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Abstract

[slands are well-known for their unique biodiversity, i.e. endemic species.
Researchers have often assumed that island endemics are as old as the islands
they occur on for calibrating molecular dating analyses. A “reductio ad
absurdum” approach based on phylogenetic topologies is applied to New
Caledonian biota in order to demonstrate that the age of an island does not
necessarily correspond to the time of divergence of its endemic taxa. Our
demonstration does not rely on any molecular clock inference and is therefore
free of any flaws related to this method. We argue for further care when
assuming that species and the biota they are restricted to (e.g. island, mountain,
climatic region) have the same age. Finally, we review evidence on the age of
islands and their biota radiations as well as discuss the effect of extinction on

island biogeography/biota.
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INTRODUCTION
Islands can be considered laboratories of evolution (Carlquist, 1965) and
represent as many scenes where the tape of life has been replayed (sensu Gould,
1989). They are home to a significant portion of Earth’s biodiversity, including
island endemics, which are species only occurring on these isolated pieces of
land. Islands therefore represent interesting replicated systems for the study of
evolution. Independently whether an island emerged from the ocean (‘Darwinian
island’ sensu Gillespie & Roderick, 2002) or was separated from a continent, the
particular time of its formation is a valuable information. The age of islands and
their endemic species can be used to investigate a wide range of evolutionary
questions. How much time was necessary for a pigeon to become a dodo
(Shapiro et al.,, 2002)? How much time was necessary for a tarweed to evolve
into vines, shrubs and silverswords (Baldwin, 1997)? How fast is speciation on
island (Knope et al., 2012)? How much time is required for an island biota to

reach equilibrium (Gillespie & Baldwin, 2010)?

[SLAND AGE AND DIVERGENCE OF ISLAND ENDEMICS

The age of emergence of volcanic islands can be estimated with relative
accuracy with isotopes (McDougall, 1964). Such value was sometimes associated
with the divergence time of lineages endemic to island and thus used to calibrate
molecular clock (Fleischer, McIntosh, & Tarr, 1998). In the case of volcanic
archipelago like Hawaii where islands are recurrently formed over a short time
lapse in the vicinity of each other (conveyor belt model), Fleischer et al. (1998, p.
536) considered reasonable to assume that “the K-Ar age of the young island

represents an approximate date for a split between ‘offspring’ population on the



younger island and the ‘parental’ population of the older island”. However in
most cases where islands are more distant, colonisation may occur much later
than the formation of an island. Using the Comoros as another conveyor belt
system, Warren et al. (2003, p. 72) assumed more conservatively that the “age of
the younger island represents an approximate estimate for the maximum age of
the split between the ‘offspring’ population on the younger island and the
‘parental’ population on the older island” to calibrate a molecular clock. In this
context, researchers assumed that the age of an island could thus be used as a
maximum age bound to calibrate the divergence of an island endemic lineage
(Ho & Phillips, 2009).

Conversely, another reasoning on the topic is also found in the literature
when the occurrence of an ancient lineage on an island is considered as an
evidence for an ancient age of this island. In the debate regarding whether or not
all of New Zealand biodiversity was drown during an Oligocene submersion
(Pole, 1994), some authors advocate that the ancient (Eocene) divergence of the
New Zealand kauri tree (Agathis australis) from its closest extant relatives
elsewhere implies the continuous emergence of the New Zealand landmass
throughout the Tertiary (Stockler, Daniel, & Lockhart, 2002; Knapp et al., 2007).
There are however more and more examples of island endemic lineages that
have stem ages much older than the islands on which they presently occur
according to molecular dating analyses (Fleischer, James, & Olson, 2008; Renner
etal, 2010; Heads, 2011; Hembry & Balukjian, 2016; Soares et al., 2016).

Geological events such as island formation have been used as calibration
points in c¢. 15 % of molecular dating studies (Hipsley & Miiller, 2014), although

such approach has been criticized (Renner, 2005; Forest, 2009; Ho et al.,, 2015).



There is increasing awareness of mismatch between island ages and origin of
island endemics, but most lines of evidence come from molecular dating studies.
These latter studies can also suffer from serious flaws, particularly regarding
calibration protocols using fossils: misidentification, misplacement on cladogram
of extant species, inaccurate fossil age (Renner, 2005; Forest, 2009) or the use of
secondary calibration points without error margins (Graur & Martin, 2004). We
therefore propose here an independent approach using phylogenetic tree
topologies from New Caledonian endemic plants to demonstrate that the age of
an island and those of its endemic species - generally approximated as their

stem age - are not equal.

