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Abstract

We study the statistical distribution of the closest encounter between generic smooth observations
computed along di�erent trajectories of a rapidly mixing dynamical system. At the limit of large tra-
jectories, we obtain a distribution of Gumbel type that depends on both the length of the trajectories
and on the Generalized Dimensions of the image measure. It is also modulated by an Extremal Index,
that informs on the tendency of nearby observations to diverge along with the evolution of the dynamics.
We give a formula for this quantity for a class of chaotic maps of the interval and regular observations.
We present diverse numerical applications illustrating the theory and discuss the implications of these
results for the study of physical systems. Finally, we discuss the connection between this problem and
the problem of the longest matching block common to di�erent sequences of symbols. In particular, we
obtain a distributional result for strongly mixing processes.

1 Introduction

Certain real-world systems, such as climate, take place in high-dimensional spaces and exhibit chaotic and
multi-scaled properties. To study such complex dynamics, physicists often have access to only a limited
number of observable quantities through the measurement process. The latter can be modeled by computing
an observation function along a typical trajectory of the system. Understanding the geometric and statistical
properties of such observations, and their relationship to the properties of the original underlying system is
a problem of great interest in physics, that has been instigated only recently. The study of the recurrence
properties of observations have been initiated by Rousseau and Saussol in [33, 32], in which asymptotic and
distributional results were obtained for both hitting times and return times of observations. In a recent
paper [12], this problem was studied from the point of view of Extreme Value Theory (EVT). This approach
turned out to provide information on the local geometry of the image measure, which, for a good choice of
observation, can characterize the local fractal structure of the original underlying attractor. In this paper,
we pursue the statistical analysis of observed dynamical systems by studying the statistics of the shortest
distance between several observed trajectories. Closely related problems have gained interest in recent years.
The case of real, unobserved trajectories was considered in [19] and [11], using EVT techniques, while
asymptotic results for the shortest distance between two orbits were obtained in [7] and then generalized to
multiple orbits [8] and �nally to observed orbits [14].

Yet another motivation to study this problem is its deep relationship with a seemingly distinct one;
the length of the longest matching block common to di�erent sequences of symbols drawn from the same
probability distribution. This old problem has been initiated by Waterman and Arratia, who brought a
plethora of results in the i.i.d. case [5, 3], most of which are presented in the reference book [35]. Several
authors have extended these results, giving for example distributional results in the i.i.d case [4, 31]. In many
applications, however, the sequences cannot be modeled as i.i.d. sequences. For example, in biological appli-
cations, genes are speci�c sequences encoding information, and DNA brands do not constitute independent

1



sequences of nucleotides. When it comes to written text, a complex dependence structure can arise from
speci�c sequences of letters, such as words, and higher-order syntactic and narrative structures. Recently,
Barros, Liao and Rousseau adopted a dynamical system point of view to give the asymptotic behavior of the
length of the longest sub-sequence common to di�erent α−mixing sequences [7, 8]. This problem is di�erent
from the present one, because the sub-sequences may be present at di�erent locations of the di�erent strings
of symbols, but we will also follow a dynamical system approach to derive our results.

The paper is organized as follows: In the �rst section, we present the problem and derive our main result
concerning the convergence of the statistics of observation matching to a Gumbel distribution. In the fol-
lowing sections, we discuss the parameters of the limit law, since these quantities provide relevant dynamical
information on the system and can be estimated numerically. We �rst focus on the generalized dimensions
of the image measure by emphasizing their central role in the statistical properties of observations. We also
study their relations with the generalized dimension spectrum of the original measure. In the third section,
we derive a formula for the Extremal Index associated with this problem for a class of chaotic maps of the
interval and perform a numerical study of this index for higher dimensional systems. In the last part, we
present some applications of our results to sequence matching problems. In particular, we obtain distribu-
tional results for the length of the longest sequence of symbols common to independent strings of symbols
drawn from the same strongly mixing probability measure.

2 The general approach

Let us consider the dynamical system (M , T, µ), where M denotes the phase space and T : M → M is
a discrete transformation 1 that leaves the probability measure µ invariant. In order to model the process
of measurement, we consider a C1 function f : M → J , which we refer to as the observation. Both the
phase space M and the observation space J are compact metric spaces endowed with two distances that
we will both call d to simplify notations. For physical applications, we take J ⊂ Rm, as observational data
usually consists of a collection of real numbers that can be arranged into vectors. For applications to the
problem of sequence matching, we will take M to be the space of all in�nite sequences of symbols of a given
alphabet A . Because we are interested in the statistical properties of observations, we need a measure that
is supported in the observational space.

De�nition 1 We call the push-forward, or image of the measure µ by the function f , the measure µf de�ned
by

µf (A) = µ(f−1(A)),

for all A ⊂ J such that f−1(A) is µ−measurable.

A more detailed presentation of this object is available in [33] and a discussion of its properties can be
found in [12].

De�nition 2 We call the generalized dimension of order q ̸= 1 of the image measure µf the following
quantity (if it exists):

Df
q = lim

r→0

log
∫

J µf (B(y, r))q−1dµf (y)

(q − 1) log r
. (1)

B(y, r) denotes a ball centered at y ∈ J of radius r.

The information dimension of µf is de�ned as

Df
1 = lim

q→1
Df

q . (2)

We write Dq = DId
q , the generalized dimension of order q of the original measure.

