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ABSTRACT8

Land cover classification of remote sensing data is a fundamental tool to study

changes in the environment such as deforestation or wildfires. A current challenge is10

to quantify land cover changes with real-time, large-scale data from modern hyper-

or multispectral sensors. A range of methods are available for this task, several12

of them being based on the k -means classification method which is efficient when

classes of land cover are well separated. Here a new algorithm, called probabilistic14

k -means, is presented to solve some of the limitations of the standard k -means. It

is shown that the new algorithm performs better than the standard k -means when16

the data are noisy. If the number of land cover classes is unknown, an entropy-

based criterion can be used to select the best number of classes. The proposed new18

algorithm is implemented in a combination of R and C computer codes which is

particularly efficient with large data sets: a whole image with more than 3 million20

pixels and covering more than 10,000 km2 can be analysed in a few minutes. Four

applications with hyperspectral and multispectral data are presented. For the data22

sets with ground truth data, the overall accuracy of the probabilistic k -means was

substantially improved compared to the standard k -means. One of these data sets24

includes more than 120 million pixels, demonstrating the scalability of the proposed

approach. These developments open new perspectives for the large scale analysis26

of remote sensing data. All computer code are available in an open-source package

called sentinel.28

Keywords: Unsupervised classification; k -means; land cover; multivariate normal

density; spectral imaging data30
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1 Introduction

Monitoring environmental changes has become critical for many issues related to32

sustainable development. Deforestation, wildfires, and other land use changes have

profound impacts on human activities, our environment, and biodiversity (Pettorelli34

et al., 2005; Newbold et al., 2016; Betts et al., 2017). For instance, there is some

evidence suggesting that pathogen outbreaks are linked to changes in land cover and36

particularly deforestation (Jones et al., 2013; Morand et al., 2019).

There are two main approaches to track on-going environmental changes: either38

by monitoring and measuring land uses directly in the field, or by remote sensing

with satellites, aircrafts, or other airborne devices (e.g., unmanned aerial vehicles).40

Although the second approach has some limitations compared to the first one, it

has some definite advantages that cannot be matched by field data. In particu-42

lar, satellites can cover the whole surface of the Earth with a frequency of a few

days or weeks (Li and Roy, 2017; Wulder et al., 2018). Furthermore, the most re-44

cent satellites are equipped with high-resolution sensors which are able to record

a wide range of information such as reflectance at different wavelengths, altitude,46

or temperature (Fu et al., 2020). During the last decade, there has been a re-

markable increase in the resolution of these sensors. To illustrate this progress, the48

University of Twente maintains a database listing 334 satellites (some being out

of service) and 396 sensors with a number of bands ranging between 1 and 16,92150

(https://webapps.itc.utwente.nl/sensor/; accessed 2021-08-31). Among these

sensors, 43 (11%) are indicated to have a resolution of one meter or less (until52

1.25 cm), and 90 (23%) others are listed with a resolution between 1 m and 10 m.

Spectral imaging sensors record electromagnetic waves and provide data in two54

broad categories: hyperspectral imaging (HSI) where reflectance is recorded for sev-

eral hundreds of narrow bands (typically a few nanometres wide), and multispectral56

imaging (MSI) where reflectance is recorded for a few bands (usually less than 20)

each with a width of few tens or hundreds nanometres. Both HSI and MSI usually58
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record wavelengths beyond visible light (e.g., ultraviolet, infrared). During the last

decade, a range of open-access remote sensing data have been made available (e.g.,60

https://developers.google.com/earth-engine/; see also Guo et al., 2020). As

an example of these developments, the Sentinel program is made of seven satellites62

currently in orbit around the Earth (https://sentinel.esa.int/). Two of them,

Sentinel -2A and Sentinel -2B, are equipped with an MSI sensor which records re-64

flectance in thirteen bands from ultraviolet (UV) to infrared (IR) including three

bands in visible light (Gascon et al., 2017). The Sentinel program stands apart66

from other similar programs because the data are available publicly in near-real

time through the Copernicus datahub (https://scihub.copernicus.eu/). Each68

satellite covers the same location every two weeks, so the same location is potentially

covered every week giving the opportunity to monitor environmental and land use70

changes at relatively high temporal resolution (Li and Roy, 2017).

