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Abstract 8 

The spatial distribution of evapotranspiration is often obtained from dual source energy balance 9 

models forced by surface temperature data. The use of multi-angular remotely-sensed thermal 10 

data in such methods makes them susceptible to directional-anisotropy/thermal-radiation 11 

directionality effects that may result from the satellite’s position, relative to the Sun, at overpass 12 

time. It is therefore important to have these effects accounted for to ensure realistic flux 13 

retrievals irrespective of sensor viewing position. At present, dual source models generally 14 

interpret surface temperature according to two sources, representing the soil surface and the 15 

vegetation. This may be insufficient to adequately represent the limiting temperature conditions 16 

that not only depend on the source type but also their exposure to the Sun. Here, we present a 17 

modified version of the SPARSE (Soil Plant Atmosphere Remote Sensing Evapotranspiration) 18 

model, wherein the original SPARSE is modified to incorporate sunlit/shaded soil/vegetation 19 

elements and coupled with a radiative transfer model that links these four component emissions 20 

to out-of-canopy directional radiances as observed by remote sensors. An initial evaluation is 21 

carried out to check the model’s capability in retrieving surface fluxes over diverse environments 22 

instrumented with in-situ thermo-radiometers. When run with nadir-acquired thermal data, both 23 

algorithms show no observable difference in their retrieval of total fluxes. We nonetheless show 24 

that by incorporating the solar direction and discriminating between sunlit and shaded elements, 25 
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the partitioning of these overall fluxes between the soil and vegetation can be improved 26 

especially in water-stressed environments. We also test the sensitivity of flux and component 27 

temperature estimates to the viewing direction of the thermal sensor by using two sets of TIR 28 

data (nadir and oblique) acquired simultaneously to force the models and show that sensitivity to 29 

viewing direction is significantly reduced. This is an important aspect particularly when using 30 

high resolution spatial and temporal data from Earth observation missions that inherently have to 31 

consider a wide-range of viewing angles in their design. 32 

Keywords: Evapotranspiration, thermal infrared radiation (TIR), Soil Vegetation Atmosphere 33 

Transfer (SVAT), temperature inversion.   34 

1. Introduction 35 

Evapotranspiration (ET) plays a key role in mass and energy interactions in the soil-vegetation-36 

atmosphere domain, making its estimation important in applications related to hydrology, 37 

agriculture, weather and climate studies. In crop water-use management, accurate ET translates 38 

to improved water stress detection, which is important especially in arid and semi-arid regions 39 

where ET has been shown to account for more than 90% of the precipitation (Huxman et al., 40 

2005) hence to a large extent controlling the water budget. Transpiration has also been found to 41 

account for ca. 61% of the global terrestrial ET (Schlesinger & Jasechko, 2014) highlighting the 42 

importance of evapotranspiration partitioning. Operationally applicable ET models are therefore 43 

of key significance to water resource stakeholders for adequate water-use quantification and its 44 

efficient allocation particularly in water-limited areas. 45 

Theoretically, one of the methods used to estimate evapotranspiration involves solving the 46 

surface energy budget equation for a surface temperature that results from the aggregation of the 47 



various temperature sources within the soil-canopy system and observed by remote sensors. The 48 

energy partitioning can either be: single- (e.g., Surface Energy Balance System (SEBS, Su, 49 

2002)) if one single temperature is used to compute all fluxes; or dual-source if the surface is 50 

represented by two bulk temperature sources, one for the soil component considered as a 51 

homogeneous isothermal surface and another for the vegetation component seen as a big 52 

transpiring leaf, also isothermal (e.g., SPARSE, Boulet et al., 2015 and Two-Source Energy 53 

Balance, TSEB, Norman, Kustas, & Humes, 1995). In addition to allowing the partitioning 54 

between evaporation and transpiration, the development of dual source models was also meant to 55 

realistically address the contribution of varying soil and vegetation skin temperatures to the 56 

aerodynamic temperature, which influences the sensible heat flux (Boulet et al., 2012). While 57 

remotely-observed radiometric temperature can be defined as the soil and vegetation 58 

temperatures weighted by their relative cover fraction in the viewing direction, the link of these 59 

component temperatures to the aerodynamic temperature is described according to turbulence 60 

resistance between the aerodynamic level and the soil and the vegetation (Norman et al., 1995). 61 

Since source temperatures (i.e., sunlit and shaded elements of the soil or vegetation) may exhibit 62 

large differences depending on their exposure to the Sun, it is necessary to incorporate the source 63 

temperature variations to enable a more accurate representation of conditions at the aerodynamic 64 

level.   65 

To drive such surface energy balance models, measurements from in-situ stations have primarily 66 

been used as forcing input. The advent of remote sensing (RS), which provides observations of 67 

Earth surface characteristics e.g. surface brightness temperature, soil moisture, vegetation 68 

indices, albedo etc., has made estimation of land surface fluxes at various spatial and temporal 69 

scales more practical. Of the terrestrial state variables retrievable from space, land surface 70 



temperature (LST) is tightly linked to the surface turbulent fluxes and plant water stress hence its 71 

ubiquitous use in ET estimation methods. While in-situ thermal infra-red (TIR) sensors can 72 

provide point measurements from a fixed direction (generally from nadir or close to nadir), 73 

space-borne sensors, which provide observations at larger spatial scales, often view pixels on 74 

Earth from varying directions each observation instance. For example, the Moderate Resolution 75 

Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellites provides, 76 

among other products, global LST at a spatial resolution of ~1 km every 1 to 2 days and over a 77 

broad-range of viewing angles (≤ 65°). The newly proposed Thermal infRared Imaging Satellite 78 

for High resolution Natural resource Assessment (TRISHNA) mission, instituted by the French 79 

(CNES) and Indian (ISRO) Space Agencies, is also expected to provide global LST products 80 

with a revisit time of ~3 days (Lagouarde et al., 2019). Its high spatial resolution (~57m at nadir) 81 

and relatively wide field-of-view (±34°) should enable multi-scale monitoring of the water and 82 

energy budgets. Directional effects can however impact the accuracy of surface state variables 83 

inferred from such thermal data. 84 

The need to incorporate directional aspects has necessitated the use of simple radiative methods 85 

that link the observed brightness temperature with the prevailing component temperatures, 86 

particularly in dual-source models. These, however, do not account for the solar-Earth-viewing 87 

geometry, which can lead to significant thermal radiation directionality (TRD) effects (also 88 

referred to as TIR directional anisotropy); an extreme case of TRD is the hotspot effect that 89 

results from the syzygy Sun-satellite-Earth configuration, where the sensor mostly observes 90 

sunlit elements. According to Kimes & Kirchner (1983), Lagouarde et al. (2014) and Duffour et 91 

al. (2016), oblique-nadir temperature differences (i.e., thermal radiation directionality) can reach 92 

15 °C. Since LST uncertainties of 1-3 °C may in-turn result in flux errors in the order of ~100 93 



Wm-2 (Kustas & Norman, 1996), accounting for anisotropy in evapotranspiration models has the 94 

potential of significantly improving the derived estimates. Formulations that address thermal 95 

radiation directionality, and thus the hotspot phenomenon, are fundamentally extensions of the 96 

optical domain’s reflectance theory. As detailed in Cao et al.'s (2019) review, they range from 97 

geometric, parametric, hybrid to 3-D radiative transfer models. 98 

For dual-source evapotranspiration models, it is more suitable to invert component temperatures 99 

using radiative transfer or hybrid methods. Bian et al. (2018) recently developed the physically-100 

based unified four-component (UFR97) model. Their radiative scheme is an extension of the 101 

two-component Francois et al.'s (1997) model and incorporates bi-directional aspects from Yan 102 

et al. (2012). They tested the model on homogeneous, row-crop and forest covers (assuming a 103 

spherical foliage projection) where they showed that it could satisfactorily simulate directional 104 

temperatures with component sunlit/shaded soil/vegetation temperatures used as input. The 105 

relatively easy to implement UFR97 method can thus be used for direct assimilation of 106 

directional TIR data and thereby help to address directional anisotropic issues in surface energy 107 

balance inversion schemes. 108 

In this study, we present an evaluation of a coupled SPARSE-UFR97 model (hereafter 109 

SPARSE4) meant for inverting directionally anisotropic thermal data for evapotranspiration and 110 

water stress estimation. By coupling SPARSE with the UFR97 radiative method, the original 111 

scheme was extended from a two- (soil/vegetation) to a four-component (sunlit/shaded 112 

soil/vegetation) formulation. The dual-source SPARSE model, which inverts surface temperature 113 

for source emissions and separate retrieval of soil evaporation and vegetation transpiration 114 

fluxes, has already been extensively assessed and shown to be capable of reasonably estimating 115 

and partitioning turbulent fluxes. In the next section, we introduce the theoretical and 116 



implementation aspects behind the original and extended SPARSE models. The formulations are 117 

then evaluated and their performance analyzed using field measurements collected from diverse 118 

environments, which include two olive Orchards and two other experimental sites (cultivated 119 

with soybean and wheat). Finally, conclusions are drawn and outlooks on continuing and future 120 

works with respect to thermal radiation directionality assessments are presented. 121 

2. Materials and Methods 122 

2.1. Theory: SPARSE and SPARSE4 model description 123 

Radiation controls the turbulent fluxes at and near the Earth surface. For energy conservation, the 124 

net radiation (R�) is dissipated in turbulent and conduction heat flux exchanges as: 125 

R� = �1 − α�	
S ↓ +L ↓ −L ↑ = H + G + λE �1
 126 

where S ↓  is the incoming shortwave radiation (bottom of atmosphere; BOA); α�	 is the surface 127 

albedo; L ↓ = ε���σT�� - incoming long wave radiation emitted by atmospheric constituents �a : 128 

clouds, aerosols and gasses); the apparent emissivity ε��� is derived according to Brutsaert (1975) 129 

in clear-sky  situations (which are the relevant situations when using TIR data from satellites); σ 130 

is the Stefan Boltzmann constant; and T� the air temperature. L ↑ = σT�� = ε�	σT���� +131 

�1 − ε�	
L ↓  - outgoing long-wave radiation corresponding to the emission by the surface and 132 

the reflected incoming long-wave radiation; ε�	 is the surface emissivity and T��� is the 133 

surface/radiative temperature; T� is the brightness temperature as measured by a thermo-134 

radiometer. H denotes the sensible heat flux, G the ground heat flux and λE the latent heat flux. 135 

When dealing with remotely sensed thermal data, all used terms are instantaneous (as at the 136 

satellite overpass time). 137 

Dual-source energy partitioning in SPARSE consequently involves splitting the single-source 138 



energy balance (Equation �1
) between the vegetation and the soil. The out-of-canopy thermal 139 

radiance as observed by a remote sensor is thus treated as a weighted composition of vegetation 140 

and soil emissions. To calculate the emissions, and thus the net radiation, component 141 

temperatures are required. These soil/vegetation temperatures can then be linked to the remote 142 

thermal observation depending on their respective fractions in the viewing direction. In 143 

SPARSE4, sunlit and shaded elements of the soil and vegetation sources are discriminated and 144 

consequently linked to the measured directional temperature using the Unified Francois model 145 

(UFR97, Bian et al., 2018). A synopsis of the similarities and differences between SPARSE and 146 

SPARSE4 models is presented next starting with the radiative transfer scheme, the net radiation 147 

partitioning, the other energy balance components and finally the implementation framework. 148 

2.1.1. Out-of-canopy radiance 149 

The general form of the link between surface component temperatures and the out-of-canopy 150 

radiance in the viewing direction of a remote sensor can be written as; 151 

L���, ↑ �θ"
 = τ$�θ"
ε%, B'T%( + '1 − τ$�θ"
(ε), B�T)
 + '1 − ε�	, (L ↓ ,                               �2. a
 152                      = K%τ$�θ"
ε%, B'T%�( + K-τ$�θ"
ε%, B'T%.( + ω$,�, �θ"
B�T)�
 +153 ω$,., �θ"
B�T).
 + '1 − ε�	, (L ↓ ,                                                                                                        (2.b) 154 

SPARSE applies Equation �2. a
 by considering the soil and vegetation sources whereas 155 

