

Towards West African coastal social-ecosystems sustainability: Interdisciplinary approaches

Olusegun Dada, Rafael Almar, Pierre Morand, Frédéric Ménard

▶ To cite this version:

Olusegun Dada, Rafael Almar, Pierre Morand, Frédéric Ménard. Towards West African coastal social-ecosystems sustainability: Interdisciplinary approaches. Ocean and Coastal Management, 2021, 10.1016/j.ocecoaman.2021.105746. ird-03251456

HAL Id: ird-03251456 https://ird.hal.science/ird-03251456v1

Submitted on 7 Jun2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Towards West African coastal social-ecosystems sustainability:
2	Interdisciplinary approaches
3	Olusegun Dada ^{1,4*} , Rafael Almar ¹ , Pierre Morand ² , Frederic Menard ³
4	¹ IRD, UMR LEGOS, Toulouse, France
5	² IRD, UMI RESILIENCES, Bondy, France
6	³ IRD, MIO (Aix Marseille Univ, Toulon Univ, CNRS, IRD), Marseille, France
7	⁴ Dept of Marine Science and Technology, Federal University of Technology, Akure, Nigeria
8	
9	Corresponding authors:
10	oadada@futa.edu.ng; rafael.almar@ird.fr; pierre.morand@ird.fr; frederic.menard@ird.fr
11	
12	Abstract
13	The coastal system can be regarded as co-evolving socio-economic and ecological systems
14	undergoing intense environmental pressures owing to the mechanisms of change exerted by
15	human activities against a background of natural change. Understanding and managing

19 modified (mPPD) framework, we applied it to two unique features (mangroves and beach 20 systems) of the western African coastal (WAC) systems. Then, we constructed plausible 21st-21 century coastal systems scenarios at the coast based on a set of descriptive indicators (population 22 growth, economic development, environmental quality, governance, technological advancement 23 and climate change) for a better understanding and sustainable management planning of WAC 24 systems.

ecological responses to these changes in the coastal areas require interdisciplinary approaches.

Here, we develop a new approach to coastal socio-ecological systems (CSES) based on earlier work on the press-pulse dynamics (PPD) socio-ecological systems. To show the relevance of the

16 17

18

We found that different indicators characterizing each scenario will exert different 25 26 pressures on the WAC systems, under the forms of the long-term press and short-term pulse 27 events. The cross-cutting narratives of the different future scenarios in the face of climate change 28 using the mPPD framework offer valuable insight into the development of WAC management 29 strategies, policies and other agendas. It helps to define the plausible implications of following, or 30 not, a particular management path. The inconsistencies between the aspirations of different 31 resource users and lack of coordination of human activities taking place on land and in the coastal 32 zone, partly due to fragmentation of institutions and weak coastal governance are revealed. In 33 this context, the mPPD-CSES framework can be used to investigate how ecosystems can experience different (intensities of) press as well as different frequencies of the pulse. Thus, its 34

adaptability to construct future coastal vulnerability scenarios adds to its usefulness as a robust
 and dependable integrated coastal zone management tool.

37

Keywords: Sustainable development, integrated coastal management, social-ecological system,
 sustainability science, West African coastal vulnerability

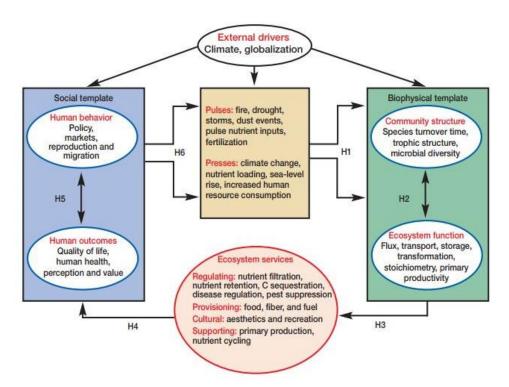
40

41 **1. Introduction**

The coastal system constitutes only 5% of the earth's surface, but about 17% of the global 42 population live in areas less than 10 m above sea level (MEA 2005). Besides, around two-thirds 43 44 of the global population lives within 100 km of the coast (Hossain et al., 2020). The coastal system 45 holds some of the most valuable and distinct ecosystems in the world, therefore providing a broad 46 range of ecosystem services estimated at US 12 USD trillion/yr (Costanza et al. 1997, 2014). These ecosystem services include provisioning (e.g., food, shelter), supporting (e.g., protecting 47 the coastal population from storm and erosion), regulating (e.g., storing carbon) and cultural (e.g., 48 49 tourism) services (MEA 2005). According to IPCC (2014), the coastal system needs to be 50 conceptualized in connection with both its social and ecological subsystems.

51 Social-ecological systems (Binder et al., 2013; Petrosillo et al., 2015) or socio-ecological 52 systems (Gallopín, 1991) or human-environment systems (Turner et al., 2003) are complex 53 adaptive and intrinsically coupled systems, having a lot of feedbacks and connections between 54 the ecological and the social system components. Separating the social and the ecological system 55 is unsuitable evidenced-based solutions to SES issues.

56 The coastal ecological system contains sub-sets of ecosystems like estuaries, deltas, 57 wetlands, coral reefs in addition to other distinct features like rocky coasts, beaches, mudflats, 58 and dunes (Hossain et al., 2020). While built environments (e.g., settlements, ports, seawalls), means of livelihood (e.g., fisheries, tourism), and coastal-relevant institutions (e.g., policies, laws, 59 customs, culture) are key features of a coastal social system (Hossain et al., 2020). The coastal 60 system does not only contain discrete ecological and social subsystems but also involve 61 62 interdependencies between the two subsystems (de Andrés et al. 2018; Schlüter et al., 2019), 63 forming a coupled SES (Hossain et al. 2020).