One of the applications of spectral imaging data is to infer land cover and land72

use. Two types of approaches are used for this objective. In supervised classification

methods, there is a reference sample with known land cover which is used to “train”74

the classification procedure in a first step, and the sample with unknown land cover

is then classified in a second step. In unsupervised classification, there is no reference76

sample: classes or groups are defined following different criteria (see Wulder et al.,

2018, for a recent review). As discussed below, both approaches have their respective78

advantages. For unsupervised classification, the k -means algorithm has been widely

used in various contexts (see next section).80

The objective of the present paper is to present a new method, called the proba-

bilistic k -means, to analyse large-scale, spectral imaging data. The most important82

original feature of this method is to take into account variance heterogeneity among

groups. Furthermore, a specific aim was to perform analysis of images with several84

millions of pixels in reasonable times. For instance, an image (or product) of Sen-

tinel -2 (about 10,000 km2) at a 10-m resolution has more than 120 million pixels.86
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The method is available in a computer package called sentinel (which also includes

functions to query, manage, and download data from the Copernicus datahub). Be-88

fore detailing the proposed methodological development, the next section presents

a review of the recent literature on the applications of the k -means method to the90

analysis of remote sensing data. Four applications are then presented with two HSI

data sets and two MSI data sets. The discussion gives further comparisons with92

previous contributions on unsupervised classification. The perspectives of current

and future developments are also discussed.94

2 Literature review

This review focuses on developments and applications of the k -means method in96

remote sensing data analysis published during the last ten years. Where possible,

the sizes of the imaging data and the software used have been noted.98

Several papers attempted to develop methods aimed to improve the properties

of the k -means method. Galluccio et al. (2012) developed a method which assumes100

there are modes (areas of highest densities of observations) in the distribution of

reflectance. These modes are found in the multivariate density space using the102

link lengths of a minimum spanning tree. Basically, the goal of their method is to

initialise the centres of the k -means algorithm. They applied it to image data from104

Paris (512 × 521 pixels, 7 bands) and from Mars (300 × 120 pixels, 256 bands).

Another study found that the standard k -means algorithm usually performs poorly106

on HSI data (Zhang et al., 2013). These last authors define the pure neighbourhood

index (PNI) to perform neighbourhood-constrained k -means which adds steps to108

the iterations of the standard k -means with a weight function defined with the

PNI. They applied this method to a 200 × 200 pixels image with 80 bands. Haut110

et al. (2017) used the MapReduce computational framework to analyse two images

from Indian Pines (145 × 145 pixels and 2678 × 614 pixels, both with 220 bands).112
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They programmed their analyses with Apache Spark for distributed computing and

Python Scikit for the k -means. However, they did not assess the effect of different114

numbers of groups.

He et al. (2014) showed that support vector machine (SVM), a supervised clas-116

sification method, performs very well even with a small training data set. On the

other hand, fuzzy k -means (FKM) was found to have a reduced usefulness with large118

data sets. These authors proposed a fusion of the two methods where the entropy

is used to find the appropriate number of groups (see below for details about the120

use of entropy). They applied their method on two SPOT6 images (1982 × 1630

pixels and 2113 × 2151 pixels) each with six reference classes. Their analyses were122

implemented in ENVI and IDL (ver. 4.8).

Zhang et al. (2016) used an object-based approach defining a hierarchy from the124

pixels up to the scene. Their analyses used a combination of principal component

analysis (PCA) on HSI images, k -means with drop-out, and SVM. The code was126

implemented in LIBSVM. They applied their approach to the Indian Pines data

(145×145 pixels, 220 bands) and the University of Pavia data (610×340 pixels, 103128

bands). They concluded that the drop-out k -means improves efficiency of the stan-

dard k -means with a small computational burden. They also demonstrated that the130

spatial information contained in the neighbourhood of pixels is useful, although their

results did not relate this improvement with the identification of physical objects on132

the ground. Similarly, in another study Kavzoglu and Tonbul (2018) used k -means

to perform image segmentation in a framework of object-based image analysis. They134

applied their approach to an image with 5000×3700 pixels and 8 bands. They found

that k -means generally performs well for image segmentation using different specific136

algorithms. They implemented their computations with ENVI and MATLAB.

Image matching and indexing are also applications of k -means. Cao et al. (2013)138

used k -means to perform image indexing based on the Kullback–Leibler discrepancy.

They provided code in C++ and Matlab. Sedaghat and Ebadi (2015) performed140
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image matching using k -means in a second step to classify images into groups. They

used MATLAB to implement their method.142

Several papers used k -means to perform fine-scale spatial structure analyses.

