
HAL Id: ird-03761838
https://ird.hal.science/ird-03761838

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The 21st August 2020 Flood in Douala (Cameroon): A
Major Urban Flood Investigated with 2D HEC-RAS

Modeling
Junior Yves-Audrey Iroume, Raphaël Onguéné, Francis Djanna Koffi, Antoine
Colmet-Daage, Thomas Stieglitz, Willy Essoh Sone, Sakaros Bogning, Joseph

Magloire Olinga Olinga, Romaric Ntchantcho, Jean-Claude Ntonga, et al.

To cite this version:
Junior Yves-Audrey Iroume, Raphaël Onguéné, Francis Djanna Koffi, Antoine Colmet-Daage, Thomas
Stieglitz, et al.. The 21st August 2020 Flood in Douala (Cameroon): A Major Urban Flood Investi-
gated with 2D HEC-RAS Modeling. Water, 2022, 14, �10.3390/w14111768�. �ird-03761838�

https://ird.hal.science/ird-03761838
https://hal.archives-ouvertes.fr


Citation: Iroume, J.Y.-A.; Onguéné,

R.; Djanna Koffi, F.; Colmet-Daage,

A.; Stieglitz, T.; Essoh Sone, W.;

Bogning, S.; Olinga Olinga, J.M.;

Ntchantcho, R.; Ntonga, J.-C.; et al.

The 21st August 2020 Flood in

Douala (Cameroon): A Major Urban

Flood Investigated with 2D

HEC-RAS Modeling. Water 2022, 14,

1768. https://doi.org/10.3390/

w14111768

Academic Editor: Renato Morbidelli

Received: 13 April 2022

Accepted: 20 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

The 21st August 2020 Flood in Douala (Cameroon): A Major
Urban Flood Investigated with 2D HEC-RAS Modeling
Junior Yves-Audrey Iroume 1,2,3,* , Raphaël Onguéné 1,3, Francis Djanna Koffi 1, Antoine Colmet-Daage 4,
Thomas Stieglitz 5 , Willy Essoh Sone 6, Sakaros Bogning 2,3 , Joseph Magloire Olinga Olinga 7,
Romaric Ntchantcho 2, Jean-Claude Ntonga 2, Jean-Jacques Braun 3,8, Jean-Pierre Briquet 9 and Jacques Etame 1

1 Technology and Applied Science Laboratory, University Institute of Technology, University of Douala,
Douala P.O. Box 8698, Cameroon; ziongra@yahoo.fr (R.O.); djannaj@gmail.com (F.D.K.);
etame.jacques@yahoo.fr (J.E.)

2 Institute of Geological and Mining Research, Vogt Street, Yaoundé P.O. Box 4110, Cameroon;
sakarosb@gmail.com (S.B.); ntchantcho@yahoo.fr (R.N.); ntonga_jc@yahoo.fr (J.-C.N.)

3 Laboratoire Mixte International—Dynamique des Ecosystèmes Continentaux d’Afrique
Centrale (LMI-DYCOFAC), Institut de Recherche pour le Développement, Yaoundé P.O. Box 1857, Cameroon;
jbraun1@gmail.com

4 Philia Ingenierie, 193 Avenue Jean Rieux, 31500 Toulouse, France; antoine.colmet-daage@philia-ingenierie.fr
5 Aix-Marseille Université, CNRS, IRD, INRAE, Coll France, CEREGE, 13100 Aix-en-Provence, France;

stieglitz@cerege.fr
6 Ecosystems and Fishery Resources Laboratory, Institute of Fisheries and Aquatic Sciences,

University of Douala, Douala P.O. Box 2701, Cameroon; pharellwilly2@yahoo.fr
7 Douala Urban Council (DUC), Douala P.O. Box 1857, Cameroon; joseph_olinga87@yahoo.fr
8 Géosciences et Environnement, Toulouse (Université de Toulouse, CNRS, IRD), 14 Avenue Edouard Berlin,

31400 Toulouse, France
9 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 300 Av. Pr E. Jeanbrau,

34090 Montpellier, France; jean-pierre.bricquet@ird.fr
* Correspondence: iroumejunior21@outlook.fr; Tel.: +237-695-71-71-98

Abstract: A major flood event occurred on 21 August 2020 in the densely populated Makèpè Missokè
neighborhood in the city of Douala (Cameroon, Africa). Nearly 2210 buildings and 12,376 victims
spread over 82 hectares were affected. A 2D HEC-RAS model is applied to simulate and characterize
this event. A cross analysis of flood depth and flow velocity is used to classify the flood risk and
identify areas exposed from low to high hazard. The simulations provide detailed information on the
flood characteristics (extent, depth, velocity, arrival time, and duration). The simulated maximum
water surface profiles are consistent with the floods marks with differences ranging from 0.02 m to
0.44 m, indicating a good agreement between the observed and simulated water levels at the peak
flow (NSE = 0.94, Erel = 0.92, RMSE = 0.21 m). The maximum inundation level is 4.48 m and the flow
velocity is globally low at less than 1 m/s. The average flood arrival time and duration are 5 h and
26 h, respectively, for a threshold height of 0.5 m. These results indicate a fast mobilization of the
major river channel for the evacuation of this flood. The level of accuracy of the developed model of
the 21 August 2020 flood event is appropriate for flood hazard assessment in the city of Douala and
is designed to find operational application in future events.

