
HAL Id: ird-03715868
https://ird.hal.science/ird-03715868v1

Submitted on 6 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modelling marine predator habitat using the abundance
of its pelagic prey in the tropical southwestern Pacific

Aurore Receveur, Valerie Allain, Frederic Menard, Anne Lebourges Dhaussy,
Sophie Laran, Andreas Ravache, Karen Bourgeois, Eric Vidal, Steven R Hare,

Henri Weimerskirch, et al.

To cite this version:
Aurore Receveur, Valerie Allain, Frederic Menard, Anne Lebourges Dhaussy, Sophie Laran, et al..
Modelling marine predator habitat using the abundance of its pelagic prey in the tropical southwestern
Pacific. Ecosystems, 2022, 25 (6), pp.757-779. �10.1007/s10021-021-00685-x�. �ird-03715868�

https://ird.hal.science/ird-03715868v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 

1 
 

Citation : Receveur A., Allain V., Ménard F., Lebourges-DhaussyA., Laran S., Ravache A., Bourgeois K., Vidal E., 

Hare S.R., Weimerskirch H., Borsa P., Menkes C. (2021) Modelling marine predator habitat using the abundance of 

their pelagic prey in the tropical southwestern Pacific. Ecosystems 25, 757-779. 
 

 

 

Modelling marine predator habitat using the abundance of their pelagic prey in the tropical 

southwestern Pacific  

 

(running title: Predator habitat in the tropical southwestern Pacific) 

 

 

Aurore Receveur1,2,3,*, Valerie Allain1, Frederic Menard2, Anne Lebourges Dhaussy4, Sophie Laran5, 

Andreas Ravache3, Karen Bourgeois1,6, Eric Vidal3, Steven R. Hare1, Henri Weimerskirch7,  

Philippe Borsa3, Christophe Menkes3  

 

 

 
1 OFP/FEMA, Pacific Community, 95 Promenade Roger Laroque, BP D5, 98848 Nouméa, New Caledonia. 
2 MIO, Aix Marseille Univ, Université de Toulon, CNRS, IRD, 13288 Marseille, France. 
3 ENTROPIE, UMR 250 IRD, BP A5, 98848 Nouméa, New Caledonia. 
4 LEMAR, IRD, Univ. Brest, CNRS, Ifremer, Campus Ifremer, BP70, Plouzané, France. 
5 Observatoire PELAGIS, UMS 3462, La Rochelle Université, CNRS, Pôle Analytique, 5 allée de l'Océan, 17 000 

La Rochelle, France. 
6 IMBE, Aix-Marseille Université, CNRS, IRD, Avignon Université, Centre IRD Nouméa, BP A5, 98848 

Nouméa, New Caledonia.  
7 Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, 

France. 

* Corresponding author: +49 160 98703277; receveur.aurore@gmail.com  

 

  

mailto:receveur.aurore@gmail.com


 

2 
 

ABSTRACT  

 

Understanding the ecological mechanisms underpinning species distribution patterns is vital in managing 

populations of mobile marine species. This study is a first step towards an integrated description of the 

habitats and spatial distributions of marine predators in the Natural Park of the Coral Sea, one of the 

world’s largest marine protected area at about 1.3 million km2, covering the entirety of New Caledonia’s 

pelagic waters. The study aims to quantify the benefit of including a proxy for prey abundance in predator 

niche modelling, relative to other marine physical variables. Spatial distributions and relationships with 

environmental data were analysed using catch per unit of effort data for three fish species (albacore tuna, 

yellowfin tuna, and dolphinfish), sightings collected from aerial surveys for three cetacean guilds 

(Delphininae, Globicephalinae and Ziphiidae) and foraging locations identified from bio-tracking for three 

seabird species (wedge-tailed shearwater, Tahiti petrel and red-footed booby). Predator distributions were 

modelled as a function of a static covariate (bathymetry), oceanographic covariates (sea surface 

temperature, chlorophyll-a concentration and 20°C-isotherm depth) and an acoustically-derived 

micronekton preyscape covariate. While distributions were mostly linked to bathymetry for seabirds, and 

chlorophyll and temperature for fish and cetaceans, acoustically-derived prey abundance proxies slightly 

improved distribution models for all fishes and seabirds except the Tahiti petrel, but not for the cetaceans. 

Predicted spatial distributions showed that pelagic habitats occupied by predator fishes did not spatially 

overlap. Finally, predicted habitats and the use of the preyscapes in predator habitat modelling were 

discussed.  

 

Key words: Micronekton, acoustic, niche modelling, Coral Sea Natural Park, cetacean, seabird, predator 

fish  

 

HIGHLIGHTS 

• Mapping of distribution of marine predators in one of the largest marine reserves in the world, using 

static, oceanographic and acoustically-derived prey covariates 

• Preyscapes derived from hydro-acoustic data improves predator niche modelling 

• Spatial distributions of nine predator species are mapped.   

 

Supplementary information: See Supplementary files S1, S2 and S3 at the end of this document 
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INTRODUCTION  

 

Modelling the habitat (e.g., thermal preference) of top predators is critical to understanding their 

spatiotemporal dynamics and developing appropriate conservation strategies. However, the way top 

predators are monitored largely varies among groups and can make the modelling of their habitat a 

challenging task. The abundance of commercially exploited species is often assessed using catch data (e.g., 

Lan and others 2018), and that of non-target species, using by-catch data (e.g., Escalle and others 2019) 

and on-board observer data (e.g., Lopez and others 2003). Non-targeted species such as cetaceans or 

seabirds are usually counted from boats or aircrafts. Movements of exploited and non-exploited marine 

predators are also monitored using a variety of tags (e.g., Block and others 2011; Abecassis and others 

2015; Leroy and others 2016; Ravache and others 2020a). With some tagging methods, behaviour 

(foraging, migrating, resting) can be identified at various spatial-temporal scales: from a few seconds to 

several years, and from a few centimeters to thousands of kilometers.  

 Moreover, while vertical and horizontal movements of marine predators are generally assumed to be 

mainly motivated by foraging behaviour (Lehodey and Maury 2010), proxies of prey availability and 

abundance are often absent from predator niche modelling (Robinson and others 2011). Such studies are 

generally restricted to oceanographic (e.g., temperature, oxygen, chlorophyll-a concentration) and static 

(e.g., depth, bottom slope) variables. The absence of prey in predator niche modelling results from 

difficulties in quantifying their abundance and characterizing their dynamics (e.g., Escobar-Flores and 

others 2018; Proud and others 2018), as well as from variability in predator diet (e.g., Potier and others 

2007; Olson and others 2014; Duffy and others 2015). At the local scale, predator-prey relationships have 

sometimes been studied using acoustically-derived prey distributions (e.g., Bertrand and others 2002a; 

Torres and others 2008; Lezama-Ochoa and others 2010). At the regional scale, assessments of the 

influence of prey distribution on predator distribution generally do not use in situ prey information but, 

rather, ecosystem model output from which preyscapes are derived (a spatial layer of prey biomass or 

abundance; e.g., Briand and others 2011; Lambert and others 2014; Miller and others 2018; Green and 

others 2020; Pérez‐Jorge and others 2020). In the absence of in situ prey distribution observations to 

validate ecosystem model outputs, the reliability of such predicted preyscapes is questionable (Receveur 

and others 2020a). 
 In addition, diel vertical migration (DVM) of prey in the water column and the vertical behaviour of 
hunting predators influence predator-prey interactions (Schaefer and Fuller 2007, 2010; Benoit-Bird and 
McManus 2012; Choy and others 2017; Houssard and others 2017). Therefore, the vertical preferences 
and dynamics of organisms have to be taken into account in habitat predictive modelling (Opdal and 
others 2008; Louzao and others 2019a). 

 Horizontal and vertical preyscape structures around New Caledonia have been assessed using in situ 

acoustic data from at-sea surveys (Receveur and others 2019, 2020a). This region is characterized by a high 

richness of predators (e.g., Ceccarelli and others 2013; Laran and others 2016; Borsa and Vidal 2018), 

which issupported by a diversity of prey (Allain and others 2012; Williams and others 2015; Receveur and 

others 2020b). This high diversity motivated the creation of the Natural Park of the Coral Sea covering 

the entire New Caledonia exclusive economic zone (EEZ, 1.3 million km2; Martin and Lecren 2014). The 

creation of this large Natural Park has emphasized the need for robust scientific information on the pelagic 

ecosystem status and potential anthropogenic threats (Ceccarelli and others 2013; Gardes and others 

2014). In the present study, a statistical model combining environmental covariates and vertically-

structured prey abundance with top predator abundance and occurrence data, was developed for New 

Caledonian waters. The benefit of including a proxy for prey abundance (the acoustic echo intensity 

integrated over different depth layers) in predator niche modelling, in addition to that of other marine 

physical variables, was quantified. Statistical relationships were then used to predict and map the spatial 

distributions of the nine selected marine predators.  

 

METHODS  
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Statistical models were fitted to indices of predator abundance and occurrence as a function of covariates 

that included prey distribution and other biotic and abiotic oceanographic conditions. Our domain of 

investigation covered the New Caledonia EEZ (14°S–27°S, 156°E–175°E, Figure 1).  

 

Covariates  

 

Five biophysical oceanographic variables and a proxy for biotic prey comprised the six environmental 

variables used to explore drivers of predator abundance/occurrence (Supplementary Table S1). All 

covariates were extracted or predicted at the date and position of each predator observation. Bathymetry 

was extracted from the ZoNéCo database at a 500-m spatial resolution (ZoNéCo, 2013). Sea-surface 

temperature (SST) was extracted from the NOAA OI SST high resolution dataset (Reynolds and others 

2007). The depth of the 20°C isotherm was extracted from the Armor3D dataset (Guinehut and others 

2012). Surface chlorophyll-a concentration was extracted from GLOBCOLOUR (Saulquin and others 

2011). SST, depth of the 20°C isotherm and chlorophyll-a concentration were extracted on a ¼ degree 

spatial grid, with a weekly temporal resolution. 

 

Prey data  

 
The preyscapes were derived from the 3-D statistical model developed by Receveur and others (2019), 

which relates micronekton vertical distribution obtained from acoustic data to environmental conditions 

in the Coral Sea region. Acoustic data collection, statistical methodology, and validation of micronekton 

biomass estimates in the New Caledonia EEZ are detailed in Receveur and others (2019) and in 

Supplement 2. Acoustic data, covering more than 17,500 km of line transect, were collected during six 

cruises from 2011 to 2017 (Supplementary Figure S3 and Table S3; Allain and Menkes 2011), using an 

EK60 echo sounder (SIMRAD Kongsberg Maritime AS, Horten, Norway). After processing, 38 kHz 

acoustic data were echo-integrated to provide the nautical-area scattering coefficient (NASC, in m2.nmi-2), 

a proxy for micronekton biomass (Maclennan and others 2002; Irigoien and others 2014; Proud and others 

2017). It is important, however, to keep in mind that gas-filled organisms (e.g., fishes with a swim bladder) 

are largely dominant in the NASC38 kHz  signal, while other organisms without gas are poorly represented 

(Davison and others 2015).  