Notwithstanding their value to human wellbeing, coastal ecosystems are under threat from an increasing population, resource exploitation, and global environmental change (e.g., climate change) (MEA 2005; Lotze et al. 2006). In recent times, coastal SES is experiencing intense social and ecological pressures which have damaging societal impacts in coastal areas. It has been estimated that globally 0.8–1.1 million people per year are flooded (Hinkel et al. 2014) and 69 US\$ 1407 billion economic losses have been incurred since 1942 owing to tropical cyclones 70 (Hossain et al. 2020). Coastal erosion, flooding and sea-level rise are also threatening coastal 71 SES. In addition to these environmental changes, anthropogenic pressures such as habitat loss due to development-related pressures, population growth, overexploitation of resources, and land 72 degradation are compromising the ability of coastal SES to sustainably provide ecosystem 73 services (MEA 2005). These challenges will be amplified by climate change (IPCC 2014). The 74 75 ecological, social, and economic importance of coastal SES and the increasing human and 76 environmental pressures on them has led to several national and global initiatives towards 77 sustainable coastal SES.

78 Considering the wide range of drivers and pressures in coastal SES, it has been recognized 79 as overdeveloped, overcrowded, and overexploited (Hinrichsen 1998), as well as over-exposure 80 to global environmental changes (Hossain et al. 2020). A better understanding of coupled socialecological interactions within the coastal system is vital for implementing developmental 81 82 strategies that will optimize human well-being and sustain ecosystems and the resources they generate (Rangel-Buitrago et al., 2015; Willcock et al. 2016; Guerrero et al., 2018; Gain et al. 83 2019). Coastal systems comprising both social and ecological components, with inherent 84 85 interdependencies across multiple scales can be conceptualized as an SES (Gain et al. 2020). 86 Various frameworks have been developed and used for the adaptive management of SES (Gari 87 et al., 2015). For example, the Outcome Approach was used to evaluate the progress of 88 Integrated Coastal Management (ICM; Olsen, 2003). The Millennium Ecosystem Assessment (MEA, 2005) applied a framework connecting drivers, ecosystem services and human well-being. 89 90 Ostrom (2009) developed a general framework for evaluating SESs. A Systems Approach 91 Framework (SAF) is equally developed and applied to complex coastal systems in facilitating the 92 European environmental policies implementation for sustainable development (Newton, 2012).

93 Recently, a social-ecological system framework called "Press-Pulse Dynamics (PPD)" was developed by Collins et al. (2011). The framework (Fig. 1) is a coherent system in which 94 95 biogeophysical, and social factors regularly interact in a resilient and sustained manner. It links 96 external drivers (e.g. climate, globalization and demography), presses (subtle, long-term events, e.g. climate change, sea-level rise, natural resources overexploitation), pulses (sudden, short-97 term events, e.g. storm, flood, drought), the biogeophysical (ecological) system in its structure 98 99 and functions, ecosystem services that connect biogeophysical systems to human outcomes and 100 behaviours, institutional, community and individual components of the social system, including 101 quality of life, health, perceptions and values aspects (Fig. 1).

Since Collins et al. (2011) SES framework can represent the various phenomena and interactions occurring on coasts, we hypothesized that it can be deployed to develop coastal scenarios of change. Developing a scenario means all important information should be considered, both at the boundaries of the system and inside it. To test the possibility of constructing a complete scenario using the framework, we seek to apply such an approach to the West Africa coastal (WAC) areas.

108

109

Figure 1. The press-pulse dynamics (PPD) framework of Collins et al. (2011). Framework hypotheses: H1 110 111 - long-term press disturbances and short-term pulse disturbances interact to alter ecosystem structure and function; H2 - biotic structure is both a cause and a consequence of ecological fluxes of energy and matter; 112 113 H3 - altered ecosystem dynamics negatively affect most ecosystem services; H4 - changes in vital ecosystem services alter human outcomes; H5 - changes in human outcomes, such as guality of life or 114 115 perceptions, affect human behaviour; H6 - predictable and unpredictable human behavioural responses 116 influence the frequency, magnitude, or form of press and pulse disturbance regimes across ecosystems 117 (Collin et al., 2011).

118

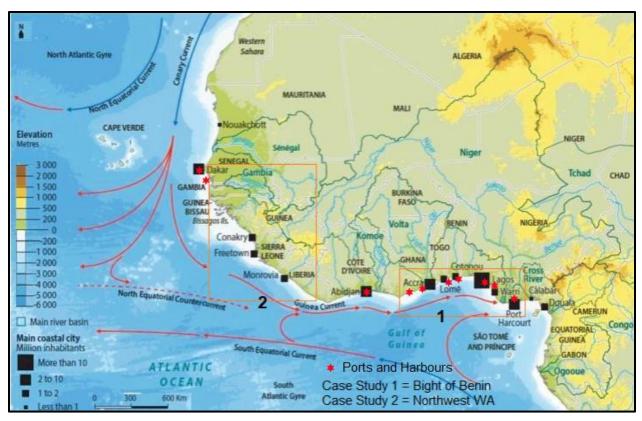
119 2. West Africa coastal areas case study

120 2.1 The WAC Settings

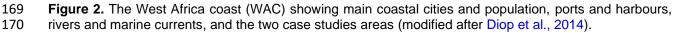
121 The West African coast (WAC) covers 12 mainland countries, from Mauritania to Nigeria (and the

main focus of this study; Fig. 2), and two archipelagos of Sao Tome and Principe and Cape Verde.

123 The mainland WAC can be categorized into three major sectors based on their geo-environmental


124 properties and metocean driving forces (Alves et al., 2020; Ibe and Awosika, 1991). The 125 Northwest sector (from Mauritania to Guinea Bissau), the muddy and sandy West coast (from 126 Guinea-Bissau to Sierra Leone) and the Gulf of Guinea sector (from Liberia to Nigeria). This coast presents a unique coastal geomorphic variability. Starting with the narrow continental shelf, sandy 127 128 dune-bound coasts of Mauritania, Senegal and Gambia, and their commonly narrow spits 129 bounding estuaries. It continues to the transitional muddy Guinea-Guinea Bissau-northern Sierra 130 Leone sector. Here, the cliff-bound coasts and mangrove-rich open estuaries are favoured owing 131 to the strong wave dampening effect and tidal range amplification caused by widening continental 132 shelf related to geological offsetting of the shelf by the Guinea and Sierra Leone fracture zones. 133 And finally, to the narrow shelf, bounded by massive rectilinear sandy beach-ridge complexes 134 with diverted river systems and back-barrier lagoons from southern Sierra Leone to the Niger 135 Delta (Anthony and Blivi, 1999; Feka and Morrison, 2017; Alves et al., 2020).