Keywords: flood hazard assessment; HEC-RAS; hydraulic modeling; Tongo Bassa watershed;
urban floods

1. Introduction

Many studies suggest that climate change may result in more frequent and intense
floods hazards [1–3]. Tropical fast-growing cities in developing countries are expected to
be the most affected [4–7]. The city of Douala in Cameroon (Central Africa) is a coastal
megacity (with more than 4 million inhabitants) that is regularly affected by floods [8–19].
An increase in the frequency and magnitude of flooding in the city has been observed
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between 1980 and 2018 [19], despite a decrease in overall rainfall [15,20]. The floods'
impact is exacerbated by insufficient and inadequate urban planning strategies, which
favor urban sprawl [12,21–24]. The consequences are disastrous: more than 100 deaths
between 2000 and 2010 [17,18,25], significant material damages [17], and economic losses
not yet evaluated. Moreover, the absence of flood risk memory and conservation of flood
markers [26,27] means that flooded areas are rebuilt in the aftermath of disasters, remaining
vulnerable to future events [28]. In addition, floods often occur at night or early in the
morning due to the high frequency of intense nightly rainfall, sometimes surprising the
inhabitants in their beds [29]. This situation increases the vulnerability to floods of the
residents and limits the deployment of emergency services.

The authorities’ strategies to respond to these flooding events in the city of Douala
are reactive than proactive [10–12,15,22,25,30–33]. They are generally based on ad hoc
operations improvised in the aftermath of disasters without prior operational planning.
More recently, attempts have been made to reduce flood consequences by rehabilitating
gutters, cleaning main drains, and restoring the watercourses in their major bed by clearing
and demolishing the constructions that are built there prior to periods of expected flood
events [31]. These management strategies have shown limited results when comparing
the financial resources deployed and the observed flood reduction [22,30–33]. Today,
Cameroon’s adherence to the Hyogo (2005–2015) and Sendai (2015–2030) frameworks for
disaster risk reduction has given a new perspective to flood management in the country
based on planned adaptation actions [30,34]. This orientation has resulted in the elaboration
of national guidelines for identifying, characterizing, and mapping zones exposed to natural
hazards and the proposed associated mitigation measures [18]. Several studies have been
undertaken to understand floods in the study area [5,9,12–15,19,25,29,31,35–40]. According
to them, sea level rise, extreme rainfall, and storm events often attributed to climate change
have been suggested to exacerbate floods in the coastal city of Douala. Monitoring of a
specific area has been implemented to provide scientific answers to this evolution and
eventually to propose strategies to mitigate the consequences associated with flooding.
In this context, the deployment of observation devices and measurements coupled with
modeling and simulation are expected to play a key role.

Hydraulic modeling is nowadays one of the most widely used tools for flood hazard
mapping [3]. Several hydraulic modeling tools (e.g., FLO-2D, SRH-2D, IBER, LISFLOOD-
FP, HEC-RAS, FLORA-2D, TUFLOW, MIKE FLOOD, XP-SWMM, River-Flow2D, Telemac)
are used in various studies for flood analyses [41–49]. Recent developments (1D, 2D,
1D/2D coupling) of the Hydrologic Engineering Center River Analysis System (HEC-
RAS 6.0), an application developed by the U.S. Army Corps of Engineers Hydrologic
Engineering Centre (USACE HEC, Davis, CA, USA), have allowed the analysis of a variety
of problems, including mapping and prediction of flood-prone areas [50–58], modeling
of past floods [55,59,60], extrapolation of rating curves [61], discharges estimation [61–64],
simulation of dam or levee failure [65–67], impact of different development scenarios [68,69],
and sediment transport [70,71].

To date, no study has been devoted to the analysis of the Douala city’s flood events
using state-of-the-art hydraulic modeling. This study attempted to apply a comprehensive
methodology for analyzing flood risk induced by the extreme flood event that took place
in the Makèpè Missokè neighborhood in August 2020. The 2D HEC-RAS model was used
to delineate the flood extent for that day and provide flood components (water depth and
velocity, arrival time and duration, hazard classification).

2. Study Area

The city of Douala is the economic capital of Cameroon (Figure 1A), located at the
Wouri river estuary (Figure 1B). The climate is characterized by abundant rainfall almost
every year with an annual average of about 4000 mm [12,15,19,20]. Rainfall is distributed
around two main periods, a wet season (March to November) characterized by abundant
rainfall and a dry season (December to February) [35].
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Figure 1. (A) Location of the city of Douala on the Cameroon map. (B) Wouri river estuary, tribu-
taries, and surrounding districts. Douala subdivisions are presented in grey. (C) Location of the 
Makèpè Missokè district in the Tongo Bassa catchment area and presentation of the environmental 
observatory. The rain gauge stations (P1 to P7) are labeled by red triangles, the water level gauge 
stations (G1 to G8) are labeled by circles of the same color as the sub-basin limits drained, and the 
weather station is labeled as M. (D) Presentation of the Makèpè Missokè area, the hydrographic 
network, built-up areas, roads, hydraulics structures, and flood markers associated with the 21st 
August 2020 flood event. 