1it could be a discretized version of a �ow
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We will place ourselves in physical situations where the limits de�ning the previous quantities exist.
Now that we have introduced the important objects of the theory, we go forward and consider the following
process:

Yi = − log max
j=2,...,q

d(f(T ix1), f(T
ixj)),

(x1, ..., xq) ∈ M q being a starting point drawn from the product measure µq with support in M q. To
follow the usual procedure of Extreme Value Theory, we consider a sequence of thresholds un(s), where
s ∈ R, such that:

µq(Y0 > un(s)) ∼
e−s

n
. (3)

Since the q trajectories are independent, we also have:

µq(Y0 > un(s)) =

∫
J

µf (B(y, e−un))q−1dµf (y)

∼ e−unD
f
q (q−1),

(4)

from de�nition 2. To satisfy both scalings 3 and 4, we take

un(s) =
log n

Df
q (q − 1)

+
s

Df
q (q − 1)

.

Now, for a given threshold un, the quantity µq(Y0 > un) gives the probability of having all the observations
contained in the same small region of the observational space; a ball of radius e−un centered at f(x1).
Equivalently, it gives the probability that the product dynamics has entered the following target set:

Sq
n = {(s1, ..., sq) ∈ M q, max

j=2,...,q
d(f(s1), f(sj)) < e−un}.

Following the ideas of [23], studying the behavior of the maximum of the process (Yi) over a trajectory
of size n:

Mn,q(x1, ..., xq) = max{Y0, . . . , Yn−1},

and in particular its cumulative distribution:

Fn(un) = µq({(x1, ..., xq) ∈ M q s.t. Mn,q(x1, ..., xq) ≤ un}),

is equivalent to studying the Hitting Time Statistics of the product dynamics in the set Sq
n. Indeed,

Fn(un) gives the probability that the dynamics has not entered the set Sq
n after n iterations of the dynamics.

We can now apply results from EVT, in particular, the spectral theory developed by Keller and Liverani
[30, 29], to obtain the convergence of Fn(un) to its limit law.

Proposition 1 For a large class of exponentially-mixing systems and regular observations, there exists
0 < θfq ≤ 1 such that:

|Fn(un(s))− exp(−θfq e
−s)| →

n→∞
0. (5)

The term θfq is called the Extremal Index (EI) and quanti�es the tendency of the process (Yi) to form
clusters of high values. To be applicable, the spectral theory requires that the couple system/observation
satis�es the so-called REPFO property [30, 29], which is veri�ed for rapidly mixing systems for which the
measure of the nested target sets Sq

n goes to zero in a regular fashion. More detailed presentations of the
theory and its domain of application can be found in various publications [19, 11, 30, 29, 16]. The theory
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is proven to be particularly adapted to expanding maps of the interval [18, 16] and certain well-behaved
2-dimensional systems [6].

More classical tools can also be used to prove the convergence to the limit law, in particular under the
following conditions, that are particularly adapted to processes generated by dynamical systems.

De�nition 3 We say that the condition Ä1(un) is satis�ed for the process Y0, Y1, ... if there exist a function
γ(n, t) such that for every l, t, n ∈ N,

|µq(An ∩Bt,l,n)− µq(An)µq(B0,l,n)| ≤ γ(n, t), (6)

where An = {Y0 > un, Y1 ≤ un}, Bt,l,n =
⋂t+l−1

i=t T−i(Ac
n), and the function γ(n, t) is such that it

is decreasing in t for each n and such that there exists a sequence (tn)n ∈ N satisfying tn = o(n) and
nγ(n, tn) →

n→∞
0.

De�nition 4 We say that Ä′
1(un) holds if there exist a sequence (kn)n such that:

1. kn →
n→∞

∞.

2. kntn = o(n), where (tn)n is the sequence in de�nition 3.

3. lim
n→∞

n
∑⌊ n

kn
⌋−1

j=2 µq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) = 0.

Under these two conditions, the result of Proposition 1 holds [18]. We stress that these conditions
depend both on the application T and on the observation f . Ä1(un) is expected to hold for rapidly mixing
systems and regular observations. In particular, we show in the annex that, at least in the context of
symbolic dynamics and if f = Id, strong exponential mixing implies Ä1(un). Condition Ä′

1(un) concerns
the clustering structure of the process Yi. More particularly, it controls the probabilities of short returns to
the target set Sq

n. It is not our focus to give more appropriate conditions of convergence to the limit law,
since these can be hard to check in dimension more than one, or sometimes two2, and even more so when a
non-trivial observation f is introduced. We will however provide numerical evidence of the convergence to
the extreme value law. Let us now discuss the values of the di�erent parameters of the limit law, that can
acquire a physical interpretation.