 The final dataset was then composed of 16,715 acoustic vertical profiles deployed between 10 m and 

600 m, excluding transition periods at dawn and dusk. A machine-learning model (XGBoost, a machine 

learning regression tree) was fitted to link the acoustic vertical profiles to environmental explanatory 

variables: norm of the wind, 0-600 m mean temperature, 0-600 m mean oxygen, 0-600 m mean salinity, 

surface chlorophyll, bathymetry and sun inclination (Supplementary Figure S4, left column). This model 

enabled us to robustly predict (with a success rate of 87% of in cross validation and Supplementary Figure 

S5) a proxy for the vertical micronekton biomass (NASC profiles) for the entire New Caledonia EEZ. 
 NASC profiles were predicted on a regular ¼° spatial grid and ona weekly temporal resolution 
(Supplementary Figure S4, right column) for day and night periods. Predicted NASC profiles were then 
integrated to obtain the day and night preyscapes over four vertical layers that were defined according to 
predators’ behaviour (see ‘‘Statistical analysis for niche modelling’’ section): 10-30 m (sub-surface; 
‘sub_surf’), 10-200 m (i.e. epipelagic layer; ‘epi’), 200-400 m (i.e. upper mesopelagic layer; ‘up_meso’) and 
400-600 m (i.e. lower mesopelagic layer; ‘low_meso’) (Figure 2).  

 

Predator data collection  

 

Tuna and dolphinfish  
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Predator fish abundance was inferred from fishery daily catch rates (Table 1, Figure 3). Daily catch rates 

(number of fish per hundred hooks) of albacore tuna (Thunnus alalunga, ALB), yellowfin tuna (Thunnus 

albacares, YFT) and dolphinfish (Coryphaena hippurus, DOL) were obtained from the logbooks of all 

longliners operating in the New Caledonian EEZ from 2010 to 2018 (Anonymous 2018). The logbooks 

provided information on a daily basis: name of vessel, date and location (latitude and longitude) of the 

beginning of the fishing set, number of hooks, and number of specimens captured per species. The 

logbook data from the New Caledonia fishing fleet are considered highly reliable; 100% of logbooks are 

received by the Direction des affaires maritimes, fishing locations recorded in logbooks are verified against 

vessel monitoring system data for each set, while catch species and quantities are verified by on-board 

fisheries observers and port samplers. 

 

Cetaceans 

 
Cetacean counts were obtained from a large-scale aerial survey of the New Caledonia EEZ made between 

October and December 2014 (REMMOA survey: Laran and others 2016a; Table 1). More than 30,000 km 

line transect were surveyed over a total surface area of 542,300 km2 (39% of the EEZ, Figure 3) at a ground 

speed of 90 knots and an altitude of 600 feet. A line-transect methodology was used to count cetaceans 

(Buckland and others 2001) from high-wing double engine aircrafts equipped with bubble windows 

enabling vertical observation of the sea surface. Cetacean group size was recorded at the lowest possible 

taxonomic level, alongside observation conditions (Beaufort Sea-state, glare severity, turbidity, subjective 

condition and cloud coverage). Cetacean observations were summed over 10-km segments of effort with 

homogenous weather conditions. Only segments with good weather conditions (i.e., Beaufort sea state 

≤ 3 and subjective condition medium, good or excellent) were kept. Perpendicular distances from the 

track line were obtained from clinometer measurements by observers. 

 As the number of observations per species was relatively small, we grouped species into energetic guilds 

based on morphological features and diving capabilities (Lambert and others 2014; Mannocci and others 

2014a, 2014b). These authors considered diving ability as a proxy for energetic requirements to classify 

tropical odontocete species into three guilds: Delphininae (DELPH), Globicephalinae (GLOB) and 

Ziphiidae (ZIPH). The DELPH guild was composed of small Delphininae [Stenella longirostris (9% of 

sightings), S. attenuata (9%) and unidentified Stenella spp.] and large Delphininae including Tursiops truncatus 

(21%), T. aduncus (19%), Lagenodelphis hosei (7%), and unidentified large Delphininae. The GLOB guild was 

composed of Globicephala macrorhynchus (52%), Grampus griseus (16%), Pseudorca crassidens (8%), Peponocephala 

electra (3%) and unidentified small and large Globicephalinae (3% and 16%, respectively). The ZIPH guild 

included Ziphius cavirostris (41%), Indopacetus pacificus (18%), Mesoplodon spp. (20%), and possibly other, 

unidentified beaked whale species.  

 

Seabirds  

 
Seabird positions were obtained from GPS-tracking surveys in 2012 and 2015 (in May, June and 

November) for the red-footed booby (Sula sula, RFBO; 21 individuals equipped), and in 2017, 2018 and 

2019 (in January, June, and from August to December) for the Tahiti petrel (Pseudobulweria rostrata, TAPET; 

21 individuals equipped), both present year-round in New Caledonian waters (Table 1; Borsa and others 

2010). The wedge-tailed shearwater (Ardenna pacifica, WTSH; 68 individuals equipped), present in the area 

during the breeding season only, i.e. between October and May (Weimerskirch and others 2020), was 

tracked in 2017, 2018 and 2019 (in March and April).  

 GPS receivers were attached to adult WTSH during the chick-rearing period at five study colonies 

(Supplementary Figure S2). The Pindaï study colony is located on New Caledonia’s main island [colony 

size (N) = 11,000 breeding pairs; see Supplementary Table S2 for detailed references]. Three other study 

colonies (Tiam’bouene, N = 11,520; Canards, N = 340; and Mato, N = 2000) were lagoon islets, located 
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less than 20 km from the main island. The farthest study colony was Loop islet in the Chesterfield atoll 

(N = 11,000), located 600 km NW of New Caledonia’s main island. Details concerning the deployment 

of the GPS receivers have been presented previously (Ravache and others 2020a; Weimerskirch and others 

2020).  

 GPS-tracked TAPET were from the Mato (N > 20 breeding pairs) and Nemou (diffuse colony of a 

few hundred breeding pairs) study colonies, the latter being located in the eastern lagoon of New Caledonia 

(Ravache and others 2020b).  

 GPS-tracking experiments on adult RFBO were conducted on colonies from the Chesterfield atoll (N 

= 3540) in 2012 and Surprise islet (N = 2883) (Entrecasteaux atoll, 200 km north to New Caledonia’s 

main island) in 2015 (Mendez and others 2017, 2020).  

 The geographic distribution of the WTSH and TAPET study colonies was deemed representative of 

the populations of these two species across the New Caledonian EEZ (see Supplementary Table S2). The 

two RFBO colonies sampled were among the largest within the New Caledonian EEZ and were located 

in its northern half; two other major colonies located in the south eastern part of the New Caledonian 

EEZ (Walpole and Hunter; Supplementary Table S2) were not sampled.  

 The expectation-maximization binary clustering (EMbC) algorithm (Garriga and others 2016) was used 

to classify seabird movements in four behaviourial categories. EMbC is a robust multivariate clustering 

algorithm based on trajectory sinuosity and speed, allowing identification of specific behaviours. It 

assumes that wide turning angles between consecutive locations indicate foraging behaviour, while fast 

and straight bouts are associated with commuting movement. One of the four following behaviours was 

assigned to each GPS position using the EMbC method: resting (low speed, small turning angle), 

commuting (high speed, small turning angle), extensive search (high speed, wide turning angle) or intensive 

foraging (low speed, wide turning angle). Movement bouts including at least three consecutive ‘intensive 

foraging’ locations (and ‘intensive foraging’ or ‘extensive search’ for TAPET, Ravache and others 2020b) 

were then conserved as ‘foraging presence’ locations, while the other locations were considered as 

‘foraging absence’ locations for further analysis.  

 

Statistical analysis for niche modelling   

 

Generalized additive models (GAMs; Hastie and Tibshirani 1990) and generalized additive mixed models 

(GAMMs) were used to examine relationships between predator abundance/occurrence (the response 

variable) and a suite of covariates (i.e., bathymetry, SST, chlorophyll-a concentration, d20 and NASC, 

Table S1). Absence of collinearity between pairs of covariates was tested using Spearman’s rank correlation 

test (below 0.5, Louzao and others 2011). All variables were smoothed with cubic splines with a maximum 

knot number set to eight for tunas and four for the seabirds and cetaceans due to the limited number of 

data, to prevent overfitting. Residual checks were conducted for the nine models using quantiles (Dunn 

and Smyth 1996) : residual variance was constant, residuals were independent, and neither predicted values 

and residuals nor explanatory variables and residuals were statistically linked. 

 Models were fitted successively, excluding each of the remaining terms one at a time, to assess the 

percentage of variation explained by a predictor and to classify predictors according to the magnitude of 

their influence in the model.  

 

Models for tunas and dolphinfish  

 
For fishes, the response variable of the three GAMs was the number of specimens caught. The logarithm 

of the number of hooks was added as an offset to consider the variability in fishing effort among trips. A 

random effect by vessel was also fitted to deal with the variability in catchability among vessels. Year was 

added as a continuous explanatory variable to assess possible temporal change, and spatial smoothing in 

latitude and longitude was added to account for spatial autocorrelation (Table 2).  
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 As the exact time of the catch by commercial longliners was unknown, NASC values integrated by 

depth class were averaged over day and night. Only the epipelagic layer was considered for DOL 

(Furukawa and others 2014; Lin and others 2019); the epipelagic and the upper mesopelagic layers were 

chosen for YFT (Dagorn and others 2006; Schaefer and others 2009); while the epipelagic, and the upper 

and lower mesopelagic layers were used for ALB (Williams and others 2015).  

 

Models for cetaceans 

 
For cetaceans, the response variable of the three GAMs was the number of individuals counted along the 

flight track per approximately 10-km long segment. To estimate the sample area, effective strip width was 

used (ESW), estimated as the point at which the number of schools detected beyond is equal to the number 

of schools that are missed within (Marques and Buckland 2004). The area sampled for each single segment 

was the length multiplied by twice the corresponding associated ESW. The log-transformed sampled area 

was added as an offset in the model to account for the variability in sampling effort. ESW for these data 

sets were estimated by Laran and others (2016a).  

 As aerial surveys were conducted during the day, NASC values were used for the day period only, and 

included the epipelagic, upper and lower mesopelagic layers (Lambert and others 2014).   

 

Models for seabirds  

 
For seabirds, GAMMs were used to account for autocorrelation between consecutive behaviours in an 

individual. An autocorrelation structure of order two with a random effect fitted by individual was nested 

to deal with the correlation structure (Wood 2006; Dormann and others 2007). The response variable of 

the three GAMMs was the occurrence of foraging behaviour. 

 Using the GPS time stamp, we calculated sun inclination (Michalsky 1988; Blanc and Wald 2012) to 

estimate the period of the day (negative sun inclination values for night and positive values for day) of 

each spatial location. NASC values were then used for the corresponding moment of the day (day or 

night), and the sub-surface layer (10-30 m) was used, i.e., the vertical layer used by these species to forage 

(Table 2). The first 10 meters were missing as they are not recorded by the echosounder and therefore not 

present in the acoustic modelling (Receveur and others 2019).  

 

Prediction protocol  

 

To avoid predictive extrapolation, predictions were limited to sampled environmental variable ranges 

hence the presence of blank areas in the prediction maps, particularly visible for seabirds. Moreover, to 

avoid temporal extrapolation, predictions were made only for months when data were collected (given in 

Table 1).  