3. Data Acquisition 
Natural processes as well as human activities have a significant impact on the flow 

dynamics on river basins and the modification of the spatial and temporal characteristics 
of the surface runoff. The topographic profile of the surface subjected to heavy rainfall is 
the forcing in the dynamics of water flows. Precise knowledge of this surface is a prereq-
uisite that underlies the quality of the results that can be obtained from different types of 

Figure 1. (A) Location of the city of Douala on the Cameroon map. (B) Wouri river estuary, tributaries,
and surrounding districts. Douala subdivisions are presented in grey. (C) Location of the Makèpè
Missokè district in the Tongo Bassa catchment area and presentation of the environmental observatory.
The rain gauge stations (P1 to P7) are labeled by red triangles, the water level gauge stations (G1 to
G8) are labeled by circles of the same color as the sub-basin limits drained, and the weather station is
labeled as M. (D) Presentation of the Makèpè Missokè area, the hydrographic network, built-up areas,
roads, hydraulics structures, and flood markers associated with the 21st August 2020 flood event.

Makèpè Missokè is a central and popular neighborhood of the metropolis (Figure 1D).
This district is drained by the Ngongue River, the main watercourse of the Tongo Bassa
watershed (Figure 1C). This basin of 42 km2 located between longitude 9◦46′′ N and latitude
4◦4′′ N is the largest in the city and covers nearly 27 districts. The population density ranges
from 25 to more than 380 inhabitants per hectare with an average household size between
5 and 6 people [34,72]. The altitudes in the catchment are less than 60 m above sea level
and the average slope is about 6%. The drainage network in the Tongo Bassa watershed
is dendritic with a drainage density of about 2 km/km2 [72]. Four main rivers drain this
catchment, named Ngongue, Tongo-Bassa, Kondi, and Moussadi (Figure 1C). The rivers'
outlets into the Wouri River estuary predispose them to the tidal influence received from the
Atlantic Ocean, which result in a reversal of the water flow direction at high tide [14,40,73].
Much of the catchment is urbanized, with sparse shrubs and herbaceous plants maintained
in the garden and agricultural areas located along the watercourses [12,13,35,36,74]. The
intertidal zone near the outlet is dominated by a mangrove that plays a protective role
against coastal flooding [12,73,74].
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The Douala Urban Council (DUC) has installed an environmental observatory (see
Figure 1C) in the Tongo Bassa watershed within the framework of the “Douala, Sustainable
City project”. This observatory is made up of 16 stations including 7 rain gauges located at
the head of the watershed, 8 water level gauges throughout the catchment, and 1 weather
station. The equipment’s installed were designed and manufactured by OTT Hydromet
(see https://www.otthydromet.com/en/, accessed on 12 July 2021 for more information),
a company based in Kempten, Germany and Loveland, CO, USA specialized in telemetry.
The rain gauges’ stations (P1–P7 and M) consist of a Lambrecht 15189 precipitation sensor
connected to an OTT data logger NetDL 500. The gauging stations (G1–G8) are composed
of a radar sensor OTT RLS (G1), a pressure level sensor with conductivity measurement
PLS-C (G2) and a water level logger OTT ecolog 800 (G3–G8). Each water level station
is equipped with and OTT staff level gauge. Two power sources are provided for water
level stations, solar panel (G1 and G2) and lithium battery power (G3–G8). The G1 and G2
stations are equipped with OTT data logger NetDL 500 for data storage. The acquisition
frequency varies from 5 min for rainfall measurement to 15 min for water levels. Installed
between July 2018 and January 2019, this observatory provides detailed information on the
hydrological behavior of the watershed.

Located in the central part of the Tongo Bassa catchment, Makèpè Missokè is the
most affected neighborhood by floods reported by the national daily Cameroon Tribune
in the city of Douala between 1980 and 2018 [19]. Poor road conditions hinder household
waste removal and increase illegal dumping (Figure 1D). This district is therefore very
often the starting point of cholera epidemics with an upsurge in malaria cases [75–79]. The
study area extends upstream to the “Vallée Hôpital Général” and the “Vallée La Conquête”,
and downstream to the “Pont Cassé” for a distance of about 3.5 km (see Figure 1D). Two
tributaries join in this sector, the Ngongue river that drains a catchment area of 11 km2 at
“Vallée Hôpital Général” (G8) and the Kondi river that drains a catchment area of 10.8 km2

at “Vallée La Conquête” (G7).

3. Data Acquisition

Natural processes as well as human activities have a significant impact on the flow
dynamics on river basins and the modification of the spatial and temporal characteristics of
the surface runoff. The topographic profile of the surface subjected to heavy rainfall is the
forcing in the dynamics of water flows. Precise knowledge of this surface is a prerequisite
that underlies the quality of the results that can be obtained from different types of flow
modeling. Therefore, the first data acquisition and modelling effort is the one dedicated to
the precise acquisition of topographic data.

