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Research Highlights 18 

● Four crop evapotranspiration estimates approaches based on remote sensing were compared  19 

● Eddy-Covariance and Scintillometer measurements were used for models’ assessment 20 

● The four models estimate correctly the seasonal variations of actual crop ET 21 

● FAO-56 and METRIC GEE show the best results over a mixed irrigated area 22 

Abstract 23 

Quantification of actual crop evapotranspiration (ETa) over large areas is a critical issue to manage 24 

water resources, particularly in semi-arid regions. In this study, four models driven by high resolution 25 

remote sensing data were intercompared and evaluated over an heterogeneous and complex traditional 26 

irrigated area located in the piedmont of the High Atlas mountain, Morocco, during the 2017 and 2018 27 

seasons: (1) SAtellite Monitoring of IRrigation (SAMIR) which is a software-based on the FAO-56 dual 28 

crop coefficient water balance model fed with Sentinel-2 high-resolution Normalized Difference 29 

Vegetation Index (NDVI) to derive the basal crop coefficient (𝐾𝑐𝑏); (2) Soil Plant Atmosphere and 30 

Remote Sensing Evapotranspiration (SPARSE) which is a surface energy balance model fed with land 31 

surface temperature (LST) derived from thermal data provided from Landsat 7 and 8; (3) a modified 32 

version of the Shuttleworth–Wallace (SW) model which uses the LST to compute surface resistances 33 

and (4) METRIC-GEE which is a version of METRIC model (“Mapping Evapotranspiration at high 34 



Resolution with Internalized Calibration”) that operates on the Google Earth Engine platform, also 35 

driven by LST. Actual evapotranspiration (ETa) measurements from two Eddy-Covariance (EC) 36 

systems and a Large Aperture Scintillometer (LAS) were used to evaluate the four models. One EC was 37 

used to calibrate SAMIR and SPARSE (EC1) which were validated using the second one (EC2), 38 

providing a Root Mean Square Error (RMSE) and a determination coefficient (R) of 0.53 mm/day 39 

(R=0.82) and 0.66 mm/day (R=0.74), respectively. SW and METRIC-GEE simulations were obtained 40 

respectively from a previous study and Google Earth Engine (GEE), therefore no calibration was 41 

performed in this study. The four models predict well the seasonal course of ETa during two successive 42 

growing seasons (2017 and 2018). However, their performances were contrasted and varied depending 43 

on the seasons, the water stress conditions and the vegetation development. By comparing the statistical 44 

results between the simulation and the measurements of ETa it has been shown that SAMIR and 45 

METRIC-GEE are the less scattered and the better in agreement with the LAS measurements (RMSE 46 

equal to 0.73 and 0.68 mm/day and R equal to 0.74 and 0.82, respectively). On the other hand, SPARSE 47 

is less scattered (RMSE = 0.90 mm/day, R = 0.54) than SW which is slightly better correlated (RMSE 48 

= 0.98 mm/day, R = 0.60) with the observations. This study contributes to explore the complementarities 49 

between these approaches in order to improve the evapotranspiration mapping monitored with high-50 

resolution remote sensing data. 51 

1 Introduction 52 

The Mediterranean region suffers from drought and increasing depletion of water resources due to the 53 

effect of climate change and of the increasing anthropic water demand (Le Page et al., 2012). However, 54 

agricultural production continues to increase and is the largest consumer of available water resources 55 

(Boukhari et al., 2015). In order to achieve a balance between agricultural production and water 56 

availability, a good monitoring of the crop hydric conditions is necessary. Numerous studies have been 57 

conducted on the measurement and estimation of the water balance components of the crops in the semi-58 

arid region of Tensift Al Haouz but most of these studies were carried out in the plain (Amazirh et al., 59 

2017; Aouade et al., 2020; Diarra et al., 2017; Er-Raki et al., 2010; Ezzahar et al., 2007a; Ait Hssaine, 60 

Merlin, et al., 2018; Ouaadi et al., 2020; Rafi et al., 2019). By contrast, the mountain foothills in semi-61 

arid regions are potential recharge areas for the groundwater table (Blasch & Bryson, 2007; Bouimouass 62 

et al., 2020; Liu & Yamanaka, 2012; Martinez et al., 2017). This recharge is poorly known but could be 63 

quantified by residual balance term. However, the uncertainty on the water balance variables in these 64 

regions such as the precipitation and evapotranspiration (ET) increase the uncertainty on the estimation 65 

of recharge. Hence there is a need for an accurate estimate of ET. In the last decades, a number of studies 66 

focused on developing several methods for measuring and estimating ETa based on remote sensing that 67 

provides valuable data to assess its spatial and temporal variation. 68 



There is a variety of methods allowing direct or indirect ETa measurement in the field with variable 69 

spatial and temporal representativeness (Allen et al., 2011; Er-Raki et al., 2013). The most used methods 70 

are the lysimeter (Sánchez et al., 2019; Widmoser & Wohlfahrt, 2018) and the eddy covariance system 71 

(Anapalli et al., 2020; Fang et al., 2020), both provide typically hectometric scale measurements, and 72 

the scintillometer allowing measurements over transects of several kilometers (Duchemin et al., 2008; 73 

Elfarkh et al., 2020; Ezzahar et al., 2007a; 2007b; 2009a; 2009b; 2009c; Isabelle et al., 2020; Zhao et 74 

al., 2018). While these devices are the most accurate way to measure ET, their use over large areas is 75 

limited due to their cost and their limited spatial representativity, especially in Mediterranean landscapes 76 

known by heterogenous crops and water status. Major efforts to develop methods for ETa mapping have 77 

been undertaken during the last decades, particularly with the development of remote sensing data 78 

providing land surface characteristics using multi-spectral data from optical bands. The most physical 79 

approaches are based on Soil-Vegetation-Atmosphere Transfer (SVAT) models, coupling the soil water 80 

balance and the surface energy balance for soil-plant-atmosphere system and to quantify the amount of 81 

ETa released in the atmosphere (Montes et al., 2014). These models offer an accurate estimates of ETa 82 

but are complex because in addition to meteorological forcing (i.e., air temperature and humidity, wind 83 

speed, incident radiation, rainfall), they require a large number of parameters such as information on 84 

vegetation structure (i.e., leaf area index, LAI, height) and vegetation functioning (i.e., stomatal 85 

conductance), on thermal and hydraulic properties of the soil (Olioso et al., 1999). To overcome these 86 

constraints, simplified water balance models have been proposed like the FAO-56 dual crop coefficient 87 

approach (Allen et al., 1998). This model requires a lower number of parameters and some of the main 88 

ones, the crop coefficients, can be related to the amount of active vegetation present in the surface so 89 

that they can be estimated from remote sensing using vegetation indices. On the other hand, another 90 

category of ETa estimation method is based on the surface energy balance (SEB). SEB type models are 91 

usually constrained by satellite land surface temperature observations, which are considered as a good 92 

indicator of the water status of the surface, allowing to take into consideration the stress condition in 93 

estimating actual ET. They calculate the sensible heat flux (H) from which the latent heat flux (LE) 94 

associated with ETa is estimated as a residual term of the energy balance equation (Chirouze et al., 95 

2014). These models are a good indicator of the crop water status, but they basically provide 96 

instantaneous estimates of ETa at the time of the satellite acquisition. SEB models can be divided into 97 

two levels of complexity (Li et al., 2009): 1) single-source models that consider the surface as a big leaf 98 

(Allen et al., 2007; Bastiaanssen et al., 1998; Roerink et al., 2000; Su, 2002) and 2) dual-source models 99 

distinguishing between soil and vegetation processes (Anderson et al., 1997; Boulet et al., 2015; Norman 100 

et al., 1995). Numerous authors have compared these two approaches, showing that dual-source models 101 

show better performance over sparse vegetation. However, several authors have also found that with a 102 

correct calibration even a single-source model can properly simulate the energy fluxes (Bastiaanssen et 103 

al., 1998; Kustas & Norman, 1996). 104 



The main objective of this study was to test the performance of different approaches used for estimating 105 

ETa over a heterogeneous landscape of traditional irrigated agriculture in a semi-arid area located in the 106 

piedmont of the High Atlas Mountains (Morocco). A simplified water balance model SAMIR 107 

(Simonneaux et al., 2009), SPARSE model (Boulet et al., 2015), the modified Shuttleworth-Wallace 108 

model (Elfarkh et al., 2021) and METRIC model (Allen et al., 2007) were compared during two seasons, 109 

2017 and 2018. This study is a preliminary step to build an hybrid approach that could benefit from both 110 

the continuity of water budget based estimates and the accuracy of thermal based ones. 111 