3 The Generalized Dimensions of the image measure Df
q

3.1 On the relation between the Generalized dimensions of the image measure

and the one of the original invariant measure

We have seen in the preceding section that the quantity Df
q appears as a parameter of the limit law and

therefore modulates the synchronization properties of observations. In fact, these quantities play a central
role in di�erent aspects of the statistical properties of observations, and in particular their recurrence times.
It is well known that both return and hitting times of certain chaotic systems in small balls (in fact, re-
scaled versions of these quantities) have large deviations that are governed by the spectrum of generalized
dimensions Dq of the invariant measure [11, 15]. These kinds of large deviations relations are known to hold
for real trajectories, but similar results are also expected to apply to the recurrence times of observations
for such systems. This matter will be investigated more in detail in a future publication. For now, let us
focus on the properties of Df

q , and in particular on their relation to the generalized dimensions Dq of the
original system. In [27], Hunt and Kaloshin give results concerning the e�ect of typical projections on the
generalized dimensions for 1 ≤ q ≤ 2. In this range, they show that if M is a compact subset of Rn and
J = Rm, and if the generalized dimension of order q, Dq of the invariant measure exists, then:

2for simple systems such as automorphisms of the torus [22] or systems admitting a product structure [21]
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Df
q = min(Dq,m), (7)

for a prevalent set of C1 observables. See [28] for a review of prevalence, which is a notion of genericity
for in�nite-dimensional spaces. For q > 2, no such result holds and the behavior of Df

q in this range is not
yet completely understood. Under the light of Hunt and Kaloshin's result, it is possible to access the corre-
lation dimension D2 of a physical system using a generic observation if the rank is large enough (larger than
the correlation dimension of the original attractor). This quantity can be obtained by �tting the empirical
distribution of Mn,q and extracting the desired parameter, as we will do in the following subsection. Such
EVT-based methods of computation of fractal dimensions is in use in climate studies, in particular for the
computation of the local dimension, which can be used as a tool to characterize certain climatic patterns
[17, 10].

Di�erent kinds of large rank observations can be used by physicists to recover information on the original
system. A �rst approach is to record simultaneously the value of a scalar quantity at di�erent locations of
a spatially extended system. These measurements can be arranged into a vector and constitute a so-called
gridded observation in Rm. Instead of recording the same quantity at di�erent positions, one can also record
di�erent independent observables (temperature, position, speed, pressure, ...) at a given time. Yet another
possibility is to consider delay coordinates observables used in embedding techniques [34]. In this context,
it is well known that if one considers enough delay coordinates (larger than ⌈2D0⌉), the dynamics of the
observation settles on an object (the so-called reconstructed attractor) that is a smooth deformation of the
original attractor, which preserves the dimensions [34]. With our approach, only m ≥ D2 delay coordinates
are required to access the correlation dimension D2, although the reconstructed attractor is now likely to
have a di�erent �ne structure from the original one.

3.2 Numerical extraction of Df
q

Let us now investigate the values of Df
q for q > 2 from a numerical perspective. This procedure will also

allow us to experimentally intuit the convergence of the distribution of Mn,q to its limit law. Let us consider
a system for which the explicit values of Dq are available; the motion on a Sierpinski gasket given by the
following Iterated Function System on the unit square M = [0, 1]2: T1(x, y) = (x/2, (y + 1)/2), p1 = 1/4,

T2(x, y) = ((x+ 1)/2, (y + 1)/2), p2 = 1/4,
T3(x, y) = (x/2, y/2), p3 = 1/2.

(8)

At each iteration, the application Ti is applied with probability pi. The associated generalized dimensions
spectrum is given, for q ̸= 1, by [11]:

Dq =
log2(p

q
1 + pq2 + pq3)

1− q
. (9)

In �gure (1), we compare the numerical estimates of Df
q for di�erent observations f and the theoretical

values of Dq given by equation (9). These estimates are obtained by evaluating the scale parameter of the
empirical maximum distribution of the process (Yi) over blocks of size 5.104, using the maximum likelihood
estimator provided by the Matlab function gev�t [25]. The results are averaged over 10 runs, using each time
di�erent randomly selected trajectories of length 2.108. The error bars represent the standard deviations of
the results over these 10 runs.
The functions f1, f2 are di�eomorphisms, which are known to preserve the generalized dimensions [27].
Indeed, for these two functions, good agreement is found, so that the two curves are hardly distinguishable
visually in the picture. These results suggest that this method of computation of Dq can be completed
and even improved by introducing a di�eomorphism computed along the orbits of the system, which may,
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if well chosen, speed up the convergence of the method and provide better estimates. Function f3 is a very
oscillatory function, which gives a point in the observational space many antecedents, having the e�ect to
alter signi�cantly the �ne structure of the image measure. We do not know whether the disagreement with
the Dq spectrum is due to the method not being at convergence, or if is a sign that the spectrum is not
preserved under the action of f3. However, the small disagreement for q = 2 seems to indicate that the
method may not be at convergence, since the correlation dimension is preserved by typical observations. f4
is not a di�eomorphism either, but has a more simple structure. For this function, the generalized dimensions
seem to be preserved. f5 is a degenerate function yielding values close to 1.

Figure 1: Numerical estimates of Df
q for di�erent observations: f1 = Id, f2(x, y) = (2x + y, 2y), f3(x, y) =

(sin( 1x ), cos(
1
y )), f4(x, y) = ((x − 0.5)2, 2y) and f5 = (1, y2 + x). In dashed lines is the Dq spectrum of the

underlying system. Estimates are computed as described in the text.

In [12], we showed that for the two-dimensional baker's map, which has a non trivial Dq spectrum, a
typical linear uni-dimensional projection gives Df

q = 1 for all q. Overall, this result, along with our numerical
computations, suggests that Hunt and Kaloshin's results may extend to q > 2 for a certain class of measures
and certain smooth observations. We hope to provide their characterization on future investigations.

