\", "\\\\" (etc.) \, \\ (etc.)
"\n" <linebreak> (LF or LF/CR)
"\t" <tabulation>

"\b" <backspace> (deletes the previous character)
"\r" <carriage return> (deletes the line)

4.4 Indexing

Identifying or localizing a specific observation, variable, or value in a data
set is a routine operation in data analysis. R has three types of indexing:
numeric, logical, and character. These have been introduced in many places.
Indexing is one of the main strengths of R. There is no rule to prefer one type
of indexing over the others. In fact, these three types of indexing can interact
efficiently (Fig. 4.1). Indexing is used a lot in R so that instead of repeating
the generalities, we focus here on a few points.

� The vector of indices can be omitted in which case all elements of the
object will be considered. For example, x[] <- 1 will replace all val-
ues of x with the value one, which is more efficient than x <- rep(1,

length(x)).

� There is a lot of flexibility in indexing a vector so that there is no error
in a wide range of situations:� �

1 > x <- 1:3

2 > x[-5] # negative out of range, no error

3 [1] 1 2 3

4 > x[5] # positive out of range, returns NA

58

x[]

Numeric

Logical Character

grepl()

which()

match()
order()
grep()

Combine logical vectors:
&
|
!

xor()

1
Fig. 4.1. The three types of indexing and how they can interact.

5 [1] NA

6 > x[5] <- 5 # out of range, x is extended

7 > x

8 [1] 1 2 3 NA 5

9 > x[0] <- 0 # x is unchanged

10 > x

11 [1] 1 2 3 NA 5

12 > x[-5] <- 0

13 > x

14 [1] 0 0 0 0 5� �
However, with a matrix there is less flexibility unless (implicit) conversion
as a vector can be done:� �

1 > M <- matrix(1:4, 2)

2 > M[, 3]

3 Error in M[, 3] : subscript out of bounds

4 > M[5] # vector indexing

5 [1] NA

59

6 > M[5] <- 5

7 > M

8 [1] 1 2 3 4 5� �
� Different types of indexing can used in the same expression; for instance,
X[1:2, "bodymass"] will consider the first two rows together with the
column named “bodymass” in the matrix or data frame X.

� For lists and data frames, there is a subtle difference between the two
extraction operators $ and [[: the former takes a variable name not
quoted whereas the latter accepts quoted variable names (or numeric).
A consequence is that [[is more useful in programming such as:� �

1 for (v in names(X))

2 X[[v]]� �
Note that v is not quoted. It also makes easier to extract columns with
non-standard names, such as X[["2022"]] (not to be confused with
X[[2022]]; see Exercises), although the same command could use back-
ticks X$‘2022‘ but this last one is not easy to include in a program (e.g.,
it is easier and often more useful to use something like v <- "2022";

X[[v]]).

� Indexing lists for replacement can be done either with [[or with [. For
instance if X is a list and i is an integer:� �

1 X[[i]] <- y

2 ## y may be any type of object

3 ## i must be of length one (numeric or names)

4 ## i >= 1 & i <= length(X) must be TRUE� �
In other words, when changing an element of a list with [[, the index
must point to a single element that exists (an out-of-range index results
in an error).

When changing element(s) of a list with [, the same rules defined for
vectors apply also for lists.

With data frames, the objects will be checked to conform to the con-
straints of this type of objects (e.g., with the number of rows).

� Numeric indexing is the most efficient of the three types, but it is not
always the best solution because the order of names or labels may vary
in a data frame or other data structures.

For logical indexing, combining logical vectors is very efficient and often
simpler than combining numeric values. Furthermore, performance dif-
ferences between the types of indexing are very likely to be noticeable
only for very large data sets.

60

4.4.1 Recoding Data With Indexing

Indexing is a powerful way to recode data. This is especially efficient if there
are a limited number of values, either numeric or character. In the case of
numeric data, this is straightforward if the data are integer values. Suppose,
the possible values are 1 and 2, and we want to recode them so that 1 is now
2, and 2 is now 1. We build a vector (here named newcode) with the new
values (2 and 1), and use the data (here named x) as index to this vector. The
procedure is illustrated below with ten values drawn randomly:� �

1 > newcode <- 2:1 # or: newcode <- c(2, 1)

2 > x <- sample.int(2, 10, replace = TRUE)

3 > x

4 [1] 2 1 1 2 1 1 1 2 1 2

5 > newcode[x]

6 [1] 1 2 2 1 2 2 2 1 2 1� �
This is simple, flexible, and efficient. We may have done, somehow intuitively,
something like x[x == 1] <- 2 with the side-effect all values would be equal
to 2. This might be fixed by storing separately the result of x == 1, but
this would become cumbersome if there are more than two possible values.
Furthermore, the solution with newcode can be easily extended by adding
more values to this vector.

This procedure can also be used if these values are not contiguous. For
instance, if the possible values are 50, 60, 70, and 190 and we want to recode
them as 1–4:� �

1 > newcode <- integer(190)

2 > newcode[50] <- 1

3 > newcode[60] <- 2

4 > newcode[70] <- 3

5 > newcode[190] <- 4� �
It might be simpler to create two vectors of the same length with the old and
new values and use the first one as index of the vector newcode so it will be
easier to manage more values:� �

1 > old <- c(50, 60, 70, 190)

2 > new <- 1:4

3 > newcode <- integer(max(old))

4 > newcode[old] <- new� �
One can visualise the recoding with cbind(old, new).

With character strings, the recoding is also straightforward if the number
of possible values is known. The recoding vector is now a vector of mode
character with names; these names are used as indices during recoding. For
instance, let’s say we have a vector (x in the example below) with “Female”

61

and “Male” but also “FEMALE” and “MALE”, and we want to recode all
these as either “F “or “M”:� �

1 > newcode <- c("Male" = "M", "MALE" = "M",

2 + "Female" = "F", "FEMALE" = "F")

3 > x <- c("Male", "MALE", "Female", "FEMALE")

4 > newcode[x]

5 Male MALE Female FEMALE

6 "M" "M" "F" "F"

7 > unname(newcode[x]) # maybe better

8 [1] "M" "M" "F" "F"� �
Like above, we can prepare the recoding by creating two vectors old and new:� �

1 > old <- c("Male", "MALE", "Female", "FEMALE")

2 > new <- c("M", "M", "F", "F")

3 > newcode <- new # OR: newcode <- setNames(new, old)

4 > names(newcode) <- old #� �
It is also possible to check that the length of the new codes is equal to the
length of the unique values in the data:� �

1 > length(newcode) == length(unique(x))

2 [1] TRUE� �
4.5 Exercises

1. In the example on page 45, explain why L is a list and not a vector.
What is the result of mode(unlist(L))?

2. One of your colleagues has a data set arranged in a data frame with
100 rows and 1000 columns. Overall, there is 0.1% of missing data, and
your colleague thinks this is not a problem. Explain why this could be a
problem bigger than initially thought.

3. Generate one million random variables following a normal distribution
using the default parameters. How many of these variables satisfy the
condition |x| > 4? Repeat this exercise but setting the variance of the
normal distribution to σ2 = 2. Could you calculate the numbers expected
in both cases? (Hint: use pnorm()).

4. Find the regular expression (regexp) that will match the string ‘R’ and
only this one. Look at the options in grep (and other functions) and
find the one that bypasses the need to find this regexp.

5. List all objects (functions, data, . . .) loaded in memory with a name
starting with “lm”.

62

6. You want to split character strings into single words: find the efficient
code to do this operation with strsplit().

7. Explain how match() can be used when handling several objects, par-
ticularly data frames.

8. Explain why logical values used as indices are recycled but not numeric
ones.

9. Explain why v is not quoted in the above example (p. 60). What would
happen if it were quoted (i.e., X[["v"]])?

10. Explain the difference between X[["2022"]] and X[[2022]].

11. Compare the performance of logical and numeric indexing for vectors of
different sizes (up to 108).

12. Write a program to perform Dawkins’s weasel problem.7 You will use the
approximate string distance to evaluate the fitness of the new mutants.
In addition to adist, you will probably need the following functions:
runif, sample, substr, which.min, and others introduced in this chap-
ter. Compare your results with an implementation that uses a fitness
function based on the Hamming distance.8

7https://en.wikipedia.org/wiki/Weasel_program
8http://rosettacode.org/wiki/Evolutionary_algorithm#R

63

https://en.wikipedia.org/wiki/Weasel_program
http://rosettacode.org/wiki/Evolutionary_algorithm#R

5

Special Topics

5.1 Expressions

Expressions are objects created after transforming some text into something
that R can interpret. The step of creating an expression is intermediate before
executing the command.

Consider three different objects, x, y, and z, all with the content “one”:� �
1 > x <- 1

2 > y <- "1"

3 > z <- expression(1)

4 > ls.str()

5 x : num 1

6 y : chr "1"

7 z : expression(1)� �
They have clearly different modes and distinct interpretations: the vectors x
and y store a number and a character string, respectively. z, on the other
hand, is of mode expression.

Expressions can be manipulated similarly to lists:� �
1 > length(z)

2 [1] 1

3 > str(z[1])

4 expression(1)

5 > str(z[[1]])

6 num 1

7 > z[[1]] <- 2

8 > z

9 expression(2)� �

64

FILE R string KEYBOARD

expression

parse(file=) parse(text=) parse()

Other objects (data, etc.)

eval()
D()

substitute()
text()

. . .

source()

1
Fig. 5.1. An overview of the ways to create expressions and how they are
used in R.

This kind of manipulation is rarely done since expressions are easily created
from text in files, entered with the keyboard, or in R character string (Fig. 5.1).

Expressions are required by some functions, for instance D which computes
partial derivatives:� �

1 > D(expression(log(x)), "x")

2 1/x� �
The second argument gives (as a character string, not an expression) the vari-
able with respect to which the derivation is done, so the above command
computes ∂ lnx/∂x.

An expression can be evaluated with eval():� �
1 > e <- expression(rnorm(5))

2 > e

3 expression(rnorm(5))

4 > eval(e)

5 [1] -0.4482620 1.9125654 0.5736916 -0.8275439 0.5217176� �
An expression can be created with parse(), either by calling it without

argument, in which case the user enters the code at the prompt marked with
a question mark:� �

1 > parse()

65

2 ?1 + 3

3 expression(1 + 3)� �
Or by using the option text which takes a character string:� �

1 > a <- paste(1, 2, sep = " + ")

2 > a

3 [1] "1 + 2"

4 > e2 <- parse(text = a)

5 > e2

6 expression(1 + 2)

7 > eval(e2)

8 [1] 3� �
Expressions can be concatenated like any R objects, for instance using the

[operator:� �
1 > e3 <- expression(x <- rnorm(5))

2 > e3[2] <- expression(y <- runif(5))

3 > eval(e3)

4 > x

5 [1] 1.2714243 -0.8285636 1.1887390 -1.9306594 0.8050333

6 > y

7 [1] 0.2794713 0.9192962 0.1273966 0.8500026 0.4434050� �
Expressions can be used to print formatted text in graphics: the usual

R syntax is interpreted in a specific way when the expression is passed to
the function text, mtext, legend, or a few others. A small difficulty is that
operators used here as symbols cannot be input without being preceded by
another symbol. A solution is to prefix them with NULL:� �

1 > expression(^2)

2 Error: unexpected ’^’ in "expression(^"

3 > expression(NULL^2)

4 expression(NULL^2)� �
This makes possible to combine strings with symbols in an expression to print
something like “[Area covered]n”. Because of the space between the two words,
it is necessary to quote them within an expression so that the string can be
concatenated with symbols using the * operator:� �

1 > expression(Area covered[n])

2 Error: unexpected symbol in "expression(Area covered"

3 > expression("Area covered"*NULL[n])

4 expression("Area covered" * NULL[n])� �
Expressions can be combined together, separated by commas, and passed to
expression():

66

km^2

x[2]

NULL %~~% 3.14

"Area (" * km^2 * ")"

"[Area covered]" * NULL[n] * " (" * km^2 * ")"

km2

x2

≈ 3.14

Area (km2)

[Area covered]n (km2)

Fig. 5.2. Some examples of using expressions (in black) to annotate graphics
(in blue).

� �
1 > e <- expression(km^2,

2 + x[2],

3 + NULL %~~% 3.14,

4 + "Area ("*km^2*")",

5 + "[Area covered]"*NULL[n]*" ("*km^2*")")

6 > e

7 expression(km^2, x[2], NULL %~~% 3.14, "Area (" * km^2 * ")",

8 "[Area covered]" * NULL[n] * " (" * km^2 * ")")

9 > (n <- length(e))

10 [1] 5� �
Figure 5.2 is the result of the following commands:� �

1 plot(NA, type = "n", ann = FALSE, axes = FALSE,

2 xlim = 1:2, ylim = c(1, n))

3 text(1.25, n:1, as.character(e))

4 text(1.85, n:1, e, col = "blue")� �
There is a complete description of the syntax (including mathematical symbols,
Greek letters, and others) in ?plotmath. This help page gives also information
about differences related to operating systems.

An argument passed to a function is considered an expression as long as
it has not been evaluated. There are several functions that make possible
to manipulate these objects within the function, although this is not always
intuitive. The functions quote and substitute are two of these and return a
result which mode depends on the argument (Table 5.1). This is mostly useful
when manipulating formulas within a function (see Sect. 5.2).

substitute() is also useful when getting the (symbol) name of an argu-
ment passed to a function:� �

1 > foo <- function(x) cat("argument:", substitute(x), "\n")

2 > foo(E)

67

Table 5.1. Different outputs from quote().

Command mode() str()

quote(1) numeric num
quote(x) name symbol
quote(x + 1) call language

3 argument: E� �
However, if the argument is of mode "call" (Table 5.1), then the expression
must be deparsed with the function deparse which does the opposite operation
to the function parse seen above:� �

1 > foo(x + 1)

2 argument: Error in cat("argument:", substitute(x), "\n") :

3 argument 2 (type ’language’) cannot be handled by ’cat’

4 > bar <- function(x)

5 + cat("argument:", deparse(substitute(x)), "\n")

6 > bar(x + 1)

7 argument: x + 1

8 > bar(E)

9 argument: E� �
5.2 Formulas

Objects of class “formula” code for relationships among variables. They are
mainly encountered in regression or other models. Formulas are of mode “call”
which was introduced in the previous section. They illustrate several concepts
already encountered in the previous sections and chapters so that it is inter-
esting to examine them further.

Formulas are created with the ~ operator which separates the left-hand side
term to the right-hand side one. A formula has two additional attributes: the
class “formula” and an environment :� �

1 > m <- y ~ x

2 > m

3 y ~ x

4 > mode(m)

5 [1] "call"

6 > str(m)

7 Class ’formula’ language y ~ x

8 ..- attr(*, ".Environment")=<environment: R_GlobalEnv>� �
If we delete these attributes, the formula is very similar to the type of objects
we have seen in the previous section:

68

� �
1 > attributes(m) <- NULL

2 > m

3 y ~ x

4 > str(m)

5 language y ~ x

6 > mode(m)

7 [1] "call"� �
This makes possible to include variable transformations inside the formula
since no evaluation is done when it is created.

The environment attribute says where to look for the variables included in
the formula. It can be modified or overridden by other arguments, for instance
the option data in lm() and other model-fitting functions.

5.3 Dates and Times

There are many ways to print a date which are defined according to national
standards.1 On the other hand, computer scientists and engineers have defined
a standard widely on computers: a date is stored as an integer giving the
number of days since the origin (the date numbered zero) which is defined as
the first day of 1970 (1970-01-01, in ISO 8601 notation). The class “Date” in
R implements this standard. The function as.Date converts character strings
into this class. A simple example with the dates input on the keyboard is:� �

1 > x <- c("1969-12-31", "1970-01-01", "1970-01-02")

2 > z <- as.Date(x)� �
When printed, the two objects x and z look identical but mode() and str()

show that z is not a vector of mode character:� �
1 > x; z

2 [1] "1969-12-31" "1970-01-01" "1970-01-02"

3 [1] "1969-12-31" "1970-01-01" "1970-01-02"

4 > mode(x)

5 [1] "character"

6 > mode(z)

7 [1] "numeric"

8 > str(z)

9 Date[1:3], format: "1969-12-31" "1970-01-01" "1970-01-02"� �
We can check that these three dates can be converted into numbers, but not
the character strings:� �

1 > as.numeric(z)

1https://en.wikipedia.org/wiki/Date_format_by_country

69

https://en.wikipedia.org/wiki/Date_format_by_country

2 [1] -1 0 1

3 > as.numeric(x)

4 [1] NA NA NA

5 Warning message:

6 NAs introduced by coercion� �
Logically, today’s date should be the number of days since 1970-01-01:� �

1 > today <- as.Date("2022-10-03")

2 > as.numeric(today)

3 [1] 19268

4 > today - z[2]

5 Time difference of 19268 days� �
We note that the result is not a simple numeric subtraction but something
which is meaningful for the class of these objects: this is because the minus
operator is a generic function (Sect. 3.5).