Kuo et al. (2019) analysed canopy structure by quantifying leaf angle distribution144

using a combination of k -means and an octree data structure: they analysed point

cloud data (PCD), a kind of LiDAR (light detection and ranging) data which can146

reconstruct 3-D structures. The PCD were first split into octree subspaces so that

each single octree unit contained no more than 1500 points. Each octree unit was148

then analysed with a standard k -means. Direct observations led these authors to

infer that a leaf used between 500 and 1500 points, which helped them find the150

number of groups in the k -means analyses. Reza et al. (2019) used graph-cut and

k -means to identify rice grains and estimate their sizes: they first applied k -means152

on the red-green-blue (RGB) image data after converting them to the Lab colour

space, and then used a graph-cut algorithm to identify the rice grains. The best154

value of number of groups in the k -means analyses was found with the histogram

method (Kanthana and Sujathab, 2013). The analysed images had 600×400 pixels.156

Wang et al. (2019) used k -means for image segmentation to identify roads from

satellite images: the image data were converted from the RGB space into the the158

Lab colour space and then analysed with k -means fixing the number of groups to

three (no information on image size was given).160

Some authors used k -means to quantify temporal changes from several images.

Kesikoglu et al. (2013) combined PCA with a fuzzy version of k -means called c-means162

to analyse temporal changes from image differencing, so there were effectively only

two groups in their c-means analyses. Lv et al. (2019) used k -means with adaptive164

majority voting (AMV) to quantify change magnitude image (CMI). Their method

starts from a “central” pixel, and builds a region around it. In a second step, a166

k -means analysis is done in the region with two groups (changed vs. unchanged

pixels). In a third step, the region is extended with the AMV algorithm. They168

7



analysed four images ranging in size from 412× 300 to 950× 1250 pixels.

Overall, k -means is a widely used method in image and remote sensing data170

analysis; it is often used in combination with other data analysis methods (e.g.,

PCA). A remarkable diversity of approaches have been developed during the past172

decade most of them with different objectives. The sizes of the data are generally

moderate, and very little open-source software has been contributed by these studies.174

3 Methods

3.1 Data176

Remote sensing data are usually arranged in a rectangular raster with variables

associated with each pixel of the raster. These variables may be univariate (i.e., a178

single value is associated to each pixel) or multivariate. In this paper, we consider

a multivariate setting where these variables are the values of reflectance measured180

in different wavelengths (the bands). In the present study we do not consider the

spatial arrangement of the pixels in their respective rasters, so that the pixels are182

assumed to be independent. Therefore, the data under consideration below are

denoted as X with the values of reflectance arranged in a matrix with n rows and184

p columns, where n is the number of pixels of the raster (i.e., the product of the

number of rows by the number of columns of the raster), and p is the number of186

bands of the image. Measures of reflectance are usually more or less noisy (Chavez,

1988; Zhang et al., 2018). The exact values measured by the sensor depend on land188

cover and also on several factors such as the satellite or aircraft position, the time

of the day, the atmospheric conditions, and so on.190

3.2 Probabilistic k-means

The k -means method is a widely used, unsupervised classification procedure (Hastie192

et al., 2009). It requires specification of the number of groups (or clusters), denoted
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as K here, then the algorithm proceeds by assigning observations to a group de-194

pending on the distance to the group means (Lloyd, 1982). If the values of these

means are unknown (which is the most common case), some initial values are cho-196

sen randomly, the observations are assigned as explained above, the group centres

are recalculated, and the whole procedure is repeated until group assignments are198

stable. The method works with multivariate data using a multivariate distance such

as the Euclidean distance.200

Standard k -means algorithms work well when within-group variances are homo-

geneous so that group assignments using distances are likely to be valid. However,202

when variances are heterogeneous, this is likely to result in misclassification of ob-

servations. Figure 1 shows a small simulated example with two groups each with204

200 observations drawn randomly from two normal distributions with means 0 and

6, and standard-deviations (SD) 2 and 0.1, both respectively for each group. Even206

though the two means are very different, the large SD of the first group is likely

to result in mixing of observations from both groups, and thus a k -means-based208

classification may be in error for these observations. The standard k -means indeed

resulted in 15 misclassified observations in this case.210

A solution to this problem is to rely on a probabilistic approach when classi-

fying observations in the different groups. In the above simple simulated case, it212

is straightforward to apply this approach: after running a standard k -means clas-

sification, the means and SDs of both groups are calculated, then the probability214

densities are calculated for all observations using parameters of both groups: each

observation is reclassified to the group for which it has the highest density. This216

can be represented graphically with a classification limit where the inferred density

curves intersect (Fig. 1B). Note, on the other hand, that the limit for the standard218

k -means is defined by the equidistant point between the two group means. The re-

classification procedure can be repeated until the overall classification is stable. In220

this simple case, a single iteration is enough and results finally in four observations
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misclassified.222