2 Material and methods 112 

2.1 Study area 113 

The experiment was carried out over the piedmont of the High Atlas Mountain near the Marrakech city 114 

in the center of Morocco (31°22'1.19"N, 7°56'47.21"O) (Figure 1). The climate in this area is semi-arid 115 

with irregular and low rainfall especially during the study period with a total rainfall of 157 mm for 116 

2017 and 384 mm for 2018. The study site is characterized mainly by traditional olive trees of various 117 

ages, with some other species (apple, apricot, plum, orange, peach, ETa) and a frequent understory of 118 

annual crops below the trees, mainly cereals. Crops are irrigated by the traditional flooding technique 119 

using water diverted from the river issued from the mountains. Some patches of bare soils are also 120 

present especially at the surrounding of the irrigated area. 121 



 122 

Figure 1: Eddy covariance and the scintillometer stations superimposed on an image of the study site from Google Earth. The 123 
plot at the bottom shows the scintillometer path and elevation along the path 124 

2.2 Experimental data 125 

Both EC stations (EC1 and EC2) were equipped by meteorological instruments to measure the net 126 

radiation components (CNR4 radiometer, Campbell scientific) at a height of 17 m, air temperature and 127 

humidity (Vaisala HMP155, Campbell scientific) at height of 16 m (Figure 1). Also, the soil heat flux 128 

was measured at a depth of 5 cm using two heat flux plates (HPF_01, Campbell Scientific), one shaded 129 

by trees and the other one exposed to solar radiation. The rainfall was recorded using a rain gauge 130 

(ARG100/EC) installed close to the scintillometer receiver (Figure 1). 131 

Flux stations were installed during 2017 and 2018 over two olive tree plots located in the study area on 132 

17.5 m height towers (EC1 and EC2 sites) (Elfarkh et al., 2020). The land cover of these two sites is 133 

supposed to be representative of the entire site, namely traditional olive plantations of 7 to 10 meters 134 

height with an understory of herbaceous vegetation, mainly wheat. EC2 shows more heterogeneity than 135 

EC1 since it includes olive trees, other fruit trees (mainly apple trees) and annual crops (Elfarkh et al., 136 

2020). They measured the sensible and latent heat fluxes using the eddy correlation method, consisting 137 

of a 3D sonic anemometer (CSAT3, Campbell Scientific Ltd.) and a Krypton hygrometer (KH20, 138 



Campbell Scientific Ltd.). The raw data were sampled at a rate of 20Hz and then used to calculate 139 

sensible (H) and latent (LE) heat fluxes offline using the EC processing software 'ECpack' (Van Dijk et 140 

al. 2004). The energy balance closure analysis showed that the sum of the turbulent fluxes only reaches 141 

60% of the available energy (Elfarkh et al., 2020) which can be considered acceptable due to the 142 

complexity of the study sites. Therefore, the correction of EC data was performed using the approach 143 

suggested by Twine et al. (2000), which assumes the non-closure energy balance is due to 144 

underestimates from EC measurements while the corresponding Bowen ratio (H/LE) is correctly 145 

estimated. However, the reliability of ETa after this correction still affected by some uncertainty given 146 

the assumptions taken in the Bowen correction namely the assumption that the difference between the 147 

net radiation (Rn) and the soil heat flux (G) is equal to the sum of H and LE neglecting the energy stored 148 

in the canopy. In addition, the footprint of the devices that measure both energy quantity Rn-G and 149 

H+LE are different and that can generate an error especially in heterogeneous areas such as our study 150 

site. 151 

In addition to the EC towers, a Large Aperture Scintillometer (LAS) was installed over a 1464 m 152 

transect, consisting of a receiver installed on a tower of about 10 m and a transmitter over a building of 153 

about 10.5 m in the city (Elfarkh et al., 2020). Due to topography, the height between the LAS path and 154 

the ground varied between 10 and 50 m and the effective height computed was around 26 m (Hartogensis 155 

et al., 2003). The measurement of the refraction phenomena produced by the air turbulence allow the 156 

calculation of the variation of the structure parameter of the refractive index 𝐶𝑛
2 along the path (Wesely, 157 

1976). The sensible heat flux (H) was calculated iteratively based on the Monin-Obukhov theory (De 158 

Bruin et al., 1993). The latent heat flux (LE) was obtained as the residual term of the energy balance, 159 

where available energy was computed from the ground measurements (Elfarkh et al., 2020). For the LE 160 

computation, we used the Rn and G measured at the EC1 site which is considered representative of the 161 

land cover present in the LAS footprint. However, this remains an approximation and one possible 162 

improvement would be to multiply measurements of Rn and G along the LAS path but this is 163 

operationally difficult to achieve. For the sake of simplicity, we also didn’t compute MODIS estimates 164 

of daily Rn (Saadi et al., 2015). 165 

2.3 Remote sensing data 166 

2.3.1 Sentinel-2 data 167 

The Normalized Difference Vegetation Index (NDVI) was computed using Sentinel-2 Red (R, band 4) 168 

and Near-InfraRed (NIR, band 8) reflectances at 10 meters resolution (Eq. 1). The Sentinel-2 images 169 

were downloaded from the THEIA web site, a French open-source land data service center 170 

(https://www.theia-land.fr/) providing cloud-free and atmospherically corrected surface reflectance 171 

images. NDVI is closely related to vegetation cover (Tucker, 1979). Sentinel 2 images have the 172 

advantage of constant viewing angles, limiting its impact on the same site. In addition, as images used 173 



were radiometrically corrected, the effect of atmosphere was very limited. Although NDVI saturates 174 

regarding leaf area index (LAI), this is less of a problem regarding crop coefficient, which also saturates 175 

with LAI due to shading effect. As a result, it has been shown in many studies that crop coefficient can 176 

be linearly related to NDVI (Choudury et al., 1994). This index has been widely used in the region of 177 

our study area to characterize vegetation development and crop coefficients (Amazirh et al., 2022; Rafi 178 

et al., 2019; Duchemin et al., 2006; Er-Raki et al., 2007, 2010).  179 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 Eq: 1 

2.3.2 Landsat data 180 

Both Landsat 7 and 8 satellites data were used in this study for the period 2017 and 2018 with a revisit 181 

time up to 8 days thanks to their shifted overpasses. The area is located in the center of the Landsat 7 182 

scene not affected by the SLC-off problem. Land Surface Temperature (LST) data was acquired from 183 

the web application (http://rslab.gr/downloads_LandsatLST.html) developed by Parastatidis et al. 184 

(2017). This application provides LST estimates using the single channel algorithm. The Landsat LST 185 

values were compared to measurement values from the CNR4 instrument over both stations EC1 and 186 

EC2. This comparison displayed in Figure 2a shows acceptable agreement between measured and 187 

Landsat LST with an RMSE of about 5 K for EC1 and 6.6 K for EC2, with a moderate but significant 188 

bias. However, despite the good correlation between ground and satellite data, we chose not to correct 189 

satellite data considering the low representativity of our local measurements as compared to satellite 190 

pixels (30 m) in this heterogeneous land cover context. The optical Landsat bands were downloaded in 191 

level 2 from the web site (https://earthexplorer.usgs.gov/) with atmospheric correction included. 192 

Surface emissivity, albedo and the leaf area index (LAI) were computed using the optical Landsat data. 193 

The surface emissivity was calculated based on Tardy et al. (2016) as follows: 194 

 𝜀 = 𝜀𝑣 − (𝜀𝑣 − 𝜀𝑠) (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑎𝑥

𝑁𝐷𝑉𝐼𝑚𝑖𝑛 − 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
)

𝑘

 Eq: 2 

𝜀𝑣  and 𝜀𝑠  are the soil and the vegetation emissivity. Their values are 0.96 and 0.99 respectively (Sobrino 195 

et al., 2004; Tardy et al., 2016). The 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 is the minimum value of NDVI representing bare soil 196 

and the 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 is the maximum value of NDVI representing dense vegetation, determined by 197 

examination of the images NDVI distribution. The 𝑘 parameter was fixed arbitrarily to 2 according to 198 

Tardy et al. (2016). LAI was computed based on Landsat NDVI following (Wang et al., 2008): 199 

 𝐿𝐴𝐼 = √𝑁𝐷𝑉𝐼
1 + 𝑁𝐷𝑉𝐼

1 − 𝑁𝐷𝑉𝐼
 Eq: 3 



The visible and the near-infrared bands are used to retrieve the albedo (𝛼) from Landsat data. The best 200 

combinations compared to in-situ measurement were obtained from the Red (R) and the Near-InfraRed 201 

(NIR) bands which is in-line with results obtained with other sensors including SPOT4 (Diarra et al., 202 