The first argument to as.Date() is mandatory and can be an empty string
in which case NA is returned. The second argument specifies some details and
depends on the type of the first one (as.Date() is actually generic):� �

1 > as.Date("")

2 [1] NA

3 > as.Date("", "")

4 [1] "2022-10-03"� �
Surely, the interesting thing from this function is the possibility to read

dates written in (virtually) any format thanks to the second argument which
specifies the format using a coding system summarised in Table 5.2. The
default is the international standard format (ISO 8601) "%Y-%m-%d":� �

1 > as.Date("2022-02-03")

2 [1] "2022-02-03"

3 > as.Date("2022-02-03", "%Y-%m-%d") # identical to the previous

4 [1] "2022-02-03"� �
Use of day and month names (%A, %a, %B, %b) depends on the locale, that

is the settings of the computer, particularly the language. For instance, “Jan-
uary” (abbreviated “Jan”) is expected on an English locale whereas “janvier”
(abbreviated “janv.”) is expected on a French one. Dates in different languages
can be mixed by changing the locale setting within R:� �

1 > Sys.setlocale(locale = "en_US.UTF-8")

2 [1] "LC_CTYPE=en_US.UTF-8;" # <output skipped>

3 > today.us <- as.Date("February 3, 2022", "%B %d, %Y")

4 > Sys.setlocale(locale = "fr_FR.UTF-8")

5 [1] "LC_CTYPE=fr_FR.UTF-8;" # <output skipped>

6 > as.Date("February 3, 2022", "%B %d, %Y")

70

Table 5.2. Syntax to read dates and times from text.

Code Meaning

%d day (01–31)
%A weekday (full name)a

%a weekday (abbreviated)a

%u weekday (1–7, Monday is 1)a

%m month (01–12)
%B month (full names)a

%b month (abbreviated)a

%Y year (4 digits)
%y year (2 digits, use with careb)
%H hours (00–23)
%I hours (01–12)
%p AM/PM (used with %I)
%M minutes (00–59)
%S seconds (00–61)

aSystem-dependent (locale) but partial matching.
bSee examples.

7 [1] NA

8 > today.fr <- as.Date("3 février 2022", "%d %B %Y")

9 > identical(today.us, today.fr)

10 [1] TRUE� �
In this example, we first set the locale to the US one, and input a date format-
ted in the usual way in this country (stored in the object today.us). We then
set the locale to the French one, and try to input a date with the exact same
command but this returns NA. If the date is input with the syntax consistent
with the French locale, the result is now correct (stored in today.fr).

The use of the 2-digit code for years (%y) must be done with care:� �
1 > as.Date("68-01-01", "%y-%m-%d") # 21st century

2 [1] "2068-01-01"

3 > as.Date("69-01-01", "%y-%m-%d") # 20th century

4 [1] "1969-01-01"� �
The (generic) function format does the reverse operation than as.Date by

printing a date as a character string using the format specified by the same
coding as in Table 5.2:� �

1 > format(z, "%d/%m/%Y") # FR style

2 [1] "31/12/1969" "01/01/1970" "02/01/1970"

3 > format(z, "%m-%d-%Y") # US style with dash separator

4 [1] "12-31-1969" "01-01-1970" "01-02-1970"

71

5 > format(z, "%Y") # only the year

6 [1] "1969" "1970" "1970"� �
When reading years (i.e., under the "%Y" format code), only values ranging

from "0" to "9999" are accepted.2 Note that R counts a “year zero”, so the
day before 1st January 1 is 31st December 0:� �

1 > format(as.Date("1-01-01") - 1, "%d %B %Y")

2 [1] "31 December 0"� �
We can add or subtract numbers to a “Date” object in order to define dates
outside of the limits defined when reading dates (0–9999), so the day before
1st January 0 is 31st December −1:� �

1 > format(as.Date("0-01-01") - 1, "%d %B %Y")

2 [1] "31 December -1"� �
This is year 2 BCE in the Gregorian calendar which has no year zero. Consid-
ering the calendar system changes through History, some care must be taken
when handling dates depending on the context of the research.

Finally, we note that the year is manipulated correctly if a large number
of days is subtracted or added to a date:� �

1 > format(as.Date("0-01-01") - 1e9, "%d %B %Y")

2 [1] "28 December -2737908"

3 > format(as.Date("0-01-01") + 1e9, "%d %B %Y")

4 [1] "04 January 2737907"� �
The coding of times follows the same logic than with dates but, obviously,

with the additional difficulty of recording the time in addition to the date.
There are two classes in R: “POSIXct” and “POSIXlt” which differ only in the
way information is stored. To illustrate this, we take the current time from
the system and do a few operations:� �

1 > z <- Sys.time()

2 > class(z)

3 [1] "POSIXct" "POSIXt"

4 > storage.mode(z)

5 [1] "double"

6 > zlt <- as.POSIXlt(z)

7 > class(zlt)

8 [1] "POSIXlt" "POSIXt"

9 > storage.mode(zlt)

10 [1] "list"� �
2Leading zero’s are accepted as long there are no more than four digits, so "0", "00",

"000", and "0000" are all equivalent, but "00000" gives an error.

72

Objects of class “POSIXct” store the number of seconds since the beginning of
1970 in the UTC time zone. Objects of class “POSIXlt” store more components
in a list:� �

1 > attributes(zlt)

2 $names

3 [1] "sec" "min" "hour" "mday" "mon" "year"

4 [7] "wday" "yday" "isdst" "zone" "gmtoff"

5

6 $class

7 [1] "POSIXlt" "POSIXt"

8

9 $tzone

10 [1] "" "+07" "+07"� �
By contrast, the same time in the “POSIXct” class has only its class as addi-
tional attribute:� �

1 > attributes(z)

2 $class

3 [1] "POSIXct" "POSIXt"� �
But both classes when printed look very similar:� �

1 > z

2 [1] "2021-07-21 18:49:44 +07"

3 > zlt

4 [1] "2021-07-21 18:49:44 +07"� �
Unlisting the “POSIXlt” object shows more clearly its elements:� �

1 > is.list(zlt)

2 [1] TRUE

3 > is.list(z)

4 [1] FALSE

5 > unlist(zlt)

6 sec min hour

7 "44.7480847835541" "49" "18"

8 mday mon year

9 "21" "6" "121"

10 wday yday isdst

11 "3" "201" "0"

12 zone gmtoff

13 "+07" "25200"� �
Both classes return the same value when converted with as.numeric:� �

1 > as.numeric(z)

73

2 [1] 1626868185

3 > as.numeric(zlt)

4 [1] 1626868185� �
Conversions from character strings follow the same mechanism than with

as.Date with the additional option tz (time zone):� �
1 > x <- as.POSIXct("1970-01-01 00:00:00",

2 + format = "%Y-%m-%d %H:%M:%OS",

3 + tz = "GMT")

4 > x

5 [1] "1970-01-01 GMT"

6 > as.numeric(x)

7 [1] 0

8 > z - x

9 Time difference of 19026.73 days� �
5.4 Numerical Precision

The basic issue of numerical precision is that there are an infinite number of
numbers while the computing resources used to code a number (the number
of bits) are necessarily limited. Say that n bits are used to code a number:
then the number of numbers that can be represented is at most 2n.3 This has
several consequences:

1. There is value (say α) so that numbers which are smaller cannot be
represented.

2. Similarly, there is a value (say ω) so that numbers which are larger cannot
be represented.

3. For real numbers, there is an infinite number of numbers in a finite
interval, so that only a portion of them can be represented.

Consequence 3 obviously does not apply to integer numbers.
There are a lot of ways to code numbers in computers (we will come back

to this in Sect. 8.3), but this kind of details is usually of little concern when
analysing data. In particular, users often do not need to bother whether ‘1’
should be considered as an integer number or a real number. On the other
hand, the difference matters in many internal computations.

R has two basic numeric types: 32-bit integer and 64-bit floating-point reals.
As implied by their names, storage of a number under each type requires four
or eight bytes, respectively. There are fundamental differences between these
two types (Fig. 5.3). The first difference is trivial: integers are a discrete

3This limitation is not specific to numbers: see Section 4.3.1 on encodings. The ASCII
encoding is based on seven bits, so that at most 27 = 128 characters can be represented.

74

α − 1 α α + 1 ω − 1 ω ω + 1
Z −∞ +∞

R NA NA

232 integers

−∞ +∞R

-Inf InfR

≈ 264 reals

A

B

1Fig. 5.3. (A) The set of integer numbers (Z) on yellow background and
how they are represented in R. (B) The set of real numbers (R) on yellow
background and how they represented in R. The grey bands show the “out-of-
range” numbers.

set which makes possible a one-to-one match between them and their binary
representation for all numbers between α and ω. Put more simply: there is no
number between α and α + 1, or between ω − 1 and ω. On the other hand,
a finite interval contains an infinite number of real numbers and only some of
them can be represented on a computer.

For integers, the largest possible value in R is ω = 2147 483 647 (= 231− 1)
and is stored in a list:� �

1 > .Machine$integer.max

2 [1] 2147483647� �
The smallest possible is symmetric around zero: α = −ω.

There are two main ways to force a number to be stored as an integer:
either with the function as.integer,4 or by suffixing it with L:5� �

1 > str(1)

2 num 1

3 > str(1L)

4 int 1

5 > 1 == 1L

6 [1] TRUE

7 > identical(1, 1L)

4The function storage.mode has the same effect.
5This syntax originates from older systems when integers were commonly coded on 16

bits, so that 32-bit integers were considered as “Long”. Nowadays, most systems code
standard integers on 32 bits, and long integers on 64 bits.

75

8 [1] FALSE� �
It is interesting to note that values out of range (i.e., < α or > ω) are not
treated similarly with respect to these two ways; for instance, if we want to
force the storage of the number ω+1 as integer, the result will depend on the
method used:� �

1 > as.integer(2147483648)

2 [1] NA

3 Warning message:

4 NAs introduced by coercion to integer range

5 > 2147483648L

6 [1] 2147483648

7 Warning message:

8 non-integer value 2147483648L qualified with L; using numeric

value� �
We can now examine some of the practical side-effects of the binary cod-

ing of numbers. For instance, 10500 is a number that we can write with ‘1’
followed by 500 ‘0’, so it’s certainly not the infinity (∞) and we can write the
mathematical inequality 10500 <∞. But in R, we have:� �

1 > 10^500 < Inf

2 [1] FALSE

3 > 10^500

4 [1] Inf� �
This number is (much) larger than the largest representable real number (the
equivalent of ω for integers) which is stored in the same list as above:� �

1 > .Machine$double.xmax

2 [1] 1.797693e+308� �
Like for integers, the smallest representable value is symmetric to this one: all
values smaller than to it (or larger to the above one) are represented as -Inf
(or Inf). A number divided by zero is by definition ∞, so that we have the
(mathematically wrong) equality:� �

1 > 10^500 == 1/0

2 [1] TRUE� �
Another value stored in the list .Machine is the smallest value which is

larger than zero:� �
1 > .Machine$double.xmin

2 [1] 2.225074e-308� �
For instance, 10−300 is written with ‘0.[299 zeros]1’, so it is a very small number
but surely greater than zero:

76

� �
1 > 10^-300 > 0

2 [1] TRUE� �
The number 10−330 is even smaller than the previous one but still greater than
zero; however:� �

1 > 10^-330 > 0

2 [1] FALSE� �
10−330 is among the many numbers (actually an infinity of them) which are
not representable in a binary coding, so the “closest” representable number is
used instead (zero in this case).

All these subtleties can have even more intruiguing results:� �
1 > 1.2 - 0.8 == 0.4

2 [1] FALSE� �
It happens that 0.4 is not representable, so depending on the way this number
is computed, different representable numbers may be returned. Note that this
is not rounding error; here is an example of the latter:� �

1 > x <- rnorm(10)

2 > y <- round(x, 6)

3 > all.equal(mean(x), mean(y)) # this is rounding error

4 [1] "Mean relative difference: 7.794554e-08"

5 > all.equal(mean(x), mean(y), tolerance = 1e-6)

6 [1] TRUE� �
Take a moderately large number such as 1016 and add one to it: surely the

result will be greater than the this number because 1016 < 1016 + 1. But:� �
1 > 10^16 < 10^16 + 1

2 [1] FALSE� �
Let’s take the (slightly) smaller number 1015:� �

1 > 10^15 < 10^15 + 1

2 [1] TRUE� �
We may add one several times to 1016, this will not change the final result:� �

1 > 10^16 == 10^16 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

2 [1] TRUE� �
This is because the additions are performed sequentially. If we ask R to sum
the one’s first and add this them to 1016, then:� �

1 > 10^16 == 10^16 + (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)

2 [1] FALSE� �
77

It some cases it is possible to “catch” this kind of issue before it can occur
and so avoid it: this is the case when calculating ln(1 + x) when |x| << 1. In
this calculation, the result is close to but not equal to zero:� �

1 > log(1 + 1e-8)

2 [1] 1e-08

3 > log(1 + 1e-18)

4 [1] 0� �
The last result is expected to be 10−18. The function log1p gives the correct
result:6� �

1 > log1p(1e-8)

2 [1] 1e-08

3 > log1p(1e-18)

4 [1] 1e-18� �
This last value will still be “ignored” if added to a large value (e.g., 1), but it
can be used to compute ratios. For instance, the next two operations should
logically give the same result:� �

1 > log1p(1e-18) / log1p(1e-17)

2 [1] 0.1

3 > log(1 + 1e-18) / log(1 + 1e-17)

4 [1] NaN� �
5.5 Exercises

1. Figure 5.1 could have an additional arrow. Explain why this is obvious.

2. Build the following expression e <- expression(x <- x + 1). Then,
run the command eval(e). Do you expect an error? Explain your
answer.

3. Run the command plot(0, 0, "n"). Add the annotation
√
2π at the

center of the plot.

4. Find the second partial derivative of the logarithm of x (i.e., ∂2 lnx/∂x2)
using the function D.

5. Build the formula y ~ x1 + x2. Explain why no addition is made when
building this formula.

6. Read a date written in the standard US format “01/31/2022” into an
object of class "Date".

6A similar function is available in most computer languages, usually with the same name.

78

7. Below are the five top rows of a file:� �
1 Year Month Day

2 2019 Feb 12

3 2020 May 15

4 2021 Nov 14

5 2021 Dec 14� �
How would you convert these data into the class "Date"?

8. You have data including dates marked with either “BCE” or “AD” (the
latter could be “CE” in a more recent notation). What special care (and
eventually manipulation) you should take when calculating time intervals
with these data?

9. Type the following command in R: 1e400 < 1e500. Explain the results
using a figure.

10. Explain the following result:� �
1 > A <- 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 2^52

2 > B <- 2^52 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1

3 > A > B

4 [1] TRUE� �
What if instead of adding six times 0.1, we would add five times this
same number?

Show (and explain) how parentheses could lead to a more expected result.

11. The mass of a blue whale is about 30 tons and the mass of a bacterium
is about 1 pg (= 10−12 g). Logically a whale and a bacterium are heavier
than a whale alone: how can you show this using log1p? (Reminder:
1 ton = 1 Mg = 106 g.)

12. Try the following command:
(1.2 - 0.8) * 1e16 == 0.4 * 1e16 - 1

Explain the results.

13. Compare these two commands and explain the results:
sqrt(2)^2 == 2

sqrt(2^2) == 2

79

6

Debugging

After a script or a function has been written, it is not rare that some issues
happen: the results may not look good, some error (or warning) messages may
occur, or other unexpected outputs. There are usually two main causes for
these:

� Some errors have been inserted in the code: typos, wrong function names,
misplaced parentheses, . . . ;

� The input data have some features that were not expected or planned
by the author of the code.

In practice, errors happen all the time, and there is a simple way to help to
solve them: read the message printed when the error occurs. Error messages
may seem obscure to beginners, but they must be able to make sense of them.
This is particularly true when considering that, in my experience, the majority,
maybe around 50%, of errors are due to typing errors which are easy to correct.
Another large portion of errors, maybe around 40%, are due to trivial errors or
mistakes which are also easy to fix. Thus, it seems that around 90% of errors
in R code are straightforward to solve. We examine in this chapter tools to
help solve the remaining 10%.

6.1 Strategies to Avoid Errors

We see in this section a few rules that help to avoid errors when writing R
code.

Write lines of code as simple as possible.—This rule could be stated as:
Several short lines of code are better than a long one. For example, suppose
we have a data frame DF, then the line:� �

1 for (i in 1:nrow(DF))� �
80

can, in many cases, be replaced by:� �
1 n <- nrow(DF)

2 for (i in 1:n)� �
The human eye is more able to find errors in short than in longer lines. Besides,
it is very common that n will be needed elsewhere in the code (e.g., if (n <

10) warning("not enough observations to compute SEs").
Test code progressively.—It is (very) discouraging to write many lines of

code and finding out that they produce an error. A lot of these errors can be
avoided by testing progressively the code, maybe even each line individually.
Not only this makes to possible to find and fix errors progressively, but it
is stimulating for the user to see that the code under progress is working as
expected.