 The predictions were made on a regular 0.25-degree spatial grid based on environmental and NASC 

values, on a weekly temporal resolution, for all weeks of surveyed months between 2010 and 2019. For 

visualization, the predictions were then averaged over three month periods (DJF: December, January and 

February; MAM: March, April and May; JJA: June, July and August; SON: September, October and 

November) over the 2010-2019 period. For the NASC values, the same vertical layers and night/day 

periods (i.e., night-day mean for fish, day for cetaceans and night and day separated for seabirds) were 

used as for the fitted models (Table 2). As the fine-scale robust bathymetry used was available only for the 

New Caledonian EEZ (ZoNéCo 2013), predictions were limited to this EEZ.  

 The three fish models were used to predict catch values with an offset of number of hooks set to the 

mean value over the studied years (1960 hooks/longline set). To obtain catch per unit of effort (CPUE), 

a proxy for fish abundance, predicted catches in each grid cell were divided by the offset.  
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 For cetaceans, the number of individuals was predicted with an offset of sampled area set to a mean 

value (4 km²). To obtain density of individuals (no./km2), predicted numbers of individuals in each grid 

cell were then divided by the offset.  

 Finally, for the three seabird species, the model directly predicted the probability of occurrence of 

foraging behaviour. The breeding parents are spatially limited to the region they can reach by their flying 

ability and by the time that they can spend away from their chick. Therefore, the maximal distance travelled 

from the colony was calculated based on the datasets for each species (774 km for WTSH, 1079 km for 

TAPET, and 320 km for RFBO), and the predictions were spatially limited to the circle with a radius equal 

to this maximal distance. For WTSH and TAPET, the predictions were limited by this maximal distance 

around the sampled colonies. For the RFBO, three well-known colonies were added in the south of the 

EEZ (Supplementary Figure S2), and the predictions were limited around these five (two sampled and 

three well-known) colonies.   

 All analyses were conducted using R version 3.5.0 (R Core Team 2016) and GAMs were done using 

the mgcv package (Wood 2017). The R script used for modelling and predictions is given in Supplement 3.  

 

RESULTS  

 

Environmental and prey layers  

 

Bathymetry is complex in the New Caledonia EEZ (Figure 1A), with deep waters in the north and the 

southeast (~ 5 km), shallower waters in the southwestern corner and south of the main island (~ 3 km), 

and the deep New Hebrides trench in the east (>7 km deep; Stewart and Jamieson 2018).  

 On average, for the 2010-2019 period, relatively warmer SSTs occurred in the north (~ 24°C) and 

colder SSTs in the south (~ 18°C) (Figure 1B). Mean depth of the 20°C-isotherm was about 160 m in the 

south and about 210 m in the north with the deepest values (~ 230 m) located west of the Chesterfield 

reefs (Figure 1C). Chlorophyll-a concentration was high close to coasts and reefs, and generally higher in 

the south of the main island compared to the north.  

 As for SST and the 20°C-isotherm depth, NASC spatial distribution showed a strong latitudinal 

gradient, especially during the night, with values in the south almost twice as high as values in the north 

on average for the 2010-2019 period (Figure 2). During the day, between 0 and 30 m, the largest NASC 

values were close to the coast of the main island and in the south. The 200-400 m integrated NASC showed 

similar spatial patterns. The 0-200 m and 400-600 m integrated NASC were higher in the south than in 

north.  

 

Predator data  

 

ALB, YFT and DOL datasets were composed of 14,941, 17,420 and 17,106 longline sets, respectively, 

collected between January 2010 and December 2018. The number of fish caught per 100 hooks, calculated 

by set, ranged between 1 and 26.5 (ALB), 1 and 9.1 (YFT) and 1 and 3.3 (DOL). The EEZ was fished 

across its entirety, except for small regions in the southeastern corner and in the extreme north (Figure 3).  

 Cetacean data were distributed more sparsely, with spatial and temporal observation coverage lower 

than for fish. There were around 2,500 segments, but with a low number of sighting occurrences (between 

31 and 40 according to the cetacean guild). The encounter rates (number of individuals per sampled km²) 

ranged from 0 to 26.7 for DELPH, from 0 to 163.8 for GLOB (with only two rates larger than 10), and 

from 0 to 1.5 for ZIPH (Figure 3).  

 For seabirds, temporal sampling effort was limited by the breeding season, when animals were present 

in New Caledonia (Table 1). The number of recorded GPS positions  varied substantially among species, 

with more than 11,500 observations for WTSH (including 3934 eating occurrences), more than 6,500 for 
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RFBO (including 1547 eating occurrences), and more than 4500 for TAPET (including 1586 eating 

occurrences).   

 

Environmental drivers of predator distribution  

 

Importance of prey distribution  

 

Total deviance explained by abundance/occurrence models ranged from 7.3% (DELPH) to 31.7% 

(GLOB) (Table 3). The NASC variable had a relatively small influence in all models, although it ranked 

second for WTSH and RFBO, third in YFT, fourth in DOL and fifth in ALB (Table 3). Relationships to 

NASC were weak and non-significant for DELPH, GLOB, ZIPH and TAPET (Figure 4) with very low 

deviance explained by these variables (Table 3).  

 ALB abundance was positively linked to NASC values in the epipelagic and lower mesopelagic layers: 

the higher the NASC values, the larger the predicted CPUE (Figure 4), and negatively linked in the upper 

mesopelagic. DOL abundance was positively linked to epipelagic NASC values. YFT relationships with 

epipelagic and upper mesopelagic NASC were negative, with a steeper slope for the epipelagic than for 

the upper mesopelagic NASC.  For ALB and DOL, NASC influence was relatively small compared to the 

total deviance explained while it was five times higher for YFT (Table 3).  

 WTSH foraging probability was linearly positively related to 10-30 m NASC values during the day, 

while the relationship exhibited a bell shape during the night (Figure 4). The NASC variable was the second 

most important driver of this species’ foraging probability as it explained 6.7% of the deviance (Table 4). 

RFBO foraging probability was negatively linked to NASC values during the day (Figure 4) and NASC 

relative importance in RFBO model ranked second with 5.7% explained deviance (Table 4). The flat 

relationship between NASC and TAPET foraging probability demonstrated the non-significance of the 

relationship (Figure 4).  

 

Other oceanographic drivers  

 

For the predatory fishes, the four other environmental covariates were almost all statistically significant 

but their influence ranked differently across species (Table 3). YFT and DOL CPUEs were most 

influenced by chlorophyll-a concentration and ALB CPUE by SST. Bathymetry was the second influencing 

factor for ALB and YFT, and SST ranked second for DOL. 

 Optimal environmental values varied among fish species (Figure 5): higher ALB catch was predicted 

for intermediate bathymetry (around 4 km), whereas YFT catch was highest for shallower bathymetry 

(shallower than 2 km), and DOL catch was highest for bathymetry deeper than 4 km depth. Maximum 

YFT catch was predicted for intermediate chlorophyll values (0.2-0.4 mg.m-3), whereas DOL catch was 

highest for low chlorophyll-a concentration values (below 0.1 mg.m-3). The relationship with chlorophyll 

for ALB was almost flat. Colder SST (below 22.5°C) was favourable to ALB catch whereas warm SST 

increased YFT and DOL catch (about above 27°C). ALB and DOL catch increased with 20°C-isotherm 

depths greater than 200 m depth; conversely, YFT catch was higher when the 20°C-isotherm was shallower 

than 200 m depth (Figure 5).  

DELPH abundance was mostly influenced by chlorophyll-a concentration; GLOB abundance by the 

20°C-isotherm depth; and ZIPH abundance, by chlorophyll-a concentration (Table 3). Higher DELPH 

abundance was predicted in waters with low chlorophyll-a concentration (below 0.1mg.m-3) and cold SST 

(< 25 °C). GLOB abundance was predicted to be higher when the 20°C-isotherm was deep, when the 

depth was either shallower than 2 km or deeper than 4km, and in waters with low chlorophyll-a 

concentration. ZIPH abundance was predicted to be higher in waters with intermediate chlorophyll-a 

concentrations (about 0.8 mg.m-3), around 3 km deep, with warm SST and with a 20°C-isotherm depth at 

around 150 m (Figure 5).  
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 Foraging behaviour of the three seabird species was primarily influenced by bathymetry, but with 

contrasting optimal values: WTSH mostly fed where waters were deeper than 2 km while TAPET and 

RFBO fed in waters shallower than 2 km (Figure 5). Secondarily, WTSH foraging behaviour was positively 

influenced by high NASC values (above 5m2.nmi-2) integrated between 10 and 30 m deep, and when 20°C-

isotherm depth was shallower than 150 m. TAPET was predicted to more likely feed in waters with 

chlorophyll-a concentration > 0.2 mg.m-3. RFBO foraging behaviour was also influenced by SST, with 

more feeding predicted to occur in warm waters in general.  

 

Spatial distribution predictions 

 

Predator spatial distribution 

 

The preferred habitats for ALB, YFT and DOL, indicated by predictions of high CPUE, did not spatially 

overlap (Figure 6). Higher ALB CPUE was generally predicted west of New Caledonia’s main island. The 

largest CPUE was predicted west of the Chesterfield reef, except for a small area of low CPUE directly 

surrounding the Chesterfield and Bellona atolls (reef and island names are indicated on Figure 1A). 

Conversely, high predicted YFT CPUE was predicted in this small area. Higher YFT CPUE was predicted 

close to the lagoon, around the main island, especially in the north, around the d’Entrecasteaux atolls, and 

to a lesser extent around the Loyalty Islands. Finally, the channel between the main island and the Loyalty 

Islands was predicted to be the most favorable for high DOL CPUE. Predicted standard errors were larger 

in the southeast of the New Caledonia EEZ, and lower than 10% for the rest of the EEZ (Figure S6).  

 Higher DELPH abundance in the EEZ was predicted to the southeast and south of the main island 

between September and November, while a hotspot was predicted for this cetacean guild in the northern 

part of the EEZ between December and February (Figure 7). GLOB were predicted to occur most 

frequently in the extreme north of the EEZ and around the Lansdowne bank. ZIPH were predicted to 

occur around Chesterfield reefs and between the main island and the Loyalty Islands between September 

and November, and especially between the main island and the Loyalty Islands between December and 

February. For the three cetacean guilds, predicted standard errors were high, on average larger than 50% 

for DELPH and GLOB, certainly linked to the (low) performances of the models (Supplementary Figure 

S7).  

 WTSH were predicted to feed mostly north of 19°S when the species is present in New Caledonian 

waters. TAPET mostly fed in waters south of the main island in shallow waters (close to the lagoon), south 

of Bellona and above the Lansdowne bank, between Chesterfield and the main island (Figure 8). Predicted 

standard errors for WTSH and TAPET were below 20% (Supplementary Figure S8). No clear foraging 

hotspot was identified for RFBO: predictions showed scattered areas around the EEZ mid-latitudes, 

always close to the two studied colonies; but predicted standard errors were higher than 60% during the 

period extending from June to November.  

 

DISCUSSION 

 

Previous studies on marine predators in the tropical southwestern Pacific have focused on specific 

predator groups including seabirds (Pandolfi-Benoit and Bretagnolle 2002; Borsa and others 2010; McDuie 

and others 2015; Mendez and others 2017, 2020; Ravache and others 2020a,b; Weimerskirch and others 

2020), cetaceans (Garrigue and others 2015; Laran and others 2016; Derville and others 2019, 2020), sharks 

(Tirard and others 2010; Boussarie and others 2018) and albacore tuna (Briand and others 2011; Williams 

and others 2015) in separate publications. This study represents the first attempt to reach an integrated, 

quantitative, multispecies view of marine predator trophic ecology across the Coral Sea pelagic ecosystem. 