2017) and FORMOSAT (Courault et al., 2008). 203 

 𝛼 = 4.16 ∗ 10−5 ∗ 𝑅 + 3.28 ∗ 10−5 ∗ 𝑁𝐼𝑅          𝑓𝑜𝑟 𝐿𝑎𝑛𝑑𝑠𝑎𝑡 7 Eq: 4 

 𝛼 = 2.72 ∗ 10−5 ∗ 𝑅 + 3.80 ∗ 10−5 ∗ 𝑁𝐼𝑅           𝑓𝑜𝑟 𝐿𝑎𝑛𝑑𝑠𝑎𝑡 8 Eq: 5 

Figure 2b shows a large discrepancy between measured and estimated albedo. The errors can be 204 

explained by the high heterogeneity of the pixel area while point-scale albedo is measured by the 205 

stations. As long as the regression linear equation obtained from satellites data was not good, a fixed 206 

value of about 0.12 was adopted for the study site. 207 

 208 

Figure 2: Scatterplot of Landsat LST (a) and albedo (b) versus in-situ data for EC1 and EC2 stations. 209 

2.4 Evapotranspiration Modeling 210 

Four models are used in this study. SAMIR is a software simulating crop water budget and 211 

evapotranspiration at daily scale based on the FAO-56 approach. It is fed with Sentinel-2 Normalized 212 

Difference Vegetation Index (NDVI) images used to compute both the basal crop coefficient (𝐾𝑐𝑏) and 213 

the vegetation fraction cover (𝑓𝑐). A soil water budget allows to automatically trigger irrigations based 214 

on simulated soil moisture. The SPARSE model solves the surface energy budget to provide 215 

instantaneous latent heat flux (LE) estimates using the Landsat 7 and 8 thermal data. Both models were 216 

tested over different crops and climates and have shown acceptable performance in estimating ETa 217 

(Boulet et al., 2015; Delogu et al., 2018; Saadi et al., 2015; Simonneaux et al., 2009). The Shuttleworth-218 

Wallace and METRIC models have been added to this study to enrich the comparison of different 219 

approaches to estimating ETa using the same input data. For the Shuttleworth-Wallace model the version 220 



used here is the modification proposed by Elfarkh et al., (2021) where they use thermal remote sensing 221 

data to spatialize ET. SPARSE, SW and SAMIR were calibrated and validated over the same study area 222 

using eddy covariance and scintillometer measurements. Regarding METRIC, its automated version 223 

featured on the Google Earth Engine Evapotranspiration Flux (EEFlux) platform is used. More details 224 

on each model are presented in the appendix. A summary of the inputs required and the parameters 225 

calibrated for each model is depicted in table 1. 226 

Table 1: Summary table of the inputs required and the parameters calibrated for each model. 227 

Models Inputs variables Calibrated parameters Calibration approach 

SPARSE 

- NDVI and 

Albedo 

- LST and 

emissivity 

- Air temperature 

and humidity 

- Wind speed 

- Solar radiation 

- Minimum stomatal resistance 

(𝑟𝑠𝑡𝑚𝑖𝑛)  

- Leaf width (𝑤)  

- Ratio relating the soil net 

radiation to the heat soil flux (𝜉)  

- Extinction coefficient (𝑘) in the 

LAI equation  

- Coefficient in the aerodynamic 

resistance (𝑛𝑆𝑊) 

- Minimization of the 

RMSE between the 

estimated and 

measured ETa 

SAMIR 

- NDVI 

- 𝐸𝑇0 

- Rainfall 

- NDVI-𝐾𝑐𝑏 relation’s slope 

- NDVI-𝐾𝑐𝑏 relation’s intercept 

- Readily evaporable water 

(𝑅𝐸𝑊) 

- Maximum root depth (𝑍𝑟𝑚𝑎𝑥) 

- Water diffusion coeff. between 

surface and root layers (𝐷𝑖𝑓𝑒𝑟) 

- Minimization of the 

RMSE between the 

estimated and 

measured ETa 

SW 

- NDVI and 

Albedo  

- LST and 

emissivity 

- Air temperature 

and humidity 

- Wind speed 

- Solar radiation 

- Coefficients in the soil and 

vegetation resistances 

- Minimization of the 

RMSE between the 

estimated and 

measured ETa 

METRIC-

GEE 

- NDVI and 

Albedo 

- LST and 

emissivity 

- Air temperature 

and humidity 

- Wind speed 

- Solar radiation 

- No calibration 
 

 228 



2.5 Models evaluation 229 

The evaluation of results was achieved using standard criteria, namely the correlation coefficient (R), 230 

the bias and the root mean square error (RMSE). 231 

 𝑅 =
∑(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)

√∑(𝑥𝑖 − 𝑥)2 ∑(𝑦𝑖 − 𝑦)2
 Eq: 6 

 𝑏𝑖𝑎𝑠 =
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

𝑛

𝑖=1

 Eq: 7 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 Eq: 8 

where 𝑥𝑖 is the measured values,  𝑦𝑖 is the estimated values and 𝑛 is the number of observations. 232 

2.6 Extrapolation of instantaneous ETa to daily value 233 

Thermal remote sensing-based ETa models like SPARSE and SW basically provide an instantaneous 234 

ETa value at the satellite overpass time. However, these instantaneous values are not useful for practical 235 

purposes which support water resources management such as irrigation scheduling. Many authors 236 

evaluated different temporal upscaling methods from instantaneous to daily ETa values (Xu et al., 2015; 237 

Saadi et al., 2018). One of the methods widely used is the evaporative fraction (𝐸𝐹). This latter supposes 238 

that the evaporative fraction remains almost constant during the day. However, Gentine et al. (2007) 239 

reported that 𝐸𝐹 depends on soil moisture and is not always satisfied for a fully vegetated surface. Here, 240 

we applied the method parametrized by Delogu et al. (2012) based on an improvement of 𝐸𝐹 method. 241 

This improvement is based on the diurnal variations of 𝐸𝐹 derived by Hoedjes et al. (2008) using an 242 

empirical relationship. This relation parameterized 𝐸𝐹 diurnal trend as a function of incoming solar 243 

radiation and relative humidity as follows. 244 

 𝐿𝐸𝑑𝑎𝑦 = 𝐸𝐹 ∗ 𝐴𝐸𝑑𝑎𝑦 Eq: 9 

 𝐴𝐸𝑑𝑎𝑦 = 𝐴𝐸𝑖𝑛𝑠𝑡 ∗
𝑅𝑔𝑑𝑎𝑦

𝑅𝑔𝑖𝑛𝑠𝑡
 Eq: 10 

 𝐸𝐹 = (1.2 − (0.4
𝑅𝑔𝑑𝑎𝑦

1000
+ 0.5

𝑅𝐻𝑑𝑎𝑦

100
)) ∗

𝐸𝐹𝑠𝑎𝑡𝑖𝑛𝑠𝑡

𝐸𝐹𝑏𝑎𝑠𝑒𝑖𝑛𝑠𝑡
 Eq: 11  

 𝐸𝐹𝑠𝑎𝑡𝑖𝑛𝑠𝑡 =
𝐿𝐸𝑖𝑛𝑠𝑡

𝐴𝐸𝑖𝑛𝑠𝑡
 Eq: 12 



 𝐸𝐹𝑏𝑎𝑠𝑒𝑖𝑛𝑠𝑡 = 1.2 − (0.4
𝑅𝑔𝑖𝑛𝑠𝑡

1000
+ 0.5

𝑅𝐻𝑖𝑛𝑠𝑡

100
) Eq: 13 

where 𝐴𝐸 is the available energy (𝑅𝑛 − 𝐺), 𝑅𝑔 is the solar radiation (W/m2), 𝑅𝐻 is the relative humidity, 245 

𝐸𝐹 is the evaporative fraction and 𝐸𝐹𝑠𝑎𝑡𝑖𝑛𝑠𝑡 and 𝐸𝐹𝑏𝑎𝑠𝑒𝑖𝑛𝑠𝑡 are the evaporative fraction observed at 246 

the satellite overpass time and calculated at the satellite overpass with the first part of the Eq. 11, 247 

respectively. 248 

2.7 Footprint computation 249 

The LAS or EC measurements are influenced by an area, or footprint, where the contribution of each 250 

point is determined by its position, the wind speed and direction. Numerous models of footprint have 251 

been developed (Horst & Weil, 1992; Rannik et al., 2000; Schuepp et al., 1990). In our case, Horst and 252 

Weil (1992) model was used for the EC measurements, where the measured F flux is related to the 253 

surface elementary fluxes distribution (Eq. 14). 254 

 𝐹(𝑥, 𝑦, 𝑧𝑚) = ∫ ∫ 𝐹0(𝑥′, 𝑦′)𝑓(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧𝑚)𝑑𝑥′𝑑𝑦′
𝑥