SPARSE4 uses Equation (2.b) to separate sunlit/shaded elements in the viewing direction. In the 156 

UFR97 model (Bian et al., 2018), Equation (2.b) acts as the main link between the separate 157 

sunlit/shaded element emissions and the remotely-observed radiative temperature. The terms in 158 

the effective emissivities for sunlit/shaded soil/vegetation (K%τ$�θ"
ε%, , K-τ$�θ"
ε%, , 159 

ω$,�, �θ"
 and ω$,., �θ"
, respectively) are given in Appendix A and further detailed in Bian et 160 

al. (2018), Francois et al. (1997) and Yan et al. (2012) - K% and K- are the sunlit and shaded 161 



fractions of the soil, respectively; τ$ is the gap fraction; ε%,  the soil emissivity; ω$,�,  and 162 

ω$,.,  are the effective emissivities of sunlit and shaded vegetation. T),�¦. and T%,�¦. are the, 163 

vegetation and soil component temperatures, respectively; s – sunlit and h - shaded elements. 164 

B�. 
 is the blackbody (Planck’s or, as used herein, Stefan Boltzmann) function. Olioso (1995) 165 

noted that significant errors could arise if the measuring spectral window of the sensor is not 166 

taken into account. Scaling to within the 8-14 μm spectral band (e.g., apogee radiometer 167 

specification) is therefore implemented following Olioso (1995) (see Appendix B). Subscript λ 168 

holds for the IRT sensor spectral window. 169 

1 − τ$�θ"
 = f�θ"
 is the fraction of radiometer’s field of view that is occupied by the canopy, 170 

which is a function of view zenith angle 'θ" = cos67�μ)
( and vegetation cover fraction (f9 =171 

1 − τ$ = 1 − e6ʛ∙=>? for a homogeneous cover – applied throughout this study), i.e.: 172 

f�θ"
 = 1 − e6ʛ∙=>? @A⁄  �3
 173 

LAI here is the effective leaf area index, which is the product of the clumping index and the real 174 

LAI of the canopy (Nilson, 1971). It is important to account for the clumping index in non-175 

continuous canopies. For the leaf projection factor, ʛ, a spherical foliage (ʛ = 0.5) is assumed 176 

with formulations for other leaf inclination distributions defined following Nilson (1971). It 177 

should be noted that for the vegetation fraction, the gap fraction (τ$) is defined from nadir view 178 

(i.e., cos67�μ"
 = 0°), Emissivity of the entire canopy (ε�	, ) is given by Francois et al. (1997) 179 

as: 180 

ε�	, �θ)
 = 1 − τ$�θ"
M'1 − ε%, ( − αJ1 − τ$�θ"
MK'1 − ε), ( �4
 181 

where α is the cavity effect factor (François, 2002; Francois et al., 1997), which defines part of 182 

the incident radiation that is reflected by the leaves and finally absorbed by the canopy. Fitting 183 



the α vs θ) data provided in François (2002) yields α = 0.3168 + 0.0029exp�0.0605 ∙ θ)
; an 184 

alternative option suitable for large view zenith angles, i.e. a regression based on the α-θ) data of 185 

the canopy-emissivity model (C-EP, Cao et al., 2018), is also included; M = 7S T τ$�θ
dθS/W6S/W  is 186 

the hemispherical gap fraction (Francois et al., 1997). All other terms are as previously defined. 187 

2.1.2. Net radiation and energy balance 188 

Global solar radiation partitioning, apparent atmospheric emissivity and net radiation 189 

The new formulation needs partitioning of the global solar radiation into its direct and diffuse 190 

components. The Erbs et al.'s (1982) clearness method summarized in Appendix C is utilized 191 

herein to disaggregate the global radiation into diffuse and direct short wave radiation. The gap 192 

fraction in the solar direction (θX, ϕX) is then used to apportion the direct radiation between the 193 

sunlit sources. This gap probability is defined in the solar direction (θX = cos67�μX
) as τ$�θX
 =194 

e6ʛ∙=>? @Z⁄  for a homogeneous cover. 195 

For the incoming sky radiance, Brutsaert's (1975) analytical method is used, i.e., RA = ε���σT��; 196 

where ε��� = 1.24�e� T�⁄ 
7/[ is the apparent emissivity; e� and T� are the air vapor pressure and 197 

temperature, respectively. This method however only applies to clear skies and it is therefore 198 

necessary to have corrections for overcast days. Herein, the Meeus99 scheme detailed in Annear 199 

and Wells (2007) is first used to identify clear days. In the method, the clear-sky solar radiation 200 

is computed as a function of parameterized ground surface reflectivity, atmospheric albedo, 201 

direct and scattered radiation. While Brutsaert's (1975) method is kept for the clear days, it is 202 

modified according to Brutsaert (1982) as detailed in Herrero and Polo (2012) for the apparent 203 

emissivity in cloudy conditions. The method introduces a parameterized factor (\) that scales the 204 

clear-sky emissivity to cloudy conditions, i.e. ε� = \ε��� = �1 + ]^W
ε���; ] is a cloud dependent 205 



coefficient (herein tuned using incoming longwave measurements) and ^, also  an atmosphere-206 

dependent coefficient, is parameterized as a function of clearness and relative humidity 207 

following Herrero and Polo (2012). 208 

The incoming solar and sky radiations serve as initial inputs for the net radiation terms. The 209 

sunlit and shaded contribution functions detailed for the solar domain in Yan et al. (2012) and 210 

also applied (with some modifications) in the thermal spectrum by Bian et al. (2018) are used to 211 

partition the incoming short- and long-wave radiations between the sunfleck/shaded components. 212 

Presently, the turbid canopy radiative method by Taconet et al. (1986), which is in use in the 213 

standard SPARSE model, has been extended to incorporate the sunlit/shaded components 214 

(Appendix C). The net short-wave (RGxx) and absorbed sky emission (RAxx) terms are separated 215 

from the unknown surface thermal emissions (L_?`aa↑ = f�Taa
) for the net radiation terms: 216 

R�,aa = RGaa + RAaa + L_?`aa↑ �5
 217 

xx = v, g and xx = vs, vh, gs, gh for SPARSE and SPARSE4, respectively; “v” and “g” denote 218 

the vegetation and the soil/ground, which can either be sunlit (“s”) or shaded (“h”) in the 219 

extended formulation. Like in the original SPARSE, the surface emission terms (L_?`aa↑ ) are 220 

defined around air temperature through a Taylor expansion. Further details in Appendix C. 221 

Energy balance scheme 222 

The SPARSE model (Boulet et al., 2015) is based on the two-source TSEB (Norman et al., 1995) 223 

rationale. However, unlike in TSEB, where the potential canopy latent flux is estimated through 224 

the Priestley-Taylor method, SPARSE utilizes a Penman-Monteith approximation. It is argued 225 

that the Priestley-Taylor coefficient (~1.3) may not be reasonable for natural vegetation and 226 

regions with strong vapor pressure deficit (Colaizzi et al., 2012). Priestley-Taylor formulations 227 



have been shown to consistently underestimate transpiration partitioning of total ET, especially 228 

in semi-arid lands (Agam et al., 2010). SPARSE also employs bounding similar to SEBS (Su, 229 

2002) where theoretical potential and fully stressed flux limits for the soil and vegetation are 230 

derived. 231 

The net radiation (R�,aa) terms according to Equation �5
 are partitioned for retrieval of the soil 232 

(G), sensible (H) and latent (λE) heat fluxes. The available energy is thus written as: 233 

R�,aa − G = R�,aa�1–  ξ
 = λEaa + Haa �6
 234 

ξ is the fraction of soil/ground net radiation stored in the soil, i.e., ξ = G/Rng. Therefore, ξ = 0 235 

for the vegetation layers. For diurnal variations of the ground heat storage, the sinusoidal 236 

function by Santanello and Friedl (2003) is also included,  i.e., ξ =  ξf�a ∙ cosJ2π�t + 10800
/237 

BK; t [s] is the time relative to solar noon, B [s] is a deviation minimization factor while 10800 238 

[s] accounts for the three-hour lag between the maximum incoming radiation and maximum 239 

fraction (ξf�a). 240 

Soil and vegetation component latent fluxes are treated as representative averages for the surface 241 

(here gx = g and vx = v for SPARSE; and gx = gs, gh and vx = vs, vh for SPARSE4): 242 

λE% = i ρClγ β� e��o'T%a( − epr��%a �7
 243 

λE) = i ρClγ β) e��o�T)a
 − epr)))a �8
 244 



likewise, the component sensible heat fluxes are defined as: 245 

H% = i ρCl T%a − Tpr��%a �9
 246 

H) = i ρCl T)a − Tpr�))a �10
 247 

where ρCl denotes the volumetric heat capacity of air, γ the psychrometric constant, e��o�Taa
 =248 

e��o�T�
 + ∆�Taa − T�
 is the saturated vapour pressure at temperature Taa, ∆ the slope of the 249 

vapour pressure-temperature curve at T�,  ep is the partial vapor pressure at the aerodynamic level; 250 

r�� is the soil to aerodynamic level resistance and r)) = r�) + r�ot the minimum total resistance 251 

for latent heat exchange between the vegetation and the aerodynamic level; r�) is the vegetation-252 

to-aerodynamic level resistance; r�ot is the stomatal resistance (defined below). β�, β) are the 253 

respective evaporation and transpiration efficiencies, defined as the ratio between actual and 254 

unstressed latent heat fluxes in actual surface conditions, functionally equivalent to soil and 255 

vegetation surface conductances, respectively. For the dependence of aerodynamic resistance to 256 

stability correction, the aerodynamic temperature (Tp), component temperatures (Taa), energy 257 

fluxes and ep are solved and updated iteratively (Richardson number) until convergence. Similar 258 

to SPARSE, aerodynamic resistances are expressed according to Shuttleworth and Gurney 259 

(1990). Surface components very often alternate between sun and shade and there is therefore no 260 

clear distinction between sunlit/shaded elements.  For the evaporation/transpiration efficiencies, 261 

only the soil and vegetation sources are hence distinguished with similar 262 

(evaporation/transpiration) efficiencies applying to both sunlit/shaded sources. 263 

Canopy stomatal conductance 264 

While Chen and Liu (2020) observe that shortcomings resulting from theoretical and practical 265 

issues are more serious in big-leaf photosynthesis than in big-leaf evapotranspiration models, 266 



they recommend theoretical consistency in conductance formulation and aggregation. Owing to 267 

the inter-dependence between stomatal conductance and assimilation rate in Ball-Berry schemes 268 

(e.g., Collatz et al., 1991; Medlyn et al., 2011), and the necessity to have a method that is 269 

theoretically consistent with the physics of the original model, we prefer and consequently retain 270 

a conductance scheme that considers the product of several relevant environmental factors as 271 

used in SPARSE (Boulet et al., 2015; Braud et al., 1995; Noilhan & Planton, 1989; Olioso et al., 272 

1995). We follow the method by Sinclair el al. (1976) who implemented an irradiance-dependent 273 

conductance method for sunfleck/shaded leaves, which is more compatible with SPARSE’s 274 

model structure. Of critical importance is the proper scaling from leaf to canopy stomatal 275 

conductance using the respective sunlit/shaded leaf area indices (LAI)a). The stomatal resistance 276 

(r�ot) to be aggregated for the minimum resistance to latent heat (r)) = r�) + r�ot) as used in 277 

Equation �8
 is thus written as: 278 

r�ot = �uvwZx ∏ z=>?{| �11
  279 

where r�ofX� is the minimum stomatal resistance; ∏} = }~�}�� is the product of environmental 280 

factors - }~� is the radiation factor, which measures the influence of photosynthetically active 281 

radiation and }��  is the vapor pressure deficit factor, which represents the effects of vapor 282 

pressure deficit of the atmosphere on the surface resistance (Braud et al., 1995; Noilhan & 283 