The climate along the WAC is equatorial, with considerable differences in the amount and 136 137 seasonal distribution of the precipitation. It is characterized by the interchange of two important 138 drivers: the Atlantic Ocean and the Sahara. In the first order, both temperature and precipitation and their annual cycle depend on how the air masses associated with the dry and hot desert 139 interior and the humid ocean to the south and the west, interact (Lewis and Buontempo, 2016). 140 141 In terms of hydrology, the WAC is strongly influenced by the river basin drainages. The most 142 important rivers include the Niger, which drains an area of over 1 million km²; the Volta, with a 143 drainage basin of 390,000 km²; and the Senegal River, the second-longest river in West Africa, with a catchment area of nearly 450,000 km² (Diop et al., 2014; Anthony, 2015; Anthony et al., 144 145 2016). However, the hydrology and sediment flow of these rivers have been significantly altered due to river damming, thereby limiting sediment supply to the coast (Anthony, 2015; Anthony et 146 147 al., 2016, 2019; Dada et al., 2015, 2016a, 2018; Diop et al., 2014; Ly, 1980).


Considered a storm-free environment, the WAC zone is dominated by the North Atlantic 148 149 swells (Almar et al., 2019; Sadio et al 2017). Wave regime along the Gulf of Guinea sector is 150 mostly influenced by the extratropical South Atlantic Southern Annular Mode (SAM) and its natural 151 variability (Almar et al., 2015). The SAM strongly affects sea level variability (Abessolo Ondoa et al., 2020; Melet et al., 2016) and the longshore sediment transport (Almar et al., 2015), both of 152 153 which drive significant coastal changes at this sector of WAC (Anthony et al., 2019). The morpho-154 sedimentary evolution of the West African sandy coast is controlled by a strong longshore sediment drift resulting from oblique waves (Anthony et al., 2019; Laibi et al 2014). Given the 155 magnitude of longshore sediment transport rates, small changes in alongshore gradients can 156 result in massive local erosion or accretion (Almar et al., 2019). 157

158 The tidal ranges along the WAC are wide, exceeding 5 m in some places, with the average 159 for the whole coastal area being considered in the order of 1 m. The highest tidal ranges recorded 160 in the region are in Guinea-Bissau, Guinea, and Sierra Leone (from 2.8–4.7 m; Diop et al., 2014). Three distinct and relatively persistent oceanic current systems are of importance to the WAC 161 ecosystems (Fig. 2) are: (a) The cold Canary Current, (b) The North Equatorial Countercurrent; 162 and (c) The Guinea Current (Diop et al., 2014). The Canary Current itself transports cool waters 163 toward the Equator and has current speeds of approximately 20 cm.s⁻¹. The cool and richer 164 165 upwelling waters prevail along the northwestern part and at limited parts of the northern parts of 166 the Gulf of Guinea.

168

- 171
- 172 2. 2 The WAC present state and trends

In WAC areas, socio-economic activities are increasingly affecting the coastal and marine environment. Over-exploitation of coastal resources and ecosystems is currently a serious and accelerating phenomenon in the region (Fig. 3). Many coastal communities depend on coastal resources for their livelihoods, mostly for food, fuel, shelter, and income (Diop et al., 2011). Owing to increasing population pressures and a lack of alternative resources to sustain populations, resource exploitation is becoming unsustainable. In many coastal areas, important coastal
habitats, such as mangrove forests, seagrass beds, and coral reefs, are degraded or destroyed,
making way for agriculture, aquaculture, port/ harbour development, hydropower dam and urban
development (Diop et al., 2011).

The migration of people to coastal areas, in particular to coastal cities, is a long-term trend 182 and presents one of the greatest challenges to the management of coastal resources. The most 183 184 striking development is the rapid expansion of West African (WA) towns and cities. The population 185 of town dwellers has risen from 13% in 1960 to 40% in 1990. Migration is taking place against the 186 background of a rapidly growing population. WA's population accounts for about 30% of Africa's 187 population and most of this population is concentrated along the WAC (Denis and Moriconi-Ebrard, 2009). The coastal fringe accounts for about 56% of the gross domestic product (GDP) 188 189 of the WA and there is a possibility of accelerating economic growth at rates exceeding 5% over the long-term in the region (UEMOA, 2011; Goussard and Ducrocq, 2014). The prospects of such 190 191 rapid population growth should be a major concern in light of the increasing pressures on the ecosystem and its resources. Urbanization within the region, both through migration from the rural 192 193 hinterlands and by growth within cities, is leading to classic urban sprawl, testing the carrying 194 capacity of the coastal ecosystems (Diop et al., 2011).

195 The highest population density hotspots are located in some key cities along the coast, 196 including Dakar, Abidjan, Accra-Tema, Lome, Cotonou, Lagos, and Port Harcourt (Fig. 2). The 197 pressures in some countries have been exacerbated in recent years by human conflict and political instability. Local fisheries resources have been overexploited and cutting of mangroves 198 199 and other resource extraction activities are severely degrading coastal habitats. Pollution from 200 sewage and industry is degrading coastal ecosystems and causing health issues, and coastal 201 groundwater resources are becoming depleted through unsustainable groundwater abstraction 202 and the consequent intrusion of seawater (Diop et al., 2011).

Throughout the region, the shorelines are retreating (Almar et al., 2015, 2019; Andrieu, 203 204 2018; Anthony et al. 2016, 2019; Anthony and Blivi, 1999; Appeaning-Addo, 2009; Appeaning 205 Addo et al., 2009, 2013; Angnuureng et al., 2013, 2017; Dada et al., 2015, 2016a, b, 2018, 2019; de Boer et al., 2019; Laibi et al., 2014; Ozer et al., 2017; Sadio et al 2017; Giardino et al., 2018; 206 207 Ndour et al., 2018) and the major contributing factors are the construction of ports and harbours 208 (de Boer et al., 2019, Almar et al., 2015, Anthony et al. 2016, 2019), coastal engineering defence 209 (Appeaning Addo et al., 2013; Angnuureng et al., 2013), and recreational facilities, which have 210 led to the clearing of important coastal vegetation, including mangrove forests (Andrieu, 2018;

Andrieu and Mering, 2008; Boone et al., 2016), and the reclamation of coastal wetlands (Giardino et al., 2018; Güneralp et al., 2017).