Use your favourite IDE.—We have seen in the first chapter that there are
several ways to interact with R and choosing a specific interface is a matter of
personal choice. Most of these interfaces (also called integrated development
environments, IDE) have tools to help developers such as highlighting the
matching parentheses or brackets. So choose one and use it when developing
your code.

6.2 Interactive Execution of Functions

From Section 3.1, we have seen that when a function is called, a new environ-
ment is created where the objects manipulated inside the function are stored.
Once the function call is finished, with or without error, this environment is
deleted; thus, in principle, it is not possible to examine these objects. This is
actually possible with the function debug.

Let us say we calculate Euclidean distances and we want to see some details
of how this is done by the function dist. We first put this function in “debug
mode”:� �

1 > debug(dist)� �
Then calling this function will open a browser and the calculations are done
interactively under the user’s control:� �

1 > dist(1:0)

2 debugging in: dist(1:0)

3 debug: {

4 if (!is.na(pmatch(method, "euclidian")))

5 method <- "euclidean"

6 METHODS <- c("euclidean", "maximum", "manhattan", "canberra"

,

7 "binary", "minkowski")

8

81

Table 6.1. Commands of the R function browser.

Command Meaning

c continue the commands of the call
f finish execution of the current loop/function
n next command (steps over function calls)
s next command (steps into function calls)
Q quit

9 }

10 Browse[2]> n

11 debug: if (!is.na(pmatch(method, "euclidian"))) method <- "

euclidean"

12 Browse[2]>� �
where n means “next”. Inside the browser, a few specific commands can be
used and are given in Table 6.1. This implies that if an object within the
function’s environment has one of these names (n is often used for the num-
ber of observations), one must use the function get to see its contents (e.g.,
get("n")).

The reverse function of debug is undebug which cancels the effect of the
former:� �

1 > undebug(dist)� �
A nice feature of debug() is that it also works with non-exported (or

hidden) functions of a package. These functions are not directly called by users
so that, in principle, it is not possible to see what is being computed inside
them. However, debugging can be done on such functions if the function name
is prefixed with the name of the package and the triple-colon operator :::.1

As a hypothetical example, suppose we want to see the calculations done when
plotting a hierarchical clustering previously computed by hclust(): it is easy
to find that this function returns an object of class “hclust”, so logically the
function to plot it is plot.hclust():� �

1 > plot.hclust

2 Error: object ’plot.hclust’ not found� �
It appears this method is not exported. The function getAnywhere (from the
package utils) is able to find an object from any environment (see Sect. 3.1):� �

1 > getAnywhere("plot.hclust")

2 A single object matching ’plot.hclust’ was found

3 It was found in the following places

1The triple-colon operator is somewhat similar to the double-colon operator ::, but the
latter can only access exported objects.

82

4 registered S3 method for plot from namespace stats

5 namespace:stats

6 with value

7� �
The function is thus in the package stats. The next command will open the
debugger every time an object of class "hclust" is plotted:� �

1 > debug(stats:::plot.hclust)� �
The following is an example with simulated data:� �

1 > hc <- hclust(dist(rnorm(5)))

2 > plot(hc)

3 debugging in: plot.hclust(hc)

4 debug: {

5 merge <- x$merge

6

7 }

8 Browse[2]> ls()

9 [1] "ann" "axes" "check" "frame.plot" "hang"

10 [6] "labels" "main" "sub" "x" "xlab"

11 [11] "ylab"

12 Browse[2]> x

13

14 Call:

15 hclust(d = dist(rnorm(5)))

16

17 Cluster method : complete

18 Distance : euclidean

19 Number of objects: 5

20

21 Browse[2]>� �
6.3 Using Standard Tools

Instead of using debug(), it may be simpler to use standard R functions to
access the contents of the objects within a function’s environment. This can
be useful for code developed by the user.

� The functions print, sprintf, or cat can be inserted in a function: they
will be executed normally and the contents will be displayed while the
function is executed. cat() can print its argument(s) in a file.

� The superassignment operator <<- (Sect. 3.3.2) can be inserted in a
function and the object on the left-hand side will be returned in the
global environment.

83

� The function browser can be inserted within a function: when it is
executed, the debugger (see previous section) is open and the user can
examine the objects in the environment of the function.

6.4 Catching Errors

When an error occurs within a function, a message is printed, the execution
is stopped and nothing is returned. This means that the environment of the
function is lost and it is therefore impossible to know the values or contents of
the objects inside. The (global) option called "error" is a way to avoid this
problem:� �

1 > options("error")

2 $error

3 NULL� �
Apart from the default NULL, this global option can take two choices:

1. options(error = recover) which makes possible to explore the envi-
ronments successively opened until the error.

2. options(error = dump.frames) saves an object named last.dump in
the global environment which can be explored with the function debugger.

We try the first procedure with a simple function:� �
1 > foo <- function(x) {

2 + x <- log(x)

3 + if (anyNA(x)) stop("NA not allowed")

4 + sum(x)

5 + }� �
It is pretty obvious that an error will occur if negative value(s) are passed with
the argument x:� �

1 > foo(runif(10)) # error impossible

2 [1] -89.24168

3 > foo(rnorm(10)) # error expected in 50% of values

4 Error in foo(rnorm(10)) : NA not allowed

5 In addition: Warning message:

6 In log(x) : NaNs produced� �
As explained above, the values of x within foo() are lost and it is impossible
to know the details of what happened, for instance, how many values were
missing. Let’s try now to access these values after setting the option error as
explained above:

84

� �
1 > options(error = recover)

2 > foo(rnorm(10))

3 Error in foo(rnorm(10)) : NA not allowed

4 In addition: Warning message:

5 In log(x) : NaNs produced

6

7 Enter a frame number, or 0 to exit

8

9 1: foo(rnorm(10))

10

11 Selection:� �
There is a single environment open (called “frame” here), so we select it and
print its contents:� �

1 Selection: 1

2 Called from: top level

3 Browse[1]> ls()

4 [1] "x"

5 Browse[1]> x

6 [1] NaN NaN -0.078739513 NaN

7 [5] NaN -0.517230009 -4.940709077 -1.798025933

8 [9] 0.331829889 -0.532842058

9 Browse[1]>� �
Since this procedure is interactive, it is possible to use usual R commands on
the listed objects:� �

1 Browse[1]> table(is.na(x))

2

3 FALSE TRUE

4 6 4� �
When the exploration is finished, we can quit the browser:� �

1 Browse[1]> Q� �
It may be useful to reset the option error after the diagnostic has been

completed:� �
1 > options(error = NULL)� �

This example is simplistic in the hope that it helps to understand the
mechanism of the procedure. Nevertheless, two points can be made of it.
First, it is possible to test a code or a function with simulated data in a way
that no problem is encountered. In the first test of foo(), we used random
uniform variates which cannot be negative, so that we can repeat the command
foo(runif(10)) as many times we want without getting any error. In real

85

applications, this problem can happen, for instance, with incorrect data in
files. Second, in the present example, the successive function calls (what is
called the call stack; see next chapter) is simple: log() is called by foo().
But in real applications, this is rarely as simple. For instance, if a function
calls lm(), then this last one calls a number of other functions so that if any
error occurs, it might be not obvious to know in which of these it happened.

Finally, we note the functions traceback(), recover(), and debugger()

which give information on the last error.

6.5 Exercises

1. Type the three following commands respecting the (lack of) spaces:� �
1 x<-rnorm(10)

2 x<-1

3 x<+1� �
Explain the results and comment on the good practice of writing R code.

2. Matching parentheses (or brackets, or braces) are common problems
when writing R code. How to avoid these problems?

3. Suppose we want to execute the sum of a vector step-by-step. We first
run debug(sum), then sum(rnorm(1000)). Explain what you observe.

4. Suppose you wrote a script with 50 lines of commands; you then try to
run your script with source() and an error occurred. What is the best
strategy to solve this problem?

5. Explain why the functions mean, var, median, quantile, max, min,
range, and prod may lead to errors when missing values are likely to
be present in the data. Propose two ways to handle this problem.

6. Give some examples of data checking you could use in your code to avoid
errors.

7. You are writing a method associated to a generic function (see Sect. 3.5):
is it useful to check the class of the input data?

8. A common situation when programming a general purpose function is
that no data in a vector (or a data frame) meet some requirement(s).
How would you test for this and return a message to the users?

9. What attribute(s) would you test to check the data type input to a
function?

10. Why is it useful to reset the global option options(error = NULL) after
finishing to debug a function?

86

7

Performance Optimisation

7.1 Background

There are several basic rules to keep in mind when attempting to optimise
code or improve its performance:

Rule #1: The correctness of the results is more important than the running
time. This rule implies that there is no need to try to optimise the performance
of a function as long as its development is still in progress—and this chapter
comes after the chapter on bug fixing. For instance, if the developer is still
uncertain about the structure of the return value of a function, or some algo-
rithmic details, these issues should be solved before trying to make the code
faster.

Rule #2: The performance gains are inversely proportional to the time
spent on improving the code. This rule is well-known by computer program-
mers. In other words, the more time you spent on making a function faster, the
less worth the effort. One reason for this is because code performance needs to
be measured carefully. The most important factor affecting the performance
of computer code (besides the code itself) is data size.

Data size is itself made of several components: the number of observa-
tions, the number of variables, and the structure (or patterns) within the
data. Whether the performance of a function is affected by one or several of
these components depends on the computational methods implemented. For
instance, the running time of the singular value decomposition (SVD) of a ma-
trix is much more affected by the number of columns than by the number of
rows. Thus, this will affect the performance of the principal component analy-
sis (PCA) done by SVD as implemented in prcomp(). On the other hand, the
classical PCA by eigendecomposition (implemented in princomp()) is done
on the variance-covariance matrix so that the number of observations will be

87

Ru
nn

in
g

tim
e

Data size

I

II

III

A

Ru
nn

in
g

tim
e

Data size

B

1
Fig. 7.1. (A) The three types of relationship between data size and running
time. (B) Performance improvement may depend on data size (see text for
details).

important only when computing the VCV matrix.1

Quite logically, running time increases with data size: there are three main
types of relationship between these two quantities (Fig. 7.1A): linear (I), ‘ex-
ponential’ (II), and ‘logarithmic’ (III). The first two are the most common. It
must be kept in mind that the shapes of these curves are important, but their
positions on this graph are also crucial and there is no way to find them except
by measuring the running times for a range of data sizes. Figure 7.1B shows
a hypothetical example with the running times of two solutions (functions,
algorithms, scripts, or else). Because one solution (in red) if ‘linear’ (type I),
and the other one (in blue) is ‘exponential’ (type II), the former may seem
better than the latter. However, if the typical data size in practice is relatively
reduced (as shown with the green rectangle), this difference might not lead to
a decisive improvement.

R has several functions that run in times independent of data size, such as
length, mode, or class, because these attributes are stored separately from
the data (see Chap. 2). So checking the data with these functions is much
faster than checking, say, the missing values which requires to scan all the
data.

system.time() is the main tool to assess running times of a function, code,
or script. It can be used to measure the running time of a single command, a
block of commands, or a script which is given as the main argument:� �

1 > n <- 1e6

2 > x <- rnorm(n)

3 > y <- rnorm(n)

4 > system.time(z <- x + y)

5 user system elapsed

1princomp() will not run if the number of columns is greater than the number of rows.

88

6 0.002 0.000 0.002

7 > system.time(for (i in 1:n) y[i] <- x[i] + y[i])

8 user system elapsed

9 0.084 0.000 0.084

10 > identical(y, z)

11 [1] TRUE� �
Usually, only the third value returned by system.time() is of interest, par-
ticularly it is the most comparable among different machines and OSs. This
function calls proc.time() which returns five values, although only three are
printed by default; for instance, with a session started a bit more than 22 min
ago:� �

1 > a <- proc.time()

2 > a

3 user system elapsed

4 5.055 0.212 1364.769

5 > a[] # or unclass(a)

6 user.self sys.self elapsed user.child sys.child

7 5.050 0.211 1364.769 0.005 0.001� �
Unlike system.time(), this function takes no argument. The times are counted
from the start of the current R session. Even if only the value under "elapsed"
is generally the one of interest, it is good to know what these five measures
are:

user.self: the CPU time used for executing the user’s instructions during
the session;

system.self: the CPU time used for executing the system instructions dur-
ing the session;

elapsed: the total time of the session;

user.child: the cumulated times of the child processes initiated by the user’s
instructions during the session;

syst.child: the cumulated times of the child processes initiated by the
system instructions during the session.

All but the third one depend on how the OS implements computing times.
The resolution is also OS-dependent: it is typically 1 ms, except for Windows
where it is 10 ms.

system.time() simply calls proc.time() before and after executing the
code given as argument, and returns the difference.

The above examples take very little system time because the call to rnorm()
and the other operations mostly do not need to call the system. On the
other hand, accessing files (reading or writing data on the hard disk) call the
computer OS. For instance, we write a file with a single value and repeat the
operation one thousand times:

89

� �
1 > system.time(for (i in 1:1e3) saveRDS(0, "tmp.rds"))

2 user system elapsed

3 0.041 0.065 0.116

4 > unlink("tmp.rds") # clean-up� �
In this example, more than 50% of the operation was done by the system.
Besides, this value varied substantially if the above is repeated several times,
maybe because the system needs to find free space on the hard disk to perform
the command.

It is worth noting here that the running time of file accessions is expected
to vary considerably with the OS and, particularly, with the file system (the
way the OS manages the hard disk space, also known as disk formatting). This
should be kept in mind if the code implies a lot of file writing and/or reading.

Rule #3: When measuring running times, everything is relative. Many
factors influence the running times of a code, so that a code may be fast in a
situation but could be slow in another, and this is generally difficult to predict.

7.2 Rprof

The analysis of a data set is often made of successive steps implying several
function calls. Besides, a function sometimes calls several other functions
(many of them from the base package). In this situation, and assuming that
Rule #1 is respected, it is useful to know where the code spends time running.
This can be done with the function Rprof.

The idea of Rprof() is to sample at regular time intervals (0.02 s by default)
the call stack made of the successive calls of a function which calls another
function which itself calls another functions, and so on. During this profiling
procedure, the call stack is written into a file (‘Rprof.out’ by default). Knowing
that each row of this file is separated by a fixed time interval, it is possible to
infer how much time R has spent on each function call during the execution of
the code.

Of course, this is just an estimation of these times, not an actual measure.
If a function execution takes less than the specified sampling interval, then it
is possible that this would be missed by Rprof(). It is possible to decrease
the sampling interval, but this has the consequence of slowing down R because
the execution is effectively stopped during sampling of the call stack.

To illustrate the use of Rprof(), we generate a random matrix with n = 105

rows and p = 100 columns:� �
1 > n <- 100000

2 > p <- 100

3 > X <- matrix(rnorm(n * p), n, p)� �
We are now interested in profiling the PCA by eigendecomposition which is
straightforward using the default options:

90

� �
1 > Rprof()

2 > pca.eig <- princomp(X)

3 > Rprof(NULL)� �
The most direct way to analyse the output is to call summaryRprof() which
prints a summary of the function calls sorted “by self” and “by total”:� �

1 > summaryRprof()

2 $by.self

3 self.time self.pct total.time total.pct

4 "aperm.default" 0.56 39.44 0.56 39.44

5 "array" 0.30 21.13 0.30 21.13

6 "%*%" 0.26 18.31 0.26 18.31

7 "crossprod" 0.10 7.04 0.10 7.04

8 "princomp.default" 0.04 2.82 1.42 100.00

9 "sweep" 0.04 2.82 0.90 63.38

10 "is.data.frame" 0.04 2.82 0.04 2.82

11 "cov.wt" 0.02 1.41 0.38 26.76

12 "colSums" 0.02 1.41 0.06 4.23

13 "all" 0.02 1.41 0.02 1.41

14 "apply" 0.02 1.41 0.02 1.41

15

16 $by.total

17 total.time total.pct self.time self.pct

18 "princomp.default" 1.42 100.00 0.04 2.82

19 "princomp" 1.42 100.00 0.00 0.00

20 "sweep" 0.90 63.38 0.04 2.82

21 "aperm" 0.86 60.56 0.00 0.00

22 "scale.default" 0.72 50.70 0.00 0.00

23 "scale" 0.72 50.70 0.00 0.00

24 "aperm.default" 0.56 39.44 0.56 39.44

25 "cov.wt" 0.38 26.76 0.02 1.41

26 "array" 0.30 21.13 0.30 21.13

27 "%*%" 0.26 18.31 0.26 18.31

28 "crossprod" 0.10 7.04 0.10 7.04

29 "colSums" 0.06 4.23 0.02 1.41

30 "is.data.frame" 0.04 2.82 0.04 2.82

31 "all" 0.02 1.41 0.02 1.41

32 "apply" 0.02 1.41 0.02 1.41

33 "fix" 0.02 1.41 0.00 0.00

34

35 $sample.interval

36 [1] 0.02

37

38 $sampling.time

91

39 [1] 1.42� �
We will come on these results below.