Planton, 1989; Olioso et al., 1996). 284 

In SPARSE (and hence SPARSE4), the stomatal conductance (g�ot = 1/r�ot) is coupled with the 285 

vegetation efficiency (β)), a term that is related to the plant-water stress, to derive the latent 286 

fluxes. The efficiency can be viewed here as a separate conductance term that represents the 287 

impact of water stress (related to soil moisture in the root zone) on the vegetation. Coupling the 288 



two conductance terms allows the derivation of flux estimates in potential as well as in 289 

prevailing/actual conditions. 290 

2.1.3. Implementation 291 

SPARSE (xx = v, g) separately solves the radiative and energy budgets for the soil (g) and 292 

vegetation (v) sources. The two continuity equations (Equations �12.b
 and �12.c
) and two 293 

energy balance equations, together with the link between the component temperatures and the 294 

out-of-canopy radiance (Equation �2. a
) are thus solved for the 6 unknowns, i.e., 295 

Taa�%,) , Tp, ep, β) & β�. For the new version SPARSE4, there are four components (xx =296 

vs, vh, gs, gh) since each source - soil (g) or vegetation (v) - is split into a sunlit (s) and a shaded 297 

(h) component.  This leads to four energy budget and two continuity equations, which together 298 

with the out-of-canopy thermal link (Equation (2.b)) are to be solved to retrieve the 8 unknowns: 299 

Taa�)�,).,%�,%. , Tp, ep, β) & β�. Therefore, for both SPARSE and SPARSE4, the system of 300 

equations is underdetermined and one unknown must be fixed a priori. The energy budget and 301 

continuity equations are written as: 302 

 

��
�
��R�,aa�1–  ξ
 − �Haa + λEaa
 = 0 

        ρCl Tp − T�r� = H = i Haaaa  
      ρClγ ep − e�r� = λE = i λEaaaa   

 

�12.a

�12.b

�12.c


where r� is the aerodynamic-to-reference level resistance; and as noted earlier in the section, ξ 303 

only applies to the soil and is set to zero for vegetation elements. Other terms are as defined 304 

above. 305 

SPARSE can be run in either ‘retrieval’ (‘inverse’) or ‘prescribed’ (‘forward’) modes. Similar to 306 



TSEB, both modes assume the soil surface layer dries first while the vegetation transpires at 307 

potential rate �β) = 1
. In the ‘prescribed’ mode, the soil evaporation and vegetation 308 

transpiration efficiencies are known and the SPARSE4 model uses a 4-by-4 (2-by-2 for 309 

SPARSE) energy budget matrix system to solve for the fluxes and temperatures directly. For 310 

consistency, the ‘prescribed’ mode is used herein as it allows a more straightforward separation 311 

of the interacting terms and thus get rid of the system’s under determination. The transpiration 312 

efficiency is therefore prescribed by initially setting it to (β) = 1) and the system of equations 313 

solved iteratively by decreasing β� incrementally from (β� = 1) till a value that minimizes the 314 

difference between the observed and simulated T���. If a minimum difference is not reached and 315 

the soil is dry (β�, thus evaporation, close to 0), then one assumes that the vegetation is 316 

undergoing stress. β� is then at its minimum (e.g., β� ≈ 0) and, similarly, β) is decreased 317 

incrementally until the difference between the observed and simulated radiative temperatures is 318 

minimal (i.e. simulated T��� ≈ observed T���). 319 

The simultaneous retrieval procedure of the fluxes and temperatures from the energy and 320 

radiative set of equations is illustrated by Figure 1 and summarized by Equations �12.a
, �12.b
 321 

and �12.c
. That is: the incoming short- and longwave radiation fluxes are partitioned between 322 

the components; a first guess of the aerodynamic temperature then provides a solution for the 323 

component emissions (thus temperatures) for onward derivation of the initial component fluxes; 324 

the temperature and partial vapor pressure at the aerodynamic level are then iteratively computed 325 

for stability convergence (Richardson number – see section 2.1.2). By modulating the 326 

evaporation/transpiration efficiencies, i.e. applying a linear decrement of the efficiencies, the 327 

procedure can be repeated until the surface temperature boundary condition is met (i.e. simulated 328 

≈ observed surface temperature). 329 



 

Figure 1: Model flow diagram (adapted from Boulet et al. (2015))  

 330 

2.2. Data description 331 

2.2.1. Study sites 332 

The datasets used to run the models and for performance evaluations are drawn from four 333 

contrasting sites. Two Olive Orchards located in: Nasrallah, Tunisia (Latitude, Longitude: 35.30° 334 

N, 9.92° E: 2014) and Agdal, Morocco (31.60° N, 7.98° W: 2003) with vegetation cover 335 

fractions of ~7% (Chebbi et al., 2018) and ~60% (Er-Raki et al., 2009), respectively. 336 

Experimental datasets for the other two sites were collected during the growing periods of 337 

Soybean: 1990 (Avignon: 43.90° N, 4.80° E, France; Olioso et al., 1996) and flood-irrigated 338 

wheat: 2004 (R3: 31.67° N, 7.59° W, Morocco; Duchemin et al., 2006), hence varying 339 

vegetation cover fractions. Table 1 provides a summary of the input data collected from the sites. 340 



These can broadly be categorized into: data used for model runs – meteorological, biophysical 341 

information; and evaluation data – flux measurements from the installed radiometers and eddy 342 

covariance systems. 343 

2.2.2. Meteorological and surface biophysical input variables  344 

Forcing data collected from the meteorological stations at the four locations include air 345 

temperature, relative humidity, wind speed and direction. These are recorded at heights of 9.2, 3, 346 

9.8 and 2 m for Agdal, Avignon, Nasrallah and R3 sites, respectively. Surface temperature, 347 

which is needed to force the surface energy balance, is also measured on-site using Apogee 348 

Infra-red radiometers (Apogee Instruments Inc., UT, USA) observing from zenith. The R3 study 349 

site is also equipped with an oblique-viewing radiometer (at 45° elevation). Surface temperature 350 

in Avignon is measured using a Heimann kT17 thermal radiometer. Additionally, incoming solar 351 

and sky radiation data from the installed pyranometers and pyrgeometers were available. See 352 

Appendix D for a summary of the instruments. Except for Avignon, where recordings were made 353 

at hourly intervals, measurements at the other sites were collected on half-hourly basis. 354 

Table 1: Summary of meteorological, biophysical and flux information at the experimental sites 
(the instruments installed at the experimentation sites are detailed in Appendix D and also 
presented in the supplementary materials) 

Data Source Range 

Characteristics (both model formulations) 

Surface albedo [-] Field: i.e. � ↑/� ↓ varying 

Vegetation albedo; soil and vegetation 
emissivity [-] 

Literature ~0.15-0.25; 0.96, 0.98 

Bio-physical parameters: leaf area index (LAI – 
[mWm6W]), leaf inclination distribution function 
(LIDF - spherical foliage assumed herein: i.e., ʛ 
= 0.5 [-]), vegetation height [m], minimum 

Field 

Agdal: 
Avignon: 

Nasrallah: 

LAI; height; r�ofX�∗ 

~1.8; ~6; 200*a 

~0.4 – 4.0; ~0.2 – 0.8; 80*b 

~0.21; ~5.8; 200*a 



stomatal resistance (r�ofX� - [ s m67]), R3: ~0 – 4.2; ~0.1 – 0.8; 100*c 

Forcing and fluxes (both formulations) 

Meteorological data: Incoming solar radiation 
(S ↓ - [W m6W]), air & surface temperature 
[°C], relative humidity [-], wind speed [m s67]  

Field varying 

Fluxes [W m6W]: radiation; latent, sensible and 
ground heat 

Field varying 

Other data 

Viewing direction: Zenith (SPARSE and SPARSE4) 

and Azimuth (SPARSE4) 
Field 

nadir (all sites) and 

oblique (R3) 

Solar direction [°]: Zenith and Azimuth 
(SPARSE4) 

From local time 

& geo. co-ord. 

as per solar algorithm: 

~0 – 90; ~0 – 360 

*a Delogu et al. (2018); *b Olioso et al. (1996); *c Boulet et al. (2015), Gentine et al. (2007) 355 

Other than angular data (i.e., viewing azimuth, solar zenith and azimuth angles), no additional 356 

information is required to run the extended model for a homogeneous canopy that assumes a 357 

randomly inclined foliage. The solar zenith and azimuth angles can be calculated from the local 358 

time and geographic coordinates of an area of interest; the Sun angles and daylength algorithm 359 

(Campbell & Norman, 1998; Iqbal, 1983) is used herein. 360 

2.2.3. Observations used for evaluation 361 

In all sites but Avignon, sensible and latent energy fluxes were measured using eddy covariance 362 

(EC) systems, which consisted of temperature probes, hygrometers, and 3D sonic anemometers 363 

that measured the fluctuations of air temperature, water vapor and wind velocity components. 364 

The raw EC data at the Agdal site was processed using the ‘ECpack’ processing tool developed 365 

by the Meteorology and Air Quality Group, Wageningen University (Hoedjes et al., 2007). 366 

Nasrallah’s EC system data was analysed using the ‘eddy pro’ software developed and 367 

maintained by LI-COR Biosciences and the ‘ReddyProc’ tool used for gap-filling (Chebbi et al., 368 



2018). For R3, processing of the raw data was done using the ‘EdiRe’ software package from the 369 

University of Edinburgh (Duchemin et al., 2006). The ground heat flux was measured using soil 370 

heat plates installed within a few centimeters depth (a correction is applied to account for the 371 

heat storage between the sensor and the soil surface). Net radiation was calculated as a residual 372 

from the incoming and outgoing short- and long-wave radiation observations from 4 component 373 

net radiometers; at Avignon, direct measurements of Rn were performed using 2 component net 374 

radiometers. In Avignon sensible heat flux was measured using 1D sonic anemometers and latent 375 

heat flux was computed as the residual of the energy balance equation. Latent heat flux was also 376 

measured using a Bowen ratio system providing results consistent with the residual method 377 

(Cellier & Olioso, 1993). Correction of latent heat fluxes at the R3 wheat field was similarly 378 

achieved by ensuring Bowen conservation (Boulet et al., 2015). There was a good daily energy 379 

budget closure at the Nasrallah Olive site, which was characterized by a slope of 98 % (Chebbi 380 

et al., 2018). An absolute energy closure of 90 % has also been reported for the Agdal Olive site 381 

(Er-Raki et al., 2009). 382 

While overall fluxes are important, separating them between the soil and vegetation components 383 

is key particularly to users in water deficit regions who are faced with the need to allocate the 384 

scarce resource to the plant for optimal agricultural production. Transpiration data were however 385 

only available at the Nasrallah and Agdal orchard sites. To allow adequate representation of the 386 

olive trees at the Nasrallah site, rescaling of sap-flow observations was necessary. The rescaled 387 

measurements were calculated using parameters (i.e., trunk diameter, total stem section) taken 388 

from old and young olive trees (Chebbi et al., 2018). For Agdal, data filling was done using a 389 

linear regression for the site proposed in Er-Raki et al. (2009), i.e. 0.44ETp + 0.49; where 390 

ETp Jmm d67K is the daily reference evapotranspiration (estimated in their work using the FAO-391 



56 Penman-Monteith equation). 392 

For Nasrallah, performance reporting primarily focuses on the dataset collected over the year 393 

2014 whereas some other evaluation variables are drawn from years 2013 and 2015. This is 394 

because continuous meteorological, EC and sap-flow data that had minimal errors were readily 395 

available for year 2014 while other data were collected in the other years. For instance, 396 

measurement of shaded soil temperatures only began in year 2015; however, the turbulent flux as 397 

well as sap flow measurements collected during that year had a lot of intermittent but frequent 398 

instrument-related errors. In this isolated tree agro-system, positioning an infrared thermometer 399 

in the shade or over the sunlit soil was technically straightforward, while the sunlit and shaded 400 

leaf elements were more homogeneously distributed and could not fall within the field-of-view 401 