213 Besides, an increase in sediment loads, and discharges of often inadequately treated sewage and solid waste (Diop et al., 2014) have deteriorated water quality and degraded coastal 214 215 habitats (Diop et al., 2011; Diop et al., 2014; World Bank, 2020; Croitoru et al., 2019). For example, subsidence and mangrove clearance have increased erosion to about -30 m.yr⁻¹ along 216 217 the exposed Nigerian Transgressive Muddy coast northwest of the Niger Delta (Ebisemiju 1987; Dada et al., 2019; Anthony et al., 2019). The accelerated rate of coastal degradation in this mud 218 219 coast is further complicated by extreme seasonal coastal flooding events due to changing climate 220 (Dada et al., 2020).

221 The WAC is already threatened by the expected effects of climate change. Sea-level rise and 222 changes in the frequency and power of extreme meteorological events are increasing the impact on coastal flooding and erosion by the acceleration of land loss (see Fig. 3; World Bank, 2020; 223 224 Marti et al., 2019; Appeaning Addo, 2015; Appeaning Addo et al., 2011; Dada et al., 2020; Failler et al., 2020a). The WA low-lying coastal zones, estuaries and deltas are most vulnerable to 225 coastal flooding related to mean sea level rise (World Bank, 2020; Nicholls and Tol, 2006). This 226 227 rise in sea level, coupled with the increasing intensity or frequency of extreme events, will have 228 serious effects on the development of the coastal areas (IPCC, 2018). Along the WAC, a rise 229 greater than the global average is expected (World Bank, 2020). This could bring dramatic 230 consequences for certain coastal areas, like Nouakchott, Mauritania that is already below sea 231 level. Major WAC cities are greatly at risk Ouikotan, 2017). Unfortunately, there is significant 232 insufficient information about SLR to generate future projections with high confidence in the region. Also, very few regional climate models or empirical downscaling have been constructed 233 234 to assess climate change scenarios on the WA coast (World Bank, 2020).

Country	Location	Beaches	Mangroves	Mudflats	Sea grasses	Forests	Estuarine channels	Rocky bottoms	Coral reefs
	Baobolon								
Gambia	Niumi								
Gambia	Tanbi								
	Tanji								
	Alcatrez								
Guinea	lles de Loos								
	Tristao								
Guinea	Cacheu								
Bissau	Cantanhez								
	Joao Vieira Poilao								
	Urok								
	Abene								
	Bamboung								
	Cayar								
	Gandoul								
	lles de la Madeleine								
	Joal-Fadiouth								
Senegal	Kawawana								
	Langue de Barbarie								
	Palmarin								
	Popenguine								
	Saint-Loius								
	Sangomar								
	Somone								
Absence		No evo	lution	High Increas	se	Modera Decrea		Very h Decrea	
	Presend without	ce	Modera Increas		Very h Increas		High Decrea		

235

Fig. 3. Summary of the evolution of the WAC ecosystems in marine protected areas in the last 10 years (Adapted from Failler et al., 2020a).

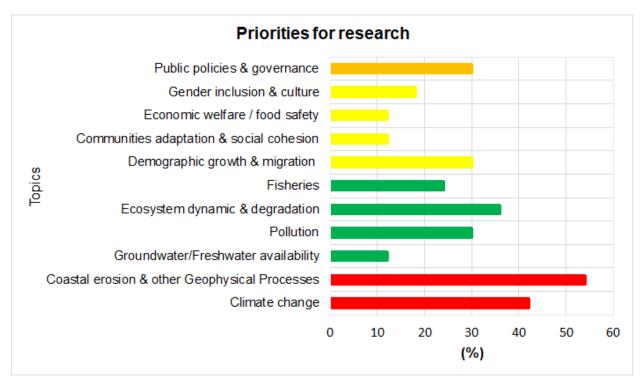
238

3. Designing the SES framework for W.A. coastal areas

assessment

3.1 The process of developing a conceptual framework for the WAC systems

As a consequence of the issues mentioned above, an interdisciplinary workshop was organized


by the Interdisciplinary Partnership Programmes (PSIP) research group of the French National

243 Research Institute for Sustainable Development (IRD) in March 2019 at Saint Louis, Senegal.

244 The meeting focused on finding a solution to the vulnerability of coastal areas in West Africa in

245 the context of global change. It was well-attended by over 60 African and non-African experts and 246 other stakeholders with expertise in different fields that ranged from marine ecology, physical 247 oceanography, coastal dynamics and modelling, geography, social sciences, economics, political science, coastal remote sensing, coastal ecosystems and adaptation, regional sea level, coastal 248 impacts, coastal evolution, meteorology and climate dynamics, hydrogeology, geophysics, 249 coastal and marine geology, atmospheric sciences, etc. Representatives of relevant WA 250 251 government ministries and financial institutions like the French Development Agency (AFD) 252 group funds and the World Bank were in attendance.