Prey abundance as estimated through acoustic surveys was tested together with oceanographic covariates 

to improve predator distribution models. Preyscape significantly affected five predator distribution 
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patterns out of nine, but their influence remained small relative to other predictors and they did not rank 

as the most important variable for any species.  

 

Sources of uncertainty linked to predator data 

 

Fishing vessels in New Caledonia are longliners with similar fishing capabilities (Anonymous 2018). By 

including a random ‘vessel’ effect, we considered the potential variability of fishing power between vessels. 

By including the effort (i.e., number of hooks) as an offset, we transformed catches into CPUE, which 

was then used as a proxy for fish abundance. Although large differences in CPUE can be erroneously 

measured where only small differences in abundance exist (Kleiber and Maunder 2008), our modelling 

approach incorporating a large dataset of fishing operations is likely a reliable proxy for fish abundance.  

 Compared to CPUE data, the three-month aerial survey REMMOA, which only occurred once in New 

Caledonian waters, only gives a snapshot of animal presence and partial distribution over a short period. 

Cetaceans are highly mobile predators; they may have been travelling between favorable habitats when 

spotted and therefore the oceanographic conditions attributed to that group were not necessarily optimal 

foraging habitats. Furthermore, aerial surveys cannot detect the presence of animals when they are diving, 

which then represent false absence values in the model. Improving our niche modelling of cetacean 

habitats may require additional aerial survey effort to better characterize their distribution. 

 For seabirds, uncertainty was linked to the clustering algorithm that identified behaviour based on 

trajectory sinuosity and speed. Here, by selecting only the intensive foraging observations occurring for 

more than three consecutive positions, we ensured that the animals were robustly classified as foraging.  

 In the present study, we mostly selected adult individuals for fish (through catch) and seabirds (through 

GPS-tracking). For future studies, it would be important to include juvenile, immature and non-breeding 

animals which represent a significant part of a population. Immatures and non-breeders may use habitats 

different from breeding adults (Mendez and others 2016, 2020; Houssard and others 2017; Weimerskirch 

and others 2020). However, this objective would require the use of different sampling techniques and the 

development of modelling strategies mixing different sampling methods (e.g., aerial count for seabirds 

together with tracking methods) for one species.     

 

Acoustic-micronekton layers for predator niche modelling 

 

Our approach relied on a large dataset to robustly predict preyscape at a large spatial-temporal scale. For 

a given observed acoustic value, the predicted acoustic value varied by ± 10dB (Receveur and others 2019; 

Supplementary Figure S5), which could result in large biomass changes (Benoit-Bird 2009; Proud and 

others 2019). However, predicted acoustic spatial and temporal variations matched observed variations 

(see figure 11 of Receveur and others, 2019).  

 The use of the 38 kHz frequency favoured the detection of organisms with gas-filled organs (e.g., fishes 

with a swimbladder) while excluding organisms without gas (Davison and others 2015), which may bias 

our perception of the spatial variation of prey abundance (Proud and others 2019, 2018). Nevertheless, 

given the large diversity in predator diet (Olson and others 2014; Duffy and others 2015; Williams and 

others 2015) and the difficulty in transforming acoustic signal into species-specific biomass (Davison and 

others 2015; Proud and others 2019), we used NASC values as a proxy for the relative abundance of prey 

available to all predators. Separating the acoustic signal into species groups (such as ‘fish’, ‘gelatinous’, or 

‘crustacean’) would allow linking each predator to its favorite prey. We assumed that a large part of the 

weakness of the trophic relationships was linked to this acoustic value, which does not fully represent the 

specific diet of each predator.  

 Another acoustic limitation was linked to the fine horizontal scale (e.g., prey aggregations in shoal) that 

was removed from the acoustic signal in the statistical framework, although it is an important component 

of foraging behaviour (Benoit-Bird and Au 2003; Bertrand and others 2014; Grados and others 2016). 
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 More positively, one strength of our acoustic modelling framework was its ability to average relative 

prey abundance over different vertical layers. Prey layers were defined according to the predators’ vertical 

feeding habitats as reported from the literature. The differences in spatial patterns during the day of 

integrated NASC values over depth layers 10-30 m and 10-200 m (Figure 3) confirmed the relevance of 

extracting specific vertical layers to analyze prey-predator relationships. Integrating the vertical dimension 

is a necessity to define the 3-D oceanographic habitats used by marine species (Lambert and others 2014; 

Brodie and others 2018; Louzao and others 2019a). 

 In previous studies, two approaches were used to implement prey abundance in predator niche 

modelling: (1) by simultaneously collecting prey data and observing megafauna (e.g., Doray and others 

2018; Louzao and others 2019b; Putra and Mustika 2020); and (2) by using SEAPODYM, an end-to-end 

ecosystem model (Lehodey and others 2008, 2010) prey output (Briand and others 2011; Lambert and 

others 2014; Miller and others 2018; Green and others 2020). Our study suggests a third alternative where 

prey abundance is estimated during previous acoustic surveys focusing on low trophic levels, with 

limitations detailed above, and then compared to predator observations from other surveys. Such an 

approach could be useful for predator sampling techniques with which it is impossible to collect prey data 

at the same time (e.g., aerial survey and telemetry). Our approach enabled us to study predator-prey 

relationships at the regional scale based on in situ prey data, but required acoustic observations at this vast 

spatial scale. The use of a machine-learning algorithm to extrapolate the acoustic signal to the whole EEZ 

helped make robust predictions, with a success rate of 87% in cross validation. Receveur and others (2021) 

validated for the Coral Sea region the extrapolation of acoustic signal in the epipelagic layer by comparing 

it to the outputs of an ecosystemic model (SEAPODYM). Conducting more acoustic surveys through e.g. 

routine acquisition by commercial ships, and improving the relationships between acoustic signal and 

species composition and biomass, would help refine prey distribution models which, in turn, would 

improve prey implementation into predator niche models. 

 

Predators habitat 

 

Tunas and dolphinfish were strongly influenced by SST: YFT and DOL preferred warm SST, whereas the 

optimal SSTs for ALB were colder (Bertrand and others 2002b; Kleisner and others 2010; present results). 

ALB’s relationships to NASC values were in agreement with previous results found in the New Caledonia 

EEZ using the SEAPODYM outputs as prey data source (Briand and others 2011). Briand and others 

(2011) showed a positive relationship between ALB CPUE and epipelagic layer prey biomass and found a 

negative relationship to upper mesopelagic prey biomass, similar to our results (Figure 4).  

 To explain the negative relationship to upper mesopelagic prey, these authors assumed that the increase 

in prey abundance induced a competition for baited hooks located in the mesopelagic layer. This 

hypothesis was confirmed by a study on albacore tuna in French Polynesia (Bertrand and others 2002b). 

This hypothesis would also explain the negative relationships of YFT catch values to NASC values. ALB, 

YFT and DOL exploit comparable foraging resources and have similar niches (Teffer and others 2015), 

especially YFT and DOL in the Pacific (Young and others 2010). Here, we instead observed a relatively 

weak distributional overlap between the three species (except for DOL and YFT east of the New 

Caledonian main island, Figure 6A) and different relationships to environmental predictors. We 

hypothesize that the data obtained at the scale of the Pacific Ocean for ALB, YFT and DOL show roughly 

similar distributions but that at a smaller scale, the spatial distributions of the three species can be 

distinguished based on their habitats. For instance, Bertrand and others (2002) showed that tunas were 

more abundant in waters rich in prey and with favorable hydrological conditions at a regional scale (e.g., 

Polynesian EEZ scale), and were attracted by small prey patches at smaller scale in the southeast Pacific. 

We confirmed this result here for ALB, but found that YFT was more abundant in waters with relatively 

low prey abundance. The 20°C-isotherm depth was relatively important to explain the presence of the two 

tuna species. It is a proxy for vertical habitat change but it is strongly linked to catchability changes. 
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Therefore, part of the abundance changes linked to the 20°C-isotherm depth may also reflect catchability 

changes rather than a true ecological relationship.  
 Chlorophyll-a concentration and the 20°C-isotherm depth (GLOB and ZIPH), together with SST 
(DELPH) influenced the distribution of the cetacean predators in New Caledonia, as previously shown 
elsewhere in a tropical region (Mannocci and others 2014a). The three bell-shaped relationships with the 
chlorophyll-a concentration identified here, were in agreement with previous published work in the 
circumtropical belt (Mannocci and others 2015). This study also emphasized the non-negligible influence 
of the depth of the minimum dissolved oxygen concentration, a variable that we did not include. The 
absence of this parameter may explain the relatively low model performances of the three cetacean 
guilds of the present study. The positive linear relationship between ZIPH abundance and SST was also 
already demonstrated in the South Pacific gyre (Mannocci and others 2014a). NASC values were non-
significant for the three guilds in our study. This must be linked to the acoustic signal. Indeed, as 
discussed in the ‘‘Acoustic-micronekton layers for predator niche modelling’’ section, the acoustic signal 
encompasses a large variety of micronekton species dominated by gas-filled organisms. However, 
cetacean diet species are likely poorly represented in the acoustic signal, explaining the absence of a 
significant relationship. The SEAPODYM micronekton model includes these cetacean diet species, as 
Lambert and others (2014) found significant trophic relationships for cetacean; thus that may be a more 
suitable approach to study cetacean trophic relationships. Lambert and others (2014) also noted that 
delphinids mostly forage at night. The use of day-only NASC values in our modelling may also limit the 
strength of the fitted relationships.  

 Finally, cetacean species were grouped based on morphological and taxonomic characteristics, to 

delimit energetic guilds, while other taxonomic groups were studied at the species level. This grouping 

leads to a mix of different habitats while adjusting a single habitat model, which might have contributed 

to the low explained deviances. However, these guilds also correspond to energetic considerations and, 

therefore, the grouped species have a similar habitat. In addition, this strategy is needed to increase the 

robustness of the model considering the low number of sightings by species. Finally, this approach allowed 

the full exploitation of aerial survey data in which identification to the species level was not always possible. 

 Seabird relationships to oceanographic conditions were in agreement with previous results in the 

western Coral Sea (McDuie and others 2018). Among the variables tested, bathymetry had the strongest 

influence on all three species, as already demonstrated for WTSH in the Indian Ocean (Catry and others 

2009). Relationships to the 20°C-isotherm depth were mostly negative for WTSH and RFBO. Such 

relationships may reflect the fact that at a large scale, shallower 20°C isotherms characterize regions with 

usually higher primary production. Moreover, the 20°C-isotherm depth is linked to the position of meso-

scale eddies, which have been shown to influence foraging behaviour of seabirds (Tew Kai and others 

2009; Tew Kai and Marsac 2010; Jaquemet and others 2014; McDuie and others 2018). Indeed, meso-

scale eddies potentially structure vertical and horizontal prey abundance, with large variability of 

demonstrated effects (Sabarros and others 2009; Godo and others 2012; Della Penna and Gaube 2020). 

More detailed spatial data and localization of eddies would be required to understand these relationships. 