(FOV) of a single instrument. We therefore interpreted the difference between a nadir-looking 402 

narrow-FOV TIR radiometer and the hemispherical radiometer to retrieve both elementary 403 

temperatures. The sunlit vegetation temperature was therefore recomputed from the outgoing 404 

longwave radiation (from the hemispherical radiometer), shaded vegetation temperature and 405 

sunlit/shaded soil temperatures (from the narrow-FOV TIR radiometers looking at the central 406 

canopy gap and bare soil, respectively). That is, the outgoing longwave radiation was assumed to 407 

be a function of the bare soil and vegetation (weighted by the gap fraction and foliage cover 408 

fraction, respectively) and a small contribution from the reflected sky emittance. From the 409 

calculated average foliage temperature, the sunlit vegetation temperature was indirectly solved 410 

for by weighting the sunlit/shaded vegetation elements using their respective contribution 411 

coefficients from UFR97. 412 

2.2.4. Evaporation proxy 413 

Save for the hourly-retrieved measurements at the Avignon experimental site, edaphic variables 414 



(i.e., soil moisture and soil temperature) are recorded every 30 minutes. We used the surface soil 415 

moisture measurements as a proxy to estimate the evaporation efficiency. Soil evaporation 416 

efficiency can be defined as the ratio between actual and potential/maximum evaporation. The 417 

‘reference’ soil evaporation efficiency  (also ‘relative humidity at the ground surface’ according 418 

to Noilhan and Planton (1989)) is given by a sinusoidal function described in Merlin et al. (2011)  419 

as: 420 

β� = ��0.5 − 0.5cos �π θp6��fθf�a ��l ,         θp6��f < θf�a                          1,                                θp6��f ≥ θf�a
�13
 421 

where θp6��f and θf�a are the observed and saturation soil water contents at the surface layer 422 

(here volumetric Jm�m6�K soil moisture at 5 cm depth is used); p [-] is a shape parameter related 423 

to soil texture. Such a function can also act as an observation operator when assimilating satellite 424 

acquisitions of surface soil moisture in soil-vegetation-atmosphere transfer algorithms. 425 

3. Results 426 

3.1. Sunlit and shaded contributions 427 

The Unified Francois (UFR97) model, as detailed earlier, estimates contributions of sunlit and 428 

shaded elements depending on the solar and viewing directions. Here we only present a 429 

simulated example of the Morocco R3 site as it is the only one with oblique thermal 430 

measurements. The site is instrumented with two Apogee Infrared radiometers viewing from 431 

nadir and oblique (at 45° inclination). Figure 2 highlights the simulated contributions of the 432 

sunlit and shaded soil and vegetation elements. The daily variations are more differentiable in the 433 

nadir case where contribution of sunlit elements is highest around solar noon (peaks/troughs in 434 

sunlit/shaded element envelopes in Figure 2). With the solar azimuths ranging from 110° - 250° 435 



(10 AM - 3 PM), the south-facing off-nadir thermal sensor is simulated to observe varying 436 

sunlit/shaded soil elements while mostly viewing the shaded vegetation over the experiment 437 

period. This observation is as expected for a site that is located in the Northern Subtropics. 438 



 
Figure 2: Contributions of sunlit/shaded soil (Kg/Kz) and sunlit/shaded vegetation (Kc/Kt) 439 

components and gap fraction (probability) at the R3 wheat site (10 AM - 3 PM) as simulated by 440 

the UFR97 method for a) Nadir-, and b) off-nadir/oblique-facing radiometer. Solar noon depicted 441 

by peaks in sunlit elements and troughs in shaded elements. 442 

3.2. Global fluxes and partitioning 443 

In this and subsequent sections, the ‘prescribed’ model runs were forced with surface 444 

temperature measurements acquired at nadir, except for the R3 site which also had oblique TIR 445 

observations. Performance in estimating total fluxes is analyzed first, then we look at how those 446 

fluxes were partitioned between the vegetation and soil sources, and finally on the estimated 447 

evaporation efficiency. For an initial overview of how the models perform under different 448 

atmospheric conditions, outputs from clear skies were distinguished from cloudy days following 449 

the method detailed in section 2.1.2. However, throughout the rest of this study focus is mainly 450 

on outcomes from the combined clear-sky and overcast datasets. Further reporting on the nadir- 451 

and oblique-derived estimates at the R3 site is discussed in section 4.2. The objective functions 452 

used for assessing the performance of the models include: the root mean square error/difference 453 

(RMSE [variable’s units]), correlation coefficient (R [-]) and bias [variable’s units]. 454 

3.2.1. Overall (global) fluxes 455 

Daily RMSEs and correlation coefficients for the overall fluxes over the four sites are compared 456 

in Table 2 with the columns denoted ‘All data’ reporting on the combined clear-sky and overcast 457 



output. Similarly, Figure 3 illustrates comparisons of the combined data. From inspection of the 458 

tabulated metrics, it can observed that even by applying relatively simple sky radiation scaling 459 

methods, clear-sky performances can be replicated, i.e., the respective model performances 460 

between cloudless and combined outcomes are comparable in all test sites. This highlights the 461 

utility of models meant to be used with all-weather remotely sensed data. While this may be 462 

desirable temporal-wise, their usage in cloudy conditions would require the use of thermal data 463 

that is less influenced by the atmosphere’s visibility conditions (e.g. in-situ/field-collected data 464 

or unmanned aerial vehicles – UAV imagery), which typically have limited spatial coverage. 465 

Some site-specific characteristics could also be observed to influence the overall results. In 466 

Nasrallah, for example, the prevailing dry conditions coupled with the fact that only around 7% 467 

of the surface is vegetated lead to the flux simulations being mostly attributed to the soil, and 468 

more so to the sensible heat flux. With much less available energy being assigned to latent 469 

fluxes, relatively low RMSEs could be achieved for the site. However, the latent flux goodness-470 

of-fit for the site as described by the correlation coefficient was not as good although a small 471 

improvement could be observed with SPARSE4. Contrarily, at the Agdal orchard - which has a 472 

higher vegetation cover fraction and is frequently irrigated - the turbulent fluxes RMSEs are 473 

relatively higher but with much better correlation. The hourly performances are displayed in 474 

Figure 3 where both models demonstrate nocturnal equivalence with some differences being 475 

observed during the day. The relatively large early-morning biases of latent fluxes at the 476 

Nasrallah site, which are somewhat reduced in the new model formulation, can also be seen to be 477 

averaged out by the reduced nighttime biases.  478 



Table 2: SPARSE and SPARSE4 global fluxes performance: RMSEs [W m-2], correlation 
coefficients - R [-] and bias [W m-2] for the four sites 

  SPARSE SPARSE4 

  RMSE/correlation/bias RMSE/correlation/bias 

  Clear skies All data Clear skies All data 

A
gd

al
 

Rn    29/0.99/-19 34/0.99/-24 21/0.99/-4 23/0.99/-5 

LE    64/0.83/11 63/0.82/8 61/0.83/9 57/0.83/6 

H    75/0.87/-29 74/0.86/-28 63/0.88/-12 61/0.88/-11 

G 27/0.88/15 25/0.88/14 27/0.84/2 26/0.84/2 

A
vi

gn
on

 Rn    43/0.98/-12 42/0.98/-11 36/0.98/7 38/0.98/7 

LE    44/0.95/-12 43/0.95/-12 48/0.94/2 47/0.94/-1 

H    41/0.90/-13 40/0.89/-14 42/0.78/-4 44/0.77/-3 

G 39/0.89/16 38/0.86/16 39/0.82/11 38/0.80/11 

N
as

ra
ll

ah
 Rn    35/0.98/-3 34/0.98/4 32/0.98/3 33/0.98/4 

LE    38/0.59/6 39/0.56/7 35/0.62/2 36/0.60/3 

H    48/0.93/-29 47/0.92/-26 44/0.94/-20 44/0.93/-19 

G 42/0.94/13 41/0.93/14 43/0.93/9 41/0.93/12 

TIR-view → nadir oblique nadir oblique nadir oblique nadir oblique 

R
3 

Rn    35/0.98/6 36/0.99/7 39/0.98/1 38/0.98/1 41/0.99/13 41/0.99/12 42/0.98/12 43/0.98/11 

LE    48/0.84/-3 46/0.89/5 48/0.83/-6 48/0.87/-1 36/0.94/4 37/0.93/4 40/0.93/5 41/0.91/4 

H    59/0.82/-19 54/0.81/-27 59/0.83/-23 56/0.82/-28 49/0.84/-8 52/0.83/-8 49/0.85/-11 52/0.84/-10 

G 30/0.83/15 32/0.83/16 29/0.82/11 29/0.81/12 37/0.71/6 37/0.70/6 36/0.66/3 36/0.65/3 

The net radiation, which is the main source of energy for the system, is observed to be increased 479 

with SPARSE4. This tends to reduce the bias (in absolute terms) and the RMSE except in R3. 480 

Changes are mostly significant in diurnal periods as shown in Figure 3 and also at night for 481 

Nasrallah. In Agdal, the reduced net radiation biases (lower negative biases according to Table 2) 482 

also appear to be partly contributed by the relatively higher net radiation for the vegetation 483 

(Figure 7). The turbulent fluxes RMSEs at Avignon are fairly higher for the new model. The 484 

differences, which can possibly be attributed to the added model complexities, are nonetheless 485 

counterbalanced by improved biases. In terms of mean errors, both model formulations appear to 486 

consistently overestimate the ground heat flux while generally underestimating the sensible heat 487 

fluxes. These biases can mainly be attributed to the estimates at nighttime when the ground 488 



(sensible) heat fluxes are generally overestimated (underestimated). Night soil temperatures 489 

estimated by both models generally appear to be underestimated (Figure 5) thus explaining the 490 

biases since the low temperatures suggest less soil emissions and therefore more soil net 491 

radiation, which is then available for the soil energy fluxes and therefore partly explaining the 492 

overestimation of the soil heat flux. The inverse effect of the increased net radiation on sensible 493 

heat flux is likely as a result of the inherent/theoretical direct relation between sensible heat flux 494 

and temperature and the fact that latent fluxes are capped. The biases are nevertheless somewhat 495 

suppressed in SPARSE4 for all fluxes across all sites.496 



 

Figure 3: Nocturnal/diurnal trends of bias and RMSEs; for a) latent heat flux, b) sensible heat flux, c) net radiation, and d) ground heat 
flux. Hollow and solid shapes represent SPARSE and SPARSE4, respectively; shape/color (site): triangle/black (Agdal), 
lozenge/green (Avignon), square/red (Nasrallah), and circle/blue (R3)



3.2.2. Flux partitioning and temperatures 497 

This sub-section reports on the partitioning of the total fluxes starting with the decomposition of 498 

evapotranspiration between the soil and vegetation at the Nasrallah and Agdal orchard sites. As 499 

previously noted, availability of sap-flow data is limited to these two sites. The daily 500 

transpiration rates simulated during the study periods are illustrated in Figure 4. For Nasrallah, 501 

the respective root mean square errors [mm/day], correlation [-] and bias [mm/day] for SPARSE 502 

were: 0.15, 0.91, −0.12; and for SPARSE4: 0.09, 0.90, −0.02. The models’ RMSEs, 503 

correlations and bias for Agdal were 0.40, 0.96, −0.35 and 0.23, 0.96, −0.04, respectively. The 504 

overall reduction of the bias - by at least 40 % - translated to the transpiration in the new 505 

formulation being higher than in the standard SPARSE hence allowing the estimates to closely 506 

follow the reference observations particularly during the summer. 507 

 

Figure 4: Observed (green o) and simulated (SPARSE: red ●, SPARSE4: black ▼) transpiration 
–time series’ for a) Nasrallah and b) Agdal sites. 