As illustrated in Figure 4, the participants were asked about the drivers, pressures, impacts 253 254 and other phenomena to be addressed as priorities by research according to their importance in 255 the dynamic of the WAC areas (several responses allowed). The participants mentioned a wide 256 range of issues, going from physical hazards and processes to social and policy aspects. This 257 finding suggests a need to adopt a comprehensive approach when studying the evolution of WAC 258 areas. The outcome of the workshop encouraged the development of an integrative conceptual 259 framework that encompasses phenomena ranging from geophysical to societal and policymaking. To achieve this objective, we build on the PPD framework (Fig. 1), because of its robustness. 260 261

262 263

Fig. 4. Types of drivers, pressures and other phenomena to be addressed as priorities for research according to the participants of the Saint-Louis workshop (% of people)

3.2 Key features of the modified press-pulse dynamics (mPPD) Framework

267 The traditional PPD framework (Fig. 1) by Collins et al. (2011) has four interlinked core 268 components (press-pulse events, ecological subsystem, ecosystems goods and services, and social subsystem). We modified the framework (hereafter refers to as mPPD) to achieve our 269 270 desired objective of including the governance and management aspects (Fig. 5): we extended 271 the original concept by integrating a new component named 'adaptive actions/management 272 responses'. This component represents the management decisions/actions that could be taken 273 to address the disturbances and the impact within the social-ecological system (SES). Thus, the 274 mPPD framework contains five main components: (1) press and pulse events, (2) the ecological 275 subsystem, (3) ecosystem goods and services, (4) a social subsystem, and (5) adaptive actions/management responses. The SES (i.e., the entire coastal system) represents the 276 277 conventional disciplinary research theories that define processes within each subsystem (Fig. 5). In our modified framework, press and pulse events, ecosystem goods and services and adaptive 278 279 actions/management responses are classified forms of impacts/responses that explain the 280 linkages between the social and ecological subsystem in form of their interdependencies. We 281 referred to this central section as the social-ecological interactions zone (Fig.5). These include 282 human involvement and as its 'counterpart' in the delivery of ecosystem services.

283 The processes or interactions described above are taking place and interacting at different scales 284 and management levels (as shown by the thick arrows outside the central panel of Fig. 5). The external horizontal and vertical thick arrows are pointing to how the ecosystem's benefits to 285 people can be delivered, utilized, evaluated and managed at different spatial and temporal scales. 286 They also explain interactions and feedback from many factors that can as well operate on more 287 288 than one scale. Consequently, the mPPD can be concurrently applied locally, nationally, 289 regionally and globally, i.e., at different scales of ecological processes and of potential drivers of 290 change.

In the mPPD framework, an adaptive management approach is shown by the feedback with the social subsystem and indicates the iterative nature of planning. Feedbacks requiring reconsideration of earlier parts of the process may be necessary. For instance, anthropogenic changes to the ecological subsystem, altered social-economic conditions, new information or dataset, and monitoring of the effectiveness of conservation efforts (Álvarez-Romero et al., 2011; Sarkar et al. 2006).

An adaptive management approach is especially important for coastal planning due to the uncertainty and complexity associated with planning across sectors. Some sources of uncertainty are our limited knowledge of coastal system interactions and dynamics, lag times between

implementation of actions and measurable results, and difficulties in predicting climate change,
 land-use change, and their potential impacts on coastal ecosystems (Álvarez-Romero et al., 2011;
 Broderick, 2008). The "adaptive actions/management responses" component is set at the centre
 of the framework to create links between the social and ecological subsystems, which should be
 developed by the coastal managers to directly influence the stakeholders' actions towards
 environmental-friendly activities/behaviours.

- 306
- 307

308

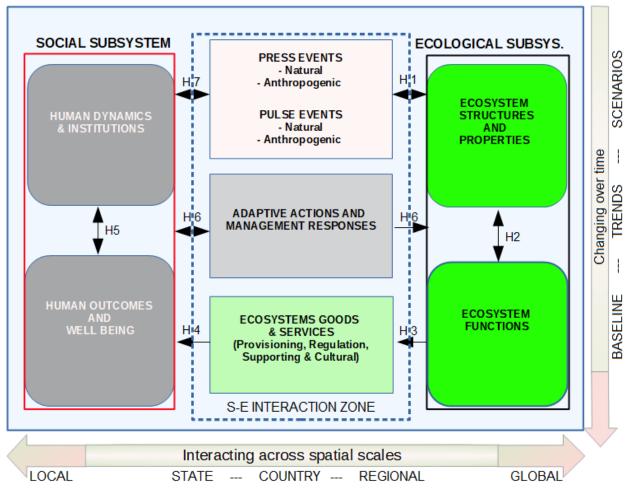
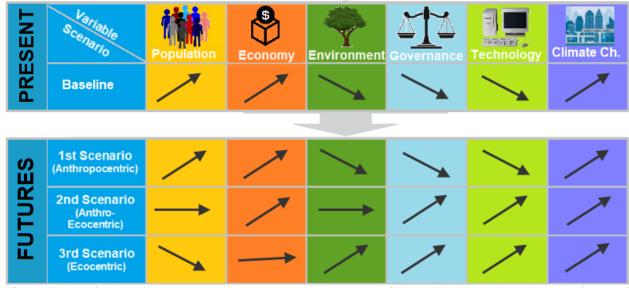
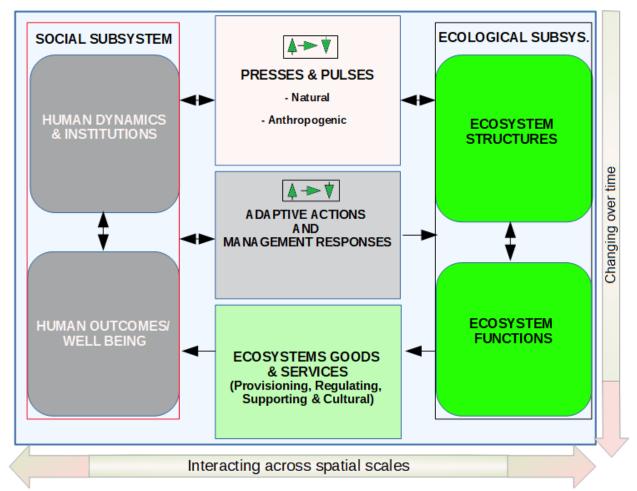


Fig. 5. The mPPD framework. The left-hand side represents the human subsystem, and the right represents the ecological subsystem. The two subsystems are connected by pulse and press events indirectly caused or influenced by human behaviour. Then, the ecosystem goods and services that are made available to humans may eventually trigger management responses that influence the frequency, magnitude, or form of press and pulse events across ecosystems, if not satisfactory. Note: The horizontal double arrow illustrates the required varying spatial resolutions used to build our assessments at the regional scale. The vertical double arrow indicates the baseline, trends and scenarios as a function of time scale.