It is also instructive to open the file ‘Rprof.out’ and examine its contents;
this also helps to understand the previous output. The first lines of this file
are:

1 sample.interval=20000

2 "princomp.default" "princomp"

3 "princomp.default" "princomp"

4 "all" "cov.wt" "princomp.default" "princomp"

5 "is.data.frame" "colSums" "cov.wt" "princomp.default" "princomp"

6 "is.data.frame" "colSums" "cov.wt" "princomp.default" "princomp"

7 "colSums" "cov.wt" "princomp.default" "princomp"

8 "array" "aperm" "sweep" "cov.wt" "princomp.default" "princomp"

9 [etc]

The first line gives the sampling interval (in µs), then from the second line the
successive call stacks are printed on separate lines. For each of these lines, the
leftmost character string is the function running on the top of the stack. So
that, this can be interpreted as follows:

� After 0.02 s, princomp.default() was running after being called by
princomp().

� After 0.04 s, the call stack was the same than after 0.02 s.

� After 0.06 s, all() was running after being called by cov.wt() itself
called by princomp.default() itself called by princomp().

� After 0.08 s, is.data.frame() was running after being called by colSums(),
etc. . .

� . . .

The summary statistics named “by.self” are the percentages of the functions
appearing on the leftmost position of the lines, whereas “by.total” are the
percentages of those appearing anywhere on each line. Since we only called
princomp, this function has therefore a “by.total” of 100%. The same percent-
age is observed for princomp.default since princomp is a generic function
and the call of the method is shorter than 0.02 s.

A close examination of the above output from summaryRprof() shows
something quite remarkable: the function eigen does not appear. This is likely
due to the relatively small size of the VCV matrix (100 rows × 100 columns).
This explanation can be validated by increasing the number of columns (see
Exercises).

We now turn on the the same PCA analysis but using SVD as implemented
in prcomp():

92

� �
1 > Rprof("Rprof2.out")

2 > pca.svd <- prcomp(X)

3 > Rprof(NULL)

4 > summaryRprof("Rprof2.out")

5 $by.self

6 self.time self.pct total.time total.pct

7 "La.svd" 5.88 90.74 5.94 91.67

8 "%*%" 0.30 4.63 0.30 4.63

9 "aperm.default" 0.16 2.47 0.16 2.47

10 "any" 0.04 0.62 0.04 0.62

11 "is.finite" 0.04 0.62 0.04 0.62

12 "sweep" 0.02 0.31 0.20 3.09

13 "array" 0.02 0.31 0.02 0.31

14 "matrix" 0.02 0.31 0.02 0.31

15

16 $by.total

17 total.time total.pct self.time self.pct

18 "prcomp.default" 6.48 100.00 0.00 0.00

19 "prcomp" 6.48 100.00 0.00 0.00

20 "svd" 5.98 92.28 0.00 0.00

21 "La.svd" 5.94 91.67 5.88 90.74

22 "%*%" 0.30 4.63 0.30 4.63

23 "sweep" 0.20 3.09 0.02 0.31

24 "scale.default" 0.20 3.09 0.00 0.00

25 "scale" 0.20 3.09 0.00 0.00

26 "aperm" 0.18 2.78 0.00 0.00

27 "aperm.default" 0.16 2.47 0.16 2.47

28 "any" 0.04 0.62 0.04 0.62

29 "is.finite" 0.04 0.62 0.04 0.62

30 "array" 0.02 0.31 0.02 0.31

31 "matrix" 0.02 0.31 0.02 0.31

32

33 $sample.interval

34 [1] 0.02

35

36 $sampling.time

37 [1] 6.48� �
This time, almost 91% of the computation is kept busy by La.svd() (called by
the generic function svd). This contrasts with the previous analysis showing
that three functions occupied most of the running time. Thus, in this last
case, very little improvement is expected unless one has a (faster) alternative
to perform the SVD.

93

7.3 Memory Usage

Profiling memory usage can be done with Rprofmem() which has options sim-
ilar to Rprof() but returns a different output. Let us try it with the same
PCA analyses than in the previous section:� �

1 > Rprofmem()

2 > pca.svd <- princomp(X)

3 > Rprofmem(NULL)

4 > Rprofmem("Rprofmem2.out")

5 > pca.svd <- prcomp(X)

6 > Rprofmem(NULL)� �
Rprofmem() writes a file with each line recording each memory allocation with
its size and the call stack. For instance, the first five lines of ‘Rprofmem.out’
are:

1 400048 :"rep_len" "princomp.default" "princomp"

2 400056 :"princomp.default" "princomp"

3 400048 :"princomp.default" "princomp"

4 448 :"princomp.default" "princomp"

5 80000048 :"princomp.default" "princomp"

6 [etc]

It is not so straightforward to read such a file because the number of items
per line is not the same for all rows. A solution is to use read.table with
the option sep = ":" so that the first item on each row will be read as a
numeric vector and the quoted character strings will be read together as a
single character vector:� �

1 > df.eig <- read.table("Rprofmem.out", sep = ":")

2 > str(df.eig)

3 ’data.frame’: 347 obs. of 2 variables:

4 $ V1: num 400048 400056 400048 448 80000048 ...

5 $ V2: chr "rep_len princomp.default princomp " "princomp.

default princomp " "princomp.default princomp " "princomp.

default princomp " ...

6 > df.svd <- read.table("Rprofmem2.out", sep = ":")

7 > str(df.svd)

8 ’data.frame’: 18 obs. of 2 variables:

9 $ V1: num 848 80000048 80000048 40000048 40000048 ...

10 $ V2: chr "colMeans scale.default scale prcomp.default prcomp

" "array aperm sweep scale.default scale prcomp.default

prcomp " "aperm.default aperm sweep scale.default scale

prcomp.default prcomp " "svd prcomp.default prcomp " ...� �

94

These show that princomp() required 347 memory allocations during its exe-
cution, while prcomp() required 18 such allocations. The sums of these vectors
give the total memory used:� �

1 > sum(df.eig$V1) / 1e6

2 [1] 764.7379

3 > sum(df.svd$V1) / 1e6

4 [1] 560.4937� �
Thus the eigen-based PCA used a bit more than 760 MB while the SVD-based
one used 560 MB. It is possible to look at the distributions of these allocation
size to see that the first analysis implied a large number of allocations of
small bits of memory (maybe involved in the computations of the variances
and covariances) and only a few large allocations, whereas the second analysis
required only a few large allocations (Fig. 7.2):� �

1 > layout(matrix(1:2, 2))

2 > hist(df.eig$V1)

3 > rug(df.eig$V1)

4 > hist(df.svd$V1)

5 > rug(df.svd$V1)� �
7.4 Some Tricks to Write Efficient R Code

Before detailing some tricks specific to R, we list some general tips that can
help to write better code in most computer languages.

� Avoid repetitions by creating temporary objects.

� Avoid to write overloaded loops: loops with many commands are likely
to be redundant.

� Simplify mathematical formulas (see Exercises).

� Avoid useless calculations (e.g., replace 1/4 with 0.25).2

� Arrange the code in an economical way.

� Add comments, this will help you to maintain the code.

7.4.1 Avoid Simple for Loops

If a for loop contains very little code, then it is likely that there is a simpler
and faster alternative. A trivial example is given below:

2Some tools correct for these “mistakes”: in R, once a function is compiled (which is done
almost always except when first used), and in C with the basic optimisation options of most
compilers.

95

Histogram of df.eig$V1

df.eig$V1

F
re

qu
en

cy

0e+00 2e+07 4e+07 6e+07 8e+07

0
50

15
0

25
0

35
0

Histogram of df.svd$V1

df.svd$V1

F
re

qu
en

cy

0e+00 2e+07 4e+07 6e+07 8e+07

0
2

4
6

8

Fig. 7.2. Distributions of memory allocations when performing a PCA by
eigendecomposition (top) or SVD (bottom).

� �
1 > x <- numeric(1e6)

2 > system.time(for (i in 1:1e6) x[i] <- 1)

3 user system elapsed

4 0.044 0.000 0.045

5 > system.time(x[] <- 1)

6 user system elapsed

7 0.004 0.000 0.002� �
A slightly less trivial example involves a comparison which can be replaced by
logical indexing:� �

1 > y <- x <- rnorm(1e6)

2 > system.time(for (i in 1:1e6) if (x[i] < 0) x[i] <- 0)

3 user system elapsed

96

4 0.048 0.000 0.048

5 > system.time(y[y < 0] <- 0)

6 user system elapsed

7 0.004 0.000 0.004� �
7.4.2 Prefer Numerical Indexing to Indexing with Names

Sorting numbers is faster than sorting character strings. Besides, the names

attribute can use a significant quantity of memory resources. Substantial or
important gains in performance can be achieved in a function or in a script by
first arranging or sorting the data at the start so that all the rows, observations,
subjects, etc, are arranged in the same way in the different data sets (avoiding
to search to match the objects repeatedly later).

7.4.3 Unclass Objects

Searching for the methods of generic functions can slow down considerably
some computations if indexing is heavily used in a loop. The reason for this
is because the indexing operator is a generic function:� �

1 > methods("[")

2 [1] [.acf* [.AsIs

3 [3] [.bibentry* [.data.frame

4� �
So that the command x[1] first checks the class of x and call the appropriate
method as described in Section 3.5. As an example, we build a function to
calculate the sum of each column of a table x:� �

1 > f <- function(x) {

2 + p <- ncol(x)

3 + res <- numeric(p)

4 + for (i in 1:p) res[i] <- sum(x[, i])

5 + res

6 + }� �
We try this function with a data frame containing 1000 rows and 10 000
columns:� �

1 > DF <- as.data.frame(matrix(rnorm(1e7), 1e3, 1e4))

2 > system.time(of <- f(DF))

3 user system elapsed

4 0.144 0.000 0.147� �
Now suppose we have written a function g which is similar to f but where the
argument x has been unclassed:

97

� �
1 > system.time(og <- g(DF))

2 user system elapsed

3 0.052 0.000 0.052

4 > identical(of, og)

5 [1] TRUE� �
The result is identical to the one returned by f() but the running time is
divided by three. In some other applications, the difference can be more sub-
stantial (10 times or more). It is up to you to find the code of g (see next).

7.5 Exercises

1. Write down a list of the data analysis methods that you use commonly
(e.g., correlation, ANOVA, PCA, and so on). Try to associate each of
these methods to the curve of type I, II, or III displayed on Fig. 7.1A.

2. Suppose we have a sample of n observations from a standard uniform
distribution U(0, 1). The largest value of the sample is a random variable
with variance given by the two mathematically identical expressions:

n

n+ 2
−

(
n

n+ 1

)2

=
n

(n+ 2)(n+ 1)2
.

Which one should be preferred to code in a computer program?

3. The k-means method is an unsupervised classification method that finds
structure (grouping) from continuous data (see ?kmeans). Assess the
running time of this method with 106 observations from two normal
distributions with means−2 and 2 (with equal sample size in each group).
Repeat the same analysis but with all observations drawn from a normal
distribution with mean zero.

4. Repeat the comparison between the functions princomp and prcomp us-
ing Rprof() but this time setting n = 104 and p = 1000. Comment on
the differences with the results in this chapter.

5. Explain why it is common that the code of functions include the com-
mand n <- length(x). Give other examples of similar commands.

6. You need to run simulations that are expected to take several days. The
output of each simulation replicate will then be analysed with a short
R script that you have downloaded from Internet. After looking at the
code of the script, you realise that the code can be easily improved to
make it faster. What is your decision?

98

7. Build a matrix with random values of your choice with n rows and p
columns. Evaluate the running times for several values of n and p. Rep-
resent the results graphically.

8. Do performance profiling of the command x <- rnorm(1). Explain the
observed results. Repeat this analysis with larger values passed to rnorm.
Which option of Rprof you may need to adjust and why?

9. Perform the memory profiling of the command x <- rnorm(1e7). Are
the results as expected?

10. Find the code of the function g used at the end of this chapter.

99

8

R–C Interfaces

The topic in this chapter require, in addition to R, to have a C compiler
installed and properly configured to work with R, so that compiled C code
can be used directly from R (see Table 1.2). The GNU C compiler (GCC)
is certainly one of the best choices for this. For practical details relative to
their specific platforms, the readers are referred to the manuals Writing R
Extensions and R Installation and Administration (Appendix C: C Platform
notes), both on CRAN and also installed with R (see help.start()).

8.1 Why Use C With R

C is often, but not always, a very good solution to improve the speed of
computations in R. However, the cost is clear: the time needed to interface a
C code with R can be significant. It is not easy to decide whether this is the
best, or even an appropriate, strategy. Two situations seem quite common.

8.1.1 Standard R Vector Operations Cannot Be Used

Operators in R are actually functions, so avoiding to call them repeatedly is
likely to result in more efficient code. For instance, take the following command
aimed at replacing all missing values in a vector by the mean of its values:� �

1 x[is.na(x)] <- mean(x, na.rm = TRUE)� �
The indexing operator [is called once, which is the right thing to do here. On
the other hand, it could seem more intuitive1 to write a command based on a
for loop, which would be slower (for the same result):

1It is often easier to first write R code with a for loop, then to vectorise it (if possible).
An interpretation of this fact might be that the human brain naturally thinks element-wise
or value-wise (e.g., “if a value is missing, replace it by the mean”) rather than vector-wise.

100

� �
1 mx <- mean(x, na.rm = TRUE)

2 for (i in seq_along(x)) if (is.na(x[i])) x[i] <- mx� �
Vectorised expressions are not always possible, however, especially when

doing complicated operations involving multiple comparisons for each element
of a vector. Furthermore, when non-linear or recursive operations are involved,
vectorisation is almost impossible. In those cases, a C program is an interesting
alternative.

8.1.2 A C Program Already Exists

Recoding a complete C program into R may be expensive in terms of time
and other resources. In this situation, writing an interface between R and an
existing C program might be a better solution. Nevertheless, this could not
be very trivial, and some care is needed as explained in this chapter.

8.2 Basics on C

The C language was introduced in the early 1970’s and was an important
element in the success of the UNIX operating systems. Its features made it
attractive for programmers who focus on efficiency, so that C progressively
superseded assembler languages.

C is a functional language: a program is made of functions which operate
on data. A very wide range of elementary data types can be handled, and
more complex data types can be constructed by the programmer. An essential
feature of C is the manipulation of pointers; this is detailed in the next section.

C is a declarative language: all variables used in a program must be de-
clared explicitly with their types. Finally, C is a compiled language: a program
is written in a text file (ASCII-encoded) which is then compiled into an exe-
cutable program. Therefore, a C program needs a compiler to be run. However,
the C code may be itself (relatively or completely) OS-independent.

We can now write our first C program (in the file ‘helloworld.c’):

1 #include <stdio.h>

2

3 void main()

4 {

5 printf("Hello World!\n");

6 }

Each line of this program can teach us something about C. On line 1, the
#include statement informs the compiler that a function used in our program
is defined in the file ‘stdio.h’ which is a header file: without this statement, the
compiler would not know the behaviour of the function printf, and an error
would occur. If other functions are used in a program, the appropriate header

101

Table 8.1. The main data types in C. All integer types can be signed or un-
signed. The declarations of the form intXX t are implementation-independent.

Data Declaration Size (bytes)

Usual Generic

Integer char int8 t 1
short int16 t 2
int int32 t 4
long int64 t 8
long long 16

Real float 4
double 8
long double 16

files must be included in the same way (each on a separate line; see below for
an example).

On line 3, the function main is defined: this is a standard name for the
function which interacts with the user, although it will be called under this
name (see below). Like in R, the argument(s) are listed within parentheses,
and also like in R, they are optional so a C program can have no argument.
The type of the returned value is a mandatory statement and is given before
the name of the function: in the present case, nothing is returned, so void is
written.

On lines 4 and 6, we see that curly braces are used in a way similar than
in R to delimitate blocks of commands or instructions.

Finally, on line 5 the command calling the function printf is terminated
by a semicolon which is required in C (in R, the semicolon can be used to
separate distinct commands on the same line).

The program can now be compiled with the command (the $ symbol is the
system prompt):

1 $ gcc helloworld.c -o helloworld

And its execution gives:

1 $./helloworld

2 Hello World!

8.2.1 Data Types in C

C has many data types and we review only the main ones here. We start with
data types for numbers which can be classified into two groups (Table 8.1):

� Integers can be of different sizes and could be either signed (with one

102

bit coding for the sign, so the value can be negative, zero, or positive) or
unsigned (only zero and positive values).

� Real numbers (called floating-point numbers) also of different sizes but
always signed.