This approach can be generalised to multivariate data using the densities of mul-

tivariate distributions. However, this requires estimation of a number of parameters224

which is likely to grow substantially with the number of variables. For instance, a

multivariate normal distribution with p variables has 2p+ p(p− 1)/2 parameters: p226

means, p SDs, and p(p− 1)/2 covariances. Therefore, the number of parameters is

proportional to p2. A way to avoid having to estimate too many parameters when228

p increases is to first perform a PCA on the matrix X. PCA is usually used to

perform dimension reduction in order to obtain a number of variables smaller than230

p that maximise the overall variation in X. Another property of PCA is that these

principal components (PCs) are orthogonal: in other words, the coordinates of the232

observations (here the pixels of the image) on these PCs have zero covariances. We

denote the matrix of these PC-based coordinates as Z. From a geometrical point234

of view, a PCA resulting in p PCs is a global rotation of the axes defined by the

original p variables with the constraint that the covariances of the PCs are equal to236

zero. Therefore, this considerably simplifies the calculations of multivariate normal

densities since it is now needed to estimate only 2p parameters (p means and p SDs)238

for each group of the classification.

Another crucial difference with PCA as commonly used in data analysis is that240

it is important here to not scale the original variables (i.e., divide them by their

respective SD) before performing the PCA. If one of the variables has a large variance242

compared to the others, then it will contribute overwhelmingly to the PCA and will

pull the overall variation in the data compared to the patterns from the covariances.244

This is the reason why variable scaling is usually recommended before running a

PCA (e.g., Venables and Ripley, 2002). However, the present goal is to discriminate246

groups with the calculated PCs where the overall variance is actually the consequence

of the existence of these groups. So, in order to not erase this overall variance, the248

variables should not be scaled.
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A word should be said about the choice of the form of the density distribution.250

The present work assumes that the rows of Z (not X) follow a multivariate normal

distribution. Furthermore, it is assumed that this distribution is non-homogeneous:252

its parameters (means and SDs) vary among the K groups and are assumed to be

homogeneous within each group. In practice these assumptions may not be valid and254

other distributions may reflect more accurately the distribution of reflectance within

each group. However, at the moment there is no theoretical or empirical justification256

for one distribution rather than another. Furthermore, the crucial point here is to

assess variation among groups of different land cover and the normal distribution258

with its two parameters (mean and SD) may be flexible enough to accommodate

such variation.260

3.3 Selecting the number of groups

3.3.1 Likelihood-based information criteria262

With unsupervised classification, there are two possible situations: the number of

groups may be known a priori, or this number must be inferred from the data.264

In the second situation, a parametric, probabilistic approach makes possible to use

standard statistical tools such as Akaike’s information criterion (AIC, Akaike, 1973)266

which requires to compute the likelihood of the data. We must take care that group

assignment is uncertain and has to be considered explicitly when calculating the268

likelihood function. Thus, we have to calculate the probability for the ith row of Z

(zi) using the parameters (means and SDs) estimated for group j multiplied by the270

probability that pixel i belongs to group j. These products are then summed over all

K groups for each pixel. Finally, the log-likelihood is the sum of the log-transformed272

probabilities over all n pixels:

L =
n∑

i=1

ln

 K∑
j=1

f̂j × ξ(zi|µ̂j, σ̂j)

 , (1)
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where ξ if the multivariate normal density function, f̂j if the estimated proportion274

of pixels in group j, and µ̂j and σ̂j are the estimated parameters for group j. There

are thus 2pK +K − 1 parameters estimated from the data: mean and SD for each276

column of Z and for each group, and K − 1 proportions (since
∑K

j=1 fj = 1). We

may now calculate the AIC:278

AIC = −2L+ 2(2pK +K − 1). (2)

The value of K resulting in the smallest value of AIC is to be preferred. Another

criterion which can be used is the Bayesian information criterion (BIC) defined by280

(Schwarz, 1978):

BIC = −2L+ (2pK +K − 1)× lnn. (3)

A simulation study is presented in the Supplementary Information which shows282

that both criteria are not robust to non-normality of the data. In particular, if

the observations follow a uniform distribution and there is no heterogeneity (i.e.,284

all observations are generated from the same distribution, thus K = 1), then both