317 3.3 Building futures Scenarios with mPPD framework

318 In attempts to get beyond the analytical constraints posed by the formal integrated models, a 319 scenario formulation is one of the approaches that can be used to tell stories, in words and 320 numbers, of plausible development that may arise in the future (Ruttan, 1999). They are constructed to provide insight into drivers of change, unveil the consequences of present 321 322 trajectories, and reveal options for action. They describe futures that could be rather than futures 323 that will be (Peterson et al., 2003). Scenarios tell "plausible stories about what may happen in the 324 future. Whether using qualitative and/or quantitative models and information on present and past 325 conditions; they are a useful tool for exploring key uncertainties that may shape the future of 326 social-ecological systems" (Biggs et al., 2007). SES scenarios can be used to assess the 327 adaptation and vulnerability of the coastal ecosystem (Ledoux et al., 2004; Turner, 2005). Here, 328 we constructed the 21st-century coastal systems scenarios based on the literature reviews (e.g., 329 Gallopin and Raskin, 1998) and the experience the authors have garnered in the study area over time. 330

331 As shown in Fig. 6, the three different social-economic scenarios constructed can be employed to understand the dynamics and intrinsic vulnerabilities of the 21st-century coast 332 anywhere in the world, but here deployed to the WAC region. The narrative of these scenarios is 333 334 based on a set of descriptive variables like population growth, economic development, 335 environmental quality, governance, technological advancement at the coast (Fig. 6). They are 336 categorized as the (a) anthropocentric (i.e., human activity-focused), (b) anthro-ecocentric (i.e., 337 human-environment focused), and (c) ecocentric (i.e., environment focused) coastal scenarios. These set of indicators or variables represent the attributes of the coastal system while the 338 339 differences in the attributes, from one scenario to another, are what reveal the differences 340 between the scenarios. The scenarios (Fig. 6) were synthetically incorporated into the mPPD 341 framework (Fig. 7).


In addition, for future climate change, we assumed the worst-case scenario is constant across the board. We used the upper RCP 8.5 scenario (IPCC, 2018), characterized by a sealevel rise (+1 m by 2100), temperature (6° by 2100), extreme wave events (up to 3% and a clockwise rotation up to 2°) and rainfall (20% increase for 2100, since temperature increases). This future climatic condition was also considered by Giardino et al. (2018) in the study area.

347

349

Fig. 6. Typical (anthropocentric, anthro-ecocentric and ecocentric) scenarios illustrating plausible future of WAC. All three scenarios are developed over time along the six indicators (i.e., population growth, economic development, environmental quality, governance and institution, technological change, and climate change), which are interdependent. Note: The arrows (up = strong, down = weak, and horizontal = moderate) are projected as uneven representations of just possible patterns of change in the WAC.

356 357

Figure 7. A generic future scenario for the coastal social-ecological system (CSES) in the 21st century. The ecosystems will experience different (intensities of) pressures, and, consequently, different impacts on their 358 integrity and functionality, thus implying different environmental risk for society. Note: The green arrows 359 under "presses and pulses" and "adaptive action and management responses" panels illustrate varying 360 361 levels of effect: up arrow = strong, down arrow = weak, and horizontal arrow = moderate.

362 363

4. Application of the framework 364

- We applied the mPPD framework to the Bight of Benin and the WA mangrove system (Fig. 8, Fig. 365
- 9; Table 1). Then, we used it to conceptualize the 21st CSES scenarios (Fig. 10). The case studies 366
- are based on previous literature and expert's judgement. 367
- 368
- 369 Table 1. Summary of the natural and anthropogenic presses and pulses associated with each case study,
- 370 outlining the ecological or biogeophysical impacts, social consequences and recommended management
- 371 responses

			Biogeophysic	al Impacts		
Case Study	Presses	Pulses	Biological	Physical	Social Consequences	Recommended management actions

Shoreline Retreat (Bight of Benin; 1990 2015)	Climate change ^{1,2} ; sea-level rise ^{3,4} ; seaport development ^{5,6} ; river dams ^{7,8} ; engineering structure/ installation ^{9,10} ; coastal development ^{11,12} ; harbour construction with breakwaters ^{13,14} ; urbanization ^{11,12} ; land use/ conversion ^{15,16} .	Increasing extreme events ^{17,18} ; wave climate ^{19,20} ; rainfall variability ^{21,22} ; storm surge ²³ ; sand mining ^{7,24} ; river mouth and channel dredging ²⁵ .	Bio-diversity loss, habitat loss	Erosion, sediment deficit, water pollution, soil infertility, loss of scenic quality	Loss of income, loss or damage to property, property devaluation, recreation values reduction, social inequality, political and social tensions, loss of lives, and health, economic loss/ disruption, loss of livelihoods, decreasing purchasing and production power, mass migration, population displacement, economic growth and development decline, psychological impacts.	Development of integrated coastal zone management strategy, abandonment of risk zones, beach nourishment, nature-based coastal defence
WA Mangrove Ecosystem Decline (W.A: 1975- 2013; Somone Estuary, Senegal:194 2006)	coastal development ^{31,32} ,	Woodcutting/ harvesting ³¹ , aquaculture ³² , drought/ rainfall ^{22,33} , extreme weather events ³⁴ ; Rice cultivation ³¹ ; Dam construction ³⁵	Mangrove dieback, mangrove habitat loss, population structure change, invasive species invasion, primary production loss, nursery habitat loss, biodiversity loss	Hyper- salinization of soil, coastline erosion, increased sedimentation, coastal flooding, water quality reduction	Declining fisheries and indigenous uses, loss of livelihood, food insecurity, low life quality	Adaptive strategies, reseeding/ replanting, marine and coastal policy formulation, public sensitization and awareness, community engagement, monitoring & regulation