3.1. Topographic Data

Adequate data for model development and calibration to support decision-making
processes in flood risk management are often insufficient or unavailable. A potential
opportunity is offered by open-source global remote sensing data. However, these data
have commonly not had the level of detail required as model input, in particular, in complex
urban topographic settings.

The Shuttle Radar Topography Mission (SRTM) data provided by National Aeronautics
and Space Administration (NASA) are available at an almost global scale. In a small
urban catchment, the SRTM offers coarse ground resolution that does not allow a precise
characterization of urban features [80]. More importantly, the banks and the main channel
of the watercourse are poorly defined in the Digital Terrain Model (DTM) obtained from
the SRTM [81–83]. Assuming the SRTM as the solely available DEM for the study area, two
local datasets were therefore used to improve it. The first is obtained from the Cameroonian
Ministry of State Property, Surveys and Land Tenure (MINDCAF) data from 2007. It is a
cloud of 40,000 ground points projected in UTM32M, with the EGM 2008 geoid as reference
for the elevations. The second dataset is obtained from in situ topographic surveys carried
out in March 2021 in areas where the two previous datasets showed weaknesses. It is a cloud

https://www.otthydromet.com/en/
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of 831 additional ground points strategically surveyed with a Differential Global Positioning
System (DGPS) that includes embankments, banks stations, roads, and bridges. The DGPS
used herein is the EMLID REACH RS 2 model (see https://www.apglos.eu/gnss/emlid/,
accessed on 12 July 2021 for more information). This device is design by EMLID which is
a company based in Hong Kong, China specialize in the manufacturing of low cost Real
Time Kinematic Global Navigation Satellite System (RTK GNSS) receiver.

These datasets are merged and interpolated using the 3D polylines option included in
the topographic tool RD 12 version 6.12, to obtain a more precise DTM of the study area. In
the study area, we now have a DTM where the flood plain, the main channel, the banks,
and the hydraulics constraints due to embankments, bridges, and roads are clearly defined.
However, it is important to mention that the preprocessing aims to clearly define the main
channel that is less represented by the SRTM DTM. Some uncertainties associated with the
representation of the floodplain require further exploration and can be achieved with a
Lidar-based DTM not currently available.

3.2. Hydrological and Hydraulic Data

The most important rainfall event recorded in the Tongo Bassa watershed since data
acquisition started is the 21st August 2020 event. According to the affected residents, it is
the most significant event over the past 20 years. The cumulative rainfall over the catchment
area varied between 194 mm and 288 mm this day. Note that operating anomalies were
observed at some water level gauge stations (G1, G4, and G5), which were, therefore,
unable to record this flood.

The hydrographs obtained from [64] were used as boundary conditions in the 2D HEC-
RAS model upstream from the bridges located at “Vallée La Conquête” and “Vallée Hopita
Général (Figure 2). HEC-DSSVue version 3.2.3 is a visual utilities program that allows one to
plot, tabulate, edit, and manipulate scientific data in the HEC-DSS (Hydrologic Engineering
Center Data Storage system) database file. The choice of this tool is justified by its flexibility
of use and the possibility of direct interfacing with HEC-RAS in reading and writing.

A campaign to measure and characterize high water marks was carried out in 22 Au-
gust 2020 after the flood event (Figure 1D). In the areas where we have doubts on water
marks, a household survey allowed us to retrieve information on the highest water levels
reached in the study area. The highest water levels obtained during this investigation were
levelled during the topographic survey in March 2021. These data were used for model
calibration on the 21 August 2020 flood event.
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3.3. Land-Use and Built-Up Data

The built-up areas were obtained from the openstreetmap database (2020 version) for
the city of Douala (Figure 1D). The land use data were deduced by manually on-screen
digitizing polygons from Google Earth. Two main classes were identified, i.e., the built-
up areas and the natural vegetation. The values of Manning’s coefficients were defined
according to standard values based on United States Geological Survey (USGS) classes [84].

4. Methodology

This study involved the following steps: (1) data acquisition and curation including
topographic, hydrological, land use, and built-up areas, (2) hydraulic simulation and
calibration, (3) cartographic processing. The overall flow chart is presented in Figure 3.

Water 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 3. Overall methodology of the study. 