The difference in NASC relationships between day and night in WTSH suggested that WTSH can locate 

prey concentration near the surface during the day, whereas other feeding techniques might be used during 

the night. This confirmed the results of Ravache and others (2020a), who found that WTSH feeding 

behaviour was higher during the full-moon nights due to higher luminosity. TAPET did not target areas 

with high prey abundance but foraged over shallow waters with high chlorophyll-a concentrations. The 

absence of a relationship to NASC values confirms results showing that TAPET have a scavenging 

foraging behaviour and mostly target isolated prey (Ravache and others 2020b). For the RFBO, the radius 

of the prospective habitat reached is smaller than for the two other seabirds species (Mendez and others 

2017, 2020; Ravache and others 2020b; Weimerskirch and others 2020; present results). This can explain 

the large confidence interval predicted around the NASC relationship: the RFBO individuals found their 

food at proximity and are not able to prospect on larger scale to target high prey concentration. 
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CONCLUSION  

 

We developed a niche modelling approach to evaluate the role of environmental predictors, including 

preyscape and other oceanographic conditions, to characterize the spatial distribution of nine marine 

predators in the south-west Pacific region. The inclusion of the different preyscapes based on in situ data 

was especially innovative and interesting. Our approach illuminated different trophic interactions and 

behaviours (e.g., different across the species considered, different across the vertical layers, different 

between day and night). To further develop this approach, a variety of additional taxa (e.g., sea turtles, 

sharks) could be added and would provide a more exhaustive overview of predator-prey relationships in 

the pelagic ecosystem.  
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Table 1. Predator variable summary indicating taxon, species code, logo used in figures, numbers of observations (N) with number of occurrences (i.e. 
when individuals were detected for cetaceans and when the behavior at the position was ‘foraging’ for seabirds), observation unit, data source, time of 
the day, sampling years (Y), and sampling months (M, with 1 to 12 indicating January to December)  
 
Taxon Code Logo N Unit Source Time of the 

day 
Y M 

Albacore tuna ALB 

 

14941 Number of sets with the 
number of fish caught 
per 100 hooks for each 
set 
 

Longline Catch Unknown  2010 to 2018 1 to 12 

Yellowfin tuna YFT 

 

17420 

Dolphinfish DOL 

 

17106 

Delphininae DELPH 
 

3326 (39 sighting occurrences) Number of 10km 
segment with the 
number of individuals 
counted for each 
segment 

Aerial survey Day 2014 10, 11 and 
12 

Globicep-halinae GLOB 
 

3247 (40 sighting occurrences) 

Ziphiidae ZIPH 
 

3238 (31 sighting occurrences) 

Wedge-tailed 
shearwater 

WTSH 

 

11679 (3934 feeding 
occurrences) 

Number of GPS 
positions recorded for 
each foraging behavior 
(‘feed’, ‘don’t feed’)  

GPS tracking Day and night 2017, 2018 and 2019 3 and 4 

Tahiti petrel TAPET 

 

4624 (1586 feeding 
occurrences) 

2017, 2018 and 2019 1, 6, 8 to 
12 

Red-footed boody RFBO 

 

6533  (1547 feeding 
occurrences) 

2012 and 2015 5, 6 and 
11 

 
  



 

Table 2. Details of habitat distribution models tested: predator taxon, response variable, link function, distribution, offset to correct for sampling effort, 
explanatory variables other than the nautical area scattering coefficient (NASC), NASC variable, and details of the nested model. See Table 1 for taxon 
codes. SST: sea surface temperature; d20: depth of the 20°C isotherm; bathy: bathymetry 
 
Taxon Response 

variable 
Link function Distribution Offset Explanatory variables NASC variable Nested model 

ALB Number of fish 
caught 

log Negative binomial Log(number of 
hooks) 

SST, log of chlorophyll, d20, 
bathy, year, (lon,lat) 

NASC_day_night by layer (epi, 
up_meso, low_meso) 

Random effect by vessel 

YFT Number of fish 
caught 

log Negative binomial Log(number of 
hooks) 

SST, log of chlorophyll, d20, 
bathy, year, (lon,lat) 

NASC_day_night by layer (epi, 
up_meso) 

Random effect by vessel 

DOL Number of fish 
caught 

log Negative binomial Log(number of 
hooks) 

SST, log of chlorophyll, d20, 
bathy, year, (lon,lat) 

NASC_day_night by layer (epi) Random effect by vessel 

DELPH, 
GLOB and 
ZIPH 

Animal count log Tweedie Log(sampled 
surface) 

SST, log of chlorophyll, d20, 
bathy 

NASC_day by layer (epi, 
up_meso, low_meso) 

- 

WTSH, TAPET 
and RFBO 

Foraging 
occurence 

log Binomial - SST, log of chlorophyll, d20, 
bathy 

NASC_day_10-30m by moment 
(day, night) 

Random effect by 
individual with 
autocorrelation 

 



 

Table 3. Total deviance explained (second column) by predator abundance/occurrence models 
and for the five explanatory variables ordered by the importance of their influence. Italics indicate 
non-significant variables and bold names emphasize NASC’s rank 
 

Predator Total deviance 
explained (%) 

Explanatory variables in decreasing order of importance (deviance explained in 
%) 

ALB 22.7 SST Bathymetry D20 Chlorophyll NASC 
10.6 9.8 9.4 2.4 1.1 

YFT 18.5 Chlorophyll Bathymetry NASC D20 SST 
15.3 6.8 5.6 0.7 0.1 

DOL 28.2 Chlorophyll SST Bathymetry NASC D20 
17.4 2.9 1.1 0.7 0.1 

DELPH 7.3 SST Chlorophyll D20 Bathymetry NASC 
4.2 2.8 0.6 0.2 0.01 

GLOB 31.7 D20 Chlorophyll SST Bathymetry NASC 
14.8 7.1 5.5 3.2 0.1 

ZIPH 26 Chlorophyll D20 SST Bathymetry NASC 
8.5 6.2 6.7 3.7 0.01 

WTSH 19.1 Bathymetry NASC D20 SST Chlorophyll 
11.5 6.7 1.5 0.6 0.2 

TAPET 26.2 Bathymetry Chlorophyll NASC SST D20 
24.3 4.8 0.6 0.2 0.08 

RFBO 30.1 Bathymetry NASC SST D20 Chlorophyll 

14.9 5.7 4.2 0.6 0.07 

 



 

 
 
Figure 1. Spatial distribution of environmental covariates across the New Caledonia EEZ averaged 
across the 2010-2019 period. Land is represented in grey and white areas are waters with a bathymetry 
shallower than 300m. Data sources are given in SupplementaryTable S1. A bathymetry (in km). B Sea 
surface temperature (SST, in °C). C Depth of the 20°C isotherm (in m). D chlorophyll-a concentration 
(in mg.m-3).  
 
  



 

 
 
Figure 2. Spatial distribution of micronekton biomass index NASC (nautical area scattering 
coefficient) values (in m2/nmi2) during the day (top row), and during the night (bottom row) integrated 
over four vertical layers and on average for the 2010-2019 period: 10-30 m (sub-surface, first column), 
10-200 m (epipelagic, second column), 200-400 m (upper mesopelagic, third column), and 400-600 m 
(lower mesopelagic, fourth column) across the New Caledonian EEZ. Color scale is different among 
panels. Land is represented in grey and white areas are waters with bathymetry shallower than 300 m. 
  



 

 
 
Figure 3. Raw data for the nine predators included in the study.Top row: catch per unit of effort 
(CPUE: number of fish caught per 100 hooks) for albacore (ALB), yellowfin tuna (YFT) and 
dolphinfish (DOL). Middle row: counts (grey points show absence of sighting) of Delphininae 
(DELPH), Globicephalinae (GLOB) and Ziphiidae (ZIPH, see section 2.1 for details on species). 
Bottom row: foraging (0: don’t eat and 1: eat) behaviour positions obtained from GPS loggers in 
wedge-tailed shearwater (WTSH), Tahiti petrel (TAPET) and red-footed booby (RFBO). Seabird 
breeding sites are given in Supplementary Figure S2. Credit: © Les Hata, SPC (fish), © Youngmi 
Choi, SPC (cetacean), © Tubenoses Project, Hadoram Shirihai (WTSH and TAPET) and © Andreas 
Ravache, IRD (RFBO). Land is represented in grey.  



 

  
 

Figure 4. Modelled responses to the prey biomass index NASC (nautical area scattering coefficient, in 
m2/nmi2) variations: CPUE for tunas and dolphinfish, counts of individuals for cetaceans, and foraging 
probability for seabirds. Colors indicate different vertical layers of prey for tuna and cetaceans, and 
different times of day for seabirds. Solid grey ribbons correspond to the confidence limits ( 2SE) of 
the model. Stars colored by the factor (vertical layer or moment) indicate significant relationships (p-
value< 0.01). The ticks on the x-axis indicate the position of the observed values. Species codes on the 
y-axis are detailed in Table 1. © Les Hata, SPC (fish), © Youngmi Choi, SPC (cetacean), © Hadoram 
Shirihai/The Tubenoses Project, (WTSH and TAPET) and © Andreas Ravache, IRD (RFBO).  



 

 
 
Figure 5. Modelled responses of predators (by row) to four environmental variables (by column). The 
solid grey ribbons correspond to the confidence limits of the model ( 2SE). Stars indicate the 
significance level: ** indicates highly significant (p-value < 0.01), * indicates slightly significant (0.01 
< p-value < 0.1). The ticks on the x-axis indicate the observed values’ position. Species codes are 
detailed in Table 1. 
 
 



 

 
 
Figure 6. Spatial predictions of fish abundance index by quarter in the New Caledonia EEZ: catch per 
unit of effort (CPUE; number of fish caught per 100 hooks) of albacore (ALB), yellowfin tuna (YFT) 
and dolphinfish (DOL), with different scales according to species, and on average for the 2010-2019 
period. DJF: December, January and February; MAM: March, April and May; JJA: June, July and 
August; SON: September, October and November. For each quarter, the three months were used for 
making predictions, as all months were sampled. Land is represented in grey. Reef and island names 
are indicated in Figure 1A. White areas (excepting waters with bathymetry shallower than 300 m 
identified in Figure 1) have no predictions because no extrapolation was performed.  
  



 

 
 
Figure 7. Spatial predictions of cetacean abundance by quarter in the New Caledonian EEZ: 
individual counts of Delphininae (DELPH), Globicephalinae (GLOB) and Ziphiidae (ZIPH), with 
different scales according to species, and on average for the 2010-2019 period. DJF: December, 
January and February; MAM: March, April and May; JJA: June, July and August; SON: September, 
October and November. Italic months in the right top corners indicate the sampled month and 
therefore the month used to do predictions. Reef and island names are indicated in Figure 1A. White 
areas (excepting waters with bathymetry shallower than 300 m identified in Figure 1) have no 
predictions because no extrapolation was performed. 
 