1: Abessolo et al. (2020); 2: Appeaning Addo et al. (2011); 3: Angnuureng et al. (2017); 4: Marti et al. (2019); 5: Anthony et al. (2016);
6: de Boer et al. (2019); 7: Almar et al. (2015); 8: Dada et al. (2015); 9: Appeaning Addo et al. (2013); 10: Angnuureng et al. (2013);
11: Badmos et al. (2018); 12: Denis & Moriconi-Ebrand (2009); 13: Kaki et al. (2011); 14: Giardino et al. (2018); 15: Andrieu
(2018); 16: Dada et al. (2019); 17: Almar et al. (2019); 18: Gautier et al. (2016); 19: Anthony et al. (2019); 20: Dada et al. (2016b);
21: Dada et al. (2018); 22: Sakho et al. (2011); 23: Jonah et al. (2015); 24: Dada et al. (2016a); 25: Dia Ibrahima (2012); 26: Ibe
& Awosika (1991); 27: Biasutti (2019); 28: Andrieu & Mering (2008); 29: Boone et al. (2016); 30: Feka & Ajonina (2011); 31: Ekundayo & Obuekwe (2001); 32: Diop et al. (2011); 33: Nicholson (2013); 34: Taylor et al. (2017; 35: Tendeg et al. (2016).

380 **4.1** Application to the vulnerability of low-lying West African coastal ecosystems

Case study 1: The response of the Bight of Benin coastline to anthropogenic and natural forcing (Fig. 8; Table 1; adapted from Anthony et al., 2019)

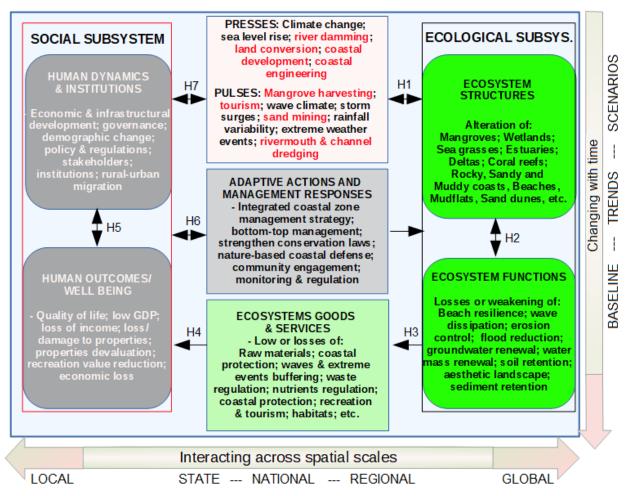
383 The Bight of Benin in the Gulf of Guinea (Fig. 2) forms an embayment between the Volta River

384 Delta in the west (Ghana) and the Niger River Delta (Nigeria) in the east (ecological subsystem).

385 The Bight coast comprises sandy beaches backed by Holocene beach-ridge barriers (ecological

subsystem). Incident swell waves, beach face gradient and the unidirectional longshore sand

transport from west to east are intimately linked, generating a classic example of a strongly wave-


dominated drift-aligned coast (ecological subsystem). The stability of this coast, which hosts several major cities in addition to three large international deep-water ports, has been strongly affected by human activities (social subsystem as highlighted in Fig. 8), including the three ports (H7), and by natural and human-altered shoreline dynamics (H1) related to the Volta River Delta and distributaries at the northwestern flank of the Niger Delta. The combination of these factors has impacted alongshore sediment redistribution by segmenting the previously unrestrained longshore transport of sand that prevailed along this open coast (H2, H3).

395 The result is a mixture of natural and artificial sediment cells increasingly dominated by 396 shoreline stretches subject to erosion (H2, H3), endangering parts of the rapidly expanding port 397 cities of Lomé (Togo), Cotonou (Benin) and Lagos (Nigeria), coastal roads and infrastructure, and 398 numerous villages (H3, H4, H5). Post-2000, the entire Bight shoreline has undergone a significant 399 decrease in accretion, which is attributed to an overall diminution of sand supply via the longshore transport system (H2, H3). This diminution is attributed to the progressive depletion of sand-sized 400 401 bedload supplied to the coast (H2, H3) through the main Volta river channel downstream of the Akosombo dam (H7-H1), built between 1961 and 1965. Sand mining to cater for urban 402 construction in Lomé, Cotonou and Lagos (H7-H1) also contributed locally to beach sediment 403 404 budget depletion (H2, H3).

405 Although alongshore sediment supply from the Volta River has been the dominant source 406 of sand (H2, H3) for the stability or progradation of the Bight of Benin coast (H3-H4), potential 407 sand supply from the shoreface, and the future impacts of sea-level rise on this increasingly vulnerable coast are also important (H2-H3). The continued operation of the three ports and 408 409 existing river dams, coupled with sea-level rise, will lead to sustained shoreline erosion along the 410 Bight of Benin in the coming decades (H6-H7). Since the Volta Delta, Togo, Benin and Nigeria 411 belong to the same littoral cell, an integrated approach that will address the issue at this scale of 412 sediment cell is necessary. As indicated in Fig. 8 and Table 1, this justifies recommending integrated and adapted management actions. 413

414

415

417 Figure 8. The shoreline vulnerability of the Bight of Benin section of the WAC response to changes in 418 trajectories of long-term presses and short-term pulses as a result of natural and human dynamics. 419 Application of the framework to assess the shoreline vulnerability of the Bight of Benin section of the WAC. 420 The entire coastal system is changing over time and across spatial scales. The WAC SES are affected by 421 both external (e.g., global climate, globalization, etc.) and internal (e.g., demographic changes, weak 422 institution, policy, governance, economic activities, etc.) driving forces that generate disturbances (long-423 term press and short-term pulse). Both the long-term press and short-term pulse disturbances, in the form 424 of continued operation of the three ports and existing river dams, and sea-level rise, elicited by these human 425 behaviours altered the WA ecological system structures and functions negatively (e.g., coastline retreat, 426 polluted groundwater, decreasing river load, nutrient reduction, biodiversity loss, etc.) and thereby 427 influencing the ecosystem services delivery. The altered ecosystems services (e.g., decreasing coastline 428 erosion control, coastal protection defence, water quality, waste regulation, etc.) in turn influence the human 429 outcome and well-being (in terms of quality of life, human health, household incomes, etc.) that necessitate 430 the proposed adaptive actions and management options. Note: The horizontal spatial scale arrow (external) 431 indicates that, although our assessments take place at the regional scale (scope), they will in part build on 432 properties and relationships at finer- national-, state- and local scales (resolution, to a minimum discernible 433 unit). While the vertical arrow (external) indicates the baseline, trends and scenarios will be used. Presses 434 and pulses in red denote human-induced activities. 435