Character strings are made of an array of bytes (i.e., char or unsigned

char). We will see below the meaning of the word ‘array’ in C.
Variables must be declared in the program, for example if a function uses

two integers, n and i, and a real number, x, the following lines of code must be
written, usually at the beginning of the program but always before the variable
is used:

1 int i, n;

2 double x;

The usual declarations (int, long, . . .) are dependent on the implementation:
in a modern system long declares a 64-bit integer, but this used to be a 32-bit
integer in older systems.2 Some declarations forces the size of the integers
independently of the system and the implementation. Most compilers have
built-in constants storing the limits on these different data types. We can
write a small program (in the file ‘intminmax.c’) to print these values:

1 #include <stdio.h>

2 #include <stdint.h>

3

4 void main()

5 {

6 printf("Type Smallest Largest\n");

7 printf("--\n");

8 printf("int8_t %*d %*d\n", 20, INT8_MIN, 22, INT8_MAX);

9 printf("uint8_t %*d %*u\n", 20, 0, 22, UINT8_MAX);

10 printf("int16_t %*d %*d\n", 20, INT16_MIN, 22, INT16_MAX);

11 printf("uint16_t %*d %*u\n", 20, 0, 22, UINT16_MAX);

12 printf("int32_t %*d %*d\n", 20, INT32_MIN, 22, INT32_MAX);

13 printf("uint32_t %*d %*u\n", 20, 0, 22, UINT32_MAX);

14 printf("int64_t %*ld %*ld\n", 20, INT64_MIN, 22, INT64_MAX);

15 printf("uint64_t %*d %*lu\n", 20, 0, 22, UINT64_MAX);

16 }

After compiling, the execution of the program prints:

1 $./intminmax

2 Type Smallest Largest

3 --

4 int8_t -128 127

2This explains why the ‘L’ suffixed to a number in R forces this number to be stored as
an integer.

103

5 uint8_t 0 255

6 int16_t -32768 32767

7 uint16_t 0 65535

8 int32_t -2147483648 2147483647

9 uint32_t 0 4294967295

10 int64_t -9223372036854775808 9223372036854775807

11 uint64_t 0 18446744073709551615

When declared in a program, all data types can be one of the three follow-
ings:

� a scalar (a single value as in the previous example),

� an array,

� a pointer.

An array is a set of variables all of the same type declared with the [

operator. It is necessary to specify the size of an array in the program so that
the required quantify of memory is given when the program is executed.

A pointer is a variable that stores the address of a variable; pointers are
declared with an * written between the data type and the name of the variable
(sometimes with a white space between them). For instance, the two following
lines declare an integer pointer z, a real pointer x, and an array of ten reals y:

1 int *z;

2 double *x, y[10];

The next section explains how pointers are used to allocate memory and create
arrays of sizes which are not specified a priori when writing the program.

Finally, we note that C has other data types (e.g., Boolean, files, functions),
and that user-defined structures can be created with struct, for instance the
following declaration:

1 typedef struct mydata {

2 int n;

3 double *x;

4 } mydata;

creates a data structure with an integer n and a double pointer x and the
name of this user-defined data type is mydata. The next lines of code create a
variable X of the previously defined type, assign the value of 10 to its element
n, and allocates the memory to store ten values to its second element (see next
section about this last command):

1 mydata *X;

2 x = (mydata*)R_alloc(1, sizeof(mydata));

3 X->n = 10;

4 X->x = (double *)R_alloc(x->n * sizeof(double));

104

8.2.2 Memory and Pointers

A pointer is a variable which stores the address of a variable in the (RAM)
memory of the computer. Computers use a register to find data in the RAM.
The type of CPU determine the size of its register: a 64-bit CPU can address
up to 264 bytes. Most computers in use until the early 2000’s had a 32-bit
CPU. The elementary unit of memory in the register is the byte (= 8 bits).

Figure 8.1 gives an image of a few bytes of the RAM of a computer: each cell
represents one byte (there are one billion such cells in 1 GB of RAM). Suppose
there are five integer values that we want to analyse: they are represented as
five rectangles each with four cells (recall than an integer is stored on four
bytes). To access these data in C, the programmer needs to use a pointer to
store the address of the first value; this pointer is named x and is shown on
the right of the figure. This pointer occupies eight bytes, that is 64 bits, which
makes sense since this variable should be able to take as many values than the
limit addressable by the CPU.

Since x stores an address, it is possible to access these data with an oper-
ation called dereferencing which is performed with the operator [. The value
given inside this operator is the number of bytes multiplied by the size of the
data type under consideration that should be shifted in order to read the data.
So, x[0] reads the first value (zero byte starting from the address stored in x),
x[1] reads the second value (1× 4 bytes shifted from the address in x), x[2]
reads the third value (2× 4 bytes), and so on. It is clear to see the similarity
with the operator [in R, but there are important differences:

� In R, this operator is called indexing and can take a vector with several
values and of different types (Sect. 4.4). On the other hand, dereferencing
in C takes only a single integer value.

� In addition to pointers and arrays, C can manipulate scalars which are
made of a single value (e.g., y in Fig. 8.1). On the other hand, R has no
scalar: vectors can be of length zero or more.

� In R, out-of-range index values are admitted and can give different results

x[0] x[1] x[2] x[3] x[4]

0x56122299faa0

0x56122299faa0

y x

Fig. 8.1. Memory and pointers in C. Each cell delimited by thin grey lines
represents one byte (= 8 bits). In red: the address of the byte pointed by
the arrow. In blue: the variable x contains this address (so x is an integer
pointer). In black: the variable and data manipulated by the programmer.
The variables are 32-bit integers: each value takes four bytes (= 32 bits). Five
values have been allocated to *x, whereas y is a scalar.

105

(although this may result in an error). In C, out-of-range values in
dereferencing are a common source of error and must be avoided. This
is further detailed below.

Because R gives the possibility to call C code, the size of pointers can be
printed in R with:� �

1 > .Machine$sizeof.pointer

2 [1] 8� �
The typical use of pointers in a C program is to: (1) declare a pointer, (2)

allocate some memory to this pointer. You may notice that we do not give a
value to the pointer: this is done by the memory allocation operation which
finds a suitable area of the active memory to store the data. To code in C
what is represented in Fig. 8.1, the program will include these lines:

1 int *x, y;

2 x = (int *) R_alloc(5, sizeof(int));

The function R alloc allocates the required memory with two arguments:
the number of elements and the size in bytes of each element. To make this
command as portable as possible, the function sizeof is used which returns
the size of the data type given as argument. After the two above lines, the
values of these two variables can be manipulated with, for instance:

1 y = 1;

2 x[0] = 2;

3 y = x[0];

Note that the command y[0] is an error (eventually found during the compi-
lation). These operations are detailed with examples below in the context of
calling C code from R.

8.2.3 Numerical Operators in C

Numerical operations in C are very similar to those in R, but slightly more
complicated. Because it is very common to do simple additions (increment
a value by one) or subtractions (decrement a value by one), there are some
simplified versions of these operators in C which are more efficient than the
general operators (Table 8.2).

8.3 A Second Look at Data Structures in R

Now that we know how data are coded in C, we can see how R and C can
interact and exchange data. Table 8.3 gives the correspondence between the
modes in R and the types in C.

106

Table 8.2. Comparisons of numerical operators in C and in R.

C R

Efficient General

x++; x = x + 1; x <- x + 1

x--; x = x - 1; x <- x - 1

x += y; x = x + y; x <- x + y

x -= y; x = x - y; x <- x - y

x *= y; x = x * y; x <- x * y

x /= y; x = x / y; x <- x / y

First, we notice that all R data correspond to a pointer in C: this makes
sense since the basic data structure in R is the vector which is comparable to
an array in C.

Second, character vectors are passed from R to C as an array of pointers.
Again this makes sense since vectors of mode character are vectors of strings,
and a string in C is an array of data type char.

Third, R knows only two types of numbers among the many which can
be coded in C (see Table 8.1): 32-bit integer and 64-bit floating-point real
(Fig. 8.2). However, other data types can be manipulated in a C program
called by R: this is just that these data cannot be passed from C to R.3

8.4 .C

The function .C is a simple interface between R and C. It requires a C function
which has only pointers as arguments as given in Table 8.3 and returns nothing
(void). Other variables can be defined and used inside the C code. As a

3In fact, any data can be passed from C to R using the raw mode.

Table 8.3. Correspondence between data modes in R and data types in C.

R C

Mode Storage mode Data type

numeric real double *

integer int *

character char **

logical int *

complex Rcomplex *

raw unsigned char *

list SEXP

107

64−bit floating−point real

10111111111100
sign fractionexponent

32−bit integer

10000000000000000000000000000001
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 8.2. Binary representations of the two types of numbers in R.

simple example, we write a function doing the sum of a vector of numerical
(real) values in the file ‘sum C.c’:

1 #include <R.h>

2

3 int i;

4

5 void sum_C(double *x, int *n, double *s)

6 {

7 for (i = 0; i < *n; i++) *s += x[i];

8 }

There are different ways to write this function. For instance, n[0] and s[0]

are similar to *n and *s.
To be used from R, this function must be compiled but unlike the program

compiled above, we will create here a shared object, that is an executable code
that can be called from another program. R has a specific command to do this
operation directly:

1 $ R CMD SHLIB sum_C.c

The result of this compilation is the creation of a file with an extension which
depends on the OS: ‘sum C.so’ on Linux and MacOS or ‘sum C.dll’ on Win-
dows. There is one more step before being able to use this C code from R: it
must be loaded into R (and we can check that the code is effectively loaded):� �

1 > dyn.load("sum_C.so")

2 > is.loaded("sum_C")

3 [1] TRUE� �
We can now use this C code, for instance with:� �

1 n <- 100L

2 x <- rnorm(n)

3 s <- 0

4 .C("sum_C", x, n, s)� �
The data types are important here so that we must be sure that x and s are
stored as double, and n is stored as an integer. Most users know that rnorm

108

returns decimal values, so we are sure that x satisfies the necessary condition.
However, the above code will not be robust, for instance if we instead do x <-

1:100. Thus, it is common to make sure that the correct data types are used
when calling the C code:� �

1 .C("sum_C", as.double(x), as.integer(n), as.double(s))� �
Let us try this with ten values:� �

1 > n <- 10

2 > x <- rnorm(n)

3 > s <- 0

4 > x

5 [1] 0.80846896 0.79679473 -0.33983748 -0.75843156 -0.85790593

6 [6] -0.58028839 0.50513436 0.36157941 0.07925696 -1.28663167

7 > s <- 0

8 > .C("sum_C", as.double(x), as.integer(n), as.double(s))

9 [[1]]

10 [1] 0.80846896 0.79679473 -0.33983748 -0.75843156 -0.85790593

11 [6] -0.58028839 0.50513436 0.36157941 0.07925696 -1.28663167

12

13 [[2]]

14 [1] 10

15

16 [[3]]

17 [1] -1.271861� �
We see that .C returns a list with the values passed as arguments to the C
code with the eventual changes performed by the latter.

What happens if there are missing values in x?� �
1 > x[1] <- NA

2 > .C("sum_C", as.double(x), as.integer(n), as.double(s))

3 Error: NA/NaN/Inf in foreign function call (arg 1)� �
There is an option, NAOK, to control whether missing values are passed or not:
the default is FALSE, so NA’s are not accepted:� �

1 > args(.C)

2 function (.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE,

ENCODING)

3 NULL� �
This option can be switched to TRUE to prevent the error:� �

1 > .C("sum_C", as.double(x), as.integer(n), as.double(s), NAOK =

TRUE)

2 [[1]]

109

3 [1] NA 0.79679473 -0.33983748 -0.75843156 -0.85790593

4 [6] -0.58028839 0.50513436 0.36157941 0.07925696 -1.28663167

5

6 [[2]]

7 [1] 10

8

9 [[3]]

10 [1] NA� �
But the result is now NA: see Section 4.1.3 for an explanation.

Finally, we note the option DUP = TRUE which is deprecated (i.e., it cannot
be FALSE) so that data are always duplicated.

8.5 .Call

The .C interface has several limitations:

� Only atomic vectors can be passed, thus excluding lists.

� The attributes of these vectors are ignored.

� The number of vectors passed to C is fixed as well as their modes.

� The data are always duplicated.

� No new object is returned, so the results must be returned in a vector
created beforehand, so its mode must be known in advance as well as its
maximal length.

� Long vectors cannot be passed (see below Sect. 8.5.4).

All these limitations are relaxed with .Call. This function shares some com-
mon features with .C but it is much more sophisticated at the cost of some
complications in the C code.

Like .C, .Call has for first argument a C function which has been pre-
viously compiled. The number of objects passed to C must also be defined
beforehand, but these can be any kind of R objects. Furthermore, there are
several C functions to extract attributes making possible to manipulate R ob-
jects efficiently. Table 8.4 compares .C and .Call by showing how the same
operation can be done with both interfaces (and in R as well).

A C file with functions aimed to be called with .Call must start with:

1 #include <R.h>

2 #include <Rinternals.h>

We now see each type of R data and their particularities at the C level.
Where possible, the C code includes comments with the equivalent command(s)
in R.

110

Table 8.4. Indexing a vector and a matrix in R and in C.

x R .C .Calla

vector n <- length(x) b n = LENGTH(x);

x[1] x[0] xp[0]

x[n] x[n - 1] xp[n - 1]

x[i] i=1...n x[i] i=0...n - 1 xp[i] i=0...n - 1

matrix n <- nrow(x) b n = nrows(x);

p <- ncol(x) b p = ncols(x);

x[1, 1]c x[0] xp[0]

x[n, p]d x[n * p - 1] xp[n * p - 1]

x[i, j] x[i + n * j] xp[i + n * j]

i=1...n i=0...n - 1 i=0...n - 1

j=1...p j=0...p - 1 j=0...p - 1
axp is a pointer to x.
bMust be passed as argument with .C.
cIdentical to x[1].
dIdentical to x[n * p] or x[length(x)].

8.5.1 Vectors

All R objects are of type SEXP when handled in a C program called with
.Call.4 We must distinguish two situations: either a vector is passed from R
to C, or a vector is created within a C code to be eventually returned to R.
For instance, if we want to analyse a single vector from R, the first few lines
of the C function will look like this:

1 SEXP FOO(SEXP x)

2 {

3 PROTECT(x = coerceVector(x, REALSXP));

4 double *xp;

5 xp = REAL(x);

6

There are some new information in these few lines of code, so let us look at
them in details. First, all data types are R objects, so the declaration in line
1 has only SEXP data types, including the returned value (unlike .C which
returns void). The command on line 3 has two aims: it states explicitly the C
data type (with REALSXP), and it protects x from being deleted by the memory
manager of R. We then declare a pointer of type double (line 4). This pointer
is used on the next line with the function REAL which extracts the address of

4SEXP means “S expression” and is a reminder of the ancestry of R as a dialect of the
S language.

111

x: this facilitates the manipulation of the vector at the C level (e.g., xp[0] is
the first value in x).

There could be more than one vector passed to C, for instance, if we want
to analyse three vectors, the first lines of the C function would be something
like:

1 SEXP FOO(SEXP x, SEXP y, SEXP z)

2 {

3 PROTECT(x = coerceVector(x, REALSXP));

4 PROTECT(y = coerceVector(y, REALSXP));

5 PROTECT(z = coerceVector(z, REALSXP));

6 double *xp, *yp, *zp;

7 xp = REAL(x);

8 yp = REAL(y);

9 zp = REAL(z);

10

In many cases, we want to return a vector so that we need to create one in
C. The following is a snippet of code that creates a vector res and a pointer
resp to manipulate this vector:5

1 SEXP res;

2 int n;

3 double *resp;

4 n = 10;

5 PROTECT(res = allocVector(REALSXP, n));

6 resp = REAL(res);

7 /* equivalent to: */

8 /* n <- 10 */

9 /* res <- numeric(n) */

There is an important difference with the numeric(n) command: the values
allocated to x are not initialised to zero as R does. What allocVector does
is only to allocate the required memory to the object x, but this part of the
memory may have been used previously (and freed since then). This may or
may not be a problem depending on what we want to do with x: if this vector
is destined to accumulate some sums, then it is certainly required to initialise
all values in x with zero. A simple way to do this is to loop over the array and
assign zero to each element:

1 for (int i = 0; i < n; i++) xp[i] = 0;

But a simpler and faster way is to use the C function memset:

1 memset(xp, 0, n * sizeof(double));

5The lines or blocks of lines delimited between ‘/*’ and ‘*/’ are comments in a C program.
Most C compilers also accept ‘//’ at the start of a comment (until the end of the line).