AIC and BIC will select a model with K > 1. Furthermore, in this situation the286

values of AIC and of BIC tend to decrease continuously when K is increased (see

Supplementary Information for details).288

3.3.2 Informational entropy

Another procedure for selecting the value of K is based on the principle of entropy290

(Burrough et al., 2000). This approach can be applied if there is a measure of uncer-

tainty in the assignment of observations to the groups: in that case each observation292

is given a value of membership to each group with the constraint:

K∑
j=1

mij = 1, (4)
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where mij is the membership value of observation i for group j. The entropy, H,294

for a given value of K, is then calculated with:

H = − 1

n

n∑
i=1

K∑
j=1

mij × lnmij. (5)

The value of K resulting in the smallest value of H gives the best description of296

the data. Membership values have been defined in the context of FKM (Burrough

et al., 2000; He et al., 2014), but they can be adapted in a straightforward way to the298

probabilistic k -means developed here using the probability densities. Furthermore,

the computation of the multivariate normal densities on a log-scale (see next section)300

makes possible to calculate H even when densities can reach very low values (see

Supplementary Information).302

3.4 Computational details and implementation

The overall workflow is summarised on Figure 2. The whole procedure was im-304

plemented in code written in the R and in C computer languages. The PCA was

performed by singular value decomposition (SVD) which is faster and numerically306

more stable than the usual eigendecomposition (Venables and Ripley, 2002). With

HSI data, it was observed that a relatively substantial number of PCs had nearly zero308

variance so that keeping all PCs made the computations much slower for no benefit:

the number of PCs selected was set to keep at least 99% of the overall variance.310

For MSI data, all PCs are kept. The coordinates on the p PCs are first analysed

with a standard k -means using Hartigan and Wong’s (1979) algorithm which is par-312

ticularly efficient and fast. The means and SDs are calculated for the p PCs and

each group. The multivariate normal densities are calculated on a logarithmic scale314

which avoids numerical underflows and considerably simplifies the calculations (the

overall densities are calculated with sums instead of products if full densities were316

used). Furthermore, the mathematical expression is factorised to avoid repeating
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redundant computations (e.g., the terms − ln(
√

2πσj) were computed once for all318

observations). These factorisations result in running times around 2.5 times faster

than using the internal log-density function. Finally, the densities are evaluated320

separately for each pixel and only its classification is stored, avoiding to store all

densities which would require an array of npK real values (amounting to 4.1 GB322

of memory with n = 3.3 × 106, p = 13, and K = 12). Furthermore, this makes

the overall memory requirement independent of the value of K. The running times324

are predicted to be proportional to n, p, and K (i.e., O(npK)). It was evaluated

that a single iteration of the algorithm takes ≈ K
5

sec on a standard laptop with326

n = 3,348,900 and p = 13. On the other hand, the number of iterations required to

reach convergence depends on the data: analyses of data sets with strong structure328

converge quickly (typically less than 10 iterations with K = 2), whereas if there is

no structure convergence takes longer to reach.330

The probabilistic reclassification is iterated until convergence. Furthermore, two

stopping criteria have been defined: the maximum number of iterations can be fixed332

by the user (e.g., 200); or the procedure can be stopped when less than a fixed

proportion of pixels are reclassified (e.g., if this proportion is zero, then iterations334

are stopped when no pixel is reclassified). This probabilistic k -means has been coded

in a C routine called from R.336

All code is available in a package named sentinel distributed on GitHub (https:

//github.com/emmanuelparadis/sentinel). Some code is also provided to use the338

standard k -means method in order to ease comparisons with the present method.

This package includes code to query the SciHub repository where the Sentinel data340

are stored.

3.5 Applications342

Five data sets were analysed (Table 1). They are described in details below.
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3.5.1 Hyperspectral Data: Pavia University and Okavango344

Two hyperspectral data sets were considered. The Pavia University and Okavango

data are two HSI data sets that have been preprocessed (http://www.ehu.eus/346

ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes; accessed 2021-07-

07). Both data sets are associated with reference data defined as “ground truth”348

with 9 and 14 classes of land cover, respectively (Tables S1–S2). Two analyses were

performed with both data sets. First, the ground truth data only were analysed350

with the standard and the probabilistic k -means with K set equal to the known

number of classes of land cover for each data set. The classification performance352

of each method was quantified with the overall accuracy as defined by Olofsson

et al. (2014). Because both k -means algorithms are unsupervised, the reference and354

inferred land cover values were matched with the Hungarian algorithm, a method

which aims to maximise the values on the diagonal of a matrix, as implemented356

in the package RcppHungarian (Silverman, 2019); the diagonal values of the matrix

output were used to calculate the accuracy. Second, the complete data set was anal-358

ysed with the probabilistic k -means using increasing values of K: the value of H

was computed for each value of K and the final maps were drawn for both standard360

and probabilistic k -means using the value of K giving the smallest value of H.