 

  
 
Figure 8. Spatial predictions of seabirds foraging probability by quarter in the New Caledonian EEZ: 
foraging occurrence of wedge-tailed shearwaters (WTSH), Tahiti petrels (TAPET) and red-footed 
boobies (RFBO), with different scales according to species, and on average for the 2010-2019 period. 
DJF: December, January and February; MAM: March, April and May; JJA: June, July and August; 
SON: September, October and November. Italic months in the right top corners indicate the sampled 
month and therefore the month used to do predictions. Reef and island names are indicated in Figure 
1A. White areas (excepting waters with bathymetry shallower than 300m identified in Figure 1) have 
no predictions because no extrapolation was performed. 
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SUPPLEMENT 1 
 

Supplementary Table S1. Summary of environmental variables used for the predator distribution 
models. Unit, source and resolution are detailed for each variable. NASC: nautical area scattering 
coefficient 
 
Variable  Unit Source Temporal 

resolution 
Spatial 
resolution 

Bathymetry km ZoNéCo, 2013 - 500 m 
Sea surface temperature °C Advanced very high-resolution radiometer 

(AVHRR) infrared satellite 
Week ¼ degree 

Chlorophyll-a mg/m3 GlobColour-processor versions : MODIS 
2014.0.1/VIIRSN 2014.0.2 

Week ¼ degree 

Depth of the 20°C 
isotherm 

m ARMOR3D Week ¼ degree 

NASC (prey biomass 
index proxy) 

m2/nmi2 Receveur et al., 2019 Week ¼ degree 

 
 

 
Supplementary Table S2. Seabird population size estimates (in breeding pairs) by geographic 
ensemble in New Caledonia  
 
Geographic ensemble Species 

Ardenna pacifica (WTSH) Pseudobulweria 
rostrata (TAPET) 

Sula sula (RFBO) 

Chesterfield-Bampton & Bellona 113 265 a - 8 800 a 
D’Entrecasteaux 4 176 b - 2 883 b 
Northern lagoon 35 573 c 1 c - 
Grande Terre 22 700 d 1 000 - 5 000 h - 
Southern lagoon 500 000 e 100 e 18 e 
Loyalty Islands 1 410 - 1 660 f 5 f > 12 f 
Walpole - - 4 300 j 
Matthew & Hunter 275 g - 810 g 
Total for New Caledonia > 677 399 > 15 000 i > 16 820 
a Borsa P. 2019. Sites prioritaires pour la conservation des oiseaux marins et des tortues marines des atolls Chesterfield-

Bampton et Bellona. Institut de recherche pour le développement, Nouméa, 28 p., https://hal.archives-
ouvertes.fr/ird-02049265 

b Robinet O., Sirgouant S., Bretagnolle V. 1997. Marine birds of d'Entrecasteaux Reefs (New Caledonia, southwestern 
Pacific): diversity, abundance, trends and threats. Colonial Waterbirds 20:282-290.  

c Baudat-Franceschi J., Spaggiari J., Barré N. 2013. Oiseaux nicheurs d'intérêt pour la conservation.RAP Bulletin of 
Biological assessment 53:136-142., http://www.bioone.org/doi/full/10.1896/054.053.0114 

d  Weimerskirch H., de Grissac S., Ravache A., Prudor A., Corbeau A., Congdon B.C., McDuie F., Bourgeois K., 
Dromzée S., Butscher J., Menkes C., Allain V., Vidal E., Jaeger A., Borsa P. 2020. At-sea movements of wedge-
tailed shearwaters during and outside the breeding season from four colonies in New Caledonia. Marine Ecology 
Progress Series 633:225–238. doi: 10.3354/meps13171 

e Pandolfi-Benoit M., Bretagnolle V. 2002. Seabirds of the southern lagoon of New Caledonia: distribution, abundance 
and threats. Waterbirds 25:202-213.  

f Barré N., Villard P., Manceau N., Monimeau L., Ménard C. 2006. Les oiseaux de l’archipel des Loyauté (Nouvelle-
Calédonie) : Inventaire et éléments d’écologie et de biogéographie. Revue d’Écologie (Terre et Vie) 61:175-194. 

g Borsa P., Baudat-Franceschi J. 2019. Synthèse des observations sur l’avifaune marine des îles Matthew et Hunter 
(Parc naturel de la mer de Corail), 1973-2018. Institut de recherche pour le développement, Nouméa, 41 p., 
https://hal.ird.fr/ird-02300763 

h Villard P., Dano S., Bretagnolle V. 2006. Morphometrics and the breeding biology of the Tahiti Petrel Pseudobulweria 
rostrata. Ibis 148:285-291.  

i Borsa P. 2008. Mission ornithologique à l'îlot Loop (îles Chesterfield) et transects en mer de Corail et dans le bassin 
des Loyauté, 20-28 octobre 2008. Institut de recherche pour le développement, Nouméa, 13 p., doi: 
10.23708/fdi:010045367 

j Baudat-Franceschi J., Bachy P. 2013. Inventaire ornithologique de Walpole, mission du 13 au 23 mai 2013. Société 
calédonienne d’ornithologie, Nouméa, 24 p. 

  

https://dx.doi.org/10.23708/fdi:010045367
https://dx.doi.org/10.23708/fdi:010045367
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Supplementary Figure S2. Breeding sites of the GPS-tracked seabirds sampled in the present 
study in black (WTSH: Wedge-tailed shearwater; TAPET: Tahiti petrel; RFBO: Red-footed booby). 
Green points and names indicate the none-sampled but known RFBO colonies that are used for 
the spatial predictions.  
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SUPPLEMENT 2   
 
Reference publication : Receveur A, Menkes C, Allain V, Lebourges-Dhaussy A, Nerini D, Mangeas 
M, Ménard F. 2019. Seasonal and spatial variability in the vertical distribution of pelagic forage 
fauna in the Southwest Pacific. Deep Sea Res Pt II Topic Stud Oceanogr 175, 104655.  
 
 
Supplementary Table S3. Cruise details, with the cruise name, dates, the number of 0.1nm bins 
per cruise, and the d.o.i. of each cruise  
 

Cruise name Start End Number of 
0.1 nm bins 

d.o.i.  

Nectalis1 (N1) 30/07/2011 15/08/2011 3681 10.17600/11100050 
Nectalis2 (N2) 26/11/2011 14/12/2011 2896 10.17600/11100070 
Nectalis3 (N3) 21/11/2014 08/12/2014 3617 10.17600/14004900 
Nectalis4 (N4) 19/10/2015 25/10/2015 1034 10.17600/15004000 
Nectalis5 (N5) 23/11/2016 06/12/2016 3989 10.17600/16004200 
Puffalis (PUFF) 18/03/2017 31/03/2017 1498 10.17600/17003300 

 
 
 

 
Supplementary Figure S3. Cruise tracks of the R/V Alis with EK60 echosounder (colored lines) 
in the New Caledonian exclusive economic zone. Black boxes show CTD stations. The background 
grey colors represent the relative seabed depth (where lighter colors are shallower). Note that N1 
and N2 tracks partially overlap but N2 track has been slightly shifted to the north for visualization 
purposes. 
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Supplementary Figure S4. Diagram explaining the different steps of the analysis.  
 
 
 

 
Supplementary Figure S5. N4 echogram observed (panel A) and predicted (panel B). Scatter plot 
of predicted values as a function of observed values with y = x dashed line over all data of N4 
(panel C). Boxes drawn on the plots are discussed in the main text as box (1), (2), etc. 
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SUPPLEMENT 3 – R CODE 
 
library(ggplot2) 
library(mgcv) 
library(dplyr) 
 
###########################################################################
############################# Data loading ################################ 
########## Fishes datasets (logbook of NC longliners) ##########  
load(file = ‘C:/df_ALB.Rdata’) 
load(file = ‘C:/df_YFT.Rdata’) 
load(file = ‘C:/df_DOL.Rdata’) 
 
summary(df_ALB) 
 
##  n_ALB_caught        n_hook          year     month           
##  Min.   : 0.00   Min.   : 175  Min.   :2010    Min.    : 1.000 
##  1st Qu.:12.00   1st Qu.:1800  1st Qu.:2012    1 st Qu.: 4.000 
##  Median :30.00   Median :2000  Median :2015    Median  : 6.000 
##  Mean   :39.15   Mean   :1964  Mean   :2014    Mean    : 6.454 
##  3rd Qu.:57.00   3rd Qu.:2100  3rd Qu.:2017    3rd Qu. : 9.000 
##  Max.   :198.00  Max.   :4450  Max.   :2018    Max.    :12.000 
##       day       vessel_code          lon               lat 
## Min.   : 1.05   1248  : 8034    Min.   :156.9   Min.   :-25.65 
## 1st Qu.: 8.02   0211  : 7638    1st Qu.:160.3   1st Qu.:-22.13 
## Median :16.05   7430  : 5598    Median :162.6   Median :-21.03 
## Mean   :15.72   2761  : 5460    Mean   :162.6   Mean   :-21.00 
## 3rd Qu.:23.05   7350  : 5220    3rd Qu.:164.6   3rd Qu.:-19.97 
## Max.   :31.0    (Other):12873   Max.   :172.6   Max.   :-14.85 
##       bathy              SST            chloro            d20  
##  Min.   :0.00396   Min.   :20.65    Min.   :0.01688     Min.   :69.16 
##  1st Qu.:1.98710   1st Qu.:24.27    1st Qu.:0.05962     1st Qu.:191.32 
##  Median :2.39458   Median :25.61    Median :0.07996     Median :208.98 
##  Mean   :2.53872   Mean   :25.57    Mean   :0.09147     Mean   :207.60 
##  3rd Qu.:3.37107   3rd Qu.:26.92    3rd Qu.:0.11350     3rd Qu.:226.49   
##  Max.   :5.95959   Max.   :30.37    Max.   :0.58071     Max.   :283.39   
##        NASC             vertical_layer  
##  Min.   :0.3300         Epi:14941 
##  1st Qu.:0.5336         Upper_meso:14941 
##  Median :1.5905         Lower_meso:14941 
##  Mean   :1.7010 
##  3rd Qu.:2.7181 
##  Max.   :4.1644 
df_ALB$log_chloro <- log(df_ALB$chloro + 1) 
## the two other fish datasets are built in the same way.  
########## Cetaceans datasets (REMMOA survey) ########## 
load(file = ‘C:/df_DELPH.Rdata’) 
load(file = ‘C:/df_GLOB.Rdata’) 
load(file = ‘C:/df_ZIPH.Rdata’) 
 
summary(df_DELPH) 
 
##  n_individuals    transect_length        year           month   
##  Min.   : 0.00     Min.   : 175     Min.   :2014    Min.   :10.00 
##  1st Qu.:12.00     1st Qu.:1800     1st Qu.:2014    1st Qu.:10.00 
##  Median :30.00     Median :2000     Median :2014    Median :11.00 
##  Mean   :39.15     Mean   :1964     Mean   :2014    Mean   :10.82 
##  3rd Qu.:57.00    3rd Qu.:2100    3rd Qu.:2014      3rd Qu.:11.00 
##  Max.   :198.00   Max.   :4450    Max.   :2014      Max.   :12.00 
##       day             ESW               lon         lat 
## Min.   : 1.0     Min.   :0.199    Min.   :160.2     Min.   :-25.39 
## 1st Qu.:12.0     1st Qu.:0.200    1st Qu.:163.6     1st Qu.:-22.81 
## Median :17.0     Median :0.200    Median :165.4     Median :-21.38 
## Mean   :18.1     Mean   :0.204    Mean   :165.5     Mean   :-21.38 
##3rd Qu.:27.0      3rd Qu.:0.216    3rd Qu.:167.4     3rd Qu.:-19.93 
## Max.   :31.0     Max.   :0.254    Max.   :171.0     Max.   :-17.63 
##       bathy            SST           chloro           d20  
##  Min.   :0.002   Min.   :21.53   Min.   :0.03971   Min.   :44.62 
##  1st Qu.:1.579   1st Qu.:23.64   1st Qu.:0.05968   1st Qu.:190.17 
##  Median :2.574   Median :25.15   Median :0.06823   Median :218.53 
##  Mean   :2.527   Mean   :25.13   Mean   :0.07534   Mean   :207.38 
##  3rd Qu.:3.519   3rd Qu.:26.33   3rd Qu.:0.08181   3rd Qu.:236.03 
##  Max.   :4.943   Max.   :28.67   Max.   :0.24861   Max.   :277.47 
##       NASC        vertical_layer  
##  Min.   :0.2178    Epi:15079 
##  1st Qu.:0.2766    Upper_meso:15079 
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##  Median :1.2326    Lower_meso:15079 
##  Mean   :1.2701 
##  3rd Qu.:2.2815 
##  Max.   :2.4965 
df_DELPH$surface <- 2 *df_DELPH$transect_length *df_DELPH$ESW 
## the two other cetacean datasets are built in the same way.  
########## Seabirds datasets (tracking) ##########  
load(file = ‘C:/df_WTSH.Rdata’) 
load(file = ‘C:/df_TAPET.Rdata’) 
load(file = ‘C:/df_RFBO.Rdata’) 
 
summary(df_WTSH) 
 