112

Note that we give the pointer as first argument (not the SEXP object). If the
value used for initialisation is not zero, then a for loop must be used:

1 /* equivalent to: x[] <- 1 */

2 for (int i = 0; i < n; i++) xp[i] = 1;

Similarly to .C(), reals and integers must be treated differently. If the
vector passed from R to C with .Call() must be treated as integers, then
REALSXP must be substituted by INTSXP, the pointers declared in C must be
of the appropriate type, and the function INTEGER is used to get the vector
address:

1 int *xp;

2 PROTECT(x = allocVector(INTSXP, n));

3 xp = INTEGER(x);

4 memset(xp, 0, n * sizeof(int));

5 /* equivalent to: integer(n) */

For logical vectors, the SEXP type is LGLSXP but the data type in C is
integer:

1 int *xp;

2 PROTECT(x = allocVector(LGLSXP, n));

3 xp = INTEGER(x);

4 memset(xp, 0, n * sizeof(int));

5 /* equivalent to: logical(n) */

For complex numbers, the SEXP type is CPLXSXP, the C data type is Rcomplex
which is made of two real numbers, and the address is extracted with COMPLEX:

1 Rcomplex *xp;

2 PROTECT(x = allocVector(CPLXSXP, n));

3 xp = COMPLEX(x);

4 /* equivalent to: complex(n) */

5 xp[0]->r; /* equivalent to: Re(x[1]) */

6 xp[0]->i; /* equivalent to: Im(x[1]) */

For vectors of mode raw, the SEXP type is RAWSXP, the C data type is
unsigned char, and the address is extracted with RAW:

1 unsigned char *xp;

2 PROTECT(x = allocVector(RAWSXP, n));

3 xp = RAW(x);

4 memset(xp, 0, n * sizeof(unsigned char));

5 /* equivalent to: raw(n) */

The case of character vectors is treated below (Sect. 8.5.3). Finally, the
function returns a SEXP object and ends with something like:

113

1 UNPROTECT(3);

2 return x;

3 }

where UNPROTECT removes the protection on the objects created within the
function: its argument is the number of protected objects (if this is unbalanced,
a warning message is printed during compilation). Note also that return is a
statement, not a function: there are no parentheses.

8.5.2 Lists

As we have seen several times in the previous chapters, lists in R are vectors
of objects: the SEXP type is VECSXP but there is no matching C basic type
so that the elements of the list must be accessed with the special functions
VECTOR ELT and SET VECTOR ELT:

1 SEXP x, y, z, L, a;

2

3 PROTECT(L = allocVector(VECSXP, 3));

4 /* equivalent to: L <- vector("list", 3) */

5 /* or: L <- list(); length(L) <- 3 */

6

7 SET_VECTOR_ELT(L, 0, x); /* equivalent to: L[[1]] <- x */

8 SET_VECTOR_ELT(L, 1, y); /* equivalent to: L[[2]] <- y */

9 SET_VECTOR_ELT(L, 2, z); /* equivalent to: L[[3]] <- z */

10

11 a = VECTOR_ELT(L, 0); /* equivalent to: a <- L[[1]] */

Since a list is a vector of objects, each element it contains is obviously a data
of type SEXP. Note that there is no C equivalent of R’s $ operator for lists
(Table 8.5).

8.5.3 Character Vectors

Vectors of mode character in R are vectors of strings (not of characters). Strings
in C are coded with arrays where each element is a character. This difference
complicates things a bit, although there are similarities with the other kinds
of vectors. The SEXP type is STRSXP:

1 PROTECT(x = allocVector(STRSXP, n));

2 /* equivalent to: x <- character(n) */

Each string is accessed by copying its address to a pointer of type char:

1 const char *xp;

2 xp = CHAR(STRING_ELT(x, 0));

3 xp[0] <- ’a’;

114

Table 8.5. Indexing a list (L) in R and in C called with .Call (M is a list
with three elements; y and z are any R objects).

R C

n <- length(L) n = LENGTH(L);

L[[1]] <- y SET VECTOR ELT(L, 0, y);

L[[2]] <- z SET VECTOR ELT(L, 1, z);

y <- L[[1]] y = VECTOR ELT(L, 0);

z <- L[[2]] z = VECTOR ELT(L, 1);

L[1:3] <- M for (i = 0; i < 3; i++)

SET VECTOR ELT(L, i, VECTOR ELT(M, i));

or
for (i = 0; i < 3; i++) {

y = VECTOR ELT(M, i);

SET VECTOR ELT(L, i, y);

}

4 /* equivalent to: substr(x[1], 1, 1) <- "a" */

We note two particularities: the pointer is declared with the qualifier const,
and the first element of the vector is accessed with the function STRING ELT

(with a similarity to the way elements of a list are accessed). Thus, the pointer
xp stores the address of the first string in x. So here, the C operator [accesses
characters within a single string of the vector, whereas it accesses elements
within a vector for numerical, logical, complex, and raw vectors.

Another similarity with lists is that a string within a character vector is
modified with a special function:

1 SET_STRING_ELT(x, 0, mkChar(xp));

2 /* equivalent to: xp <- "some string" */

3 /* x[1] <- xp */

Another particularity is that the string is checked with the function mkChar

which insures that it is correctly formatted. If the string is built directly within
quotes, it should be terminated with "\0":

1 SET_STRING_ELT(x, 0, mkChar("toto\0"));

2 /* equivalent to: x[1] <- "toto" */

There are several C functions to manipulate strings, for instance to extract
its number of characters:

1 int l = strlen(x);

2 /* equivalent to: l <- nchar(x) */

Another useful function (standard in C) is strcmp which takes as arguments
two char pointers and returns 0 if the two strings are identical. This makes

115

possible to build C code to implement indexing by character. For instance, if
x is a vector with names and we want to find the value which under the name
"Homo sapiens":

1 SEXP nmsx;

2 char *str;

3 str = "Homo_sapiens\0";

4 nmsx = getAttrib(x, R_NamesSymbol);

5 for (int i = 0; i < LENGTH(x); i++) {

6 if (! strcmp(CHAR(STRING_ELT(nmsx, i)), str)) break;

7 }

8 /* equivalent to: i <- which(names(x) == "Homo_sapiens") */

When the loop breaks, i contains the appropriate C index value. Clearly, if
some names are duplicated only the first occurrence will be found (see Exercises
at the end of the chapter).

8.5.4 Long Vectors

The length of an R object is stored as an integer, and because R handles only
32-bit signed integers and 64-bit floating point reals, if a vector is longer than
2.1 billion6 its length cannot be stored as an integer. Thus, so-called long
vectors have their lengths stored as real numbers. We can see this by creating
two vectors with 2.1 billion and 2.2 billion values, and print their respective
length:� �

1 > n1 <- length(1:2.1e9)

2 > n2 <- length(1:2.2e9)

3 > n1; n2

4 [1] 2100000000

5 [1] 2.2e+09

6 > storage.mode(n1)

7 [1] "integer"

8 > storage.mode(n2)

9 [1] "double"� �
Long vectors cannot be passed to C with .C but this is possible with .Call.

The call from R is similar from what we have seen above. However, on the C
side we must pay attention to the data types:

1 double n = XLENGTH(x);

2 long i;

3

4 for (i = 0; i < n; i++) {

5

6See Table A.2 (p. 137) for the exact value.

116

Table 8.6. Missing values in C.

R C

Name Data type

NA real NA REAL double

NA integer NA INTEGER int

NA logical NA LOGICAL int

NA character NA STRING SEXP

NULL R NilValue SEXP

The length of the vector is extracted with XLENGTH (instead of LENGTH) which
returns a 64-bit real (instead of an integer). Additionally, when accessing the
values of a long vector, the index (here i) must be able to be greater than 2.1
billion (even greater than 4.2 billion), so that a long integer is declared.

8.5.5 Missing and Special Values

There are pre-defined variables for missing values for C code which are given
in Table 8.6.

Missing and special values are well defined for real numbers and there are
functions to test for them in C, namely: ISNA, ISNAN, and R FINITE. These
functions behave in the same way than their R counterparts (see Table 4.1,
p. 45).

For integers this is different and some care must be taken with missing
values. We remember from Section 5.4 that there is no coding for infinite
values in the case of integers: this is true also in C and R uses the smallest
possible integer value for a 32-bit signed integer (see Table A.2 below) for this.
Therefore, missing integer values should be tested with something like:

1 x == NA_INTEGER;

Without this precaution, unexpected results may happen such as the following
C commands:

1 int x, y;

2 x = NA_INTEGER;

3 y = NA_INTEGER;

4 Rprintf("%d\n", x - y);

which will print (after appropriate compilation):

1 0

(The same observation can be made with logical values.) However, the same
operation in R gives the correct answer:

117

� �
1 > NA_integer_ - NA_integer_

2 [1] NA� �
On the other hand, real missing values do not have this issue:

1 double x, y;

2 x = NA_REAL;

3 y = NA_REAL;

4 Rprintf("%d\n", x - y);

The above code prints (after compilation):

1 nan

Missing character values are coded with the string “NA”, so that a similar
problem occurs: the two following comparisons return 0 (i.e., the strings are
identical):

1 strcmp(CHAR(NA_STRING), "NA\0");

2 strcmp(CHAR(R_NaString), "NA\0");

8.6 .External

This interface between R and C handles SEXP objects similarly to .Call, the
difference is that the number of objects does not need to be defined in advance.
The C code may look like this:

1 SEXP foo(SEXP obj)

2 {

3 SEXP x = CAR(obj);

4 int n = length(obj);

5 for (int i = 0; i < n; i++)

6

7 }

which may be called from R with .External("foo", x, y, z). However, we
will not detail this interface since an alternative is to use .Call with a list
passed from R to C, its length can be extracted with LENGTH, and the object
types can be extracted with TYPEOF.

8.7 Profiling C Code

clock() is the C equivalent of R’s proc.time(). This function returns a value
of type clock t, different values of this type can be subtracted to calculate
time intervals. To illustrate its use, we compare the timings of the two methods
described above to initialise an array of numbers (with memset or with a for

118

loop). The idea is quite simple: insert lines of code that query the computer
clock and print the time intervals at different points of the code (the lines of
code added for the present profiling are marked with the comment //+):

1 #include <R.h>

2 #include <time.h> //+

3

4 void initialize_C(int *n, double *x)

5 {

6 clock_t t0 = clock(); //+

7

8 Rprintf("0 %d\n", clock() - t0); //+

9

10 memset(x, 0, *n * sizeof(double));

11

12 Rprintf("1 %d\n", clock() - t0); //+

13

14 for (int i = 0; i < *n; i++) x[i] = 0;

15

16 Rprintf("2 %d\n", clock() - t0); //+

17 }

We compile and then try this code with:� �
1 > n <- as.integer(1e3)

2 > res <- .C("initialize_C", n, numeric(n))

3 0 1

4 1 17

5 2 26� �
So it took 16 µs to complete the memset call, but only 9 µs for the loop. In
fact, the order of the operations is important here, but let us not bother about
this detail and try to increase the value of n:� �

1 > n <- as.integer(1e6)

2 > res <- .C("initialize_C", n, numeric(n))

3 0 6

4 1 1489

5 2 3345� �
We have now ≈ 1.5 ms and ≈ 1.9 ms, respectively, and with an even larger
value of n:� �

1 > n <- as.integer(1e8)

2 > res <- .C("initialize_C", n, numeric(n))

3 0 4

4 1 44677

5 2 146135� �
119

Now the ratio is more than double at the advantage of memset.
This procedure can be used in more complex settings. If there is a for loop,

this makes possible to see which part(s) of the loop take(s) more computing
time. A real-life example is taken from an application on k-means [3]. The
outline of the C code is:

1 SEXP foo(SEXP x)

2 {

3 int i;

4 clock_t t0 = clock();

5

6 for (i = 0; i < *n; i++) {

7 Rprintf("1 %d\n", clock() - t0);

8 /* ... some code ... */

9 Rprintf("2 %d\n", clock() - t0);

10 /* ... some more code ... */

11

12

13

14 Rprintf("9 %d\n", clock() - t0);

15 }

16 }

The C code is compiled and called from R with:� �
1 > sink("prof.out")

2 > res <- .Call("foo", x)

3 > sink(NULL)� �
The side-effect of these commands is to print each line into the file ‘prof.out’
where each timing is preceded by an integer between 1 and 9 indicating the
point where the timing was measured. It is then straightforward to analyse
the file:� �

1 > o <- read.table("prof.out")

2 > nr <- nrow(o)

3 > str(o)

4 ’data.frame’: 432 obs. of 2 variables:

5 $ V1: int 1 2 3 4 5 6 7 8 9 1 ...

6 $ V2: int 15 75 17806 17837 32468 32497 32504 124807 126463

126492 ...� �
We now calculate the time intervals between successive points with diff, and
create text labels (labs) with the two points defining these intervals. Both
variables can be printed, for instance with boxplots (Fig. 8.3):� �

1 > timings <- diff(o$V2) / 1000

2 > labs <- paste(o$V1[-nr], o$V1[-1], sep = "-")

120

1−2 2−3 3−4 4−5 5−6 6−7 7−8 8−9 9−1

0

20

40

60

80

labs

T
im

e
(m

s)

Fig. 8.3. Timing intervals between nine points in a C function (see text for
details).

3 > boxplot(timings ~ labs, ylab = "Time (ms)", las = 1)� �
It appears that if the calculations done between points 7 and 8 cannot be
improved, then it is very unlikely that the overall performance of the code can
better.

8.8 Exercises

1. What is the largest amount of memory usable (i.e., addressable) by a
32-bit CPU?

2. Explain why the size of a pointer is eight bytes on a 64-bit system.

3. How much memory is needed to store one million numerical values in R?
What is the gain in terms of memory space if these values are binary?

4. Suppose you need to store numerical values between 0 and 9 in R: what is
the most economical way to store them and compare with the standard
numeric vectors.

5. Explain why indices in C start at 0 whereas they start at 1 in R.

6. Write the C code which is illustrated in Figure 8.1.

121

7. Write a C function doing the sum of the values of a vector similar to
sum C but using the .Call interface. Compare the performance of this
version with the one called with .C (under different data sizes). Explain
the observed differences (if any).

8. Write C code to find the indices of names (or labels) with possibly du-
plicated names (see p. 116).

9. In the above exercise, what is the value of i if the string is not found?
(See p. 116.)

10. Write a C program, to be called from R, to do the sum of an indefinite
number of vectors.

11. Matrices in C can be coded with an array of pointers, such as **x, and
manipulated with two sets of indices so that the first element is accessed
with x[0][0], and the last one with x[n - 1][p - 1], where n and p

are the numbers of rows and columns, respectively. Explain the difference
with the actual system used in R and its C interfaces (see Table 8.4), and
why one system is more efficient than the other.

122

9

Parallel and High Performance
Computing

Parallel computing and high performance computing (HPC) have known in-
creased interest with the advent of “BigData” and related issues. However,
these are not new topics: parallel computer architectures have existed for
decades. These are complicated topics too, so this chapter will look at them
in a very pragmatic way with the aim to provide a general understanding, and
how some practical solutions can be provided with R.

In order to simplify our view of how computers are built, we consider only
three architectures: there could be a single CPU which executes instructions
sequentially on data stored on the RAM (Fig. 9.1A). The second architecture
has several CPUs, so that instructions can be executed in parallel on data from
a single RAM (Fig. 9.1B). So in addition to the transfer of data (which exist
also in the simple architecture), there must be some transfers of instructions
because the different CPUs must be coordinated in a way or another. The third
architecture has several CPUs and several RAM units (and usually several hard
disks storing the data permanently; Fig. 9.1C).

We also consider some definitions in order to clarify the followings:

Elementary operation: a basic operation performed by a CPU.

Task: a set of operations performed by a single CPU.

9.1 A Basic Example

Suppose we want to do the sum of four numbers x1, x2, x3, and x4. The usual
(i.e., non-parallel) procedure can be written as (in pseudo-code):

s← 0; s← s+ x1; s← s+ x2; s← s+ x3; s← s+ x4;

123

A

B

C

CPU

HD

RAM

Data transmission

Instruction transmission

Fig. 9.1. Three basic models of computing architecture: (A) simple architec-
ture; (B) several CPUs sharing the same memory; (C) parallel architecture.
CPU: central processing unit; HD: hard disk; RAM: random access (active)
memory.

So five elementary operations are required.1 Let’s see now a parallel version
of the same procedure. We consider there are two CPUs and the memory is
shared. The sum would be done along the following steps:

1. Split the data in two subsets of equal size.

2. Run in parallel:

(a) s1 ← 0; s1 ← s1 + x1; s1 ← s1 + x2;

(b) s2 ← 0; s2 ← s2 + x3; s2 ← s2 + x4;

3. s← s1 + s2

So three elementary operations have to be done in each parallel task,2 plus
one final elementary operation (the sum of s1 and s2). In addition, the first

1This could even be reduced to four operations by replacing the first two with s← x1.
2One elementary operation could be avoided; see previous footnote.

124

step, splitting the data, is likely to take more time than doing the sum of two
numbers because, in the general case, it will require to query the number of
values to be added and decide how to split them depending on whether this
number is odd or even.

If the same sum is done on a distributed system (Fig. 9.1C), then two
additional steps have to be performed:

� Send the data to the CPUs.

� Send back s1 and s2.

So doing a sum in parallel does not appear to be a good idea in this simplistic
case. The next section explores this question with two specific examples.