∞

∞

−∞

 Eq: 14  

where 𝑓 is the footprint function figuring the spatial weighting of elementary surface fluxes, 255 

𝐹(𝑥, 𝑦, (𝑧 = 0)) = 𝐹0(𝑥, 𝑦). 𝑥 and 𝑦 are the downwind and crosswind distances (m) from the 256 

measurement’s points, respectively. For the LAS, the spatial weighting function is used to weight each 257 

point (Meijninger, 2003) (Eq. 15). 258 

 𝐹𝐿𝐴𝑆(𝑥, 𝑦, 𝑍𝐿𝐴𝑆) = ∑ 𝐹(𝑥, 𝑦, 𝑍𝐿𝐴𝑆)𝐺(𝑑𝑖)

𝑁

𝑖=1

 Eq: 15 

where 𝐹𝐿𝐴𝑆(𝑥, 𝑦, 𝑍𝐿𝐴𝑆) is the LAS integrated measurement, and 𝐹(𝑥, 𝑦, 𝑍𝐿𝐴𝑆) and 𝐺(𝑑) are the 259 

equivalent EC footprint and the scintillometer path-weighting function, respectively, for a given point 260 

distanced from the transmitter by 𝑑𝑖. The EC and LAS footprints were calculated for each half-hour 261 

(Figure 3a). To compare the measured flux with daily model outputs, daily footprints were calculated 262 

as the sum of the half-hourly footprints weighted by the net radiation values. As shown on the figure 3b, 263 

the daily footprint has a more complex form than the instantaneous ones because half-hourly footprints 264 

have different direction and form depending on the wind. 265 



 266 

Figure 3: (a) Instantaneous footprint of both stations (EC1 and EC2) and LAS, (b) daily LAS footprint. R and T means the 267 
receiver and the transmitter of scintillometer, respectively. 268 

3 Results 269 

In this section the ETa estimations by the four models are presented. Only the calibration and the 270 

validation of SAMIR and SPARSE are shown here. The calibration of SW is detailed over the same site 271 

in Elfarkh et al. (2021). METRIC is downloaded from a Google Earth Engine platform. After that, the 272 

four models’ estimations are evaluated and compared with the LAS and the EC measurements and the 273 

errors and domains of validity are discussed. 274 

3.1 SAMIR calibration 275 

The main parameters of SAMIR are basically related to crop types and to the soil. Thus, a land cover 276 

map of the study area was generated from the NDVI time series using the algorithm developed by 277 

Simonneaux et al., (2007). The main classes were trees, annual crops and bare soil. A Sentinel-2 NDVI 278 

time series was extracted by averaging pixel values in a 50*50 meters area centered on the EC1 site. 279 

The meteorological forcing, namely precipitation and ET0 were obtained from our in-situ measurements. 280 

The SAMIR model was calibrated for the tree class using latent heat flux measured over EC1 for the 281 

two seasons 2017 and 2018, through minimizing the Root Mean Square Error (RMSE) computed 282 

between measured and modeled ET. The main calibrated parameters are listed in table 2. The rooting 283 

depth (𝑍𝑟𝑚𝑎𝑥) obtained after calibration (4.9 m) is much larger than usual values proposed in the FAO-284 

56 paper (1.6 m) for irrigated olive trees. This is not surprising considering that these trees are very old 285 

and periodically under stress, which causes deep rooting. The olive tree root system is adapted to water 286 

scarcity frequent in the mediterranean areas (Fernández 2014). In aerated soils of light texture, olive 287 

trees roots may reach depths of 7 m (Lavee, 1996). For the annual crops, no calibration was possible 288 

since no EC station was installed over such class. Instead, we used the parameters obtained by Saadi et 289 

al. (2015) after calibration of SAMIR over wheat plots in central Tunisia that we consider similar to our 290 

site. Irrigation was simulated assuming that the farmer avoid stress, triggering input just before stress 291 

and bringing the water amount required to fill the soil holding capacity. The irrigation simulations were 292 



stopped from 16 July to 30 November 2017 and from 21 May to 26 September 2018, according to ground 293 

observation. 294 

Table 2: Main Calibrated Parameters used for the tree class. 295 

Parameter Definition Value Source 

𝑎𝑓𝑐  NDVI-𝑓𝑐 relation’s slope 1.33 Satellite imagery 

𝑏𝑓𝑐  NDVI-𝑓𝑐 relation’s intercept -0.20 Satellite imagery 

𝑎𝐾𝑐𝑏 NDVI-𝐾𝑐𝑏 relation’s slope (Eq. A.2) 1.35 Calibrated 

𝑏𝐾𝑐𝑏 NDVI-𝐾𝑐𝑏 relation’s intercept (Eq. A.2) -0.20 Calibrated 

𝑍𝑒 (mm) depth of the soil evaporation layer 125 FAO-56 

𝑅𝐸𝑊 (mm) Readily evaporable water 0 Calibrated 

m Reduction coefficient (Torres et al. 2010) 0.185 Calibrated 

𝑍𝑟𝑚𝑎𝑥 (mm) Root depth (assumed constant for trees) 4900 Calibrated 

𝑝 root zone water depletion fraction before stress 0.65 FAO-56 

𝐷𝑖𝑓𝑒𝑟 Diffusion between surface and root layers 0 Calibrated 

𝜔𝑓𝑐 (m3/m3) Volumetric water content at field capacity 0.4 Ground observation 

𝜔𝑤𝑝 (m3/m3) Volumetric water content at wilting point 0.2 Ground observation 

𝐾𝑐𝑚𝑎𝑥 Maximum value of crop coefficient (following rain 

or irrigation) which is determined by the energy 

available for ETa at the soil surface 

1.15 Ground observation 

 296 

Figure 4 shows the temporal variations of the computed basal crop coefficient 𝐾𝑐𝑏 and the fraction cover 297 

(𝑓𝑐) values using the NDVI relationships with NDVI averaged over the EC1 station. Peak 𝐾𝑐𝑏 and 𝑓𝑐 298 

values were observed at the beginning of spring for both years 2017 and 2018, while minimum 𝐾𝑐𝑏 and 299 

𝑓𝑐 values were recorded in summer and early autumn. These variations are linked to the vegetative cycle 300 

of the olive tree itself, but they may be amplified by the understory of annual crops often observed in 301 

this area in spring and early summer, when water is available from the river. Conversely, the 𝐾𝑒 values 302 

don’t exhibit the same seasonality and are only linked to water inputs (irrigation or rainfall). It is 303 

remarkable to note that the resistance to evaporation is much increased as compared to FAO standards, 304 

with 𝑅𝐸𝑊 = 0 and m = 0.185, which is coherent with previous studies (Saadi et al., 2015; Torres & 305 

Calera, 2010). Thus, 𝐾𝑒 values are on the whole quite low (below 0.2), which can be explained by the 306 

important canopy shading, modifying significantly the meteorological forcing at the soil level. The 𝐾𝑠 307 

values show non-stressed conditions during vegetation developments (i.e., 𝐾𝑠 = 1), while stress appears 308 

in late summer and autumn justified by the insufficient irrigation due to water shortage in the river. 309 



 310 

Figure 4: Simulation of the evaporative coefficient (𝐾𝑒), the stress coefficient (𝐾𝑠), the crop coefficient (𝐾𝑐𝑏) and the fraction 311 
cover (fc) during the study period 2017 and 2018, as obtained from SAMIR modelling on the EC1 site. 312 

The SAMIR ETa simulations are in good agreement with observed values with an RMSE, bias and R of 313 

about 0.50 mm/day, -0.11 mm/day and 0.87, respectively (Figure 5). The simulated values reproduce 314 

well the seasonal cycle. During the development stage of wheat in spring, ETa was higher in the dry 315 

season (2017) than the wet one (2018) which is strongly related to the higher reference 316 

evapotranspiration in 2017. Despite the lack of rainfall, water is still available for irrigation in spring 317 

because water comes from the mountains and is not affected directly by drought occurring downstream. 318 

However, the gap between ETa and ET0 during summer and autumn can be related to the water supply. 319 

This gap is large in 2017 when compared to 2018 since the first year is dry with 157 mm whereas 2018 320 

is wetter with 384 mm. However, even in these stressed conditions, the olive trees managed to keep a 321 

high level of transpiration due to the deep rooting of the trees. 322 



 323 

Figure 5: Daily ETa measured by EC1 and  estimated over the EC1 footprint by SAMIR during the study periods 2017 and 2018.  324 

3.2 SAMIR validation 325 

Using the calibrated parameters (Table 1), SAMIR was run over the study area using the Sentinel-2 326 