4.1. HEC-RAS Modeling 
The 2D HEC-RAS configuration solves either the Saint–Venant equation (Equation 

(1)) or the diffusion wave approximation (Equations (2) and (3)). 𝜕𝜁𝜕𝑡 + 𝜕𝑝𝜕𝑥 + 𝜕𝑞𝜕𝑦 = 0 (1) 

𝜕𝑝𝜕𝑡 + 𝜕𝜕𝑥 𝑝ℎ + 𝜕𝜕𝑦 𝑝𝑞ℎ = − 𝑛 𝑝𝑔 𝑝 + 𝑞ℎ − 𝑔ℎ 𝜕𝜁𝜕𝑥 + 𝑝𝑓 + 𝜕𝜌𝜕𝑥 ℎ𝜏 + 𝜕𝜌𝜕𝑦 ℎ𝜏  (2) 

𝜕𝑞𝜕𝑡 + 𝜕𝜕𝑦 𝑞ℎ + 𝜕𝜕𝑥 𝑝𝑞ℎ = − 𝑛 𝑞𝑔 𝑝 + 𝑞ℎ − 𝑔ℎ 𝜕𝜁𝜕𝑦 + 𝑞𝑓 + 𝜕𝜌𝜕𝑦 ℎ𝜏 + 𝜕𝜌𝜕𝑥 ℎ𝜏  (3) 

where ℎ is the water depth (m), 𝑝 and 𝑞 are the specific flow in the 𝑥 and 𝑦 direc-
tions (m2 s−1), respectively, 𝜁 is the surface elevation (m), g is the acceleration due to grav-
ity (m2 s−2), 𝑛 is the Manning’s Roughness coefficient (m−1/3 s), 𝜌 is the water density (kg 
m−3), 𝜏 , 𝜏 , and 𝜏  are the component of effectiveness shear stress, and 𝑓 is the Cor-
iolis (s−1). When diffusion wave mode is selected, the inertial terms of the momentum are 
neglected [59]. 

Figure 3. Overall methodology of the study.

4.1. HEC-RAS Modeling

The 2D HEC-RAS configuration solves either the Saint–Venant equation (Equation (1))
or the diffusion wave approximation (Equations (2) and (3)).

∂ζ

∂t
+

∂p
∂x

+
∂q
∂y

= 0 (1)
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where h is the water depth (m), p and q are the specific flow in the x and y directions (m2 s−1),
respectively, ζ is the surface elevation (m), g is the acceleration due to gravity (m2 s−2), n is
the Manning’s Roughness coefficient (m−1/3 s), ρ is the water density (kg m−3), τxx, τyy,
and τxy are the component of effectiveness shear stress, and f is the Coriolis (s−1). When
diffusion wave mode is selected, the inertial terms of the momentum are neglected [59].

To ensure numerical stability of the model [55], the time step was defined according to
the Courant–Friedrichs–Lewy condition [59,65] (Equation (4)).

C =
V∆T
∆x

≤ 1.0 (avec Cmax = 3.0) ou ∆T ≤ ∆x
V

(avec C = 1.0) (4)

where C is the Courant number, V is the velocity (m s−1), ∆T is the time step (s), and ∆x is
the grid cell size (m).

The model geometry was built in Rasmapper and HEC-RAS editor using the DTM to
represent the ground surface. Manning’s values associated with each zone were defined
according to land use and land cover classes. Hydraulics structures were drawn following
their characteristics measured during the survey. Rasmapper was used to build a computa-
tional mesh at 30 × 30 m spatial resolution on the entire study area. Mesh refinements were
integrated into the initial grid in particular zones (banks, major roads, and bridges). The
final mesh contained over 4067 cells comprising three to eight faces. Two internal boundary
conditions were set to flow the hydrograph upstream the Ngongue and Kondi Rivers (at
gauges G8 and G7, respectively). The tide acting at the outlet of the Tongo Bassa watershed
situated 3.15 km downstream the modeled area was considered negligible because reverse
flow was not observed during field survey. The external boundary condition was set to
normal depth and the friction slope was estimated near the outlet of the simulation domain
(at “Pont Cassé”). The computational mesh grid, the boundary conditions (internal and ex-
ternal), and the hydraulics structures built in the HEC-RAS model to simulate the 21st flood
event in Makèpè Missokè are presented in Figure 4 below. The model was run between
21 August 2020 00:00 and 22 August 2020 08:00 with a computational interval of 5 s using
HEC-RAS version 6.0.0, Windows 10 (64-bits), Intel® Core™ i7-6700HQ CPU 2.60 GHz, and
8 GB of DDR3 RAM. The Model outputs interval was set to 5 min for model performance
and calibration. All other HEC-RAS unsteady computation options and tolerances were set
to default.
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4.2. HEC-RAS Model Calibration

The HEC-RAS model was calibrated using the observed data collected at six gauging
sites (flood marks), as presented on Figure 1D. The method consisted in adjusting the model
parameters to accurately reproduce the water surface elevation observed on flood marks in
the studied area [67]. To achieve this, the Manning’s Roughness coefficients were adjusted
to obtain the desired accuracy. Model performance was assessed using statistical indices
including [85,86]: the Nash–Sutcliffe efficiency (NSE), the relative deviation in the Nash–
Sutcliffe efficiency (Erel), and the root-mean-square error (RMSE) given by Equations (5)–(7).

NSE = 1− ∑T
t=1(Oi − Pi)

2

∑T
t=1
(
Oi −O

)2 (5)

Erel = 1−
∑n

i=1

(
Oi−Pi

Oi

)2

∑n
i=1

(
Oi−O

O

)2 (6)

RMSE =

√
∑n

i=1(Pi −Oi)
2

N
(7)

where Oi = observed water levels, Pi = simulated water levels, O = average observed water
levels, P = average simulated water levels, and N = total number of observations.