3.5.2 Southern France362

An image data taken by the satellite SPOT6 was analysed. The image was taken

on 2019-06-27 above the South of France and had no cloud cover. The area of the364

image was estimated to be 3207 km2. A preliminary analysis of the CORINE land

cover database over this area found that it is covered by 34 distinct land classes (as366

defined by the CORINE database). Out of these 34 classes, 17 were represented by

less than 0.5% of the area, whereas 14 classes were represented by at least 1% of368

the area (Tables S3). The data were analysed with the probabilistic k -means with

increasing values of K: the value of H was computed for each value of K and the370
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final maps were drawn for both standard and probabilistic k -means using the value

of K giving the smallest value of H.372

3.5.3 Eastern Thailand

One area was selected in Thailand extending from N 14°27′56′′ to N 13°27′49′′, and374

from E 100°51′19′′ to E 101°51′39′′. A single Sentinel -2 image taken on 2021-02-05

was selected with 0% cloud cover. The whole product (109.8× 109.8 km = 12,056.04 km2;376

Table 1) was analysed with the same procedure than for the Southern France

data. With Sentinel -2 data, four bands are available at a resolution of 10 m,378

six at 20 m, and three at 60 m. Two data sets were built from this image: us-

ing the highest resolution bands (10 m, 4 bands) and using all bands aggregat-380

ing the highest resolution bands at 60 m (13 bands). Similarly to the Southern

France data, there was no ground truth data for this data set. An analysis of land382

cover data from the European Spatial Agency Climate Change Initiative (ESA/CCI;

http://maps.elie.ucl.ac.be/CCI/viewer/index.php; accessed 2019-11-27) for384

the period 2016–2018 identified twelve main land cover classes (Tables S4).

4 Results386

4.1 Pavia University

The overall accuracies were 0.55, and 0.62 for the standard and probabilistic k -388

means, respectively. The maps drawn with the ground truth data only show that

some areas are not correctly identified with both methods (Fig. 3). However, some390

areas look more homogeneous with the probabilistic than with the standard k -means

which is consistent with with the better overall accuracy of the former.392

The smallest value of H was observed for K = 2, and then the value of H

increased when the value of K increased as well (Fig. 4). However, two local minima394

of H were observed for K = 6 and K = 9. Figure 5 shows the overall maps inferred
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from the k -means methods assuming K = 9.396

4.2 Okavango

The overall accuracies were 0.62, and 0.79 for the standard and probabilistic k -398

means, respectively. The ground truth data were more dispersed than for the pre-

vious data so that the improvement accuracy of the probabilistic k -means was not400

so clearly visible (Fig. 6).

A pattern similar to the previous data was observed with respect to the relation402

between H and K: the smallest value of H was observed for K = 2, and then the

former increased when the latter increased (Fig. 4). Local minima were observed404

for K = 6, K = 9, and K = 11. Figure 7 shows the overall maps inferred from the

k -means methods assuming K = 11.406

4.3 Southern France

The value of entropy was very low for K = 2 (H = 0.004) meaning that classification408

between the two groups was practically almost perfect (Fig. 8). However, a very

substantial portion of the study area was covered by water which could readily410

explain this result. Indeed, as for the previous data sets, the value of H increased

when K increased. However, a local minimum was observed for K = 15. The412

maps inferred from both k -means methods assuming K = 15 show some interesting

differences (Fig. 9). Particularly, the coastal lagoons which were found to be covered414

with different classes by the standard k -means were all grouped in the same class

by the probabilistic k -means (Fig. 9).416

4.4 Eastern Thailand

The values of H varied with respect to K in the same way than for the previous data418

sets: the smallest value was observed for K = 2 and local minima were observed for

17



K = 12 at the finest resolution (10 m) and for K = 15 at the coarsest resolution420

(60 m; Fig. 10). These two values of K were selected to infer the maps at their

respective resolutions (Figs. 11–12). Overall, the maps inferred with probabilistic k -422

means show better delimitation of the fields compared to the results obtained with

the standard k -means, particularly for the paddy fields on the west of the study424

area.