NDVI time series. The simulated SAMIR ETa values were validated using measurements provided by 327 

the EC2 and the LAS. For the latter, SAMIR daily ETa outputs were weighted according to the daily 328 

footprint computed as explained previously. The comparison between SAMIR daily ETa and ETa 329 

measured by EC2 in 2017 and 2018 shows a good agreement with an RMSE, bias and R of about 0.53 330 

mm/day, -0.12 mm/day and 0.82 (Figure 6), very close to the values obtained during the calibration 331 

stage on EC1. However, in 2017 SAMIR overestimated ETa during the dry period from July to 332 

November. This is because a spatialized version of the SAMIR tools is used in this study and it doesn’t 333 

allow to stop irrigation while no water is available at this time of the season. By contrast, no 334 

overestimation of ETa was observed in summer 2018, as the year was wet and there was less water 335 

shortage in the root zone despite the lack of irrigation. 336 

The comparison between SAMIR daily ETa and the LAS measurements in 2017 and 2018 is presented 337 

on figure 7. Due to technical problems, the LAS measurements are lacking from June to August 2018. 338 

On average, a good concordance is noticed between the simulations and the measurements with an 339 

RMSE, bias and R of 0.73 mm/day, -0.45 mm/day and 0.74, respectively. However, between January 340 

and June 2017, SAMIR underestimated ETa. One possible explanation for this gap is that during this 341 

period, since there is enough rainfall and no stress, SAMIR doesn’t apply any irrigation which is not the 342 

case for the farmers who do not hesitate to bring water when it is available in the river. Indeed, as shown 343 

by Bouimouass et al., (2020) who studied irrigation in a very similar watershed neighboring the study 344 

site, overirrigation is very frequent as is driven by water availability and not by the crop requirements. 345 



In 2018, this discrepancy between simulated and measured ETa is also visible but to a lesser extent; 346 

possibly because the precipitation was relatively high and consequently the impact of irrigation on ETa 347 

was lower. 348 

 349 

Figure 6: ETa measured by EC2 and estimated over the EC2 footprint by SAMIR during the study period 2017 and 2018. 350 

 351 

Figure 7: ETa measured by LAS and estimated over the LAS footprint by SAMIR during the study period 2017 and 2018. 352 

 353 



3.3 SPARSE calibration 354 

As for SAMIR, the SPARSE model was calibrated over the EC1 station, by minimizing the RMSE 355 

between simulated and observed 𝐿𝐸. The SPARSE results were weighted by the EC and LAS 356 

instantaneous footprints at the time of Landsat overpass. From a sensitivity study (Boulet et al., 2015), 357 

five parameters of SPARSE having a significant impact on simulated ETa were calibrated : the minimum 358 

stomatal resistance (𝑟𝑠𝑡𝑚𝑖𝑛) which was set to 260 s/m, As reported by Zhu et al. (2014) 𝑟𝑠𝑡𝑚𝑖𝑛 varies 359 

for many natural and cultivated plants it ranges considerably from 20 to 100 s/m for crops and from 200 360 

to 300 s/m for many types of trees (Zhu et al., 2014). Leaf width (𝑤) set to 0.03 m is within the range 361 

found in the literature (Saadi et al., 2018; Ait Hssaine et al., 2018; Braud et al., 1995). The ratio relating 362 

the net radiation of the soil to the heat soil flux (𝜉) set to 0.13. In fact, Kustas et al. (1993) pointed that 363 

𝜉 is driven by several factors namely the time of day, the soil moisture and the thermal properties, as 364 

well as the vegetation density and its value ranges between 0.05 and 0.5. The extinction coefficient (𝑘) 365 

in the equation where the fraction cover is calculated in term of LAI which is set to 0.6 which is in 366 

conformity with the values found by Connor et al. (2012) and Srinet et al. (2019). The empirical 367 

coefficient in the aerodynamic resistance (𝑛𝑆𝑊) set to 2.5 which is the same value stated by Boulet et al. 368 

(2015). The calibration shows an acceptable agreement with an RMSE and R of about 81.3 W/m2 and 369 

0.58, respectively (Figure 8). 370 



 371 

Figure 8: Comparison between the EC1 measurements and SPARSE estimations (Net radiation (Rn), soil heat flux (G), sensible 372 

heat flux (H) and latent heat flux (LE)) using Landsat products. 373 

3.4 SPARSE validation 374 

The parameters obtained over EC1 were validated locally over EC2 and spatially using the LAS 375 

measurements. Scatter plots of modeled available energy, sensible and latent heat fluxes for Landsat 376 

overpass dates, averaged over the EC2 and LAS footprints versus measurements are displayed at figures 377 

9 and 10. Net radiation values were accurately estimated by SPARSE with RMSE of about 69.8 W/m2 378 

for EC2. However, they show an underestimation compared to the two stations measurements which is 379 

expected since the Landsat LST overestimates the surface temperature as shown in figure 2. This is in-380 

line with the same bias observed in the calibration phase. 𝑅𝑛 measurement over a complex surface is a 381 

difficult task as many authors reported (Anthoni et al., 2000; Byun et al., 2014) due to the influence of 382 

the vegetation structure on the albedo. Comparison between observed and simulated soil heat flux shows 383 

lower agreement than for 𝑅𝑛 which can be explained in one hand by the accuracy of the measurements 384 

since it gathers several difficulties as reported in the literature (Ezzahar et al., 2009b; Ait Hssaine et al., 385 

2018). These difficulties lay in the plate protection from direct sunlight especially for the one at 5 cm 386 

and choosing the representative position which takes into consideration the vegetation intercept of the 387 



incoming radiation. On the other hand, SPARSE calculates 𝐺 as a fraction of 𝑅𝑛𝑠 inducing the 388 

transmission of the error on 𝑅𝑛𝑠 to 𝐺. Furthermore, for ease of implementation, a constant fraction value 389 

was adopted in this study, whereas many studies have related the value of this fraction to the variation 390 

of the surface cover (Diarra et al., 2017; Kustas, 1990; Saadi et al., 2018). Sensible heat flux simulations 391 

show acceptable agreement over EC2 and LAS with an RMSE of about 116 W/m2 and 68 W/m2, 392 

respectively. The discrepancy showed in the figures between modeled and observed 𝐻 can be attributed 393 

to numerous factors, particularly the accuracy of LST data. In addition, the calculation errors on the 394 

surface resistances are strongly affecting the 𝐻 estimation. Also, one potential source of error is the 395 

accuracy of the displacement height (d) and roughness length (Z0) which were estimated in this work as 396 

a fraction of the vegetation height using the rule of thumb (Z0 = 0.14*hveg and d = 0.66*hveg, hveg is 397 

the vegetation height) following Brutsaert and Kustas (1987). The method used to approximate these 398 

parameters are adapted to dense and homogeneous areas whereas the experimental field is 399 

heterogeneous and sparse. Finally, the model provides good estimates of 𝐿𝐸 over EC2 and LAS with an 400 

RMSE of about 52.7 W/m2 and 78.8 W/m2, respectively. The discrepancy in 𝐿𝐸 can be related to the 401 

uncertainty on 𝐻 and 𝐴𝐸 (𝑅𝑛 − 𝐺) which is directly transmitted to 𝐿𝐸 values since it’s a residual term 402 

of the energy balance (Kalma et al., 2008; Morillas et al., 2013; Saadi et al., 2018). Moreover, using 403 

constant parameters during the whole year despite vegetation and environmental changes can causes 404 

some errors, especially for the minimum stomatal resistance (𝑟𝑠𝑡𝑚𝑖𝑛). As reported by Boulet et al. 405 

(2015) an inadequate value of 𝑟𝑠𝑡𝑚𝑖𝑛 increases automatically 𝐻 and 𝐿𝐸 errors. 406 

  407 



 408 

Figure 9: Same as figure 8 but for EC2. 409 

 410 

Figure 10: Comparison between the LAS measurements and SPARSE estimations (H and LE) using Landsat products. 411 



3.5 Model’s validation and intercomparison 412 

The comparison of the four models and LAS and EC2 measurements was done at the daily scale. The 413 

instantaneous ETa estimates provided by SPARSE and SW were extrapolated to a daily value using the 414 

𝐸𝐹 method presented in section 2.5. Then, daily ETa maps provided by all models were weighted using 415 

the daily footprint of the LAS and EC2 measurements in order to be compared with them.  416 

Figure 11 and 12 presents the scatterplots of the four models ETa estimates compared to the EC2 and 417 