To date, no water marks were available to undertake validation of the model on
another flood event. To overcome this data gap, the calibrated model was used to retrieve
the water level at the water gauging station G3 (at “Pont Ngongue”) in the middle part of
the simulation domain.
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4.3. Flood Hazard Assessment

In this study, flood hazard classification was based on the Australian Institute for
Disaster Resilience (AIDR, 2017) criteria [87]. This method was based on objective indicators
such as flood depth, flow velocity, or a combination of these criteria [55,58,65,87]. According
to this criterion, the hazard categories based on the vulnerability curves are as follows: H1
(D × V ≤ 0.3 m2/s), H2 (0.3 m2/s < D × V ≤ 0.6 m2/s), H3 (0.6 m2/s < D × V ≤ 1.2 m2/s),
H4 (1.2 m2/s < D × V ≤ 2 m2/s), H5 (2 m2/s < D × V ≤ 4 m2/s), and H6 (D × V > 4 m2/s).
The hazard description based on the AIDR criterion is shown in Table 1.

Table 1. Hazard classification based on flood depth and flood velocity according to the AIDR [87].

Flood Hazard D × V (m2/s) Hazard Description

H1 ≤0.3 Generally safe for vehicles, people, and buildings
H2 ≤0.6 Unsafe for small vehicles
H3 ≤1.2 Unsafe for vehicles, children, and the elderly
H4 ≤2 Unsafe for vehicles and people

H5 ≤4
Unsafe for vehicles and people. All the building types are

vulnerable to structural damage. Some less robust building
types are vulnerable to failure.

H6 >4 Unsafe for vehicles and people. All building types
considered vulnerable to failure

5. Results
5.1. Calibration of the 2D HEC-RAS Model

The HEC-RAS model is calibrated by adjusting the simulated-to-observed water levels
during peak flow discharge at six flood marks within the Makèpè Missokè neighborhood.
The optimized Manning roughness values (n) for floodplain calibration are n = 0.12 and
n = 0.17, respectively, for urban and vegetation areas. The residual difference ranges from
0.02 m to 0.44 m (Table 2). The most significant differences are observed at flood marks
numbered #4 (0.19 m) and #6 (0.44 m). These differences can be explained by the high water
marks measurement and the DTM used as input in the hydraulic model. The highest water
marks present uncertainties related to building materials, flood time durations, and local
flow conditions. Building materials and flood time durations induce capillary rises that
deal with inaccuracies in the measurement (during marking and surveying with DGPS).
The local flow condition due to the presence of buildings can influence locally the water
surface elevation. Furthermore, flood mark numbered #6 is located near an artificial lake
created by sand extraction activity. The bathymetry of this lake is poorly represented in
DTM, which results in a weak representation of the flood retention effect in this area.

Table 2. Comparison of the water levels (meters) between those observed and simulated by HEC-RAS
at six different points located in Makèpè Missokè floodplain during the 21 August 2020 flood.

Calibration Water Levels (m) Flood 2020
Difference = S − O

N◦ (O) Observed (S) Simulated

1 8.64 8.84 0.2
2 7.51 7.54 0.03
3 6.82 6.8 −0.02
4 6.56 6.75 0.19
5 6.65 6.62 −0.03
6 5.78 6.22 0.44

NSE 0.94
Erel 0.92

RMSE 0.21
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The observed and HEC-RAS simulated stage associated with the 21st August 2020
at gauge G3 (“Pont Ngongue”) in Makèpè Missokè are presented in Figure 5. The results
showed that the model was unable to retrieve accurately the water levels recorded at
gauging station G3. The simulated maximum water level overestimated those observed by
80 cm. This difference was consistent with the one observed for the water mark numbered
#6 (overestimated by 44 cm). The imperfections in the DTM may be associated with the
poor representation of the lake located downstream at the G3 gauge station. A more
representative DTM that better reflects the terrain configuration would allow better results
to be obtained. However, the flood dynamics was well captured by the model during
the flood and the recession phases. It can be inferred that the developed model based on
available data was fairly consistent with observations during the event.
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5.2. Flood Extent and Flood Depth

The simulated flood extent based on the computed dry cells covered an area of about
81.84 ha. The entire width of the major river channel was inundated. The flood depth map
was generated by considering the maximum recorded depth in each cell of the flooded
zone. The maximum flood depth recorded for the simulation was 4.48 m in the main
channel of the Ngongue River (Figure 6). About 2210 buildings were impacted by this flood
event with 31% (683 buildings) affected by a flood depth lower than 0.25 m, about 26%
(587 buildings) between 0.25 m and 0.5 m, 39% (871 buildings) by a flood depth between
0.5 m and 1 m, and finally 3% (69 buildings) exposed to a flood depth between 1 m and 2 m.
Flood depths higher than 2 m were observed in the main river channel and concerned only
hydraulics structures and not buildings. Undersized hydraulics structures were inundated
(more than 1.2 m over the deck/roadway) and resulted in the unavailability of the road
crossing the river.
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5.3. Flood Velocity