9.2 Two Contrasting Examples With pvec

To illustrate some properties of parallel computing, we use here the function
pvec from the package parallel. We want to assess the effect of data size (vector
length, n) and the number of cores (mc) on two operations: (1) calculating
the square root of numerical values, and (2) converting dates.3 We choose the
values of n = {10, 102, . . . , 108} and mc = {1, 2, 3, 4}, create two vectors (N
and MC) to store these values, and a matrix RES to store the running times:� �

1 > N <- 10^(1:8)

2 > MC <- 1:4

3 > RES <- matrix(NA, length(N), length(MC))

4 > dimnames(RES) <- list(N, MC)� �
We now prepare two functions with no argument to perform the parallel (f())
and the sequential (g()) versions of the square root operation and return only
the computing time:� �

1 library(parallel)

2 f <- function()

3 system.time(x <- pvec(z, sqrt, mc.cores = mc))[3]

4 g <- function()

5 system.time(y <- sqrt(z))[3]� �
Note that this is merely to simplify the writing of the simulation code which
is made of two nested for loops over the vectors N and MC:� �

1 for (i1 in 1:length(N)) {

2 z <- 1:N[i1]

3 for (i2 in 1:length(MC)) {

4 mc <- MC[i2]

5 RES[i1, i2] <- if (mc > 1) f() else g()

3Both applications are inspired from the help page ?pvec.

125

6 }

7 }� �
The square root is calculated on the values 1, . . . , n (stored in z). The results
are clear and interpretable by simply printing the matrix:� �

1 > RES

2 1 2 3 4

3 10 0.000 0.054 0.053 0.061

4 100 0.000 0.054 0.056 0.054

5 1000 0.007 0.054 0.054 0.054

6 10000 0.000 0.063 0.054 0.053

7 1e+05 0.000 0.085 0.057 0.056

8 1e+06 0.062 0.128 0.084 0.084

9 1e+07 0.104 0.671 0.328 0.309

10 1e+08 1.006 2.920 2.937 2.889� �
So, whatever the size of the data the sequential version is always the fastest
one. We note also that using three or four cores are faster than using two
only for the largest data sizes (n ≥ 104). The same experiment was done on a
computer with a 48-core CPU, this time mc varied between 1 and 36 (and the
result matrix is transposed to make it easier to read):� �

1 > t(RES)

2 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08

3 1 0.000 0.000 0.000 0.001 0.000 0.007 0.105 0.681

4 2 0.003 0.003 0.004 0.005 0.006 0.027 0.303 2.198

5 3 0.005 0.004 0.005 0.005 0.006 0.024 0.220 1.951

6 4 0.006 0.007 0.005 0.006 0.006 0.024 0.225 1.918

7 5 0.007 0.006 0.008 0.008 0.007 0.023 0.184 1.937

8 6 0.006 0.009 0.008 0.007 0.008 0.028 0.205 1.955

9 7 0.007 0.008 0.010 0.007 0.010 0.024 0.183 1.860

10 8 0.009 0.011 0.009 0.011 0.010 0.027 0.211 1.918

11 9 0.010 0.009 0.010 0.012 0.011 0.029 0.178 1.860

12 10 0.012 0.010 0.011 0.012 0.013 0.029 0.199 1.860

13 11 0.013 0.010 0.015 0.010 0.012 0.029 0.202 1.897

14 12 0.011 0.012 0.016 0.012 0.013 0.031 0.178 1.956

15 13 0.011 0.017 0.014 0.013 0.017 0.030 0.212 1.943

16 14 0.010 0.016 0.016 0.015 0.016 0.033 0.183 2.100

17 15 0.010 0.015 0.018 0.015 0.021 0.033 0.223 1.985

18 16 0.012 0.018 0.018 0.017 0.019 0.034 0.195 1.981

19 17 0.011 0.018 0.019 0.019 0.017 0.035 0.218 2.008

20 18 0.012 0.017 0.021 0.018 0.022 0.036 0.190 2.009

21 19 0.011 0.020 0.024 0.019 0.023 0.040 0.224 1.983

22 20 0.013 0.021 0.025 0.021 0.024 0.048 0.189 2.029

23 21 0.011 0.022 0.025 0.023 0.027 0.040 0.230 1.998

126

24 22 0.011 0.021 0.023 0.023 0.025 0.039 0.203 2.078

25 23 0.014 0.021 0.023 0.022 0.027 0.040 0.226 2.112

26 24 0.012 0.025 0.024 0.027 0.027 0.041 0.207 2.001

27 25 0.012 0.025 0.025 0.026 0.025 0.043 0.233 1.993

28 26 0.011 0.027 0.026 0.025 0.029 0.043 0.200 2.037

29 27 0.011 0.026 0.027 0.028 0.029 0.044 0.233 2.011

30 28 0.012 0.028 0.027 0.027 0.030 0.046 0.208 2.103

31 29 0.013 0.028 0.029 0.034 0.032 0.052 0.238 2.079

32 30 0.012 0.029 0.031 0.030 0.034 0.069 0.211 2.119

33 31 0.009 0.030 0.032 0.032 0.033 0.059 0.239 2.157

34 32 0.011 0.031 0.034 0.032 0.037 0.057 0.207 2.119

35 33 0.012 0.034 0.035 0.034 0.038 0.050 0.239 2.184

36 34 0.011 0.035 0.035 0.036 0.037 0.052 0.214 2.167

37 35 0.010 0.036 0.036 0.045 0.038 0.052 0.242 2.268

38 36 0.010 0.045 0.037 0.037 0.039 0.055 0.219 2.236� �
The results are very similar to the previous one; we note that increasing the
value of mc is beneficial only to a limited extent.

We now turn to a more complicated and slower operation: converting ran-
dom dates (stored in a vector of mode character) into the class “POSIXct”
(see Sect. 5.3). The data z are generated with:� �

1 n <- N[i1]

2 z <- sprintf("%04d-%02d-%02d", as.integer(2000 + rnorm(n)),

3 as.integer(runif(n, 1, 12)), as.integer(runif(n, 1, 28)))� �
And the functions f and g are now:� �

1 f <- function()

2 system.time(b <- pvec(z, as.POSIXct, format = "%Y-%m-%d",

3 mc.cores = mc))[3]

4 g <- function()

5 system.time(a <- as.POSIXct(z, format = "%Y-%m-%d"))[3]� �
The simulations are run with the same code than above and the results are:� �

1 > RES

2 1 2 3 4

3 10 0.000 0.061 0.068 0.065

4 100 0.001 0.060 0.059 0.061

5 1000 0.004 0.062 0.062 0.061

6 10000 0.033 0.077 0.077 0.078

7 1e+05 0.317 0.248 0.246 0.262

8 1e+06 3.207 1.834 1.868 1.857

9 1e+07 32.965 19.889 20.317 20.176

10 1e+08 327.924 206.488 202.779 199.538� �
127

Now a gain of the parallel versions is visible but only if n ≥ 105. Furthermore,
there is no noticeable difference with respect to the number of cores for mc ≥ 2.

9.3 General Rules

The examples from the previous section make possible to formulate a few
general rules about parallel computing.

Rule #1. Parallel computing is not generic. Some recent publications in
the scientific or technical literature mention parallelisation as a generic (if not
“miracle”) solution to solve many limitations encountered in computational
problems. This is an over-optimistic opinion which is poorly supported by
observations.

Rule #2. Parallel computing depends heavily on the hardware. This seems
obvious, but depending on the architecture, not every parallel code could run
on a given machine.

Rule #3. Parallel computing depends (also) on the software, particularly
the OS. What is possible or not on a computer, especially the access to its
hardware, is controlled by the OS. In many machines, the resources (e.g.,
cores) may be used by other processes (e.g., internet connections), so that not
all cores may be available to run tasks in parallel. Besides, the OS may have to
run a thread at a given time, and so interrupt temporarily some computations
(which have lower priority for the system).

Rule #4. If the elementary operations are fast, parallelising may not be
worthwhile. This is clearly illustrated with the above examples.

Rule #5. The more communications among the parallel tasks, the more un-
likely parallelisation to be beneficial. Bootstrap is the typical good candidate
for parallel computing because several consecutive operations (resampling, es-
timation) have to be repeated independently. On the other hand, Markov
Chain Monte Carlo (MCMC) have to be updated at each step, so even though
the calculations within a given step could be parallelised, the overall proce-
dure must communicate at each iteration. (Of course, independent MCMC
chains can be run in parallel.) The same remark can be done for optimisation
problems.

Rule #6. Many computing tasks are parallelisable, but many are not. Non-
linear models, iterative and recursive functions, etc., can be run in parallel but
at a greater cost than the sequential approach.

Rule #7. Be careful with the vocabulary. Multithreading is a common
term in the literature, but multithreading does not imply necessarily parallel
computing. A thread is a basic task run by a computer, so that a given
application may be made of a single or several threads. A modern computer
runs several dozens of threads (e.g., see the commands ps -aux and top under
Linux). R is single-threaded.4

4For instance, the system command ps -aux | wc -l executed on my laptop prints 233,
and top says there are 231 tasks open. Clearly, not all threads can run in parallel since my

128

Rule #8. Beware of code which is already parallel. Of course, multicore
machines are very common, so we can expect many code to be already par-
allelised. Trying to run such code (see Sect. 9.5 below) with a higher level
parallelisation may lead to unexpected problems.

Rule #9. Avoid using parallel code when running R in a GUI environment.
Many GUIs are multi-threaded so running parallel computing on top of them
is likely to result in problems.

9.4 The Package parallel

parallel belongs to the list of R recommended packages, so it is delivered on
most installations of R. We see briefly here a few functions from this package,
pointing to the options that are common among them.

The function mcparallel has the following arguments:� �
1 > args(mcparallel)

2 function (expr, name, mc.set.seed = TRUE, silent = FALSE,

3 mc.affinity = NULL, mc.interactive = FALSE, detached = FALSE)� �
This function runs the R command specified as an expression (the first ar-
gument) in parallel to the current session, so the user can continue to work
with R while the computations are done on another CPU. The results are then
collected with the function mccollect.

We have already used the function pvec in the previous section; its argu-
ments are:� �

1 > args(pvec)

2 function (v, FUN, ..., mc.set.seed = TRUE, mc.silent = FALSE,

3 mc.cores = getOption("mc.cores", 2L), mc.cleanup = TRUE)� �
Compared to mcparallel, this one has the option mc.cores which specifies
how many cores (CPUs) to use.

The function mclapply is a parallel version of lapply� �
1 > args(mclapply)

2 function(X, FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE,

3 mc.silent = FALSE, mc.cores = getOption("mc.cores", 2L),

4 mc.cleanup = TRUE, mc.allow.recursive = TRUE,

5 affinity.list = NULL)� �
Both functions work in the same way so their three first arguments are the
same. Like pvec(), it has the option mc.cores.

laptop has four cores.

129

9.5 C-Level Parallelisations

An alternative to parallelising R code is to perform this at the C level. If this
strategy is adopted, parallelisation of the R code must be avoided. We take the
same simple example of a sum because we already considered it above—keeping
in mind that we are very unlikely to obtain faster code but the simplicity of
the problem makes easier to focus on relevant features.

OpenMP is one framework to program C functions to run in parallel. This
can be used in C code called from R with a few additional instructions. We
apply it below with two functions called with .C and .Call, respectively. The
contents of the file ‘sum openMP.c’ is:

1 #include <R.h>

2 #include <Rinternals.h>

3 #include <omp.h>

4

5 void sum_omp_C(double *x, int *n, double *S)

6 {

7 int K = 4, i, j;

8 omp_set_num_threads(K);

9 double count[K];

10

11 memset(count, 0, K * sizeof(double));

12 /* for (j = 0; j < K; j++) count[j] = 0; */

13

14 #pragma omp parallel for

15 for (i = 0; i < *n; i++)

16 count[omp_get_thread_num()] += x[i];

17

18 for (j = 0; j < K; j++) S[0] += count[j];

19 }

20

21 SEXP sum_omp_Call(SEXP x)

22 {

23 long i, n;

24 int K = 4, j;

25 omp_set_num_threads(K);

26 double count[K], *p, *s;

27 SEXP res;

28

29 PROTECT(x = coerceVector(x, REALSXP));

30

31 memset(count, 0, K * sizeof(double));

32 n = (long) XLENGTH(x);

33 p = REAL(x);

130

34

35 #pragma omp parallel for

36 for (i = 0; i < n; i++)

37 count[omp_get_thread_num()] += p[i];

38

39 PROTECT(res = allocVector(REALSXP, 1));

40 s = REAL(res);

41 s[0] = 0;

42 for (j = 0; j < K; j++) s[0] += count[j];

43 UNPROTECT(2);

44 return res;

45 }

First, the header file ‘omp.h’ is included to permit using the parallel functions.
The number of cores used (K) is fixed and can be changed which would re-
quire to recompile the C code. The number of parallel threads is defined with
omp set num threads(K);, and an array is declared to store the individual
sums computed in each thread (lines 9 and 26). The for loop is declared to
run in parallel with the statement #pragma omp parallel for. Note how the
index of count is defined (lines 16 and 37). Finally, the individual sums are
added together before returning the final result.

By contrast to the procedure explained on page 108, the compilation is
done in two steps:

1 $ R CMD COMPILE sum_openMP.c CFLAGS=-fopenmp

2 $ R CMD SHLIB sum_openMP.o

We can now test this new code with the usual commands:� �
1 > n <- 1e8L

2 > x <- rnorm(n)

3 > s <- 0

4 > system.time(A <- .C("sum_omp_C", x, n, s)[[3]])

5 user system elapsed

6 1.918 0.170 0.931

7 > system.time(B <- .Call("sum_omp_Call", x))

8 user system elapsed

9 0.676 0.003 0.214

10 > system.time(C <- sum(x))

11 user system elapsed

12 0.106 0.000 0.107

13 > A; B; C

14 [1] -6716.085

15 [1] -6716.085

16 [1] -6716.085

17 > A - B

131

18 [1] 0

19 > A - C

20 [1] -1.100489e-10

21 > B - C

22 [1] -1.100489e-10� �
As expected, the parallel versions are slower than the sequential one.

9.6 Running R on Clusters and Supercomputers

Supercomputers follow the general architecture depicted on Figure 9.1C). Most
supercomputers run SLURM (Simple Linux Utility for Resource Management)
which is a software to manage the distribution of computing tasks among the
resources of the machine. This makes running parallel R sessions relatively
easy since SLURM will manage how to distribute the computations among
the hardware resources. A simple SLURM script is:5� �

1 #SBATCH --cpus-per-task=1 # Number of cores per MPI rank

2 #SBATCH --nodes=100 # Number of nodes

3 #SBATCH --ntasks=100 # Number of MPI ranks

4 #SBATCH --ntasks-per-node=1 # How many tasks on each node

5 #SBATCH --ntasks-per-socket=1 # How many tasks on each socket

6

7 srun --mpi=pmi2 ~/R/bin/Rscript ~/script.R� �
This will run the code in ‘script.R’ on 100 nodes.6 The details will depend on
the local configurations. The last line specifies that the files with the executable
(here ‘Rscript’) and the R code are located in the HOME directory of the user
(specified with ~/). It is indeed the practice that users on supercomputers
have access to only some directories. Thus, the results of each of the 100 tasks
will very likely need to be written in a file in the same directory. The safest
way to do this is to name these files randomly. For instance, the file ‘script.R’
may include commands like:� �

1 prefix <- sample(c(LETTERS, letters, 0:9), size = 20)

2 suffix <- "out"

3 outfile <- paste(prefix, suffix, sep = ".")� �
Different files can be opened with the same prefix, so the user will know that
they come from the same node.

This trick, with a few additional steps, can be used to synchronise the
different nodes. The difficulty we have here is that the tasks are run fully

5The first number sign # is part of the command #SBATCH, but the second one on the
same line starts a comment.

6There are other useful commands, such as asking SLURM to send an email to a specified
address once the submitted job is completed or stopped.

132

independently on the different nodes and there is no way for one task to know
what the others are doing. Because there is no synchronisation among these
tasks, they cannot write data in the same file;7 however, they can write in
different files and each task can query the files which have been written.8

A solution is that each task writes a file with the name identical to the value
given to prefix, eventually associated with another set of characters (as prefix
and/or suffix) so that these files can be easily identified:� �

1 Nnodes <- 100

2 file.create(paste0("THEPREFIX_", prefix))

3 repeat {

4 prefix.files <- dir(pattern = "$THEPREFIX_")

5 if (length(prefix.files) == Nnodes) break

6 Sys.sleep(1)

7 }� �
We note the Sys.sleep(1) command which leaves one second between two
successive dir() queries, in case there is a delay in starting some of the tasks.9

We then include the following commands in the script:� �
1 prefix.files <- sort(prefix.files)

2 PREFIX <- gsub("$THEPREFIX_", "", prefix.files)

3 task.index <- which(PREFIX == prefix)� �
Now each task is identified by an integer task.index between 1 and Nnodes

(remember each task is run on a different node) and it is possible to ask each
node to analyse different data. For instance, suppose we have 100 data files,
one way to proceed is to list them in a file ‘DATAFILES.txt’ (of course before
launching the script), and the script will include the followings:� �

1 DATAFILES <- scan("DATAFILES.txt", what = "", sep = "\n")

2 datafile <- DATAFILES[task.index]� �
The output of the analysis can be written in files individually identified with
prefix.