## foraging_behaviour   foraging_factor    foraging_numeric    year  
## commuting :6030      Dont eat:10402     Min.   :0.0000       Min.   :2017 
## DD        :  52      Eat     : 7070     1st Qu.:0.0000       1st Qu.:2017 
## foraging  :7070                         Median :0.0000       Median :2017 
## resting   :4320                         Mean   :0.4046       Mean   :2018 
##                                         3rd Qu.:1.0000       3rd Qu.:2019 
##                                         Max.   :1.0000      Max.   :2019 
##      month          day             lon            lat              hour 
## Min.   :3.0   Min.   : 1.0    Min.   :156.8    Min.   :-26.3    Length:17472 
## 1st Qu.:3.0   1st Qu.: 7.0    1st Qu.:160.5    1st Qu.:-21.2    Class :char 
## Median :4.0   Median :13.0    Median :164.5    Median :-20.3    Mode  :char 
## Mean   :3.7   Mean   :11.9    Mean   :163.7    Mean   :-20.4 
## 3rd Qu.:4.0   3rd Qu.:17.0    3rd Qu.:166.3    3rd Qu.:-19.2 
## Max.   :4.0   Max.   :27.0    Max.   :170.4    Max.   :-15.6 
##    bathymetry             SST         chlorophyll           d20  
##  Min.   :0.0004     Min.   :24.96    Min.   :0.02971     Min.   :94.28 
##  1st Qu.:1.8990     1st Qu.:26.82    1st Qu.:0.09709     1st Qu.:179.53 
##  Median :2.6146     Median :27.70    Median :0.11071     Median :197.03 
##  Mean   :2.6503     Mean   :27.61    Mean   :0.12411     Mean   :195.08 
##  3rd Qu.:3.5237     3rd Qu.:28.44    3rd Qu.:0.13703     3rd Qu.:213.84 
##  Max.   :7.0341     Max.   :29.75    Max.   :0.60467     Max.   :248.29 
##    NASC             moment         Individu  
##  Min.   :1.596   Day  :8737    FS101257: 777   
##  1st Qu.: 2.655  Night:8735    FS101268: 589 
##  Median :4.188                 FS101280: 546 
##  Mean   :6.192                 FS101212: 530   
##  3rd Qu.:9.708                 FS107228:492  
##  Max.   :17.766                (Other) :8745 
## the two other seabird datasets are built in the same way.  
########################################################################### 
################################# Modelling ############################### 
#### ALBACORE 
model_alb<- gam(n_ALB ~  offset(n_hook) + 
                         s(NASC, k = 24, bs = "cr", by = vertical_layer) + 
                         s(SST, k = 8, bs = "cr") + 
                         s(log_chloro, k = 8, bs = "cr") + 
                         s(d20, k = 8, bs = "cr") + 
                         s(bathy, k = 8, bs = "cr") + 
                         s(year, k = 8, bs = "cr") + 
                         s(vessel_code, bs = "re") + 
                         s(lon, lat, bs = 'gp', k = 30), 
                         gamma= 1.4, 
                         data= df_ALB, 
                         family=nb(link ='log'), 
                         method="REML") 
#### YELLOWFIN 
model_yft<- gam(n_YFT ~  offset(n_hook) + 
                         s(NASC, k = 24, bs = "cr", by = vertical_layer) + 
                         s(SST, k = 8, bs = "cr") + 
                         s(log_chloro, k = 8, bs = "cr") + 
                         s(d20, k = 8, bs = "cr") + 
                         s(bathy, k = 8, bs = "cr") + 
                         s(year, k = 8, bs = "cr") + 
                         s(vessel_code, bs = "re") + 
                         s(lon, lat, bs = 'gp', k = 30), 
                         gamma= 1.4, 
                         data= df_YFT, 
                         family=nb(link ='log'), 
                         method="REML") 
#### DOLPHINFISH 
model_dol<- gam(n_DOL ~  offset(n_hook) + 
                         s(NASC, k = 24, bs = "cr", by = vertical_layer) + 
                         s(SST, k = 8, bs = "cr") + 
                         s(log_chloro, k = 8, bs = "cr") + 
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                         s(d20, k = 8, bs = "cr") + 
                         s(bathy, k = 8, bs = "cr") + 
                         s(year, k = 8, bs = "cr") + 
                         s(vessel_code, bs = "re") + 
                         s(lon, lat, bs = 'gp', k = 30), 
                         gamma= 1.4, 
                         data= df_DOL, 
                         family=nb(link ='log'), 
                         method="REML") 
#### DELPHINAE 
model_delph =  gam(n_individuals ~ offset(log_surface) + 
                                   s(NASC, k = 16, bs= "cr", by = vertical_layer) + 
                                   s(SST, k= 8, bs= "cr") + 
                                   s(log_chloro, k = 8, bs = "cr") + 
                                   s(d20, k = 8, bs= "cr") + 
                                   s(bathy,k = 8, bs= "cr"), 
                                   family= tw(link ='log'), 
                                   method= "REML", 
                                   data= df_DELPH) 
#### GLOBICEPHALINAE 
model_glo =  gam(n_individuals ~ offset(log_surface) + 
                                  s(NASC, k = 16, bs = "cr", by = vertical_layer) + 
                                  s(SST, k = 4, bs = "cr") + 
                                  s(log_chloro, k = 4, bs = "cr") + 
                                  s(d20, k = 4, bs = "cr") + 
                                  s(bathy,k = 4, bs = "cr"), 
                                  family= tw(link ='log'), 
                                  method= "REML", 
                                  data= df_GLOB) 
#### ZIPHIIDAE 
model_zip =  gam(n_individuals ~ offset(log_surface) + 
                                  s(NASC, k = 16, bs = "cr", by = vertical_layer) + 
                                  s(SST, k = 4, bs = "cr") + 
                                  s(log_chloro, k = 4, bs= "cr") + 
                                  s(d20, k = 4, bs = "cr") + 
                                  s(bathy,k = 4, bs = "cr"), 
                                  family= tw(link ='log'), 
                                  method= "REML", 
                                  data= df_ZIPH) 
#### WEDGE-TAILED SHEARWATER 
model_wtsh = gamm(foraging_numeric ~ s(NASC, k = 8, bs= "cr", by = moment) + 
                                     s(SST, k = 4, bs= "cr") + 
                                     s(log_chloro, k = 4, bs = "cr") + 
                                     s(d20, k = 4, bs= "cr") + 
                                     s(bathy, k = 4, bs= "cr"), 
                                     data = df_puffin, 
                                     method="REML", 
                                     correlation = corARMA(form = ~ 1 | Individu, p = 2), 
                                     family = binomial) 
#### TAHITI PETREL 
model_tapet = gamm(foraging_numeric ~ s(NASC, k = 8, bs = "cr", by = moment) + 
                                      s(SST, k = 4, bs = "cr") + 
                                      s(log_chloro, k = 4, bs = "cr") + 
                                      s(d20, k = 4, bs = "cr") + 
                                      s(bathy, k = 4, bs = "cr"), 
                                      data = df_puffin, 
                                      method="REML", 
                                      correlation = corARMA(form = ~ 1 | Individu, p = 2), 
                                      family = binomial) 
#### RED-FOOTED BOODY 
model_rfbo = gamm(foraging_numeric ~ s(NASC, k = 8, bs = "cr", by = moment) + 
                                     s(SST, k = 4, bs = "cr") + 
                                     s(log_chloro, k = 4, bs = "cr") + 
                                     s(d20, k = 4, bs = "cr") + 
                                     s(bathy, k = 4, bs = "cr"), 
                                     data = df_puffin, 
                                     method="REML", 
                                     correlation = corARMA(form = ~ 1 | Individu, p = 2), 
                                     family = binomial) 
 
########################################################################### 
############################## Prediction ################################# 
########## Fish 
load(file ='df_grid_for_pred_fish.Rdata') 
 
data.table(df_grid_for_pred_fish) 
lon        lat   vertical_layer    date          SST      d20     chloro   NASC     bathy 
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156.05   -19.30     epi          2010-01-01     26.80    237.25   0.023   3.698    2.85 
156.05   -19.30     epi          2010-01-08     27.30    229.75   0.023   3.697    2.85 
156.05   -19.30     epi          2010-01-15     27.25    227.95   0.039   3.733    2.85 
156.05   -19.30     epi          2010-01-22     28.13    235.14   0.060   3.728    2.85 
156.05   -19.30     epi          2010-01-29     27.99    248.44   0.029   3.734    2.85 
     ---                                                                             
174.30   -25.05    uper_meso     2018-12-03     23.53    136.39   0.088   1.807    4.46 
174.30   -25.05    uper_meso     2018-12-10     23.88    158.98   0.069   1.947    4.46 
174.30   -25.05    uper_meso     2018-12-17     25.16    171.19   0.082   1.850    4.46 
174.30   -25.05    uper_meso     2018-12-24     25.45    191.67   0.073   1.971    4.46 
174.30   -25.05    uper_meso     2018-12-31     26.26    221.23   0.081   1.896    4.46 
 
df_grid_for_pred_fish$vessel_code <- "24080" 
df_grid_for_pred_fish$n_hook      <- mean(df_ALB$n_hook) 
df_grid_for_pred_fish$log_chloro  <- log(df_grid_for_pred_fish$chloro + 1) 
## this next table was extracted from the observed dataset (df_ALB) to have the min and the max of each variable and therefore 
avoid extrapolation 
df_min_max_alb 
   sp     variable       max     min 
1 ALB      bathy       5.9596   0.0040 
2 ALB      SST         30.374   20.651 
3 ALB      d20         283.39   69.162  
4 ALB      log_chloro  0.4579   0.0167 
5 ALB      NASC        4.1644   0.3300    
 
df_grid_for_pred_fish$extrapolation <-ifelse(df_grid_for_pred_fish$bathy %between% 
                        c(df_min_max_alb[df_min_max_alb$variable == 'bathy', 'min'], 
                          df_min_max_alb[df_min_max_alb$variable == 'bathy', 'max']) & 
                                             df_grid_for_pred_fish$log_chloro %between% 
                        c(df_min_max_alb[df_min_max_alb$variable == 'log_chloro', 'min'],  
                          df_min_max_alb[df_min_max_alb$variable == 'log_chloro', 'max']) & 
                                             df_grid_for_pred_fish$d20 %between% 
                        c(df_min_max_alb[df_min_max_alb$variable == 'd20', 'min'],                                                                                         
                          df_min_max_alb[df_min_max_alb$variable == 'd20', 'max']) & 
                                             df_grid_for_pred_fish$SST %between% 
                        c(df_min_max_alb[df_min_max_alb$variable == 'SST', 'min'],          
                          df_min_max_alb[df_min_max_alb$variable == 'SST', 'max'])& 
                                             df_grid_for_pred_fish$NASC%between% 
                        c(df_min_max_alb[df_min_max_alb$variable == 'NASC', 'min'],    
                          df_min_max_alb[df_min_max_alb$variable == 'NASC', 'max']),  
                                                 'NO', 'YES') 
df_grid_for_pred_fish <- df_grid_for_pred_fish  %>% 
                         dplyr::filter(extrapolation == 'NO') %>% 
                         dplyr::select(extrapolation) 
 
df_grid_for_pred_fish$pred_alb   <-  predict(model_alb, df_grid_for_pred_fish, 'response') 
df_grid_for_pred_fish$pred_alb_SE<-  predict(model_alb, df_grid_for_pred_fish, 'response', se =TRUE)$se 
 
df_grid_for_pred_fish$month<- substr(df_grid_for_pred_fish$date, 6, 7) 
 
df_grid_for_pred_fish2 <- df_grid_for_pred_fish %>%  
                          group_by(month, lon, lat) %>%  
                          summarize(pred_nb_alb = mean(pred_nb_alb/hook), 
                                    pred_nb_alb_se = mean(pred_nb_alb_se/hook))  
 