The flood velocity map was obtained by calculating the maximum velocity in each cell
recorded over the simulation period (21 August 2020 00:00 to 22 August 2020 08:00). The
maximum modeled flood velocity was 10.15 m/s at an average velocity in the modeled
area of 0.5 m/s. These velocities were classified into five categories (Figure 7): very
low (V ≤ 0.25 m/s), low (0.25 < V ≤ 0.5 m/s), medium (0.5 < V ≤ 0.75 m/s), high
(0.75 < V ≤ 1 m/s), and very high (V > 1 m/s). A percentage of 65% (1441 buildings) were
affected by velocities that did not exceed 0.25 m/s, 23% (500 buildings) by flood velocities
between 0.25 and 0.5 m/s, 7% (165 buildings) by velocities between 0.5 and 0.75 m/s, 3%
(69 buildings) between 0.75 and 1 m/s, and finally less than 2% (35 buildings) were affected
by velocities above 0.5 m/s. In this zone characterized by weak variations in the topography
and a dense vegetation in the main channel, these velocities presented a good agreement
with the ground reality. The model showed important velocities (V > 1 m/s) close to
hydraulics structures (bridges at “Vallée Hôpital Général”, “Vallée La Conquête”, and
“Pont Cassé”), indicating considerable flow constriction by the bridges and thus ultimately
an increased risk of failure. Furthermore, during the high water, the flow obstruction
generated backwater and significant retention, resulting in flooding in the upstream part
of the bridges. This finding is particularly relevant close to the bridges in the study area
(G3, G7, G8), where we observed a submergence that interrupted roads during the floods.
In the downstream part of the studied area, at “Pont Cassé”, the pinching of the flow
was mainly due to topography. A high flow velocity has been observed here previously:
indeed, it caused the collapse of a previous bridge after an historical flood, which gave it
the evocative name of “Pont Cassé”, i.e., broken bridge.
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5.4. Flood Arrival Times and Duration

The flood arrival map in hours was generated in the flooded area from the start time of
the simulation (on 21 August 2020 00:00) and for a depth threshold of 0.5 m. Arrival times
in the study area varied between 4 h and 9 h. The map presented in Figure 8A revealed
two main zones in the modeled area limited by the “Pont Ngongue” (at water level gauge
G3): the first upper bridge that was flooded under at least 0.5 m of water depth after seven
hours (6.5 h), and the second lower bridge flooded after at least eight hours (8.5 h). This
finding is particularly relevant close to the hydraulics structures in the study area and
confirms the significant retention resulting in flooding the upper bridges. On the other
hand, a higher flood depth (1.5 m and 2.5 m respectively) occurred after 9 h and revealed
the fast mobilization of the floodplain for the evacuation of this flood.

The flood duration map for the 2020 flood event in Makèpè Missokè was generated
in the same way as the flood arrival times. For the 0.5 m threshold, the duration of
submergence in the modelled area reached up to 30 h in the main river channels and varied
between 6 h and 16 h in the floodplain (Figure 8B). Three hotspot areas flooded for more
than 24 h, i.e., around the confluence of the Ngongue and Kondi rivers, the areas upstream
of the Ngongue Bridge, and the “Pont Cassé”. We note that the duration of flooding in
this area was less than one day. This result contrasts the testimonies of the residents who
declared to have been flooded during several days. The influence of tide at the outlet of
the Tongo Bassa watershed is likely the reason for the underestimation of flood depth and
flood duration times in the study area.



Water 2022, 14, 1768 13 of 19
Water 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 8. (A) Flood arrival. (B) Flood duration for 0.5 m threshold. 

5.5. Flood Hazard Assessment 
The AIDR criterion [87] is used to classify exposure from low to high hazards (See 

Figure 9). Combining the modeled flow velocity and inundation level, 54% (1196 build-
ings) are located in classes H1 and H2, nearly 44% (966 buildings) in class H3, less than 
2% (35 buildings) in class H4, and only 0.4% and 0.2% (9 and 4 buildings), respectively, 
are located in classes H5 and H6. This analysis shows that the flood hazard in the Makèpè 
Missokè district globally varies between H1 and H3. According to AIDR, this presents 
little risk for constructions in concrete. However, many constructions made of temporary 

Figure 8. (A) Flood arrival. (B) Flood duration for 0.5 m threshold.