4 The Extremal Index θfq

4.1 An explicit formula for expanding maps of the interval

When considering real trajectories (i.e. when f = Id), the Extremal Index θq, and more speci�cally the
quantity

hq =
log(1− θq)

1− q
,

encodes the hyperbolic properties of the system (see [11] for a detailed review). In particular, hq as a
function of q is constant for maps with constant Jacobian and is close to the metric entropy of the system
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(its Lyapunov exponent in dimension 1). When an observation f is introduced, the use of the Extremal
Index to quantify the rate at which nearby trajectories diverge becomes less relevant, in particular because
two nearby points in observational space may have antecedents far away in the actual phase space of the
system. Let us investigate this matter with more detail. Keller and Liverani [30] provide a general formula
for the Extremal Index of time series originated by dynamical systems. Applied to the present situation and
if the limits de�ning the di�erent quantities exist, we have that

θfq = 1−
∞∑
k=0

pk,q, (10)

where

p0,q = lim
n→∞

µq(S
q
n ∩ T−1Sq

n)

µq(S
q
n)

(11)

and for k ≥ 1,

pk,q = lim
n→∞

µq(S
q
n ∩

⋂k
i=1 T

−i(Sq
n)

c ∩ T−k−1Sq
n)

µq(S
q
n)

. (12)

In this general set up, obtaining a formula for θfq is challenging, so let us place ourselves in the more
simple case of expanding maps of the unit interval I = [0, 1]. We de�ne the following sets for a given x ∈ I :

A0(x) = {y ∈ I such that f(y) = f(x) and f(Ty) = f(Tx)}

and

Ak(x) = {y ∈ I such that f(y) = f(x), f(T iy) ̸= f(T ix), for i = 1, .., k and f(T k+1(y)) = f(T k+1(x))}.

Proposition 2 Let T be an expanding map of the unit interval I = [0, 1] which is C1 by part and admitting
an absolutely continuous invariant measure dµ(x) = h(x)dx. Let f : I → J ⊂ R be C1 by part, �nite to one
and such that f ′ ̸= 0 on I. Suppose moreover that the couple (T, f) satis�es the conditions of Proposition 1,
that

µ({x ∈ I, A0(x) = {x}}) = 1 (13)

and that, for all k ≥ 1,

µ({x ∈ I, Ak(x) = ∅}) = 1. (14)

Then:

θfq = 1−

∫
I

h(x)q

max(|f ′(x)|,|(f◦T )′(x)|)q−1 dx∫
I

∑
(y1,...yq−1)∈(f−1{f(x)})q−1

∏q−1
i=1

h(yi)
|f ′(yi)|h(x)dx

. (15)

Proof. We write the proof for q = 2, the cases q > 2 can be obtained in a similar fashion. We start from
formula (10) and evaluate both the numerators and the denominators de�ning the pk,2 terms. Let us start
by the denominator, for the case k = 0. Following the lines of the proof in [16] (where the case f = Id is
treated), and making use of the mean value theorem, we get:

µ2(S
2
n) ∼

∫
I

∑
y∈f−1{f(x)}

µ(B(y,
e−un

|f ′(y)|
))dµ(x)

∼ 2e−un

∫
I

∑
y∈f−1{f(x)}

h(y)

|f ′(y)|
h(x)dx.

(16)
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On the other hand, still for the case k = 0, we get for the numerator:

µ2(S
2
n ∩ T−1S2

n) ∼
∫
I

∑
y∈A0(x)

µ({z ∈ I, z ∈ B(y,
e−un

|f ′(y)|
) ∩ Tz ∈ B(Ty,

e−un

|f ′(Ty)|
})dµ(x)

∼
∫
I

∑
y∈A0(x)

µ({z ∈ I, |z − y| ≤ e−un

|f ′(y)|
∩ T ′(y)|y − z| ≤ e−un

|f ′(Ty)|
})h(x)dx.

=

∫
I

∑
y∈A0(x)

µ({z ∈ I, |z − y| ≤ min(
e−un

|f ′(y)|
,

e−un

|T ′(y)f ′(Ty)|
)})h(x)dx.

∼ 2e−un

∫
I

∑
y∈A0(x)

h(y)h(x)

max(|f ′(y)|, |(f ◦ T )′(y)|)
dx.

(17)

By a similar reasoning, we get that for k ≥ 1,

µ2(S
2
n ∩

k⋂
i=1

T−i(S2
n)

c ∩ T−k−1S2
n) ∼ 2e−un

∫
I

∑
y∈Ak(x)

h(x)h(y)

max(|f ′(x)|, |(f(T k+1(y))′|)
dx. (18)

Finally, combining eqs. (10),(2), (17) and (18), we obtain

θf2 = 1−
+∞∑
k=0

∫
I

∑
y∈Ak(x)

h(x)h(y)
max(|f ′(x)|,|(f◦Tk+1)′(y)|)dx∫

I

∑
y∈f−1{f(x)}

h′(y)
|f ′(y)|h(x)dx

. (19)

This formula is still di�cult to handle, but under condition (14), pk,2 = 0 for k > 0, and if condition (13)
holds, we obtain

θf2 = 1− p0,2

= 1−

∫
I

h(x)2

max(|f ′(x)|,|(f◦T )′(x)|)dx∫
I

∑
y∈f−1{f(x)}

h(y)h(x)
|f ′(y)| dx

.
(20)

We can generalize this result for q ≥ 2 to obtain the desired result.