4.5 Computational efficiency426

With 3,348,900 pixels and 13 variables, each iteration with K = 12 took around

2.4 sec. Therefore, 200 iterations (the default limit set in the code of sentinel) took428

8 min. Furthermore, it was observed that in all cases, with either real or simulated

data, there was convergence to a stable classification with no further reassignment.430

In all cases reassignment was around 0.001% of the pixels after 200 iterations.

5 Discussion432

The present work has contributed a new k -means method which appears as an

improvement compared to currently available implementations with respect to three434

points: better accuracy, possibility to identify the number of groups, and ability to

handle and analyse very large data sets. Each point is discussed below.436

With both HSI data sets for which ground truth data were available, the method

proposed here showed better overall accuracy compared to the standard k -means.438

The improvement was particularly substantial for the Okavango data set. Although

no ground data were available for the two MSI data sets analysed here, the maps440

suggest improved classification with the probabilistic method compared to the stan-

dard k -means. These results clearly suggest that the proposed probabilistic method442

has improved performance compared to the standard k -means for land cover clas-

sification of spectral imaging data. The fact that the assumption of homogeneous444
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variance is relaxed in this method is certainly an important factor to explain this

improvement (see further below).446

The present results emphasise the importance of selecting the number of groups,

K. The above review suggests that this issue did not receive a lot of attention448

in the recent literature. Although the information criteria presented above seem

good candidates to select the best value of K in a probabilistic framework, this450

was not conclusive (see Supplementary Information). Clearly, the lack of statistical

robustness shown by this approach is problematic and needs to be investigated452

further. On the other hand, the entropy-base criterion, H, proposed by Burrough

et al. (2000, and previous references therein) appears a good alternative. However,454

some care must be taken when using it. It was observed that the smallest value of

H was always obtained with K = 2 groups. This could make sense considering that456

spectral imaging data often show a strong discrimination between two broad classes

of land cover (e.g., land vs. water, urban vs. vegetation), so that it is expected that458

classification with K = 2 yields essentially very good results so that all values of

membership, mij, are either zero or one. On the other hand, in all applications the460

values of H showed a local minimum for more realistic values of K. Therefore, it is

suggested here that the entropy-based criterion is useful provided it is used within462

a range of realistic values of K (i.e., avoiding too small values).

The main feature of the approach adopted in this paper is to relax the assumption464

of homogeneous variance which underlies the standard k -means algorithm. The as-

sumption of homogeneous variance is an important feature of the ISODATA method466

(Ball and Hall, 1965) which is derived from the standard k -means. Memarsadeghi

et al. (2007) when implementing the ISODATA assumed that ‘the clusters are well-468

separated, that is, the probability that a point belonging to one cluster is closer to the

centre of another cluster than to its own cluster centre is negligible.’ As illustrated470

above, if the variances are homogeneous this is likely to result in misclassifications.

Interestingly, Memarsadeghi et al. (2007) made no parametric assumption on the472
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distribution of the data within groups (or clusters). Indeed, if the groups are well

separated and their variances small enough, there is no need to make any such as-474

sumption and the standard k -means algorithms are very likely to perform very well.

The DBSCAN method (Ester et al., 1996; Li et al., 2019) is another unsupervised476

clustering method related to k -means which takes into account the spatial configu-

ration of the data as well as noise. However, the DBSCAN, although closely related478

to probabilistic k -means, is more complex and current implementations have been

explored only with limited data sizes, typically with a few ten thousand observations480

(Hahsler et al., 2019).

There has been substantial research on applying the k -means method to the482

analysis of remote sensing data (e.g., Lv et al., 2010; Pascucci et al., 2018, and the

above review of the recent literature). Besides these applications to remote sensing,484

an approach has recently been developed to take noisy data into account in the

context of quantum computing (Kerenidis et al., 2019; Khan et al., 2019): these486

proposals can be compared to the method proposed here in the sense that they aim

to deal with overlapping clusters; however, they treat this issue quite differently. Ma488

et al. (2016) proposed an elaborate method named spectral clustering which seems to

outperform other classification methods. However, spectral clustering appears to be490

a computationally costly method and seems unfeasible even with a few ten thousands

pixels (Pascucci et al., 2018). On the other hand, the method proposed in this paper492

is economical in terms of computations as it only requires evaluation of densities for

each pixel and each group. For instance, Rodriguez and Laio (2014) developed494

a clustering method based on densities but also requiring calculation of distances

among observations. More recently, (Liu et al., 2021) proposed a method, with a496

name similar to that presented here, which is based on a probabilistic modelling

of the standard k -means which is solved by numerical optimisation (see also Li498

et al., 2020). However, similarly to the standard k -means, and by contrast to the

present method, they assumed homogeneous variance among groups. These authors500
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implemented their method in MATLAB and presented several applications with

artificial and real data sets of modest sizes (several thousands observations or less)502

with known number of groups.