LAS measurements, respectively. The four models underestimate the LAS measurements which is 418 

strange and raises the question on the LAS accuracy. However, the LAS values were validated while 419 

comparing them with the EC1 and EC2 values in a previous study (Elfarkh et al., 2020) and the results 420 

were good. SPARSE and SW are more scattered which can be related to the large number of their 421 

parameters that are taken constant throughout the season. Nevertheless, these parameters are variable in 422 

space depending on the soil and vegetation characteristics. In addition, the sensibility of both models to 423 

the LST data errors can also generate this bias. The METRIC and SAMIR ETa estimates are less 424 

scattered and show better statistical results compared to SPARSE and to SW. The time series of the 425 

daily ETa values obtained with the LAS and the four models are illustrated in figure 13. Overall, the 426 

LAS and the four models ETa show similar seasonal dynamics. They increase with the begin of the 427 

growing season in January, reach maximum values during growth peak in April-May, and then decrease 428 

until December. Since precipitation and canopy development greatly affect ET, its rates decrease during 429 

dry conditions and increase immediately after each rainfall event. The ETa values of winter are higher 430 

in 2018 than in 2017 due to the higher precipitations in 2018. However, the ETa spring values are low 431 

in 2018 compared to 2017, which can be attributed to the low available energy received due to more 432 

frequent cloudy days. 433 

During summer 2017, SW was close to the LAS measurements. SPARSE underestimates ETa values, 434 

which may be due to the already observed overestimation of Landsat LST (Figure 2) that signify stress 435 

conditions for the model. In contrast, the effect of the LST error on the SW estimations was not as strong 436 

as for SPARSE, which can be attributed to fact that the absolute values of LST are used in SPARSE, 437 

whereas LST was used in a relative manner in SW model to compute stress indexes related to the 438 

resistances of vegetation and soil. Regarding SAMIR, the estimated ETa values were overestimated 439 

which is expected since SAMIR doesn’t stop irrigation in summer despite the water shortage. METRIC 440 

in this period shows a slight overestimation that can be linked to wet edge detection error under these 441 

stress conditions. The RMSE and the R of the models show that SAMIR and METRIC-GEE are the 442 

least scattered and the most correlated to the measurements. On the other hand, SPARSE shows less 443 

bias and dispersion than SW while the latter is better correlated.  444 

In order to further compare the models and illustrate the discrepancies, ETa images of the four models 445 

are shown for three dates illustrating contrasted conditions (Figure 14). The accuracy of each image is 446 



assessed through the bias with the LAS measurements (Figure 15); keeping in mind that the LAS 447 

measurements represent only the irrigated area in the center of the image. For the 16th of January 2017, 448 

the model providing the best estimates is SPARSE, and the other models strongly underestimate ETa (-449 

1.5 to -1 mm bias). SAMIR shows low values of ET, especially over the bare soil supposedly not 450 

irrigated and also over the wheat plots which were bare soil at this time (Figure 14). SW model also 451 

underestimates ETa which can be explained by the non-representativeness of the relation established 452 

between the stress indexes and the resistances over the bare soil since these relations were calibrated 453 

over olive trees (EC1). In contrast, thanks to the thermal information which is highly correlated to the 454 

soil moisture, SPARSE shows less bias compared to the LAS. Finally, METRIC-GEE underestimates 455 

the most ETa although it is based on thermal remote sensing that should capture soil moisture conditions. 456 

Indeed, the METRIC approach forces the flux computation to be bounded between wet and dry extreme 457 

conditions, although these extreme conditions are not always present on every image and may thus 458 

induce a wrong scaling. For the summer date of 20 august 2017, SW and SAMIR models provide the 459 

best results. METRIC-GEE shows the higher bias which can be explained by the error on determining 460 

the wet and dry temperatures which are not well identified in such dry uniform conditions. SPARSE 461 

also underestimates ETa measurements which may be related to the LST reliability. On first April 2018, 462 

during the development stage of annuals and no stress conditions, SAMIR model is close to the LAS 463 

observations, whereas SW shows a strong underestimation. The SW and SPARSE underestimation can 464 

be explained by the fact that several parameters, especially the minimal stomatal conductance, are set 465 

constant during the entire season regardless of the seasonal changes. This assumption can lead to 466 

erroneous ETa estimates. In fact, Zhu et al., (2013) and Hu et al., (2009) noted that over/underestimation 467 

of ETa can occur when using constant parameters for long-term simulations using SW over different 468 

vegetation and environmental conditions. Finally, for METRIC-GEE, we observe a strong contrast 469 

between vegetation area with very high ETa and bare soil areas with low ET, which is a characteristic 470 

of METRIC always stretching ETa between dry bare soil and wet vegetated areas (Tasumi, 2019). 471 

However, despite a strong ETa in vegetated areas, the model predictions are still underestimated at the 472 

scale of the LAS footprint, due to the underestimation of evaporation in the riverbeds (see below). 473 

Another difference between the models is linked to riverbed. SAMIR shows low ETa for all dates in the 474 

river, assuming a non-irrigated bare soil, without taking into consideration the evaporation due to 475 

capillary rise from the shallow aquifer associated with riverbeds. This is well visible on the April image 476 

and to a lesser extent in January, in contrast, SPARSE accounts for the soil moisture related to surface 477 

temperature and shows higher ETa in riverbeds for these two dates. Although based on thermal data, 478 

SW also underestimates ETa in this area, which is explained by the fact that the resistance calibrations 479 

were done mainly on olive trees (EC1). This calibration may not be representative of the entire study 480 

area, in particular the fields of annual crops. Calibration of the resistance’s equation in the SW model 481 

on different land uses is necessary to improve its performance. 482 



On the whole, the accuracy of the four approaches for predicting ETa was acceptable despite some 483 

discrepancies observed in specific conditions but not at the same time depending on the model. There is 484 

no unique method for evaluating models, so there is no easy answer to the question of which model is 485 

most accurate. It seems that the SPARSE model, like other models based on thermal remote sensing, 486 

even if it is based on physical assumptions, remains sensitive to the quality of the input variables on one 487 

hand (e.g. the accuracy of the surface temperature), and on the other hand to the setting of the different 488 

physical parameters required by the model. The latter parameters are very variable in space and their 489 

calibration may suffer from equifinality problems as shown by the calibration of SPARSE. The errors 490 

of the three energy balance models, SPARSE, SW and METRIC-GEE seem uncorrelated which lead to 491 

a logical hypothesis of testing the potential benefit of computing their average value. As shown in figure 492 

16, the correlation coefficient obtained between this average ETa value and the measurements shows an 493 

improvement of 36%, 29% and 3% as compared to SPARSE, SW and METRIC-GEE, respectively. 494 

However, this average is underestimated with a bias of about -0.63 mm/day which is expected since the 495 

three model estimations are underestimated. Given that the bias can be corrected based on the linear 496 

relation obtained, the improvement in the correlation between ETa values average and the LAS 497 

measurements may be exploited for operational ETa estimates in this area. This approach of averaging 498 

different methods is a technique that has been used in different works such as the EVASPA model that 499 

includes several algorithms for calculating ETa in order to assess the uncertainties in ETa estimates. 500 

(Gallego-Elvira et al., 2013). 501 

In comparison with thermal approaches, SAMIR provides a good ETa because it is computed on a robust 502 

base which is the slowly changing NDVI and accurately measured ET0, however it suffers from a major 503 

drawback which is the lack of control of soil water conditions. Thus, water stress affecting both 504 

transpiration (𝐾𝑠) and evaporation (𝐾𝑒) is poorly represented. Models do not have the same advantages 505 

and weaknesses and each may be suitable under certain conditions (Table 3). The major constraint is the 506 

need of user calibration each time the environmental conditions are different except for METRIC-GEE 507 

for which there are achieved automatically. In addition, the availability of the model’s input is a 508 

paramount element to choose a model especially in traditional complex areas. For instance, it is 509 

impossible to have spatial information about the irrigation of each plot. Consequently, SAMIR is not 510 

the best choice in stress conditions where soil moisture strongly influences ET. On the other hand, the 511 

difficulty to calculate accurate LST from the satellite’s thermal bands is an issue for the energy balance 512 

models due to their high sensitivity to this variable. However, these models are not equally affected by 513 

LST accuracy. SPARSE is highly sensitive to LST accuracy since the error directly impacts H and LE. 514 

In contrast, the contextual approach of METRIC-GEE “scaling” LST relatively to extreme values of the 515 

image reduces problems. Also, for SW, the relative variation of LST between its maximum and 516 

minimum is used to calculate the soil and the vegetation resistances. This means that the error on LST 517 

will not have the same effect on METRIC-GEE and SW as compared to SPARSE. One advantage of 518 



SAMIR is to produce continuous daily ETa estimates which is valuable in assessing the basin water 519 

budget (Simonneaux et al., 2007; Le Page et al., 2012; Diarra et al., 2017). SPARSE is a model that can 520 

be used accurately to detect stress conditions if properly calibrated (Boulet et al., 2015). Consequently, 521 

ETa estimated by SPARSE can be used to calculate stress indices. The modified SW model is a new 522 

approach that must be tested under different conditions in order to find a robust relationship that 523 

accurately represents the variation in resistance as a function of stress indices. Finally, METRIC-GEE 524 

showed a good agreement with the LAS measurements, which is very good news since it is available 525 

freely and it does not require in-depth technical knowledge. 526 

Table 3: Summary table of the advantages and disadvantages for the four models. 527 

Models Disadvantages Advantages 

SPARSE 

- Very sensitive to LST accuracy 

- Many physical parameters 

required 

- Need of calibration 

- Extrapolation instantaneous 

ETa to daily values add errors 

- Few inputs needed 

- Reliable in stress condition 

SAMIR 

- Irrigations are necessary and 

are estimated 

- Need of calibration (especially 

for the soil evaporation 

component) 

- Provide continuous daily ETa 

values 

- It can provide accurate ETa 

values in no or limited stress 

conditions. 