Remark 1 For a given map T , assumptions (13) and (14) should be satis�ed for a generic observation f .
The cases where these assumptions are not satis�ed are when T and f share some particular symmetries
and similarities in their structures. For example, µ(A0(x) = {x}) ̸= 1 if both the graphs of T and f are
symmetric with respect to the straight line of equation x = 1/2.

Example 1 Let us take Tx = 2x mod 1 and

f(x) =

{
2x if 0 ≤ x ≤ 1/2
3/2− x if 1/2 < x ≤ 1.

T is strongly mixing and the couple (T, f) satis�es conditions (13) and (14), so that (T, f) should satisfy
the conditions of existence of the limit law, Ä1(un) and Ä′

1(un). It constitutes a good test for our results,
since computations can be worked out quite easily. Applying formula (25), we get

θfq = 1− p0,q = 1− 2 + 22−q

1 + 3q
.

This result is con�rmed by numerical experiments (see �gure (2)). We used the estimator θ̂5 introduced in
[13], which consists in evaluating the 5 �rst pk,q terms appearing in formula (12). To do so, we compute
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Birkho� sums for both the numerator and the denominator de�ning the pk,q terms. It requires �xing a high
threshold u, that we take here equal to the 0.99999-quantile of the empirical Yi distribution. As expected, we
�nd that all the pk,q are 0 or very close to 0 for k ≥ 1. The results are averaged over 10 runs, with trajecto-
ries of length 2.107. The error bars in �gure (2) represent the standard deviations of the results over these
10 runs. In this example, the exact limit distribution can be computed explicitly; since the image measure
is absolutely continuous with a density that does not vanish and that admits no singularities, Df

q = 1 for all q.

Figure 2: Comparison between theory and computation for the θfq spectrum of the system in Example 1.
Details of the computation can be found in the text.

4.2 Numerical estimation of θfq in higher dimensional systems

A general formula for higher-dimensional system is out of scope, but we expect that with conditions of `non
compatibility' between the dynamics and the observation analogue to conditions (13) and (14), all the pk,q
terms are 0 for k ≥ 1. The aim of this section is to show that this hypothesis is corroborated by numerical
experiments.

For the uni-dimensional case, the presence of the derivative of the observation in formula (25) renders
the interpretation of θfq less apparent than in the case f = Id. However, we point out two facts :

� For a given observation f , the larger the values of |T ′| over phase space, the larger the values of θfq , so
this index can still quantify the hyperbolic properties of T .

� For a given map T , the more the points in the observational space have antecedents by f , the larger
is the denominator in equation (25), and the larger is θfq . Oscillatory observations yield higher values
for the extremal index.
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(a) (b)

Figure 3: Left: Estimates for the θfq spectrum computed for a Hénon system with di�erent parameters b

and for the observation f(x, y) = x+y
2 . Right: Estimates for the θfq spectrum computed for the Hénon

system (b=0.3) and di�erent observations : f1 = Id, f2(x, y) = (100x + y, 100y), f3(x, y) = (x, 100y),

f4(x, y) = (x2, y2), f5(x, y) = (sin(1/x), cos(1/y)). For both �gures, we used the estimate θ̂5 introduced in
[13], with trajectories of length 106 and a threshold value equal to the 0.999 quantile of the empirical Yi

distribution. The error bars represent the standard deviation of the results over 10 runs.

We expect analogous properties to hold for higher dimensional systems. To test this statement, we
compare in �gure (3a) the estimates of θfq for the 2-dimensional Hénon system, de�ned by T (x, y) =
(1 − ax2 + y, bx), with a = 1.4 and di�erent values of b such that the system admits a strange attrac-
tor [26]. We consider the observation f(x, y) = x+y

2 . The determinant of the Jacobian is given by b. We �nd
indeed that for this �xed choice of observation, the more the original system tends to separate trajectories
(the higher is parameter b), the higher are the values of θfq , even for uni-dimensional projections. The esti-
mates p̂k,q of the pk,q terms, for k > 0 are all null or close to 0 for all the observations that we considered,
as conjectured earlier.

In �gure (3b), we plot the estimates of the extremal index for 2-dimensional Hénon system (using the
usual parameters a = 1.4, b = 0.3) and di�erent observations. We observe that for one-to-one observations,
(f1, f2 and f3), the θfq spectrum remains relatively low, although the form of the Jacobian can impact

signi�cantly the values of θfq . When the observation ceases to be one-to-one, the whole spectrum of extremal
indices increases signi�cantly (see the curve for f4). This e�ect is even more important for the very oscillatory
function f5. For analogous reasons, we expect that for high dimensional systems, observations that perform
a large drop of dimensionality tend to yield higher values for the θfq spectrum.