Richards et al. (2010) present a method that shares some similarities with the504

present one as it is based on the multivariate normal distribution. However, these au-

thors proposed to maximise the log-likelihood function by expectation–maximisation506

(Dempster et al., 1977). Besides, they weight the contributions of the pixels to the

likelihood function with respect to their spatial contiguity, which was not considered508

in the present work (but see the perspectives below).

In terms of running times, the probabilistic k -means has an attractive feature.510

As reported above, the analysis of a complete Sentinel -2 data set covering more than

12,000 km2 at a resolution of 60 m with 13 bands takes around 8 min. Additionally,512

three analyses with several million pixels (including one with more than 108 pixels)

are reported showing how the method presented here is scalable to very large data514

sets.

In addition to the developments on k -means, the package sentinel presented in516

this paper adds to the software tools available for the analysis of Sentinel -2 data.

Ranghetti et al. (2020) presented another package written in R, sen2r, to handle518

and manage Sentinel -2 data. By comparison, sentinel makes it possible to search,

download, and manage products and data from all Sentinel satellites. Besides, the520

R environment makes it possible to read the different file formats used in Sentinel

products thanks to the packages rgdal (Bivand et al., 2018) and ncdf4 (Pierce, 2019).522

These integrated tools have the potential to contribute to a software environment

for time-series analysis of remote sensing data (Gray and Song, 2013; Cai et al.,524

2014; Gómez et al., 2016).

The present paper aims at developing and implementing a fast unsupervised526

classification method to analyse multispectral data. The ultimate goal of this work

is to be able to analyse large scale remote sensing data to infer changes in forest cover528
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over large areas (see e.g., Hermosilla et al., 2018; Paradis, 2020b,a). The approach

presented in this paper offers several perspectives of future development in several530

directions. Although k -means is basically an unsupervised method, it could be

extended into a supervised method by defining known groups and evaluating the532

a priori distribution of reflectance. This poses some difficulties since it is difficult

to find reference sites with relevant information to use as ‘training’ data. Another534

direction which is currently pursued by the author is to include spatial contiguity in

the model. Richards et al. (2010) used this information to calculate weights in their536

likelihood function. Currently, an approach using edge detection with Prewitt’s and

Sobel’s operators (Wang et al., 2006) is under study.538
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Table 1: Main features of the data analysed in this study.

Site Number of pixels Resolution (m) Bands

Pavia University 207,400 (610× 340) 1.3 103
Okavango 377,856 (1476× 256) 30 145
Montpellier 89,161,101 (9799× 9099) 6 4
Eastern Thailand 120,560,400 (10980× 10980) 10 4
Eastern Thailand 3,348,900 (1830× 1830) 60 13
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Figure 1: (A) Two normal distributions with mean and standard-deviation 0 and 2
(red) and 6 and 0.1 (blue). (B) Two hundred observations, shown under the x-axis,
were simulated from each distribution in A. After a standard k -means classification,
15 observations were misclassified. After a probabilistic k -means, four observations
remained misclassified. The curves show the densities inferred from the observations.

Figure 2: Workflow of the probabilistic k -means for the analysis of spectral imaging
data.

Figure 3: Maps of the Pavia University data set considering only the reference data.

Figure 4: Values of entropy (H) with different numbers of groups (K) for the Pavia
University and Okavango data sets.

Figure 5: Maps of the Pavia University data set.

Figure 6: Maps of the Okavango data set considering only the reference data.

Figure 7: Maps of the Okavango data set.

Figure 8: Values of entropy (H) with different numbers of groups (K) for the South-
ern France data set.

Figure 9: Maps of the Southern France data set.

Figure 10: Values of entropy (H) with different numbers of groups (K) for the
Eastern Thailand data set.

Figure 11: Maps of Eastern Thailand data set at the 10 m resolution. Scales are
UTM-based (in km).

Figure 12: Maps of Eastern Thailand data set at the 60 m resolution. Scales are
UTM-based (in km).
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