5.5. Flood Hazard Assessment

The AIDR criterion [87] is used to classify exposure from low to high hazards (See
Figure 9). Combining the modeled flow velocity and inundation level, 54% (1196 buildings)
are located in classes H1 and H2, nearly 44% (966 buildings) in class H3, less than 2%
(35 buildings) in class H4, and only 0.4% and 0.2% (9 and 4 buildings), respectively, are
located in classes H5 and H6. This analysis shows that the flood hazard in the Makèpè
Missokè district globally varies between H1 and H3. According to AIDR, this presents
little risk for constructions in concrete. However, many constructions made of temporary
materials such as cardboard, wood, or metal sheets are present in the low-lying areas
affected by regular flooding, presenting considerable risks for the fast-growing population
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in these zones. Further, in the widespread H2/H3 zones, mobility is significantly affected
for people and vehicles, in particular, for children, the elderly, or those with reduced
mobility. In the minor riverbed, the hazard varies from H4 to H6, i.e., the exposure to a
higher risk for the people having set-up constructions there, or directly on the banks of
the watercourse.
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The number of people affected can be estimated by taking into consideration either
the population density estimated from 25 to 380 inhabitants [72], or the average household
size estimated at 5.6 inhabitants [34] in the study area. Based on these two assertions,
the number of affected persons ranges between 2050 and 31,160 when comparing the
population density and 12,376 when taking into account the household size.

The hydraulic structures are exposed to significant risks (H6). The reduction in the
section of flow at the structures involves a rise in the surface of water and a significant
increase in flow velocity. In addition, the significant water depth and flow velocities at the
vicinity of the hydraulics structures results in significant mobility difficulties because of the
submergence of these major transport axes, thus also affecting economic activity as well as
potential disaster relief mobilization.

6. Discussions

The model provides important spatially resolved information on the major flood
recorded by the recently installed Tongo Bassa watershed environmental observatory, on
21st August 2020 in the Makèpè Missokè neighborhood. Based on available topographic
data, the model developed showed a good agreement between the observed and simulated
water surface elevation at the peak flow discharges (NSE = 0.94, Erel = 0.92, RMSE = 0.21 m).

The present study of a flood event in the Makèpè Missokè neighborhood complements
previous analyses [19,25], where the floodplain delineation criteria were based on hydroge-
omorphological and historical analyses, without detailed hydrological flow modeling. In
addition to the delineation of the extent of the flooded area based on hydrological parame-
ters, this study provides significantly improved insights particularly on the dynamics of
propagation of the flood wave.

Moreover, the simulated velocity in the main channel indicates a potential sediment
transport and deposition that could gradually obstruct the hydraulic structures. Moreover,
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the simulated velocity confirms the [72] statement concerning that the rivers in the Tongo
Bassa watershed would be in an erosive phase in the upstream part and in an accreting
phase downstream.

The mapping of flood arrival times provides important new information on the time
needed to set-up a flood warning system or the time needed for an emergency intervention.
In turn, the mapping of flood duration provides important information on the time required
for a return to normalcy in the disaster area after a major flood. This information is highly
relevant to decision makers and managers to efficiently deploy emergency resources to be
engaged in case of a major flood event.

The hazard classification over the model domain is conducted by combining the flood
depth and the flood velocity maps using the AIDR method [87], resulting in spatially
resolved maps of risk to which the residents are exposed in the Makèpè Missokè district.
The information provided by this study contrasts with a previous study [25] regarding the
evaluation of potentially wet areas by calculating the Beven–Kirby index (1975) computed
in GIS software using some physical catchment characteristics.

The model developed in this study proposed detailed information on the flood hazard
associated with the 21 August 2020 flood. In order to improve the accuracy and utility of
the model and its application to flood hazard management, the return period of the rainfall
event that causes this flood needs to be determined. A translation of this major event
in terms of the return period using frequency analysis would allow the decision-makers
to have a better appreciation of the risk against which to protect and to establish a more
relevant delimitation of the zones at risk with a view to developing and implementing
coherent strategies to reduce the impact of floods.

7. Conclusions

This study was carried out to characterize the hazard associated with the major flood
event that took place in August 2021 in the Makèpè Missokè district in the city of Douala
using 2D HEC-RAS modeling. The model was calibrated using high water marks in six
points at peak flow discharge and the observed stage recorded at gauge G3 situated in
the middle part of the simulation domain. The results showed that the flood dynamic
is well captured and the 2D hydraulic model was able to retrieve the observed water
surface elevation (NSE = 0.94, Erel = 0.92, RMSE = 0.21 m). The August 2020 event used
the major riverbed for evacuation of the flood with depth and velocity that represent a
real hazard risk for the households. The low-lying hydrological center of the investigated
area was classified between H3 and H5; thus, it may be unsafe for vehicles, children, the
elderly, or buildings, and in some cases can cause structural damage and failure of less
robust buildings. Significant velocities were recorded near the hydraulics structures. The
floodplain remained underwater for several hours after the end of the event. Conversely,
some sites were covered by no more than 0.5 m of water depth for more than a day. The
developed 2D HEC-RAS model is satisfactory considering the available data.

The methodology developed and the results are also and, above all, useful for the
local administration, especially the DUC, which intervenes at different levels and scales
in the management of floods in the city of Douala. The results can be helpful for the
design of the planned bridges and the implementation of a more effective maintenance or
the protection strategy of the existing ones particularly sensitive to high velocities. The
knowledge of flood extent, depth, and hazard classification allows the municipality to
design structural mitigation measures and equipment (drains, flood control basin, etc.)
and to prohibit constructions in the more dangerous areas or to subject them to specific
structural requirements, all things contributing to the move toward a proactive flood
management policy.
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