THE AGE OF NEW CALEDONIAN ENDEMICS: REDUCTIO AD ABSURDUM

New Caledonia is located in the South West Pacific and it has been
considered as a biodiversity hotspot because of its rich, unique, and endangered
flora (Morat et al., 2012). The island has a complex geological history. Originally
a fragment of the Gondwanian supercontinent, it separated from Australia ca. 80
Ma ago and was later submerged until its final emersion 37 Ma ago (Cluzel,
Chiron, & Courme, 1998; Pelletier, 2006). New Caledonia has a sparse plant fossil
record, which has not been recently reviewed (Guillaumin, 1919) and most
animal fossils date back from the Quaternary (e.g. Balouet & Olson, 1989). There
are two common and conflicting views on the origin of New Caledonian
biodiversity: a Mesozoic Gondwanian (vicariance hypothesis) origin (ca. 80 My
ago; Ladiges & Cantrill, 2007) or a Cenozoic origin (ca. 37 My ago) through long
distance dispersal (Darwinian island, Grandcolas et al., 2008). However most

lineages for which a temporal framework is available better fit the second



hypothesis (Grandcolas et al., 2008; Cruaud et al., 2012; Pillon, 2012) including
groups previously considered as ancient lineages (e.g. Araucaria, Kranitz et al.,
2014).

Amborella, the sister group to all other extant angiosperms, is endemic to
New Caledonia and the sole survivor of a Late Jurassic lineage (ca. 160 Ma;
Amborella Genome Project, 2013). Phylogenetic positions of several other
endemic lineages were also recently inferred (Buerki et al., 2012; Hopkins,
Rozefelds, & Pillon, 2013; Bayly et al., 2013; Barrabé et al., 2014) and are
summarized in figure 1. In each case, the endemic lineages A, B and C can be
distinguished and might have evolved according to three contrasting scenarios.
in a first scenario, we assume that the lineage A is the same age as New
Caledonia. If the separation of New Caledonia from Gondwana (vicariance)
triggered the divergence of an endemic lineage A from its continental sister
group, then the endemic lineages B and C, that are older than A, differentiated
before New Caledonia became an island. In the alternative (dispersal)
hypothesis, the ancestor of A colonised New Caledonia over water when it
emerged and long distance dispersal triggered the differentiation of the endemic
lineage A from its ancestor independently of its spatial origin. The endemic
lineages B and C being older than A, their divergence predated the emergence of
New Caledonia. If we now assume in a second scenario that lineage B diverged
when New Caledonia separated from the continent or when it emerged, then A
differentiated after either event, and C differentiated before either event. Lastly,
if we assume in a third scenario that lineage C diverged when New Caledonia
separated from the continent or when it emerged, lineages A and B differentiated

both later.



In any scenario some endemic lineages diverged at a time that does not
match with the formation of New Caledonia as an island, whether we assume a
continental or a “Darwinian” origin. Our demonstration does not rely on
molecular clock and is therefore free of any flaws associated with such approach.
In brief, it should not be assumed that the age of an island is the age of
divergence of its endemic taxa and we therefore stress researchers not to
calibrate phylogenetic trees accordingly. The age of an island endemic, as
approximated as the age of the divergence from its closest extant relatives, does
not necessarily reflect the time when this lineage became endemic to the island
because of the complex and often intractable play of extinction and dispersal
(Grandcolas, Nattier, & Trewick, 2014). In the present case, it may not even be
possible to determine in which order taxa A, B and C became endemic to New

Caledonia as a result of either vicariance, dispersal or extinction processes.

ISLAND AGE AND AGE OF ISLAND RADIATIONS: A BRIEF REVIEW

I[sland endemics might be used to calibrate molecular dating analyses to
the condition that they diversified on the island/archipelago (Renner, 2005). For
example, the ages of the Hawaiian islands and the Marquesas have been used as
a maximum age to calibrate the first split (crown age) of radiations endemic to
those islands (Clark et al., 2008). This approach assumes that “a lineage that has
diversified within an area and is endemic to that area most probably post-dates
the origin of that area” (Clark et al., 2008, p. 687). In turn, in the case of the
debated complete submergence of New Zealand during the Tertiary, Crisp,
Trewick & Cook (2011) argued that “the drowning hypothesis would be falsified

by the existence in New Zealand of an endemic radiation with a crown age



reliably dated back to the Oligocene (23-34 mya) or older”. When reviewing a
large number of radiations endemic to the main Hawaiian islands, Price & Clague
(2002) found indeed that most of them had a most recent common ancestor
postdating the formation of those islands, with two remarkable exceptions:
fruitflies (Russo, Takezaki, & Nei, 1995) and lobeliads (Givnish et al., 2009). The
latter may have first colonised one of the outer Hawaiian islands, which are part
of the same island chain and still emerged, but do not offer appropriate habitat
for those organisms anymore (Givnish et al., 2009). Another example has also
been reported recently in the Mascarene islands with a radiation of Dombeya
endemic to Mauritius and Réunion that has a crown age older than either islands
(Le Péchon et al.,, 2015). This pattern may be explained, again, by the prior
colonisation of a putative nearby island that would now be submerged.
Alternative explanation would require multiple colonisations from nearby
landmass(es) (e.g. Madagascar), with extinction pruning the closest relatives on
this(ese) landmass(es) to render the island lineages monophyletic (e.g. Buerki et
al., 2013 for a discussion on Madagascar and neighboring islands).