5 Application to Sequence Matching

In this section, we discuss the connection between the present problem and sequence matching problems.
Let 

X1 = X1
1X

1
2 . . . X

1
n,

...
Xq = Xq

1X
q
2 . . . X

q
n

(21)
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be q sequences of symbols of length n, drawn from the �nite alphabet A with the same probability
distribution P. We will denote X̄i = (X1

i , X
2
i , ..., X

q
i ). We suppose that the sequences have a good dependence

structure that we will describe later. We are interested in deriving the limit distribution of the length of the
longest matching block for the q sequences; the following random variable:

Ξn,q(X
1, ..., Xq) = max

l=0,...,n
{X1

i+k = X2
i+k = ... = Xq

i+k for k = 0, ..., l and 1 ≤ i ≤ n− l}. (22)

To make the connection between the previous sections, let us now consider, as in [7], the discrete symbolic
dynamical system (A N, σ,P), where σ is the right-sided shift and P is the probability measure associated to
the process. We consider the symbolic distance in A N de�ned by:

d(x1, x2) = exp(− inf{i ≥ 0, σix1 ̸= σix2}). (23)

For our purpose, we take f = Id. In this symbolic dynamics, the quantity Dq (if it exists) identi�es with
a well-known quantity that we now de�ne.

De�nition 5 We call the Rényi entropy of order q of P, the following quantity (if the limit exists):

Hq = lim
k→∞

log
∑

Ck
P(Ck)

q

(1− q)k
, (24)

where Ck(x) = {y ∈ A N : σix = σiy for all 0 ≤ i ≤ k} is the cylinder of length k containing x ∈ A N.

To see that Dq identi�es with Hq in this context, it is enough to start from de�nition (2), take f = Id
and use the symbolic distance, allowing to replace balls by cylinders.

The Dynamical Extremal Index θq = θIdq becomes in this set up (if it exists, and from equation (10)):

θq = 1− p0,q

= lim
k→∞

P(σk+1x1 = σk+1x2 = ... = σk+1xq|σix1 = σix2 = ... = σixq for 0 ≤ i ≤ k).
(25)

Indeed one sees easily that only the p0,q in de�nition (10) is non-zero in this situation (we provide a more
detailed argument in the annex).

The quantity
Yi = − log( max

s=2,...,q
d(x1

i , x
s
i ))

= inf
j≥0

{σjx1
i ̸= σjxs

i , for some s = 2, ..., q}
(26)

is the length of the longest matching sub-sequence starting from the ith symbol of the di�erent sequences.
Now, the quantity

Mn,q(x
1, ..., xq) = max

i=0,n−1
Yi (27)

is equal to
max
l∈N

{x1
i+k = x2

i+k = ... = xq
i+k for k = 1, ..., l and 0 ≤ i ≤ n− 1}.

This object is closely related to the quantity Ξn,q we are interested in. Since we work with di�erent sequences
of symbols, and Yi is a variable de�ned in the product space, we will state our results with respect to
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the product measure Pq. We prove our results under the hypothesis that the process has certain mixing
properties, that we now recall.

De�nition 6 The process (A N, σ,P) is said to be α−mixing if there exists α(n) → 0 such that

sup
A,B⊂A N

|P(A ∩ σ−nB)− P(A)P(σ−nB)| ≤ α(n). (28)

One could obtain a distributional result analogue to Proposition 1, by proving that conditions Ä1(un)
and Ä'1(un) are satis�ed. With this approach, we get the following result, whose detailed proof can be found
in the annex:

Result 1 If the sequences are α-mixing with α(n) < βe−κn for some β ∈ R+ and some κ > Hq(q − 1), and
the limits de�ning θq and Hq exist and are di�erent from 0, then

|Pq(Ξ
q
n ≤ un(s))− exp(−θq exp(−s))| →

n→∞
0,

with un(s) = ⌊ logn+s
Hq(q−1)⌋.

Remark 2 We took f = id, to ensure a clustering structure that satis�es the di�erent conditions of existence
of the limit law, in particular condition Ä'1(un). We could also consider, as in the �rst section of the paper,
a non-trivial f . In the context of sequence matching, f is called the encoding function (or encoder) and can
model di�erent treatments of the original source of information [14]. The clustering structure is however in
this case too complex to yield such a general result.

It is in fact possible to obtain a more general result than Result 1, under much weaker conditions. The
latter is based on results by Abadi and Saussol concerning the Hitting Time Statistics of symbolic dynamics
in cylinders [2]. This idea originates from a discussion with Jérôme Rousseau to whom the author is thankful.

Theorem 1 If P is α− mixing, and if the limits de�ning θq and Hq exist and are di�erent from 0, then

|Pq(Ξn,q ≤ un(s))− exp(−θq exp(−s))| →
n→∞

0,

with un = un(s) = ⌊ logn+s
Hq(q−1)⌋.

Proof. Let us consider the process (Zi) de�ned by

Zi =

{
1 if X1

i = X2
i = ... = Xq

i ,
0 otherwise.

(29)

The problem of �nding the largest common substring to X1, ..., Xq is now equivalent to �nd the longest
succession of ones in the process (Zi). Let us consider the dynamical system (B, P̃, σ), where B = {0, 1}N,
z a point in B and P̃ the probability measure de�ned by

P̃(zi = 1) = Pq(x
1
i = ... = xq

i )

=
∑
a∈A

P(x1
i = a)q. (30)

Let us denote Ik the cylinder constituted of all sequences having their �rst k symbols equal to 1, and
denote

τIk(z) = inf{j ≥ 1 : σjz ∈ Ik},

the �rst hitting time of the point z in the set Ik. We notice that

Pq(Mn,q < un) = P̃(τIun
> n). (31)
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Since P is α−mixing, so is P̃, by theorem 5.1 in [9]. We are then in the set up of Theorem 1 in [2]. In
particular, Hypothesis 1 of this theorem is satis�ed, from Example 2 in [2]. Therefore:

sup
t∈R+

|P̃(λ(Iun
)P̃(Iun

)τIun
> t)− exp(−t)| →

n→∞
0, (32)

where, from [1]:

λ(Iun
) = 1− lim

k→∞

P̃(Ik+1)

P̃(Ik)

= 1− lim
k→∞

∑
Ck+1

P(Ck+1)
q∑

Ck
P(Ck)q

= θq.