## and in the same way, predictions were for the two other fish species  
########## Cetacean 
load(file ='df_grid_for_pred_cetacean.Rdata') 
 
data.table(df_grid_for_pred_cetacean)## only months 10, 11 and 12 (sampled month) 
vertical_layer  NASC       date     lon      lat    SST    d20    chloro   bathy 
 epi            1.10   2010-10-05  163.05  -14.55  26.83  262.30  0.0485   4.31 
 up_meso        0.32   2010-10-05  163.05  -14.55  26.83  262.30  0.0485   4.31 
 low_meso       2.26   2010-10-05  163.05  -14.55  26.83  262.30  0.0485   4.31 
 epi            1.10   2010-10-05  163.30  -14.55  26.76  261.34  0.0426   3.95 
 up_meso        0.32   2010-10-05  163.30  -14.55  26.76  261.34  0.0426   3.95 
         ---                                                                                                       eepi           1.02    2018-12-30  166.05  -26.55  23.88   
82.65  0.0661   3.57 
 up_meso       0.35    2018-12-30  166.05  -26.55  23.88   82.65  0.0661   3.57 
 low_meso      1.86    2018-12-30  166.05  -26.55  23.88   82.65  0.0661   3.57 
 epi           1.16    2018-12-30  166.30  -26.55  23.92   79.67  0.0632   3.56 
 up_meso       0.27    2018-12-30  163.30  -26.55  23.92   79.67  0.0632   3.56 
 
df_grid_for_pred_cetacean$surface<- mean(df_DELPH$surface) 
df_grid_for_pred_cetacean$log_surface<- log(df_grid_for_pred_cetacean$surface) 
df_grid_for_pred_cetacean$log_chloro <- log(df_grid_for_pred_cetacean$chloro + 1) 
df_min_max_delph 
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   sp       variable      max      min 
1 DELPH     bathy         4.943    0.002 
2 DELPH     SST           28.67    21.53 
3 DELPH     d20          277.47    44.62 
4 DELPH     log_chloro   0.2220    0.039 
5 DELPH     NASC         2.4965    0.218 
 
df_grid_for_pred_cetacean$extrapolation <-ifelse(df_grid_for_pred_cetacean$bathy %between% 
                     c(df_min_max_delph[df_min_max_delph$variable == 'bathy', 'min'], 
                       df_min_max_delph[df_min_max_delph$variable == 'bathy', 'max']) & 
                                           df_grid_for_pred_cetacean$log_chloro %between% 
                     c(df_min_max_delph[df_min_max_delph$variable == 'log_chloro', 'min'],  
                      df_min_max_delph[df_min_max_delph$variable == 'log_chloro', 'max']) & 
                                           df_grid_for_pred_cetacean$d20 %between% 
                      c(df_min_max_delph[df_min_max_delph$variable == 'd20', 'min'],                                                                                         
                       df_min_max_delph[df_min_max_delph$variable == 'd20', 'max']) & 
                                           df_grid_for_pred_cetacean$SST %between% 
                     c(df_min_max_delph[df_min_max_delph$variable == 'SST', 'min'],          
                       df_min_max_delph[df_min_max_delph$variable == 'SST', 'max'])& 
                                           df_grid_for_pred_cetacean$NASC%between% 
                     c(df_min_max_delph[df_min_max_delph$variable == 'NASC', 'min'],    
                       df_min_max_delph[df_min_max_delph$variable == 'NASC', 'max']),  
                                           'NO', 'YES') 
 
df_grid_for_pred_cetacean <- df_grid_for_pred_cetacean %>% 
                            dplyr::filter(extrapolation == 'NO') %>% 
                            dplyr::select(extrapolation) 
 
df_grid_for_pred_cetacean$pred_delph <- predict(model_delph,  
                                                df_grid_for_pred_cetacean, 'response') 
df_grid_for_pred_cetacean$pred_delph_SE <- predict(model_delph, 
                                           df_grid_for_pred_cetacean,  
                                           'response', se =TRUE)$se 
 
df_grid_for_pred_cetacean$month<- substr(df_grid_for_pred_cetacean$date, 6, 7) 
 
df_grid_for_pred_cetacean2 <- df_grid_for_pred_cetacean %>%  
                              group_by(month, lon, lat) %>%  
                              summarize(pred_delph = mean((pred_delph/surface)), 
                                        pred_delph_se = mean((pred_delph_SE/surface)))  
 
########## Seabirds 
load(file ='df_grid_for_pred_wtsh.Rdata') 
 
data.table(df_grid_for_pred_wtsh) ## only months 5 and 6 
moment    NASC       date      lon     lat      SST    d20    bathy   chloro  
Night    10.409  2010-05-07  163.05  -14.85   28.761  239.29  4.312   0.1238 
Day      2.4979  2010-05-07  163.05  -14.85   28.761  239.29  4.312   0.1238 
Night    10.200  2010-05-07  162.30  -14.05   28.690  236.55  4.598   0.1355 
Day      2.5698  2010-05-07  162.30  -14.05   28.690  236.55  4.598   0.1355  
---- 
Night    12.590  2018-06-29  165.85  -26.30   22.037  125.12  3.448   0.1778 
Day      2.8979  2018-06-29  165.85  -26.30   22.037  125.12  3.448   0.1778 
Night    12.591  2018-06-29  166.05  -26.30   22.452  132.35  3.574   0.1822 
Day      2.7207  2018-06-29  166.05  -26.30   22.452  132.35  3.574   0.1822 
 
df_grid_for_pred_wtsh$log_chloro <- log(df_grid_for_pred_wtsh$chloro + 1) 
df_min_max_wtsh 
   sp     variable          max       min 
1 WTSH       bathy          7.034     0.0004 
2 WTSH       SST            29.75     24.96 
3 WTSH       d20            248.29    94.28  
4 WTSH       log_chloro     0.4729    0.0293 
5 WTSH       NASC           17.766    1.596 
 
df_grid_for_pred_wtsh$extrapolation <-ifelse(df_grid_for_pred_wtsh$bathy %between% 
                     c(df_min_max_wtsh[df_min_max_wtsh$variable == 'bathy', 'min'], 
                       df_min_max_wtsh[df_min_max_wtsh$variable == 'bathy', 'max']) & 
                                            df_grid_for_pred_wtsh$log_chloro %between% 
                     c(df_min_max_wtsh[df_min_max_wtsh$variable == 'log_chloro', 'min'],  
                       df_min_max_wtsh[df_min_max_wtsh$variable == 'log_chloro', 'max']) & 
                                            df_grid_for_pred_wtsh$d20 %between% 
                     c(df_min_max_wtsh[df_min_max_wtsh$variable == 'd20', 'min'],                                                                                         
                       df_min_max_wtsh[df_min_max_wtsh$variable == 'd20', 'max']) & 
                                            df_grid_for_pred_wtsh$SST %between% 
                     c(df_min_max_wtsh[df_min_max_wtsh$variable == 'SST', 'min'],          
                       df_min_max_wtsh[df_min_max_wtsh$variable == 'SST', 'max'])& 
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                                            df_grid_for_pred_wtsh$NASC%between% 
                     c(df_min_max_wtsh[df_min_max_wtsh$variable == 'NASC', 'min'],    
                       df_min_max_wtsh[df_min_max_wtsh$variable == 'NASC', 'max']),  
                                                              'NO', 'YES') 
 
df_grid_for_pred_wtsh <- df_grid_for_pred_wtsh %>% 
                          dplyr::filter(extrapolation == 'NO') %>% 
                          dplyr::select(extrapolation) 
 
df_grid_for_pred_wtsh$pred_wtsh <- predict(model_wtsh, df_grid_for_pred_wtshs,  
                                           'response') 
df_grid_for_pred_wtsh$pred_wtsh_SE <- predict(model_wtsh, 
                                              df_grid_for_pred_wtshs,  
                                             'response', se =TRUE)$se 
 
df_grid_for_pred_wtsh$month<- substr(df_grid_for_pred_wtshs$date, 6, 7) 
 
df_grid_for_pred_wtsh2 <- df_grid_for_pred_wtsh %>%  
                            group_by(month, lon, lat) %>%  
                            summarize(pred_wtsh= mean((pred_wtsh)), 
                                      pred_wtsh_se = mean((pred_wtsh_SE)))  

 
  



11 
 

SUPPLEMENT 4  
 

 
Supplementary Figure S6. Spatial predictions of standard error (expressed in %) for catch per 
unit of effort (CPUE; number of fish caught per 100 hooks) of albacore (ALB), yellowfin tuna 
(YFT) and dolphinfish (DOL), by quarter in the New Caledonian EEZ. DJF: December, January 
and February; MAM: March, April and May; JJA: June, July and August; SON: September, October 
and November. Land is represented in grey. Reef and island names are indicated on Figure 1A. 
Areas in white include areas where no extrapolation was made and waters with bathymetry 
shallower than 300 m (identified on Figure 1). 
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Supplementary Figure S7. Spatial predictions of standard error (expressed in %) for counts of 
individuals (of Delphininae (DELPH), Globicephalinae (GLOB) and Ziphiidae (ZIPH), by quarter 
in the New Caledonian EEZ. DJF: December, January and February; MAM: March, April and 
May; JJA: June, July and August; SON: September, October and November. Land is represented 
in grey. Reef and island names are indicated on Figure 1A. Areas in white include areas where no 
extrapolation was made and waters with bathymetry shallower than 300 m (identified on Figure 1). 
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Supplementary Figure S8. Spatial predictions of standard error (expressed in %) for foraging 
probability of the wedge-tailed shearwater (WTSH), the Tahiti petrel (TAPET) and the red-footed 
booby (RFBO), by quarter in the New Caledonian EEZ. DJF: December, January and February; 
MAM: March, April and May; JJA: June, July and August; SON: September, October and 
November. Reef and island names are indicated on Figure 1A. Areas in white include areas where 
no extrapolation was made and waters with bathymetry shallower than 300 m (identified on Figure 
1). 
 