 

Figure 5: Vegetation and soil temperatures (estimated and observed) over the simulation period 
in Agdal (a, b) and Nasrallah (c, d); and e, f) sunlit and shaded vegetation elements; g, h) sunlit 
and shaded soil at the Nasrallah site (key applies to all figures) 

The simulated temperatures for the Agdal and Nasrallah (2015) sites are shown in Figure 5. For 508 

Agdal, the measurements were taken as the soil/vegetation averages. For Nasrallah, however, the 509 

sunlit soil, shaded soil and shaded vegetation temperatures were available but only from year 510 

2015. As detailed in section 2.2.3, the sunlit vegetation temperature was re-calculated from the 511 



long-wave radiation observations and the measured sunlit/shaded soil and shaded vegetation 512 

temperatures. Estimates by SPARSE4, which outputs both shaded and sunlit temperatures, are 513 

compared to the observations in Figure 5. The nocturnal soil temperature estimates are generally 514 

underestimated resulting in the already noted biases on the soil energy fluxes. The TIR Apogee 515 

sensor that provides the shaded soil temperatures (installed under a tree) records slightly higher 516 

night temperatures when compared to the sensor in the open field (in the Sun during the day). 517 

This phenomenon is however not replicated by the model since the entire soil is considered 518 

shaded at night.    519 

3.3. Soil evaporation efficiency 520 

Unavailability of sap flow data due to complexities involved in collecting accurate measurements 521 

can make the assessment of evapotranspiration partitioning impractical for some sites. 522 

Nonetheless, how well a model estimates vegetation (latent heat) fluxes can be deduced from 523 

overall evapotranspiration and soil evaporation. This can practically be obtained as the difference 524 

between total evapotranspiration from eddy covariance measurements and soil evaporation 525 

inferred from surface soil moisture. Here, we compare the soil efficiencies retrieved by SPARSE 526 

to the proxy soil evaporation efficiency given by Equation �13
 (Merlin et al., 2011). The 527 

modeled soil efficiencies are illustrated and compared to the proxy in Figure 6. 528 



 

Figure 6: Time series' of soil evaporation efficiencies (SPARSE: red and SPARSE4: black) with 
Merlin et al.'s (2011) method as the proxy (in green) a, b) Nasrallah - 2013 and 2014, c) R3, d) 
Agdal, and e) Avignon 

In Nasrallah, where the soil is greatly stressed, the models’ soil efficiency simulations are able to 529 

reproduce the ‘observation’ with both models generally showing a better fit with variations of the 530 



soil moisture inferences. The new scheme appears to capture most peaks in R3 and Agdal, 531 

especially around the first soil water inputs, with slightly better timing. Otherwise, the soil 532 

efficiency estimations by the two models were almost similar in the four experiments. In addition 533 

to the peak in R3 at maximum vegetation development (from DoY ~55 to ~70 excluding missing 534 

simulations arising from a surface temperature data gap), some peaks in the evaporation 535 

efficiencies at the Agdal site corresponding to irrigation episodes are not well captured. 536 

4. Discussion 537 

4.1. Overall performance and the influence of direction on partitioning 538 

The SPARSE and SPARSE4 energy balance schemes were evaluated over two orchards and two 539 

crop experimental sites. Overall, it was apparent that both models could satisfactorily estimate 540 

the global fluxes. While there was a general reduction of flux biases with SPARSE4, 541 

performance between the models was almost similar when using the nadir-retrieved temperature 542 

inputs since such measurements are generally not influenced by TRD effects. These results are 543 

expected as all the four sites are situated in relatively high latitudes where directionality effects 544 

on the nadir measurements are negligible due to the medium/low Sun angles throughout the 545 

simulation periods. R3, which was the only site with an oblique-viewing radiometer, also 546 

provided measurements that were simulated to originate from mostly shaded elements as 547 

illustrated in Figure 2.b. Consequently, the nadir- and oblique-derived total flux estimates were 548 

retrieved with reasonable accuracy by both schemes (Table 2). In order to derive differentiated 549 

and possibly improved total flux retrievals from the new model formulation, surface temperature 550 

differences arising from thermal radiation directionality effects should be present. As reported 551 

earlier, directionality effects can be quite large especially when viewing in the solar direction 552 

warranting the use of a directionality model to simulate out-of-canopy radiances. These thermal 553 



directionality effects could however not be tested at present due to limitations related to 554 

unavailability of directional thermal measurements. SPARSE has also been shown to exhibit 555 

equifinality (Boulet et al., 2015; Boulet et al., 2018) where consistent/similar total fluxes can be 556 

estimated with different stress-level combinations of the individual sources. We acknowledge 557 

and expect that this aspect is also present in the new formulation. 558 

Figure 7 illustrates the component net radiations as simulated by the two models. Also shown are 559 

the vegetation cover fractions in the solar as well as nadir directions. Consideration of the solar 560 

direction, i.e. where direct radiation is partitioned with respect to the solar elevation, ensures 561 

more radiation is apportioned to the vegetation in the new formulation. The rationale is twofold: 562 

1) the diffuse fraction (fd) as defined by Erbs et al. (1982) decreases with increase in the sky 563 

clearness index, therefore high global solar radiation will generally result in high direct radiation 564 

in the solar direction; and 2) gap fraction – complement to vegetation cover fraction as illustrated 565 

in Figure 7 - diminishes (hence canopy fraction increases) from nadir to the Sun’s zenith (which 566 

is often oblique especially in the subtropics and temperate regions); this additional radiation 567 

received by the vegetation can then be partitioned between the turbulent fluxes. Indeed, this leads 568 

to the higher vegetation available energy in the Agdal site, which is then apportioned for the 569 

higher canopy turbulent fluxes thus the slightly higher transpiration. However, if one assumes 570 

minimal errors in the diffuse radiation measurements, then it should be acknowledged that the 571 

use of Erbs et al.'s (1982) method introduces additional partitioning uncertainties as depicted by 572 

the observed diffuse fraction band in Figure C1. With relatively more radiation reaching the soil, 573 

the classical SPARSE model attains a better simulation of the ground heat flux in terms of 574 

RMSE and correlation although this appears to in-turn lead to relatively higher positive biases. 575 

While the discrimination between shaded and sunlit elements likely results in better partitioning 576 



of vegetation's available energy between sensible (Hv) and latent (LEv) heat fluxes, the expected 577 

impact of vegetation temperatures on the absolute Hv values is not apparent - especially for 578 

densely vegetated scenes and unstressed vegetation. When the vegetation is unstressed, the new 579 

formulation will generally apportion the relatively higher vegetation available energy as 580 

unstressed Hv since LEvpot/Rnvpot is inherently similar to that simulated by SPARSE. 581 

 

Figure 7: a) Vegetation/soil net radiation (noon) at the Agdal site and b) Nasrallah soil net 
radiation. Right axis: nadir vegetation cover fraction (only dependent on LAI and LIDF) and 
vegetation cover fraction in the Sun direction (dependent on LAI, LIDF and solar elevation). 

While the UFR97 method provides gap frequencies treatment for homogeneous/continuous 582 

covers, row (Yan et al., 2012) and forest (Bian et al., 2018; Li et al., 2017), this study applies the 583 

homogeneous method across all sites since it ensured consistency with the observations. When 584 

compared to the continuous cover method, Li et al.'s (2017) method has been shown to provide 585 

significantly larger gap fractions especially at nadir (Bian et al., 2018). We also observe its 586 

underestimation of vegetation cover fraction when compared to the observations at the orchards. 587 



The radiative model could nonetheless be improved by using the discontinuous versions, which 588 

we expect can further improve the results. The method’s suitability in surface energy balance 589 

partitioning however requires careful analysis before it can be properly applied. With respect to 590 

applying different cavity effect formulations (FR97 and C-EP), we observe that the differences in 591 

the resulting fluxes are very small (results not shown). This is because the orders of magnitude of 592 

both cavity effect formulations are quite close for nadir views with the differences in the 593 

resulting canopy emissivity being marginally higher for larger viewing zeniths. 594 

4.2. Sensitivity of estimates to nadir vs off-nadir viewing 595 

It is important to test the sensitivity of evapotranspiration derivation methods to the sensor 596 

direction of view because prevailing surface condition retrievals (temperatures, radiation and 597 

turbulent fluxes) should essentially be similar whatever the geometry of data acquisition. This is 598 

a key consideration aspect since space-borne sensors, which presently act as essential sources of 599 

input data for Earth observation methods, generally observe terrestrial pixels from off-nadir 600 

directions, with the viewing orientations changing often depending on the satellite’s location in 601 

its orbit. While the Sun-synchronous concept used in some missions (e.g., MISTIGRI, 602 

Lagouarde et al., 2013) minimizes the impact of thermal radiation directionality by allowing 603 

same viewing geometry for a given location, it cannot entirely eliminate effects resulting from 604 

solar position variations (Duffour et al., 2016; Duffour et al., 2015). For instance, future high 605 

resolution satellite missions in the TIR domain (e.g., TRISHNA, Lagouarde et al., 2019) will 606 

observe a given location with very different observation angles from one overpass to the other. 607 

This will allow frequent revisit capacities, which are indeed necessary for reasonable temporal 608 

upscaling of evapotranspiration estimates (Delogu et al., 2021). While the retrieval parameters 609 

(e.g. overpass time) can be duly chosen such that the hotspot is rarely observed, these 610 



specifications mean that it is likely for the sensors to acquire remote sensing data close to the 611 

hotspot particularly over the tropics and subtropics (see for example Duffour et al. (2016)). 612 

Additionally, directionality is also an issue for current missions including MODIS, and is usually 613 

ignored (except for the amount of vegetation in the sensor’s field of view). SPARSE 4 was 614 

designed to account for such differences in viewing direction and changes in Sun position, and it 615 

is important to evaluate potential improvements in this sense comparatively to SPARSE. We 616 

therefore test the models’ output sensitivity to observation angle for the R3 site when forced with 617 

surface temperature observations acquired simultaneously either at nadir or from a 45° (south-618 

facing) elevation angle. 619 

Figure 8 plots the oblique- against nadir-retrieved model estimates for the two SPARSE 620 

formulations and the performance evaluation of the respective nadir and oblique simulation sets 621 

are tabulated in Table 2. The small differences between the temperatures observed from the two 622 

directions (within ~3°C) allow the overall fluxes to be satisfactorily reproduced by both models. 623 

Reproduced retrievals of vegetation fluxes by SPARSE4 however appear better and it can also be 624 

observed that angular surface temperature inputs have slightly more impact on SPARSE’s 625 

retrieval of soil temperatures. This can in part be explained by the fact that the gap fraction 626 

reduces from nadir to off-nadir and the underlying physical assumption of the soil being stressed 627 

prior to vegetation. This lower oblique gap means that the fraction of soil (and hence its 628 

contribution to the signal) in the field of view of the sensor is reduced leading to variations in the 629 

simulated soil stress efficiency and thus the soil temperatures. Additionally, the coupling of the 630 

soil and vegetation in the net radiation scheme means any deviations in soil emissions ultimately 631 

influence the vegetation’s radiative and energy budgets. The influence on soil fluxes in extended 632 

model can be interpreted the same way although its consideration of the shaded soil (which 633 



reduces the average temperature variations) appears to diminish the overall effect. There is 634 

consequently a tendency to simulate similar, albeit potential (subscript pot) or unstressed, 635 

vegetation fluxes in both SPARSE4 scenarios. 636 

  
Figure 8: Sensitivity of estimates to angular thermal data. I.e.: estimates using oblique-observed 



Trad (ordinate) vs estimates from nadir-observed surface temperature (Trad) input (abscissa). Inset: 
RMSE, R and bias of oblique-based estimates versus nadir-based estimates. 