(33)

Notice now that we have from equation (24):

Hq = lim
k→∞

1

(1− q)k
log

∑
Ck

P(Ck)
q

= lim
k→∞

log P̃(Ik)
(1− q)k

,

(34)

so that

P̃(Iun
) ∼
n→∞

e−(q−1)Hqun . (35)

If we put t = e−s, equation (32) writes, after rearranging a bit:

sup
s∈R

|P̃(τIun
> e−s+(q−1)Hqun)− exp(−θqe

−s)| →
n→∞

0. (36)

keeping in mind that un = ⌊ logn+s
Hq(q−1)⌋, we get

sup
s∈R

|P̃(τIun
> n)− exp(−θqe

−s)| →
n→∞

0. (37)

Using now equation (31), we obtain that for all s ∈ R:

|Pq(Mn,q > un)− exp(−θqe
−s)| →

n→∞
0. (38)

Now that we have a distributional result for the variable Mn,q, we can get one for Ξn,q, which is a slightly
di�erent object. In fact we have that

Pq(Ξn,q ≤ un) = Pq(Ξn,q ≤ un ∩Mun,q(σ
n−unx1, ..., σn−unxq) ≤ un)

+ Pq(Ξn,q ≤ un ∩Mun,q(σ
n−unx1, ..., σn−unxq) > un).

(39)

The second term is bounded above by the term Pq(Mun,q(σ
n−unx1, ..., σn−unxq) > un), which, by invari-

ance of the measure by σ equals Pq(Mun,q(x
1, ...xn) > un), which is clearly vanishing to 0 as n → ∞, from

(38).

The �rst term in (39) is exactly equal to Pq(Mn,q(x) ≤ un). Therefore:

|Pq(Ξn,q ≤ un)− Pq(Mn,q ≤ un)| →
n→∞

0. (40)

We have that for all s ∈ R:
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|Pq(Ξn,q ≤ un)− exp(−θqe
−s)| ≤ |Pq(Ξn,q ≤ un)− Pq(Mn,q ≤ un)|+ |Pq(Mn,q ≤ un)− exp(−θqe

−s)|, (41)

which, by relations (38) and (40) goes to 0.
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7 Annex (proof of Result 1, via EVT)

We �rst show that both conditions Ä1(un) and Ä'1(un) are satis�ed, so we have an EVL for the random
variable Mn,q. Then we show that Ξn,q and Mn,q have the same asymptotic distribution. Let us �rst take
care of condition Ä′

1(un).
We observe that if Y0 = k ∈ N∗, then Yj = k− j for 1 ≤ j ≤ k. Therefore, if Y0 > un, then Y1 > Yj > un − j
for 2 ≤ j < un, so that all the probabilities in the sum in point 3 of de�nition 4 are 0 for 2 ≤ j < un, that is

lim
n→∞

n

un−1∑
j=2

Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) = 0. (42)

Let 0 < ε2 < ε1 < 1 and C1 = 1 − ε1. We de�ne rn = ⌊C1un⌋ and λn = ⌊nε2⌋. We take j such that
un ≤ j ≤ λn. We observe that {Yj > un} ⊂ {Yj+rn > un − rn}, so that

Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) ≤ Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj+rn > un − rn). (43)

Notice that {Y0 > un ∩ Y1 ≤ un} = {Y0 = un + 1}, and this event depends only on the realizations
of X̄1, ..., X̄un+2, whereas {Yj+rn > un − rn} depends only on the realizations of X̄j+rn , X̄j+rn+1, ..., which
puts a gap of length j + rn − un − 2. We now use the fact that the sequences are α−mixing, which implies
that the q−fold Cartesian product of the sequences is (αq)-mixing, with αq(n) ≤ qα(n) (see theorem 5.1 in
[9]). We have

Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) ≤ αq(j + rn − un − 2) + Pq(Y0 > un ∩ Y1 ≤ un)Pq(Yj+rn > un − rn)

≤ qα(j + rn − un − 2) + Pq(Y0 > un)Pq(Yj+rn > un − rn)

≤ qβe−κ(j+rn−un−2) + Pq(Y0 > un)Pq(Y0 > un − rn).
(44)

To get the last inequality, we used the invariance of the measure. Notice that j ≥ un, so that e
−κ(j+rn−un−2) ≤

e−κ(rn−2). We also have from relation (17) that Pq(Y0 > un) ∼ e−unτq , where τq = Hq(q − 1), so that there
exists C2 > 1 such that

Pq(Y0 > un) < C2e
−unτq .