SW 

- It is a new approach that need 

calibration / validation on other 

sites 

- Few inputs needed 

METRIC-GEE 

- Sensitive to the error in the 

dry/wet edges detection 

- You cannot download large 

zone from the platform 

- No calibration needed 

- Available to download freely 

- Ease of access. No need for in-

depth technical knowledge 

 528 



 529 

Figure 11: Comparison between ETa measured by EC2 and estimated by SPARSE (a), SAMIR (b), SW (c) and METRIC-GEE (d). 530 



 531 

Figure 12: Comparison between actual ETa measured by the LAS and estimated by SPARSE (a), SAMIR (b), SW (c) and 532 
METRIC-GEE (d). 533 



 534 

Figure 13: Daily series of the rainfall, ETa measured by LAS and estimated over the LAS footprint by SAMIR, SPARSE, SW and 535 
by METRIC-GEE during the study period 2017 and 2018. 536 

 537 

Figure 14: ETa maps for three days of contrasting climate conditions estimated by SPARSE, SAMIR, SW and METRIC-GEE. 538 
SAMIR outputs have a 10 m spatial resolution whereas the other models’ outputs have a 30 m pixel) 539 



 540 

Figure 15: Bias in mm/day between the model maps shown in Figure 13 and LAS measurements. 541 

 542 

Figure 16: Comparison between the ETa measured by the LAS and the average of SPARSE, SW and METRIC-GEE ETa 543 
estimation. 544 

4 Conclusion 545 

The objective of this study was to map distributed actual crop evapotranspiration (ETa) at high 546 

resolution using different approaches based on different remote sensing data. We used the SAMIR 547 

model based on water budget as proposed by the FAO-56 approach, and three approaches based on 548 

thermal remote sensing, namely the SPARSE model, a modified version of Shuttleworth-Wallace (SW) 549 

model and an operational version of METRIC available on Google Earth Engine (METRIC-GEE). The 550 

comparison has been performed over an heterogeneous and complex irrigated agricultural area. Landsat 551 

7 and 8 products were used for SPARSE, SW and METRIC-GEE and Sentinel 2 products were used for 552 

SAMIR. The models’ performance is evaluated using two Eddy covariance (EC) systems and 553 

scintillometer (LAS) measurements. The seasonal variability of ETa is correctly predicted by the four 554 

models throughout 2017 and 2018 agricultural seasons. However, SAMIR and METRIC-GEE, with an 555 



RMSE of 0.73 and 0.68 mm/day respectively as compared to LAS measurements showed slightly better 556 

performances in estimating ETa than SPARSE and SW which show an RMSE of 0.90 and 0.98 mm/day 557 

compared to LAS measurements, respectively. Finally, when averaging the estimates of the three 558 

thermal based models, the correlation coefficient with measurements was improved by 36%, 29% and 559 

3% compared to SPARSE, SW and METRIC-GEE, respectively. 560 

This study has shown the accuracy of different approaches and highlights the importance of remote 561 

sensing data which allow highly spatial and temporal resolution of ETa estimation. SAMIR has 562 

represented good estimation of ETa but its dependence for water input data (irrigation and rainfall) limit 563 

its applicability especially over traditional irrigated areas. On the other hand, thermal approaches may 564 

detect water stress but they have shown to be very sensitive to parameterization and to uncertainties in 565 

input data. This is the case for the remotely sensed surface temperature and for parameters like the 566 

stomatal resistance, sensitive to environmental conditions. Interestingly enough, METRIC-GEE ETa 567 

products showed good agreement with the LAS measurements without any calibration and are freely 568 

available online. These results confirm the idea that to move forward, the combination of these models 569 

can be applied. For instance, assimilating the ETa estimates of METRIC-GEE, SW or SPARSE into 570 

SAMIR which showed a good temporal consistency but whose widespread application may be limited 571 

by lack of available, spatially-explicit data on irrigation amount. This potential synergy is expected to 572 

be improved in the next few years with the LSTM mission of ESA and the TRISHNA mission 573 

(Lagouarde et al., 2018) which will provide high spatial-temporal resolution land-surface temperature 574 

at a resolution of 50 m, every 3 days, which is a significant step forward as compared to the actual 575 

Landsat data (100 m, every 16 days). This will allow accurate monitoring of spatio-temporal changes in 576 

the water status of surfaces, including crop stress detection, and will open great opportunities to improve 577 

these models to be more adapted for assessing crops water demand at field scale. 578 
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Appendix 1: SAMIR model 587 

SAMIR, is a tool to compute ETa and water budget at the daily time step using the FAO method (Allen 588 

et al., 1998). The soil model has been slightly modified to include three compartments, namely the 589 

evaporation, root and deep soil compartments (Saadi et al., 2015). Between these compartments, water 590 

can move down by gravity or up and down by diffusion processes. These fluxes are linked to the soil 591 

moisture of the compartments. In this work, FAO dual crop approach implemented in the SAMIR tool 592 

was used to calculate ETa as follows: 593 

 𝐸𝑇𝑎 = (𝐾𝑠𝐾𝑐𝑏 + 𝐾𝑒)𝐸𝑇0 Eq: A.1 

The reference evapotranspiration (𝐸𝑇0) was calculated using meteorological measurements based on the 594 

FAO Penman-Monteith equation and the crop coefficient 𝐾𝑐𝑏 was estimated using a 𝑁𝐷𝑉𝐼 − 𝐾𝑐𝑏 595 

relationship based on satellite time series imagery: 596 

 𝐾𝑐𝑏 = 𝑎 ∗ 𝑁𝐷𝑉𝐼 + 𝑏 Eq: A.2 

Parameters 𝑎 and 𝑏 are related mainly to land cover type and climatic conditions and can be calibrated 597 

or/and taken from previous studies (Duchemin et al., 2006; Er-Raki et al., 2007; Saadi et al., 2015). 598 

𝐾𝑒 is the evaporation coefficient. When the depletion in the evaporation layer (i.e., void volume, 𝐷𝑒) 599 

exceeds a threshold (i.e., readily evaporable water, 𝑅𝐸𝑊), a reduction factor 𝐾𝑟 is applied to reduce 600 

evaporation following Eq. A.4. 601 

 𝐾𝑒 = 𝑚𝑖𝑛 (𝐾𝑟(𝐾𝑐𝑚𝑎𝑥 − 𝐾𝑐𝑏), 𝑓𝑒𝑤 . 𝐾𝑐𝑚𝑎𝑥) Eq: A.3 

 𝐾𝑟 = 𝑚
𝑇𝐸𝑊 − 𝐷𝑒

𝑇𝐸𝑊 − 𝑅𝐸𝑊
 ≤ 1 Eq: A.4 

where 𝐾𝑐𝑚𝑎𝑥 and 𝑓𝑒𝑤 are the maximum capacity of water evacuation by atmosphere and the fraction of 602 

soil wetted, respectively. 𝑇𝐸𝑊 is the total evaporable water in the evaporation layer. In order to estimate 603 

Kr, we used the formalism proposed by (Torres & Calera, 2010), namely the introduction of the m 604 

parameter which allows more reduction of evaporation as compared to the original FAO-56 formalism. 605 

The 𝑚 coefficient initially set to 1 allows to further reduce the evaporation level with m values 606 

potentially decreasing until 0. This choice was made because, like Torres et al., we observed a strong 607 

overestimation of ETa especially after wetting events which was supposed to be due to higher 608 

evaporation (Saadi et al. 2015). After introducing the m parameter and calibration, better estimates of 609 