The inversion capabilities of the coupled model are quite promising since it is apparent that, even 637 

with thermal data measured from different directions, the prevailing component temperatures and 638 

fluxes (radiative and energy) at the land surface can satisfactorily be retrieved and reproduced 639 

with SPARSE4 estimates being more consistent when compared to SPARSE’s retrievals. 640 

Nevertheless, the method’s inversion and turbulent flux reproduction capabilities over the entire 641 

Sun-observer polar grid requires further verification. Since we also see no observable 642 

improvement in overall flux retrievals especially when thermal radiation directionality effects 643 

(oblique-nadir temperature differences) are negligible, a study that will encompass a wide-644 

ranging combination of Sun-Earth-sensor geometries (including the hotspot region) is necessary. 645 

5. Summary and Conclusions 646 

In this study, we have presented an extended formulation of the Soil Plant Atmosphere Remote 647 

Sensing Evapotranspiration (SPARSE) model where sunlit and shaded elements have been 648 

distinguished in the energy and radiative balance schemes. A clearness index method was hence 649 

adopted to partition the incoming global solar radiation into its direct and diffuse components. 650 

Since remote thermal infra-red sensors usually observe within a narrow spectral window, a 651 

method that accounts for this important aspect has also been incorporated. For thermal radiation 652 

directionality effect accounting, coupling was done with the Unified Francois (UFR97) radiative 653 

transfer model that links the sunlit/shaded soil/vegetation surface emissions with out-of-canopy 654 

radiance in the viewing direction. A preliminary evaluation of the extended method was then 655 

carried out to assess its capability in estimating and partitioning overall fluxes on two orchards 656 

and over growing cycles of soybean and wheat. 657 

We observed that the partitioning of total fluxes does improve when sunlit and shaded elements 658 



are distinguished leading to better transpiration estimates especially in water stressed regions. By 659 

weighting between shaded/sunlit elements, the tendency by the original SPARSE model to 660 

simulate higher vegetation temperatures was also largely reduced. Since remotely sensed data are 661 

often acquired from oblique directions, models that invert the measured surface temperatures 662 

should be insensitive to any angular effects. It was thus observed that the extended formulation, 663 

coupled with an anisotropy model, resulted in better reproduction of flux and component 664 

temperature estimates from directional thermal data. This is particularly important when using 665 

data whose signal could be influenced by the Sun-Earth-sensor geometry particularly in the 666 

hotspot direction. Satellite missions whose objectives include ecosystem functioning and stress 667 

monitoring (e.g. TRISHNA, LSTM) can / will be able to provide thermal observations at 668 

relatively high spatial and temporal resolutions by proposing a wide range of viewing repeat-669 

cycle angles. While we contend that the new formulation is not meant to replace the standard 670 

SPARSE algorithm especially when inverting thermal data less influenced by TRD, its 671 

consideration of directionality aspects/effects (which are not only limited to the hotspot region) 672 

as well as its demonstrated capabilities of flux partitioning in water-deficit terrains are worth 673 

further investigation. These should form part of a future study whose main focus will be thermal 674 

radiation directionality effects on turbulent flux estimation. Such analyses should also potentially 675 

be able to inform the selection of algorithms that normalize directionality-influenced remote 676 

sensing products to a particular standard direction. Introducing clumping index into the modified 677 

SPARSE model by considering non-continuous vegetation cover is another valuable work in the 678 

future. 679 

Supplementary material and code availability: supplements are available as a separate file; the 680 

code can be accessed through: osr-cesbio.ups-tlse.fr/gitlab_cesbio/mbugu/sparse4 681 
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Appendix A: Contribution of sunlit and shaded elements 693 

The sunlit (K%) fraction of visible soil is calculated as: 694 

K% = exp �− �ΩX ʛXμX + Ω" ʛ"μ" − w�ΩXΩ" ʛXμX ʛ"μ" � LAI�
b�θ"
 �A1
 695 

and the complement is the shaded fraction of visible soil: 696 

K- = 1 − K% �A2
 697 

ʛ��X," is the foliage projection factor in the viewing (ν) or solar/illumination (i) direction; μ��X," is 698 

the cosine of an angle; Ω��X," is the clumping index derived by inverting the gap frequency 699 

(b�θ"
 = τ$�θ"
) Beer’s exponential formula given in Nilson (1971); LAI is the leaf area index; 700 

w =  �.¡ �1 − e6.¡ �⁄ 
 is the hotspot function; d and h are the leaf width and canopy height, 701 

respectively; δ = £tanW�θX
 + tanW�θ"
 − 2 tan�θX
 tan�θ"
cos�φ
; φ – relative azimuth angle between 702 



the solar and viewing directions. 703 

Effective emissivity expressions of the sunlit (ω$,��θ)
) and shaded (ω$,.�θ)
) leaves are: 704 

ω$,��θ"
 = J1 − b�θ"
Kε)K� + �1 − M
b�θ"
'1 − ε%(ε¥C� + �1 − α
J1 − b�θ"
MKJ1 − b�θ"
K�1 − ε)
ε)C� �A3
 705 

ω$,.�θ"
 = J1 − b�θ"
Kε)Ko + �1 − M
b�θ"
'1 − ε%(ε)Co + �1 − α
J1 − b�θ"
MKJ1 − b�θ"
K�1 − ε)
ε)Co �A4
 706 

where ε) and ε% are the leaf and soil emissivities respectively; α is the cavity effect factor 707 

(François, 2002; Francois et al., 1997) that defines part of the incident radiation that is reflected 708 

by the leaves and finally absorbed by the canopy. C� and Co respectively are the contribution of 709 

sunlit and shaded leaves inside the canopy to the radiation emitted from leaves and reflected by 710 

the soil. The same factors apply for radiance emitted from the leaves and reflected by other 711 

leaves (Bian et al., 2018; Francois et al., 1997). ¦ is the hemispherical average gap frequency 712 

(Francois et al., 1997). The respective contributions of sunlit and shaded leaves are (Yan et al., 713 

2012): 714 

K� = �1 − exp �−w�ΩXΩ" ʛXμX ʛ"μ" LAI��
J1 − b�θ"
K �A5
 715 

Ko = 1 − K� �A6
 716 

For definition of some terms that were modified when formulating the UFR97 model (e.g. 717 

upper/lower layer height and leaf area terms for K� and Ko) see Bian et al.'s (2018) work. 718 

Appendix B: Long-wave radiation in the narrow 8 − 14 μm spectral band of 719 

the observing thermal sensor 720 

Field thermo-radiometers usually provide measurement in the 8 − 14 μm spectral range (it is 721 

also common to have satellite radiometers observing in the 10.5 − 12.5 μm band). The measured 722 

thermal radiation is given by (Olioso, 1995): 723 

f �T�
σT�� = ε�§�	, f �T���
σT���� + '1 − ε�§�	, (L ↓ �B1
 724 



where ¨ is the Stefan Boltzmann constant, T� is the measured brightness temperature, T��� the 725 

radiative surface temperature and L ↓  is the down-welling atmospheric radiation in the narrow 726 

observation band. By assuming f �T�
 ≈ f �T���
,  the unknown T��� can be solved for. f �T
 and 727 

L ↓  for λ = 8 − 14 μm are expressed as: 728 

f :ª67��T
 = −0.6732 + 0.6240 ∙ 106WT − 0.9140 ∙ 106�TW �B2
 729 

L :ª67�↓ = ε�, f �T�
σT�� �B3
 730 

T� is the air temperature. Likewise, the atmospheric apparent emissivity ε�,  in the 8 − 14 μm 731 

window is given by: 732 

ε�, :ª67� = 0.15 + 5.03 ∙ 106«e� exp�2450 T�⁄ 
 �B4
 733 

All temperatures are in [K] and the atmospheric vapor pressure e� in [hPa]. Further details 734 

including formulations for the 10.5 − 12.5 μm thermal band can be found in Idso (1981) and 735 

Olioso (1995). 736 

Appendix C: Global solar radiation partitioning and radiative balance 737 

terms 738 

Global solar radiation partitioning 739 

Fraction of incoming diffuse radiation (fd) is estimated following the sky clearness index (K_) 740 

method proposed in Erbs et al. (1982). Where the atmosphere’s optical depth data is available, a 741 

modified function according to Carrer et al. (2013) is applied for K_ > 0.80: 742 

fd = � 1 − 0.09K_ ,                                                                                                            ≤ 0.22     0.9511 − 0.1604K_ + 4.388K_W − 16.638K_� + 12.336K_� ,   0.22 < K_ ≤ 0.80     0.165 | �1 − exp'−τtlo(
/�1 − �1 − μ�
 exp'−τtlo(
,                         K_ > 0.80     �C1
 743 

where K_ = RG/�C�μ�
 is the clearness index, RG = S ↓ is the global solar irradiance at BOA, 744 

C� = 1368 W m6W the terrestrial solar radiation constant, μ� is the cosine of the solar zenith 745 



angle), and τtlo is the aerosol optical thickness. Consequently, RG = RG�X� + RG�X		 = RG�X� +746 

fd ∙ RG. 747 

Figure C1 illustrates the estimated compared to observed fraction of diffuse (}¯) radiation.  The 748 

sample data used for the diagram was collected at the Bensalem site in Tunisia. The global 749 

incoming radiation was measured using a pyranometer with a hemispherical view while the 750 

direct radiation was observed using a narrow-view pyrheliometer. 751 

 

Figure C1: }¯ (fraction of incoming diffuse radiation) plots using Erbs et al.'s (1982) clearness 
index (°±) method on BenSalem dataset for years a) 2014 and b) 2016 

Net radiation terms 752 

The incoming solar and sky emission terms are partitioned as: 753 

RG)� + RA)� = RG�X� �f�t¥�1 − α)
 + f)�α%�1 − f�t¥
J�1 − α)
 + α)f).K1 − fα)α% �754 

+ f)�RG�X		 ��1 − α)
 + �1 − α)
²α)f).�1 − f)�
 + α%�1 − f
³ + α)f).α%�1 − f
1 − fα)α% �755 

+ f)�RA �ε) + ε)²ρ)f).�1 − f)�
 + ρ%�1 − f
³ + ρ)f).ρ%�1 − f
1 − fρ)ρ% �                                                �C2.1
 756 

RG). + RA). = RG�X� �f).α%�1 − f�t¥
�1 − α)
1 − fα)α% � + f).RG�X		 ��1 − α)
²1 + α%�1 − f
³ + α)f)�1 − fα)α% �757 

+ f).RA �ε)²1 + ρ%�1 − f
³ + ρ)f)�1 − fρ)ρ% �                                                                                                   �C2.2
 758 

RG%� + RA%� = '1 − α%( ´�1 − f�t¥
 µRG�X� ¶1 + α)f).α%�1 − f�t¥
· + α)f).α%�1 − f
RG�X		¸ + f%�RG�X		¹1 − fα)α%759 

+ ε%RA²f%� + �1 − f�t¥
ρ)f).ρ%�1 − f
³1 − fρ)ρ%                                                                                               �C2.3
 760 



RG%. + RA%. = '1 − α%(ºf%.RG�X		 + f�t¥α)f).α%J�1 − f�t¥
RG�X� + �1 − f
RG�X		K»1 − fα)α%761 

+ ε%RA²f%. + f�t¥ρ)f).ρ%�1 − f
³1 − fρ)ρ%  762 

The grey-body thermal emission is defined around air temperature and estimated through a 763 

Taylor expansion: 764 

σTa�)�,).,%�,%.� = σ�T� + Ta − T�
� ≈ ¼½¾¿ + ρCl ¿¼½¾ÀρCl �Ta − T�
 ≈ ÁÂÃ + ρCl ÁÂÄρCl �Ta − T�
 �C2.4
 765 

Component emissions are: 766 

L_?`)�↑ ≈ f)�²�ε) + ρ)f).
'ρ%�1 − f).
f)�ε) + ε%( + ε)�ρ)f).f)�ε) + f).ε) − 2
³1 − fρ)ρ% XÆ7767 

+ XÆWf)�'1 − fρ)ρ%( ºε)²�ε) + ρ)f).
ρ%�1 − f).
f)� + ρ)f).f)�ε) − 2³�T)� − T�
 + f).ε)W�T). − T�
768 

+ �ε) + ρ)f).
²�1 − f�t¥
ε%'T%� − T�( + f�t¥ε%'T%. − T�(³»                                                          �C2.5
 769 

L_?`).↑ ≈ f).ε) µ¶'ρ)f)� + ρ%(f). + f)�· ε) + ε% − 2¸1 − fρ)ρ% XÆ7770 

+ XÆWf).ε)'1 − fρ)ρ%( ºf)�ε)�T)� − T�
 + ²'ρ)f)� + ρ%(f).ε) − 2³�T). − T�
 + �1 − f�t¥
ε%'T%� − T�(771 

+ f�t¥ε%'T%. − T�(»                                                                                                                                   �C2.6
 772 

L_?`%�↑ ≈ �1 − f�t¥
ε%²�f − f).f)�
ε) + ρ)f).ε% − 1³1 − fρ)ρ% XÆ7773 

+ XÆW�1 − f�t¥
ε%'1 − fρ)ρ%( º�1 − f).
f)�ε)�T)� − T�
 + f).ε)�T). − T�
774 

+ ²�1 − f�t¥
ρ)f).ε% − 1³'T%� − T�( + ρ)f).f�t¥ε%'T%. − T�(»                                                      �C2.7
 775 