We then have:

Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) ≤ qβe−κ(rn−2) + C2
2e

−(2un−rn)τq . (45)
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Then we can write

n

λn∑
j=un

Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) ≤
λn∑

j=un

[nqβe−κ(rn−2) + nC2
2e

−(2un−rn)τq ]

≤ (λn − un)nqβe
−κ(rn−2) + (λn − un)nC

2
2e

−(2un−rn)τq

≤ λnnqβe
−κ(rn−2) + λnnC

2
2e

−(2un−rn)τq

≤ (qβe2κ)nλne
−κrn + C2

2nλne
−2(un−rn)τq

≤ (qβe2κ)nλne
−κ⌊C1un⌋ + C2

2nλne
−2(un−⌊C1un⌋)τq

≤ (qβe2κ)nλne
−κ(C1un−1) + C2

2nλne
−(2−C1)unτq

≤ (qβe3κ)nλne
−κC1⌊ log n+s

τq
⌋
+ C2

2nλne
−(2−C1)⌊ log n+s

τq
⌋τq

≤ (qβe3κ)nλne
−κC1(

log n+s
τq

−1)
+ C2

2nλne
−(2−C1)(

log n+s
τq

−1)τq

≤ C3nλne
−κC1

log n
τq + C4nλne

−(2−C1) logn,

(46)

with

C3 = qβe3κe
−κC1(

s
τq

−1)

and

C4 = C2
2e

(C1−2)(s−τq).

For the �rst term, we have

C3nλne
−κC1

log n
τq = C3n⌊nε2⌋e−κC1

log n
τq

≤ C3nn
ε2e

−κC1
log n
τq

≤ C3n
1+ε2−κC1

τq

≤ C3n
1+ε2−κ(1−ε1)

τq .

(47)

Since κ > τq, we can always chose ε1, ε2 and ε3 > 0 such that

ϵ3 >
(ε1 + ε2)τq

1− ε1
(48)

and

κ > τq + ε3. (49)

We then have

1 + ε2 −
κ(1− ε1)

τq
< ε1 + ε2 −

ε3(1− ε1)

τq
< 0. (50)

and so by relation (47):

C3nλne
−κC1

log n
τq →

n→∞
0. (51)

Let us now come to the second term in relation (46):

C4nλne
−(2−C1) logn = C4n⌊nε2⌋e−(1+ε1) logn

≤ C4n
ε2−ε1 .

(52)
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And since ε1 > ϵ2:

C4nλne
−(2−C1) logn →

n→∞
0. (53)

Combining relations (51), (53) and (46), we have that:

lim
n→∞

n

λn∑
j=un

Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) = 0. (54)

Combining equation (42) and (54), we get that

lim
n→∞

n

λn∑
j=2

Pq(Y0 > un ∩ Y1 ≤ un ∩ Yj > un) = 0. (55)

Taking kn = n
λn

= n1−ε2 , we have that points 1 and 3 of condition Ä′
1(un) are satis�ed. To satisfy point

2, we take tn = ⌊nε4⌋, with ε4 < ε2. Ä
′
1(un) is then satis�ed.

Let us now come to condition Ä1(un). De�ne the event Ωn = {Y0 < ⌊tn/2⌋}. We have that

|Pq(An ∩Btn,l,n)− Pq(An)Pq(B0,l,n)| ≤ |Pq(An ∩ Ωn ∩Btn,l,n)− Pq(An ∩ Ωn)Pq(B0,l,n)|
+ |Pq(An ∩ Ωc

n ∩Btn,l,n)− Pq(An ∩ Ωc
n)Pq(B0,l,n)|.

(56)

We have just introduced a gap of size tn − ⌊tn/2⌋ − 1 in the �rst term of the right hand side of the
previous inequation. Indeed, for n large enough, the event An ∩ Ωn depends only on the realizations of
X̄1, X̄2, ..., X̄⌊tn/2⌋, while Btn,l,n depends on the realizations of X̄tn , ..., X̄tn+l. We can then bound this term,
using again theorem 5.1 in [9] :

|Pq(An ∩ Ωn ∩Btn,l,n)− Pq(An ∩ Ωn)P(B0,l,n)| ≤ qα(tn − ⌊tn/2⌋ − 1)

≤ qβe−κ(tn−⌊tn/2⌋−1)

≤ qβe−κ(tn/2−1).

(57)

For the second term, we can write

|Pq(An ∩ Ωc
n ∩Bt,l,n)− Pq(An ∩ Ωc

n)Pq(B0,l,n)| ≤ |Pq(An ∩ Ωc
n ∩Bt,l,n)|+ |Pq(An ∩ Ωc

n)Pq(B0,l,n)|
≤ 2Pq(Ω

c
n) ∼ 2e−⌊tn/2⌋τq

≤ C5e
−⌊tn/2⌋τq

≤ C5e
−(tn/2−1)τq ,

(58)

for some C5 > 2.

Let us now take
γ(n, tn) = qβe−κ(tn/2−1) + C5e

−(tn/2−1)τq .

Combining expressions (56), (57), (58), we get

|Pq(An ∩Bt,l,n)− Pq(An)Pq(B0,l,n)| ≤ γ(n, tn). (59)

Let us recall that from condition Ä′
1(un), tn = ⌊nε4⌋ = o(n). γ is clearly decreasing and we check easily

that
nγ(n, tn) →

n→∞
0.

Condition Ä1(un) is then satis�ed. We can now apply corollary 4.1.7 in [18] to get that
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Pq(Mn,q ≤ un)− exp(−θq exp(−s)) →
n→∞

0. (60)

We conclude by using the same arguments as in the proof of Theorem 1, showing that Mn,q and Ξn,q

have the same limit distribution.
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