ETa were obtained (Saadi et al., 2015). The combination of 𝑅𝐸𝑊 and 𝑚 are functionally defining the 610 

surface resistance to the soil evaporation. 611 



The stress coefficient 𝐾𝑆 is computed when depletion in the root compartment (𝐷𝑟) is higher than the 612 

readily available water (𝑅𝐴𝑊), limiting the root uptake (Eq. A.5). 𝑅𝐴𝑊 is a fraction of the 𝑇𝐴𝑊, the 613 

total available water available for vegetation. 614 

 𝐾𝑆 =
𝑇𝐴𝑊 − 𝐷𝑟

𝑇𝐴𝑊 − 𝑅𝐴𝑊
≤ 1 Eq: A.5 

In addition to NDVI time series, SAMIR uses as forcing the daily reference evapotranspiration (ET0) 615 

values and water input. In fact, rainfall can be measured using the meteorological station, whereas 616 

irrigation cannot be easily observed for each plot in an area. Thus, SAMIR simulated the water inputs 617 

based on an assumed behavior of the farmer, regarding the threshold in soil moisture to trigger irrigation, 618 

and the water depth brought. A detailed explanation of SAMIR functioning may be found in (Saadi et 619 

al., 2015). 620 

Some parameters were fixed according to the guideline of the FAO-56 paper (the depth of the soil 621 

evaporation layer (𝑍𝑒), the root zone water depletion fraction before stress (𝑝) and the maximum value 622 

of crop coefficient (following rain or irrigation) which is determined by the energy available for ETa at 623 

the soil surface (𝐾𝑐𝑚𝑎𝑥)), or were based on ground data (the volumetric water content at field capacity 624 

(𝜔𝑓𝑐) and the volumetric water content at wilting point (𝜔𝑤𝑝)). Vegetation fraction cover values were 625 

computed based on a linear relationship with NDVI where the slope (𝑎𝑓𝑐) and the intercept (𝑏𝑓𝑐) were 626 

set assuming an NDVI value for the bare soil (𝑓𝑐 = 0) and full coverage (𝑓𝑐 = 1) equal to 0.15 and 0.9, 627 

respectively. 𝑓𝑐 was used to calculate the root zone depth (𝑍𝑟) using a linear relation and assuming that 628 

the crop will reach its full rooting depth at maximum 𝑓𝑐. The remaining parameters (the slope and the 629 

intercept of the NDVI-𝐾𝑐𝑏 linear relationship (𝑎𝐾𝑐𝑏 and 𝑏𝐾𝑐𝑏), the readily evaporable water (𝑅𝐸𝑊), the 630 

root depth (𝑍𝑟𝑚𝑎𝑥) and the diffusion between surface and root layers (𝐷𝑖𝑓𝑒𝑟)) were calibrated using the 631 

flux data (Table 2). 632 

Appendix 2: SPARSE model 633 

The SPARSE model is a two-source model solving separately the energy budget of the soil and the 634 

vegetation (Boulet et al., 2015), where both of them are connected to the atmosphere separately. The 635 

model solves a system of equations regarding sensible and latent heat flux for soil and vegetation 636 

respectively (Eq. A.6 and A.7) and the energy balance of the soil and the vegetation (Eq. A.8 and A.9). 637 

Eq. A.10 describes the link between the average surface temperature and longwave radiative fluxes. 638 

 𝐻 = 𝐻𝑆 + 𝐻𝑉 Eq: A.6 

 𝐿𝐸 = 𝐿𝐸𝑆 + 𝐿𝐸𝑉  Eq: A.7 



 𝑅𝑛𝑆 = 𝐺 + 𝐻𝑆 + 𝐿𝐸𝑆 Eq: A.8 

 𝑅𝑛𝑉 = 𝐻𝑉 + 𝐿𝐸𝑉 Eq: A.9 

 𝜎𝜀𝐿𝑆𝑇4 = 𝜀𝑅𝑎𝑡𝑚 − 𝑅𝑎𝑛 Eq: A.10 

𝐻 is the sensible heat flux, 𝐿𝐸 is the latent heat flux, 𝑅𝑛 is the net radiation and 𝐺 is the soil heat flux; 639 

indexes “s” and “v” are for the soil and the vegetation, respectively. 𝜀 is the surface emissivity. 𝑅𝑎𝑡𝑚 is 640 

the incoming atmospheric longwave radiation, 𝑅𝑎𝑛 is the net longwave radiation, 𝐿𝑆𝑇 is the radiative 641 

surface temperature (K) and 𝜎 is the Stefan-Boltzmann constant. To solve these equations, the model is 642 

first run in prescribed mode for two extreme configurations, namely fully unstressed and fully stressed 643 

vegetation (i.e. for a minimum and a maximum surface resistances), computing theoretical evaporation 644 

and transpiration fluxes based on the same method as the TSEB model (Kustas & Norman, 1999). These 645 

potential fluxes are then used as thresholds in the retrieval mode. In this mode, 𝐿𝐸𝑉 is calculated first 646 

considering unstressed conditions, deducting 𝐿𝐸𝑆 using the measured surface temperature. If the 647 

obtained 𝐿𝐸𝑆 value is negative, the unstressed vegetation assumption is invalid. In that case, the 648 

vegetation is assumed to suffer from water stress and the soil surface is assumed to be dry. Consequently, 649 

𝐿𝐸𝑆 is set to 30 W/m2 to account for the remaining slow vapor diffusion within the soil (Boulet et al., 650 

1997) and the vegetation latent heat flux (𝐿𝐸𝑉) is recalculated. If 𝐿𝐸𝑉 is also negative, both 𝐿𝐸𝑆 and 𝐿𝐸𝑉 651 

components are given zero independently of 𝐿𝑆𝑇. 652 

Appendix 3: Shuttleworth–Wallace model 653 

This model is developed by Shuttleworth and Wallace in 1985 (Shuttleworth & Wallace, 1985). It 654 

estimates two separate fluxes one for soil and the other for the vegetation using the following formulas: 655 

 𝐸𝑇𝑎 = 𝐸 + 𝑇 = 𝐶𝑠𝑃𝑀𝑠 + 𝐶𝑣𝑃𝑀𝑣 Eq: A.11 

 𝑃𝑀𝑠 =
∆𝐴 + [(𝜌𝐶𝑝𝐷 − ∆𝑟𝑎

𝑠(𝐴 − 𝐴𝑠)) /(𝑟𝑎 + 𝑟𝑎
𝑠)]

∆ + 𝛾[1 + 𝑟𝑠
𝑠/(𝑟𝑎 + 𝑟𝑎

𝑠)]
 Eq: A.12 

 𝑃𝑀𝑣 =
∆𝐴 + [(𝜌𝐶𝑝𝐷 − ∆𝑟𝑎

𝑣𝐴𝑠)/(𝑟𝑎 + 𝑟𝑎
𝑣)]

∆ + 𝛾[1 + 𝑟𝑠
𝑣/(𝑟𝑎 + 𝑟𝑎

𝑣)]
 Eq: A.13 

where 𝐴𝑠 and 𝐴 are available energy above soil surfaces and canopy (W/m2), respectively. ∆ is the slope 656 

of saturation vapour pressure curve (kPa/K), 𝜌 is the air density (kg/m3), 𝐶𝑝 is the specific heat of dry 657 

air at constant pressure (J/kg/K), 𝐷 is the water vapor deficit (kPa), 𝛾 is the psychrometric constant 658 

(Pa/K). 659 



In this study a modified version of SW model is used. This version used the thermal data to provide 660 

spatial ETa estimation as described by Elfarkh et al., (2021). In this approach the vegetation and soil 661 

resistances were related to the stress indexes as follow: 662 

 𝑟𝑠
𝑠 = 𝑎𝑒𝑏∗𝑆𝐼𝑠𝑠  Eq: A.14 

 𝑟𝑠
𝑣 = 𝑐𝑒𝑑∗𝑆𝐼𝑠𝑣  Eq: A.15 

where a, c, b and d are the calibration parameters set to 160.25 and 36.02 s/m, 2.62 and 1.30, 663 

respectively. 𝑟𝑠
𝑠 and 𝑟𝑠

𝑣 are the resistances for soil and for vegetation, respectively. 𝑆𝐼𝑠𝑠 and 𝑆𝐼𝑠𝑣 are the 664 

stress indexes for soil and vegetation, respectively. This approach was calibrated and validated in the 665 

same study area (Elfarkh et al., 2021). 666 

Appendix 4: METRIC-GEE model 667 

METRIC-GEE is a version of METRIC (Allen et al., 2007) that operates on the Google Earth Engine 668 

system (https://eeflux-level1.appspot.com/). The surface energy balance in this model is derived by 669 

Landsat thermal band while the surface roughness, vegetation amounts and albedo are retrieved from 670 

short-wave bands. The instantaneous evaporative fraction estimated at the time of satellite overpass is 671 

extrapolated at daily scale to provide daily ETa value using reference ET computed by the Penman-672 

Monteith and GridMET weather data sets. 673 
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