L_?`%.↑ ≈ f�t¥ε%²�f − f).f)�
ε) + ρ)f).ε% − 1³1 − fρ)ρ% XÆ7776 

+ XÆWf�t¥ε%'1 − fρ)ρ%( º�1 − f).
f)�ε)�T)� − T�
 + f).ε)�T). − T�
 + ρ)f).�1 − f�t¥
ε%'T%� − T�(777 

+ 'f�t¥ρ)f).ε% − 1('T%. − T�(»                                                                                                             �C2.8
 778 

where f = f)� +  f). (cover fraction) and 1 − f =  f%� + f%.  (gap fraction equivalent to the 779 

transmissivity to the background soil) are defined at nadir (cos�vza
 = cos�0p
 = 1); f�t¥ =780 

f�θ�
 = 1 − e6ʛ∙=>? @u⁄ . f)� = K�f;  f). = Kof;  f%� = K%�1 − f
 and f%. = K-�1 − f
. 781 

K�, Ko, K% and K- are sunlit/shaded contribution terms as previously defined. α) and α% are the 782 



vegetation and soil albedos (reflectance in the optical domain) while ρ) = 1 − εv and ρ% = 1 − εg 783 

are the thermal reflectance for the vegetation and soil, respectively. 784 



Appendix D: List of instruments 785 

Table 3: Instrumentation (including manufacturer and model) at the experimentation sites 

Instrument; 

Manufacturer; 

Model 

Agdal 
(Hoedjes et al., 2007; 

Williams et al., 2004) 

Avignon 
(Cellier & Olioso, 1993; 

Olioso et al., 1996) 

Nasrallah 
(Chebbi et al., 2018) 

 

R3 
(Boulet et al., 2015; 

Duchemin et al., 2006) 

Radiation 
Net radiometer; Kipp & 

Zonen; CNR1 

Net rad. differential 

pyrradiometer; 

Crouzet, FR 

Rg; Kipp & Zonen; CM5 

Net radiometer; 

Husekflux, Delft, NL; 

NR01 :- SR01, IR01 

Net radiometer; Kipp 

& Zonen; CNR1 

Turbulent fluxes 

Eddy Covariance  (EC) 

system; Campbell Sci. 

Ltd., USA; 3D sonic 

anemometer CSAT3; 

Hygrometers - CS7500, 

KH20 

1D sonic anemometer - 

H; Campbell Sci., UK; 

CA27. Residual and 

Bowen ratio methods –

LE (home built based 

on a HMP35A Vaisala 

(Helsinki, Finland) 

humidity sensor, a 

differential air  

pumping system and 

type T thermocouples; 

cf. Cellier and Olioso 

(1993) 

EC system; Campbell, 

USA; 3D sonic 

anemometer CSAT3; 

Hygrometers - LI-

COR7200, LI-COR7500 

EC system; Campbell, 

USA; CSAT sonic 

anemometers; 

Krypton fast-

response 

hygrometers 

Wind speed 
Wind vane/anemometer; 

R.M. Young Co.; WP200 

CIMEL (Paris, France) 

cup anemometer 

Anemometer; R.M. 

Young, USA 

Anemometer; R.M. 

Young, USA; A100R 

Relative 

humidity 

Humidity probe; Vaisala, 

FI; HMP45C 

Humidity probe; 

HMP35A Vaisala 

(Helsinki, Finland) 

Humidity probe; 

Vaisala; HMP155/45 

Humidity probe; 

Vaisala; HMP45C 

Air temperature 
Temperature probe; 

Vaisala, FI; HMP45C 

Homemade 

temperature copper 

probe 

Temperature probe; 

Vaisala; HMP155/45 

Temperature probe; 

Vaisala; HMP45C 

Ground heat 

flux 

Heat flux plates; 

Hukseflux, Delft, NL; 

Calorimetric method: 

i.e., from temperature 

profiles (type T 

thermocouples) down 

to 1 m and soil heat 

capacity calculated 

from soil moisture and 

soil density profiles 

Heat flux plates; 

Hukseflux, Delft, NL; 

HFP01 

Heat flux plates; 

REBS Inc., USA; HFP3 

Surface 

temperature 

Thermo-radiometer; 

Apogee Inc., UT, USA 

IRTS-Ps 

Heiman kT17 thermo-

radiometer, 

Wiesbaden, Germany 

Thermo-radiometer; 

Apogee Inc., UT, USA 

IR120 

Thermo-radiometers; 

Apogee Inc.; 

IRTP1541, IRTP1383 

Appendix E: Notations 786 

α Cavity effect factor [-] α%, α) Soil/ground (g) and vegetation (v) albedos [-] 



β�, β) Soil evaporation and vegetation transpiration efficiencies [-] ∆ Slope of the vapor pressure-temperature curve at T� [Pa K-1] ε� = \εacs Apparent emissivity of the atmosphere [-]. \ – parameterization factor 
for conditions other than cs: clear-sky [-] ε%, ε), ε�	 Emissivity of the soil, vegetation and entire surface, respectively [-] ε_?`aa�)�,).,%�,%. Emitted radiation forcing terms in the net radiation scheme; for sunlit (s) 
and shaded (h) soil (g) and vegetation (v) [W m-2] γ Psychrometric constant [Pa K-1] ω$,��θ)
, ω$,.�θ)
 Effective emissivity of sunlit and shaded leaves, respectively [-] ϕ��X,) Solar (i) and viewing (v) azimuth angles [°] φ Relative azimuth angle between solar and viewing directions [°] ρCl Product of air density [kg m-3] and the specific heat of air at constant 
pressure [J kg-1 K-1] 

σ Stefan Boltzmann constant [W m-2 K-4] τ$ | b�θ)
 The upward directional canopy transmittance / gap frequency/fraction in 
viewing direction [-] θ��X,);  μ� Solar (i) and viewing (v) zenith angles; cosine of an angle j [°] ξ Fraction of soil/ground net radiation stored in the soil, i.e., ξ = G/R�% [-] C�, Co Contribution of sunlit and shaded leaves, respectively, to the emitted leaves 
radiation reflected by the soil (also apply for leaf emission reflected by 
other leaves) [-] e�, ep Air vapor pressure at the reference and aerodynamic levels, respectively 
[Pa]. 

G, H, λE Ground, sensible and latent heat fluxes [W m-2] h, d Vegetation height and leaf width [m] K%, K- Fractions/contribution of sunlit and shaded visible soil [-] K�, Ko Contribution of sunlit and shaded leaves to out-of-canopy radiation [-] K_; }¯ Clearness index [-] and fraction of diffuse radiation [-], respectively L�θ)
, L�↓  Out-of-canopy radiance in the viewing direction and incoming sky radiation 
[W m-2] 

LAI, ʛ, Ω Leaf area index [m2 m-2], foliage projection factor [-] and clumping index [-
] M Hemispherical average gap frequency [-] r� Aerodynamic resistance between the aerodynamic level and the reference 
level [s m-1] r��/r�) Aerodynamic resistance between the soil/vegetation and the aerodynamic 
level [s m-1] r)) Surface resistance between the aerodynamic and the reference levels [s m-1] RG�X�, RG�X		, RG, C� Direct, diffuse, total/global (BOA) and terrestrial (TOA) solar radiations, 
respectively [W m-2] R� Total (overall) net radiation [W m-2] R�%,�;  R�%,. Net radiation over the sunlit (s) and shaded (h) soil [W m-2] R�),�;  R�),. Net radiation over the sunlit and shaded vegetation [W m-2] 



T�, Tp, Taa Air, aerodynamic and component temperatures [K] 
  

 787 

References 788 

Agam, N., Kustas, W. P., Anderson, M. C., Norman, J. M., Colaizzi, P. D., Howell, T. A., … Wilson, T. B. 789 

(2010). Application of the priestley-taylor approach in a two-source surface energy balance model. 790 

Journal of Hydrometeorology, 11(1), 185–198. https://doi.org/10.1175/2009JHM1124.1 791 

Annear, R. L., & Wells, S. A. (2007). A comparison of five models for estimating clear-sky solar radiation. 792 

Water Resources Research, 43(10). https://doi.org/10.1029/2006WR005055 793 

Bian, Z., Cao, B., Li, H., Du, Y., Lagouarde, J. P., Xiao, Q., & Liu, Q. (2018). An analytical four-component 794 

directional brightness temperature model for crop and forest canopies. Remote Sensing of 795 

Environment, 209(March), 731–746. https://doi.org/10.1016/j.rse.2018.03.010 796 

Boulet, G., Mougenot, B., Lhomme, J. P., Fanise, P., Lili-Chabaane, Z., Olioso, A., … Lagouarde, J. P. 797 

(2015). The SPARSE model for the prediction of water stress and evapotranspiration components 798 

from thermal infra-red data and its evaluation over irrigated and rainfed wheat. Hydrology and 799 

Earth System Sciences, 19(11), 4653–4672. https://doi.org/10.5194/hess-19-4653-2015 800 

Boulet, G., Olioso, A., Ceschia, E., Marloie, O., Coudert, B., Rivalland, V., … Chehbouni, G. (2012). An 801 

empirical expression to relate aerodynamic and surface temperatures for use within single-source 802 

energy balance models. Agricultural and Forest Meteorology, 161, 148–155. 803 

https://doi.org/10.1016/j.agrformet.2012.03.008 804 

Boulet, Gilles, Delogu, E., Saadi, S., Chebbi, W., Olioso, A., Mougenot, B., … Lagouarde, J. P. (2018). 805 

Evapotranspiration and evaporation/transpiration partitioning with dual source energy balance 806 

models in agricultural lands. Proceedings of the International Association of Hydrological Sciences, 807 

380, 17–22. https://doi.org/10.5194/piahs-380-17-2018 808 

Braud, I., Dantas-Antonino, A. C. C., Vauclin, M., Thony, J. L. L., & Ruelle, P. (1995). A simple soil-plant-809 

atmosphere transfer model (SiSPAT) development and field verification. Journal of Hydrology, 810 

166(3–4), 213–250. https://doi.org/10.1016/0022-1694(94)05085-C 811 

Brutsaert, W. (1975). On a derivable formula for long-wave radiation from clear skies. Water Resources 812 

Research, 11(5), 742–744. https://doi.org/10.1029/WR011i005p00742 813 

Brutsaert, W. (1982). Evaporation into the Atmosphere. https://doi.org/10.1007/978-94-017-1497-6 814 

Campbell, G. S., & Norman, J. M. (1998). Radiation Fluxes in Natural Environments. In An Introduction to 815 

Environmental Biophysics (pp. 167–184). https://doi.org/10.1007/978-1-4612-1626-1_11 816 

Cao, B., Guo, M., Fan, W., Xu, X., Peng, J., Ren, H., … Liu, Q. (2018). A new directional canopy emissivity 817 

model based on spectral invariants. IEEE Transactions on Geoscience and Remote Sensing, 56(12), 818 

6911–6926. https://doi.org/10.1109/TGRS.2018.2845678 819 

Cao, B., Liu, Q., Du, Y., Roujean, J. L., Gastellu-Etchegorry, J. P., Trigo, I. F., … Xiao, Q. (2019). A review of 820 

earth surface thermal radiation directionality observing and modeling: Historical development, 821 

current status and perspectives. Remote Sensing of Environment, 232(October 2018), 111304. 822 



https://doi.org/10.1016/j.rse.2019.111304 823 

Carrer, D., Roujean, J. L., Lafont, S., Calvet, J. C., Boone, A., Decharme, B., … Gastellu-Etchegorry, J. P. 824 

(2013). A canopy radiative transfer scheme with explicit FAPAR for the interactive vegetation 825 

model ISBA-A-gs: Impact on carbon fluxes. Journal of Geophysical Research: Biogeosciences, 826 

118(2), 888–903. https://doi.org/10.1002/jgrg.20070 827 

Cellier, P., & Olioso, A. (1993). A simple system for automated long-term Bowen ratio measurement. 828 