9.7 Exercises

1. Write down a list of the data analysis methods that you use commonly
(e.g., correlation, ANOVA, PCA, and so on; see Exercises in Chap. 7).
Try to write down whether these methods can be parallelised, and if yes
sketch the approach which seems appropriate to you.

7Actually, they can write in the same file but the results will be unpredictable and very
likely useless.

8The commands that follow can be adjusted with respect to the directories where the
files are written, for instance, $WORK/ or $SCRATCH/.

9It is possible to check the current work load of the supercomputer before launching the
script.

133

2. A colleague is performing a data analysis running in parallel on his/her
computer while listening to a podcast and checking emails. What advice
would you give to them?

3. Try to implement a parallel version of the sum of a vector with mclapply().
Compare the performance with sum(). Were the results predictable?

4. Do you think a parallel version of the factorial is a good idea?

5. Which model depicted on Fig. 9.1 seems the most appropriate to run a
bootstrap in parallel? Same question for Monte Carlo simulations?

6. You need to analyse many data sets with the same method. Do you
think this is a good idea to run them in parallel?

7. What is the probability that two files have the same name with the pro-
cedure explained in the previous section? What is the required condition
to be sure that this does not happen? What if we had added the option
replace = TRUE in the call to sample()?

134

A

Binary Coding of Numbers

Numbers are coded in computers with sequences of bits. For integers, the
logic is simple because there is a one-to-one matching between a sequence of
bits and the numbers (Table A.1). The limits of the representation are given
by the number of bits and whether one of them is used to code for the sign.
Table A.2 gives the smallest and largest values for the main integer types listed
in Table 8.1. Figure A.1 gives a graphical representation of their ranges. The
largest value is calculated with ω = 2n−s−1 where n is the number of bits and
s = 1 if the type is signed, s = 0 if unsigned. The smallest value is calculated
with α = −ω − 1 = −2n−s if signed, α = 0 if unsigned.

For real numbers, things are more complicated because of the combination
of two sets of bits (the fraction and the exponent; Table A.3). Besides, these
data types can represent normalized and denormal (or subnormal) numbers.
For instance, for 64-bit numbers (i.e., the standard numerical data in R) the
smallest resolution is 2−52 ≈ 2.22 × 10−16 (see Fig. B.1); however, smaller
numbers can be represented:� �

1 > 1e-300 > 0 # a denormal number

2 [1] TRUE

3 > 1e-400 > 0 # not representable

4 [1] FALSE� �
But once added to a larger number, such a subnormal number “vanishes”:� �

1 > 1 + 1e-300 > 1

2 [1] FALSE� �

135

− 1019 − 5 × 1018 0 5 × 1018 1019 1.5 × 1019

A

8−bit

16−bit

32−bit

64−bit

− 1020 − 1018 − 1016 − 1014 − 1012 − 1010 − 108 − 106 − 104 − 102 0 102 104 106 108 1010 1012 1014 1016 1018 1020

B

8−bit

16−bit

32−bit

64−bit

Fig. A.1. Ranges of integer types. (A) linear scale (B) “double logarithmic”
scale defined with sign(x)× log10|x| for x ̸= 0, 0 for x = 0. The signed versions
are in the darker colours.

Table A.1. A hypothetical 4-bit integer coding scheme.

Binary Hexadecimal Signed Unsigned

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 −1 8
1001 9 −2 9
1010 a −3 10
1011 b −4 11
1100 c −5 12
1101 d −6 13
1110 e −7 14
1111 f −8 15

136

Table A.2. Main integer data types showing the smallest and largest possible
values. n: number of bits

Bytes n signed Smallest Largest

1 8 yes −128 127
no 0 255

2 16 yes −32 768 32 767
no 0 65 535

4 32 yes −2 147 483 648 2 147 483 647
no 0 4 294 967 295

8 64 yes −263 263 − 1a

no 0 264 − 1b

a263 − 1 = 9 223 372 036 854 775 807 ≈ 9.2× 1018.
b264 − 1 = 18 446 744 073 709 551 615 ≈ 1.8× 1019.

Table A.3. Main real data types. n: number of bits (fraction+exponent).
All values are approximate.

Bytes n Smallest difference Smallest number Largest
from onea larger than zero number

2 16 (11+5) 9.8× 10−4 6.1× 10−5 6.5× 105

4 32 (24+8) 1.2× 10−7 1.2× 10−38 1038

8 64 (53+11) 2.2× 10−16 2.2× 10−308 10308

10 80 (64+15) 1.9× 10−18 10−4951 104932

16 128 (113+15) 1.9× 10−34 10−4932 104932

32 256 (237+19) 9.1× 10−72 10−78912 1078 912

aThis column gives the smallest number i so that: 1 + i > 1 returns TRUE.

137

B

Computing More Precise Sums

Figure B.1 shows the representable numbers for a 64-bit floating point data
type (Fig. B.2 shows all these intervals on linear and logarithmic scales). Be-
cause this data type uses 53 bits for the fraction, all numbers between 252 and
253 are exactly represented with a resolution of 1. For the numbers between
251 and 252 the resolution is 1

2
, for those between 250 and 251 the resolution

is 1
4
, and so on. Furthermore, for the numbers between 253 and 254 the reso-

lution is 2, for those between 254 and 255 the resolution is 4, and so on. By
iteration, we can find that between 20 and 21 (i.e., 1 and 2) the resolution is
1/252 = 2−52 ≈ 2.2× 10−16.

Consequently, the representable numbers between 1 and 2 can be written
exactly with powers of 2 added to one:

1 1 + 2−52 1 + 2(2−52) 1 + 3(2−52) . . . 2

This has two important consequences. The first one is that numbers such as
1 + ϵ cannot be represented if ϵ < 2−52: this is quite obvious and follows from
the size of the resolution within this interval. The second consequence is that
1 + ϵ cannot be represented if ϵ is not a power of 2: this is precisely the case
of ϵ = 0.2 but also many others (0.3, 0.7, etc).1

To see more clearly the mechanism behind this, consider the interval from
252 to 253 and let us write ξ = 252. This number is obtained by multiplying 2
by itself fifty-one times, so it is obviously an even integer:

ξ = 4503 599 627 370 496.

ξ is exactly representable as a 64-bit floating point number. The next repre-
sentable number is ξ + 1 which is also an integer, implying that all numbers

1Suppose there exists an integer n so that 1+n(2−52) = 1.2. Then, we find n = 0.2×252 =
252

5 . However, since the numerator of this fraction is a product of 2’s, it can be divided only
by powers of the same number (2, 4, 8, 16, . . .). Therefore n does not exist as an integer.

138

1 2

2 4

251 252

252 253

2−52

2−51

0.5

1

2−52

2−51

0.5

1

1.7

Fig. B.1. Resolution of 64-bit floating-point numbers on different intervals.

between ξ and ξ + 1 are not representable. So when one of these are encoun-
tered during a calculation (e.g., ξ + 0.1), the result will be the closest number
between ξ or ξ + 1:� �

1 > 2^52 == 2^52 + 0.1

2 [1] TRUE� �
And for ξ + 0.5, this is done to the lowest number:� �

1 > 2^52 == 2^52 + 0.5

2 [1] TRUE� �
The same reasoning can be applied to the interval from 1 to 2 (and of

course all the other intervals) except that this time the resolution is 2−52.
This process is likely to affect the computation of sums depending on the

order of the data. We can assess this by writing two C functions like these:

1 #include <R.h>

2

3 void f(double *x, int *n, double *s)

4 {

5 double S = 0;

6 for (int i = 0; i < *n; i++) S += x[i];

7 *s = S;

8 }

9

10 void fl(double *x, int *n, double *s)

11 {

12 long double S = 0;

13 for (int i = 0; i < *n; i++) S += x[i];

139

14 *s = (double) S;

15 }

The second version of the summation function (fl) has its sum declared as
a 128-bit floating point real number (long double) which is converted into a
64-bit number (double) before returning it. The two R functions are almost
identical, only the name of C function being different:� �

1 f <- function(x)

2 {

3 n <- length(x)

4 s <- 0

5 .C("f", x, n, s)[[3]]

6 }

7

8 fl <- function(x)

9 {

10 n <- length(x)

11 s <- 0

12 .C("fl", x, n, s)[[3]]

13 }� �
We can now compare the precision of both versions and also with R’s sum().
We generate a vector of random values drawn from the standard normal dis-
tribution, reorder them randomly, and compute their sum with these three
methods. This is repeated 100 times, all sums are calculated (temporally
stored in S1, S2, and S3), and their respective standard-deviation is stored
in a matrix (RES). To simplify the comparisons, these standard-deviations are
log-transformed: if the sums are not affected by the order of the values, then
the SD will be zero and log(SD) = −∞. The size of the vector varies between
10, 100, . . . , 107.� �

1 > RES <- matrix(NA, 7, 3)

2 > N <- 100

3 > for (i in 1:7) {

4 + n <- 10^i

5 + x <- rnorm(n)

6 + S1 <- replicate(N, sum(sample(x)))

7 + S2 <- replicate(N, f(sample(x)))

8 + S3 <- replicate(N, fl(sample(x)))

9 + RES[i, 1] <- log10(sd(S1))

10 + RES[i, 2] <- log10(sd(S2))

11 + RES[i, 3] <- log10(sd(S3))

12 + }

13 > RES

14 [,1] [,2] [,3]

140

15 [1,] -Inf -15.611787 -Inf

16 [2,] -Inf -14.505427 -Inf

17 [3,] -Inf -13.589172 -Inf

18 [4,] -Inf -12.598789 -Inf

19 [5,] -Inf -11.706848 -Inf

20 [6,] -Inf -10.719911 -14.24314

21 [7,] -12.81935 -9.568902 -12.88850� �
Interestingly, even with only ten values, their order will affect the sum if it
is computed with a 64-bit floating point real. R’s sum actually uses an 80-bit
floating point real to store a sum (an “accumulator”), while our version with
128-bit floating point real is as precise.

Using information from Table A.3, we can find that for a 128-bit number
the resolution between 10112 and 10113 is one, between 10111 and 10112 it is 1

2
,

between 10110 and 10111 it is 1
4
, and so on. So, between 252 and 253 the resolution

is 2−60 ≈ 8.7× 10−19. There are therefore 260 − 1 (≈ 1.2× 1018) representable
numbers in this interval—whereas there is none for 64-bit numbers.

141

0

10

20

30

40

50

0 1015 2 × 1015 3 × 1015 4 × 1015 5 × 1015 6 × 1015 7 × 1015 8 × 1015 9 × 1015

A

0

10

20

30

40

50

1 103 106 109 1012 1015

B

Fig. B.2. The 53 intervals represented on Fig. B.1 on (A) linear scale, and
(B) log-scale.

142

References

[1] Chambers J. M. 2008. Software for Data Analysis: Programming with R.
Springer, New York.

[2] Ihaka R. & Gentleman R. 1996. R: a language for data analysis and
graphics. Journal of Computational and Graphical Statistics 5: 299–314.

[3] Paradis E. 2022. Probabilistic unsupervised classification for large-scale
analysis of spectral imaging data. International Journal of Applied Earth
Observations and Geoinformation 107: 102675.

143

Index

Symbols
.C, 109, 111, 122
.Call, 115, 118, 122
.External, 118
<-, 20
<<-, 28, 29, 32, 83
==, 52
[, 16, 97, 100
[[, 16, 60
#include, 101
$, 17, 60, 114
&, 49
~, 68

A
adist, 55, 63
allocVector, 112
anova, 47
argument, 23
arity, 47
array, 12, 104
as, 40
as.Date, 69, 71, 74
as.integer, 75
as.numeric, 73
ASCII, 50
assign, 21, 28
attribute, 35
attributes, 8, 12, 17
attributes, 73

B
browser, 84

C
cat, 22, 57, 83
choose, 33
class, 35, 88

contains, 40

D
D, 65
data frame, 14
data.frame, 14
debug, 81
debug(), 83
debugger, 86
default method, 24
deparse, 68
diff, 120
dim, 12
dir, 133
dist, 81
do.call, 27
dyn.load, 108

E
eigen, 92
Encoding, 52
encoding, 50
eval, 65
evaluation, 67
exists, 25
expression, 64

F
factor, 8, 12
factorial, 30
factorial, 31
format, 71

G
generic function, 24
get, 20, 21, 28, 82
getAnywhere, 82
global environment, 22, 23

144

Gregorian calendar, 72
grep, 52, 53, 55–57, 62
gsub, 54

H
hclust, 82
help.start, 100
hist, 23, 24

I
iconv, 51
iconvlist, 51
identical, 13
interactive session, 3
is.list, 15
is.loaded, 108
is.na, 47
is.null, 25
is.numeric, 47
is.R6, 42
ISO-8859-1, 50

L
lapply, 129
Latin-1, 50
LENGTH, 117, 118
length, 8, 13, 48, 88
Levenshtein distance, 55
lfactorial, 31
likelihood function, 31
lm, 47, 69
ls, 25, 37

M
match, 63
matrix, 12
max, 46
mccollect, 129
mclapply, 129
mcparallel, 129
mean, 46
median, 46
memset, 112, 118
methods, 41, 97
min, 46
missing, 24, 25

mkChar, 115
mode, 7
mode, 7, 14, 15, 69, 88

N
na.omit, 47
names, 14
nchar, 51, 115
new, 37, 42
new.env, 21

O
on.exit, 28
OpenMP, 130

P
parse, 65, 68
plot, 35
pnorm(), 62
pointer, 104
POSIX, 72
print, 35, 36, 83
printf, 101, 103
proc.time, 89
prod, 13, 46
pvec, 125, 129

Q
quantile, 46
quote, 67

R
R6Class, 40
R alloc, 106
range, 46
read.table, 44, 51, 94
recover, 86
regexpr, 57
return, 27, 28, 114
rm, 22
rnorm, 108
row.names, 14
Rprof, 90, 94
Rprofmem, 94
runif, 63

145

S
S4, 36
sample, 63
scan, 44, 51
search, 22
search path, 22
SET STRING ELT, 115
SET VECTOR ELT, 114
setClass, 37, 38, 40
setGeneric, 40
setMethod, 40
setValidity, 38
SEXP, 111
sink, 120
slot, 37
source, 3
sprintf, 83
storage.mode, 75
str, 69
strcmp, 115
STRING ELT, 115
strlen, 115
strsplit, 54, 63
substitute, 67
substr, 63
sum, 46, 48, 49
summary, 35
summaryRprof, 91
superassignment, 29
symbol, 17, 20
Sys.sleep, 133
Sys.time, 72
system.time, 88, 89

T
table, 48
tabulate, 48
text, 66
traceback, 86
TYPEOF, 118

U
undebug, 82
UNIX, 101
UNPROTECT, 114

unzip, 32
user-interface, 3
UTF-8, 51

V
var, 46
variable, 7
VECTOR ELT, 114

W
which, 48, 49
which.min, 63
workspace, 23

X
XLENGTH, 117

146

	Preface
	Introduction
	Data Analysis, Open Source Software, and R
	What Is (and What Is Not) in This Book
	User Interfaces
	Conventions

	Data Structures in R
	General Considerations
	Modes
	Data Modes
	Other Modes
	NULL

	Data Structures
	The Five Main Data Structures in R
	Attributes

	Exercises

	Programming R Functions
	Environments
	Arguments
	Matching Arguments in Function Calls
	Missing and NULL Arguments
	The `…' Argument

	Return Value
	Implicit and Explicit Returns
	Assignment and Superassignment

	Recursive Functions
	Classes and Generic Functions
	S3
	S4
	R6

	Exercises

	Data Manipulation
	Missing Data
	Missing Values in Data Files
	NA vs. NaN
	Missing Data in Data Analyses

	Logical Vectors
	Character Strings and Text
	Encodings
	Regular Expressions
	Approximate String Distance
	Building Strings in R vs. in Files

	Indexing
	Recoding Data With Indexing

	Exercises

	Special Topics
	Expressions
	Formulas
	Dates and Times
	Numerical Precision
	Exercises

	Debugging
	Strategies to Avoid Errors
	Interactive Execution of Functions
	Using Standard Tools
	Catching Errors
	Exercises

	Performance Optimisation
	Background
	Rprof
	Memory Usage
	Some Tricks to Write Efficient R Code
	Avoid Simple for Loops
	Prefer Numerical Indexing to Indexing with Names
	Unclass Objects

	Exercises

	R–C Interfaces
	Why Use C With R
	Standard R Vector Operations Cannot Be Used
	A C Program Already Exists

	Basics on C
	Data Types in C
	Memory and Pointers
	Numerical Operators in C

	A Second Look at Data Structures in R
	.C
	.Call
	Vectors
	Lists
	Character Vectors
	Long Vectors
	Missing and Special Values

	.External
	Profiling C Code
	Exercises

	Parallel and High Performance Computing
	A Basic Example
	Two Contrasting Examples With pvec
	General Rules
	The Package parallel
	C-Level Parallelisations
	Running R on Clusters and Supercomputers
	Exercises

	Binary Coding of Numbers
	Computing More Precise Sums
	References
	Index