Examples of radiations with crown ages older than the islands they are
endemic to are still few and known for only two island systems that were formed
over volcanic hotspots (namely Hawaiian islands and the Mascarenes). The
evidence presented here relies only on molecular dating analyses and would

therefore have to be confirmed by additional independent data.

EXTINCTION AND ISLAND BIOGEOGRAPHY
Extinction is an overlooked process and the inference of biogeographical

scenarios based solely on extant taxa can potentially be very misleading (Keppel,



Lowe, & Possingham, 2009). The debate on the persistence of the New Zealand
flora throughout the Tertiary and the biogeography of the genus Agathis, which
nowadays ranges from Sumatra to New Zealand seems now outdated with the
recent discovery of fossils in South America (Wilf et al., 2014). Several genera
that are strictly endemic to New Caledonia have a fossil record elsewhere, e.g.
Amphorogyne, Paracryphia and Phelline in New Zealand (Pole, 2010), Codia in
Australia (Barnes & Hill, 1999), Beauprea in New Zealand and Australia
(Pocknall & Crosbie, 1988). Amborella diverged more than 160 millions years
ago while the modern populations coalesce to about 0.9-2 millions years
(Amborella Genome Project, 2013). There is therefore a long timeframe during
which it is difficult to infer what happened to this lineage and where it occurred.
This is especially the case for this lineage since the region it inhabits underwent
a very complex palaeogeographical history from the Cretaceous onwards, with a
peak of tectonic activity at the Eocene/Oligocene boundary (corresponding to
the collision of the Australian and Eurasian plates; Buerki, Forest, & Alvarez,
2014 for more details). Such active tectonic activity over million years could
easily have “buried” the fossil evidence of Amborella and its currently extinct
relatives therefore blurring the spatio-temporal history of this lineage (Buerki et
al, 2014). Extinction removes nodes and shrink species distribution so that stem
ages of narrow endemics is likely to be an overestimation of the length of their
unique history. It is only in recent system like the Hawaiian islands that
extinction may have a limited impact and make assumption associated with a

calibration of a molecular clock reasonable (Fleischer et al.,, 1998).

CONCLUSIONS



The divergence of island endemics does not necessarily match the age of
an island and some evidence suggests that endemic radiation may in some cases
predate the formation of the islands they are now restricted to. As more and
more molecular dating studies become available, future meta-analyses should
allow characterizing the distribution of stem ages and crown ages of island
endemic lineages in relation to the age of the island. Then it will be possible to
infer whether island ages can be used to calibrate molecular clocks. For now, this
type of calibration should be done with the greatest caution if not abandoned.
The importance of extinction in biogeography is still insufficiently accounted for
and it should not be assumed that a lineage now restricted to an island has
always occurred there and only there (Crisp & Cook, 2005; Buerki et al., 2013;
Grandcolas et al., 2014). This is also very important because without including
extinct lineages and their distributions into biogeographical inferences, we will
never be able to accurately infer the spatio-temporal histories of these groups
(e.g. Meseguer et al,, 2015).

Our conclusions can extend to other systems, and the age of some
ecosystems and of their endemic lineages may not always be the same, e.g. the
Cape Floristic Province (Linder, 2005; Warren & Hawkins, 2006), the biota of
Mount Kinabalu (Merckx et al.,, 2015) or hydrothermal vents (Little &
Vrijenhoek, 2003), as well as the closure of the isthmus of Panama (Bacon et al,,
2015). The reason for the mismatch between island age and island endemics is
an interesting field to explore. Why did New Caledonia or New Zealand retain so
many ancient lineages such as Amborella or the tuatara? Novel methodological
approaches are required and integrated ecological studies comparing extinct and

current forest communities (Kooyman et al., 2014), or linking climatic
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preference with the anatomy of extant ‘relicts’ (Pouteau et al., 2015) are
promising avenues. While in the Galapagos, Darwin (1845, p. 378) stated that
“both in space and time, we seem to be brought somewhat near to that great fact
- that mystery of mysteries - the first appearance of new beings on this earth”.

Today there are still many mysteries to unravel about island biology.
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Figure 1. Phylogenetic relationships of some selected New Caledonia endemic
lineages (in bold), here labelled as A, B and C. Some nodes and branches, not
occurring in New Caledonia, where omitted from the portion of the tree and

represented by dotted lines.
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