Agricultural and Forest Meteorology, 66(1–2), 81–92. https://doi.org/10.1016/0168-829 

1923(93)90083-T 830 

Chebbi, W., Boulet, G., Le Dantec, V., Lili Chabaane, Z., Fanise, P., Mougenot, B., & Ayari, H. (2018). 831 

Analysis of evapotranspiration components of a rainfed olive orchard during three contrasting 832 

years in a semi-arid climate. Agricultural and Forest Meteorology, 256–257(January), 159–178. 833 

https://doi.org/10.1016/j.agrformet.2018.02.020 834 

Chen, J. M., & Liu, J. (2020). Evolution of evapotranspiration models using thermal and shortwave 835 

remote sensing data. Remote Sensing of Environment, 237(November 2019), 111594. 836 

https://doi.org/10.1016/j.rse.2019.111594 837 

Colaizzi, P. D., Kustas, W. P., Anderson, M. C., Agam, N., Tolk, J. A., Evett, S. R., … O’Shaughnessy, S. A. 838 

(2012). Two-source energy balance model estimates of evapotranspiration using component and 839 

composite surface temperatures. Advances in Water Resources, 50, 134–151. 840 

https://doi.org/10.1016/j.advwatres.2012.06.004 841 

Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. (1991). Physiological and environmental regulation of 842 

stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary 843 

layer. Agricultural and Forest Meteorology, 54(2–4), 107–136. https://doi.org/10.1016/0168-844 

1923(91)90002-8 845 

Delogu, E., Boulet, G., Olioso, A., Garrigues, S., Brut, A., Tallec, T., … Lagouarde, J. P. (2018). Evaluation of 846 

the SPARSE dual-source model for predictingwater stress and evapotranspiration from thermal 847 

infrared data over multiple crops and climates. Remote Sensing, 10(11). 848 

https://doi.org/10.3390/rs10111806 849 

Delogu, E., Olioso, A., Alliès, A., Demarty, J., & Boulet, G. (2021). Evaluation of Multiple Methods for the 850 

Production of Continuous Evapotranspiration Estimates from TIR Remote Sensing. Remote Sensing, 851 

13(6), 1086. https://doi.org/10.3390/rs13061086 852 

Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., … Simonneaux, V. 853 

(2006). Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships 854 

between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation 855 

indices. Agricultural Water Management, 79(1), 1–27. 856 

https://doi.org/10.1016/j.agwat.2005.02.013 857 

Duffour, C., Lagouarde, J. P., Olioso, A., Demarty, J., & Roujean, J. L. (2016). Driving factors of the 858 

directional variability of thermal infrared signal in temperate regions. Remote Sensing of 859 

Environment, 177, 248–264. https://doi.org/10.1016/j.rse.2016.02.024 860 

Duffour, C., Olioso, A., Demarty, J., Van der Tol, C., & Lagouarde, J. P. (2015). An evaluation of SCOPE: A 861 

tool to simulate the directional anisotropy of satellite-measured surface temperatures. Remote 862 

Sensing of Environment, 158, 362–375. https://doi.org/10.1016/j.rse.2014.10.019 863 



Er-Raki, S., Chehbouni, A., Ezzahar, J., Khabba, S., Boulet, G., Hanich, L., & Williams, D. (2009). 864 

Evapotranspiration partitioning from sap flow and eddy covariance techniques for olive orchards in 865 

semi-arid region. Acta Horticulturae, 846, 201–208. 866 

https://doi.org/10.17660/ActaHortic.2009.846.21 867 

Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily 868 

and monthly-average global radiation. Solar Energy, 28(4), 293–302. https://doi.org/10.1016/0038-869 

092X(82)90302-4 870 

François, C. (2002). The potential of directional radiometric temperatures for monitoring soil and leaf 871 

temperature and soil moisture status. Remote Sensing of Environment, 80(1), 122–133. 872 

https://doi.org/10.1016/S0034-4257(01)00293-0 873 

Francois, C., Ottle, C., & Prevot, L. (1997). Analytical parameterization of canopy directional emissivity 874 

and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage 875 

temperatures using two directional measurements. International Journal of Remote Sensing, 876 

18(12), 2587–2621. https://doi.org/10.1080/014311697217495 877 

Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., & Duchemin, B. (2007). Analysis of evaporative 878 

fraction diurnal behaviour. Agricultural and Forest Meteorology, 143(1–2), 13–29. 879 

https://doi.org/10.1016/j.agrformet.2006.11.002 880 

Herrero, J., & Polo, M. J. (2012). Parameterization of atmospheric longwave emissivity in a mountainous 881 

site for all sky conditions. Hydrology and Earth System Sciences, 16(9), 3139–3147. 882 

https://doi.org/10.5194/hess-16-3139-2012 883 

Hoedjes, J. C. B., Chehbouni, A., Ezzahar, J., Escadafal, R., & De Bruin, H. A. R. (2007). Comparison of 884 

large aperture scintillometer and eddy covariance measurements: Can thermal infrared data be 885 

used to capture footprint-induced differences? Journal of Hydrometeorology, 8(2), 144–159. 886 

https://doi.org/10.1175/JHM561.1 887 

Huxman, T. E., Wilcox, B. P., Breshears, D. D., Scott, R. L., Snyder, K. A., Small, E. E., … Jackson, R. B. 888 

(2005). Ecohydrological implications of woody plant encroachment. Ecology, 86(2), 308–319. 889 

https://doi.org/10.1890/03-0583 890 

Idso, S. B. (1981). A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal 891 

radiation from cloudless skies. Water Resources Research, 17(2), 295–304. 892 

https://doi.org/10.1029/WR017i002p00295 893 

Iqbal, M. (1983). An Introduction to Solar Radiation. New York: Academic Press. 894 

Kimes, D. S., & Kirchner, J. A. (1983). Directional radiometric measurements of row-crop temperatures. 895 

International Journal of Remote Sensing, 4(2), 299–311. 896 

https://doi.org/10.1080/01431168308948548 897 

Kustas, W. P., & Norman, J. M. (1996). Use of remote sensing for evapotranspiration monitoring over 898 

land surfaces. Hydrological Sciences Journal, 41(4), 495–516. 899 

https://doi.org/10.1080/02626669609491522 900 

Lagouarde, J.-P., Bhattacharya, B. K., Crébassol, P., Gamet, P., Adlakha, D., Murthy, C. S., … Sarkar, S. S. 901 

(2019). Indo-French High-Resolution Thermal Infrared Space Mission for Earth Natural Resources 902 

Assessment and Monitoring – Concept and Definition of Trishna. ISPRS - International Archives of 903 

the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W6(February), 403–904 



407. https://doi.org/10.5194/isprs-archives-xlii-3-w6-403-2019 905 

Lagouarde, J., & Bhattacharya, B. K. (2018). TRISHNA : a new high spatio-temporal resolution Indian-906 

French mission in the thermal infrared. Remote Sensing and Hydrology Symposium (ICRS-IAHS), 907 

2024. 908 

Lagouarde, J. P., Bach, M., Sobrino, J. A., Boulet, G., Briottet, X., Cherchali, S., … Fargant, G. (2013). The 909 

MISTIGRI thermal infrared project: Scientific objectives and mission specifications. International 910 

Journal of Remote Sensing, 34(9–10), 3437–3466. https://doi.org/10.1080/01431161.2012.716921 911 

Lagouarde, J. P., Dayau, S., Moreau, P., & Guyon, D. (2014). Directional anisotropy of brightness surface 912 

temperature over vineyards: Case study over the Medoc Region (SW France). IEEE Geoscience and 913 

Remote Sensing Letters, 11(2), 574–578. https://doi.org/10.1109/LGRS.2013.2282492 914 

Li, J., Fan, W., Liu, Y., Zhu, G., Peng, J., & Xu, X. (2017). Estimating savanna clumping index using 915 

hemispherical photographs integrated with high resolution remote sensing images. Remote 916 

Sensing, 9(1). https://doi.org/10.3390/rs9010052 917 

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., … Wingate, L. 918 

(2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. 919 

Global Change Biology, 17(6), 2134–2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x 920 

Merlin, O., Al Bitar, A., Rivalland, V., Béziat, P., Ceschia, E., & Dedieu, G. (2011). An analytical model of 921 

evaporation efficiency for unsaturated soil surfaces with an arbitrary thickness. Journal of Applied 922 

Meteorology and Climatology, 50(2), 457–471. https://doi.org/10.1175/2010JAMC2418.1 923 

Nilson, T. (1971). A theoretical analysis of the frequency of gaps in plant stands. Agricultural 924 

Meteorology, 8(1966), 25–38. https://doi.org/10.1016/0002-1571(71)90092-6 925 

Noilhan, J., & Planton, S. (1989). A Simple Parameterization of Land Surface Processes for 926 

Meteorological Models. Monthly Weather Review, 117(3), 536–549. https://doi.org/10.1175/1520-927 

0493(1989)117<0536:ASPOLS>2.0.CO;2 928 

Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation 929 

energy fluxes in observations of directional radiometric surface temperature. Agricultural and 930 

Forest Meteorology, 77(3–4), 263–293. https://doi.org/10.1016/0168-1923(95)02265-Y 931 

Olioso, A. (1995). Estimating the difference between brightness and surface temperatures for a vegetal 932 

canopy. Agricultural and Forest Meteorology, 72(3–4), 237–242. https://doi.org/10.1016/0168-933 

1923(94)02163-E 934 

Olioso, A., Carlson, T. N., & Brisson, N. (1996). Simulation of diurnal transpiration and photosynthesis of 935 

a water stressed soybean crop. Agricultural and Forest Meteorology, 81(1–2), 41–59. 936 

https://doi.org/10.1016/0168-1923(95)02297-X 937 

Olioso, A., Taconet, O., Mehrez, B., Nivoit, D., Promayon, F., & Rahmoune, L. (1995). Estimation of 938 

evapotranspiration using SVAT models and surface IR temperature. 1995 International Geoscience 939 

and Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and 940 

Applications, 1, 516–518. https://doi.org/10.1109/IGARSS.1995.520324 941 

Santanello, J. A., & Friedl, M. A. (2003). Diurnal covariation in soil heat flux and net radiation. Journal of 942 

Applied Meteorology, 42(6), 851–862. https://doi.org/10.1175/1520-943 

0450(2003)042<0851:DCISHF>2.0.CO;2 944 



Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest 945 

Meteorology, 189–190, 115–117. https://doi.org/10.1016/j.agrformet.2014.01.011 946 

Shuttleworth, W. J., & Gurney, R. J. (1990). The theoretical relationship between foliage temperature 947 

and canopy resistance in sparse crops. Quarterly Journal of the Royal Meteorological Society, 948 

116(492), 497–519. https://doi.org/10.1002/qj.49711649213 949 

Sinclair, T. R., Murphy, C. E., & Knoerr, K. R. (1976). Development and Evaluation of Simplified Models 950 

for Simulating Canopy Photosynthesis and Transpiration. The Journal of Applied Ecology, 13(3), 951 

813. https://doi.org/10.2307/2402257 952 

Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. 953 

Hydrology and Earth System Sciences, 6(1), 85–100. https://doi.org/10.5194/hess-6-85-2002 954 

Taconet, O., Bernard, R., & Vidal-Madjar, D. (1986). Evapotranspiration over an Agricultural Region Using 955 

a Surface Flux/Temperature Model Based on NOAA-AVHRR Data. Journal of Climate and Applied 956 

Meteorology, 25(3), 284–307. https://doi.org/10.1175/1520-957 

0450(1986)025<0284:EOAARU>2.0.CO;2 958 

Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., … Timouk, F. (2004). 959 

Evapotranspiration components determined by stable isotope, sap flow and eddy covariance 960 

techniques. Agricultural and Forest Meteorology, 125(3–4), 241–258. 961 

https://doi.org/10.1016/j.agrformet.2004.04.008 962 

Yan, B. Y., Xu, X. R., & Fan, W. J. (2012). A unified canopy bidirectional reflectance (BRDF) model for row 963 

crops. Science China Earth Sciences, 55(5), 824–836. https://doi.org/10.1007/s11430-012-4380-9 964 

 965 