436

437 Case study 2: The WAC Mangrove ecosystem dynamics (Fig. 9, Table 1)

438 As displayed in Figures 3, 9 and Table 1, the mPPD framework is used here to illustrate the 439 dynamics and vulnerability of the mangrove coastal ecosystems of the WA, specifically in the 440 northwest, The extraordinary pulse event of severe drought (H1) in the Sahel in the 1970s 441 (Descroix et al., 2015; Nicholson et al., 2000; Nicholson, 2005, 2013; Nielsen and Reenberg, 442 2010) affected the Sahelian coastal ecological services, especially that of mangrove ecosystems, like provisioning, supporting, regulating and culture (H2-H3). This period was followed by 443 abundant rainfall of the 1990s (Cormier-Salem, 1999; Diop et al., 1997; Spalding et al., 2010; 444 445 Valiela et al., 2001). The anthropogenic factors also played a role (H7-H1). Until 1990, traditional 446 wood cutting (for wood and ovster harvesting) was practised by the local population (H7-H1).

The adverse climatic changes (H1) can be viewed as the major causation of the coastal social-ecological systems dynamism at this section of the WAC. It affected the entire structures and functioning of ecological subsystems (H2-H3) of this particular coastal region (Dieye et al., 2013), which in turn, indirectly altered the provisioning, supporting, regulating of the ecological services, such as food resources, and finally the quality of human outcome and well-being of the coastal indigenous communities (H4-H5; Fig. 9). This situation prompted diverse human/management responses ((H-6-H7; Barry, 2009; Dieye et al., 2013).

This mangrove ecosystem has been in a recovery state since 1990 (Andrieu, 2018; Andrieu et al., 2019, 2020). It is among the few globally that is growing obviously (in the area and mass) since the beginning of the 1990s. This is probably owing to, primarily, a sequence of pulse events (H2) of higher frequency of the wet condition and more intense and intermittent seasonal rainfall rebound since 1990 (Biasutti, 2019; Conchedda et al., 2011; Nicholson, 2005; Nouaceur and Murarescu, 2020; Ozer et al., 2003). This helped the dilution of hypersaline water in estuaries where salinity is much higher (up to 200 g.l⁻¹ in the 1980s).

The second reason is most likely the enforcement of regulations, the management 461 improvement of the mangrove ecosystems (H6-H7) since the beginning of the 2000s (Andrieu 462 463 2018; Andrieu et al., 2019, 2020; Failler et al., 2020a, b; Gallup et al., 2019; Gautier et al., 2016). 464 The non-government organizations' conservation efforts in WA to prioritize mangrove forests of 465 ecological significance and strategically seek their protection also played a key role in these 466 changes (Andrieu 2018; Andrieu et al., 2019, 2020; Conchedda et al., 2011; Cormier-Salem, 467 2016; Dieye et al., 2013; Fent et al., 2019; Temudo and Cabral, 2017). These combined actions reduced mangrove degradation as can be seen in the model (Fig. 9). 468

For instance, in the Somone Estuary, Senegal (Sakho et al., 2011), since 1992, a modification of mangrove logging and a new reforestation policy (H6-H7) resulted in an exponential increase of mangrove area (see Fig. 3) progressively replacing intertidal mudflats (H2-H3). Such success in the restoration of the ecosystem reforestation is supported by favourable environmental conditions: tidal flooding, groundwater influence, rainfall during the wet season, low net accretion rate of about 0.2-0.3 cm.yr⁻¹, (H1) and a ban on the cutting of mangrove wood (H6-H7). The rate of mangrove loss from 1946 to 1978 was 44,000 m².yr⁻¹, but this has been offset by restoration efforts resulting in an increase in mangrove area from 1992 to 2006 of 63,000 m².yr⁻¹ (H2-H3).

479

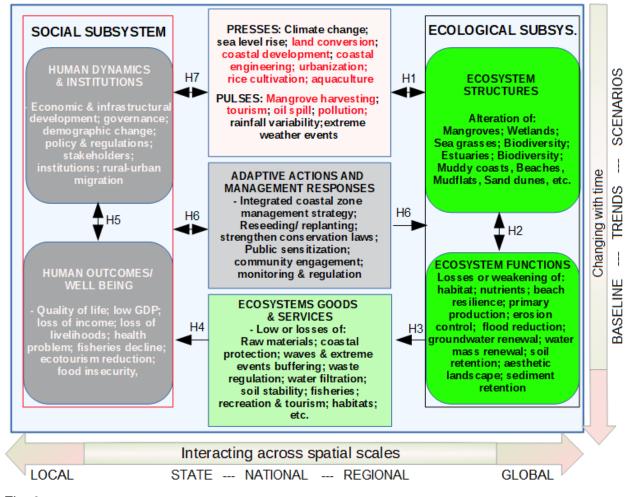


Fig. 9. The WA mangroves ecosystem response to changes in trajectories of long-term presses and shortterm pulses as a result of natural and human dynamics. Note: The horizontal spatial scale arrow (external) indicates that, although our assessments take place at the regional scale (scope), they will in part build on properties and relationships at finer- national-, state- and local scales (resolution, to a minimum discernible unit). While the vertical arrow (external) indicates the baseline, trends and scenarios will be used. Presses and pulses in red denote human-induced activities.

487 **4.2 The 21st-century scenarios for WAC ecosystems**

The first (Anthropocentric, i.e., human activity focused) coastal scenario. This is a future WAC in which prevailing trends is allowed to continue without major interventions (Fig. 10A). High economic activities and infrastructural development associated with demographic pressure together with weak governance, institutions and policy have a deleterious effect on the environment (coastal ecosystems).

493 The existing failures in coastal governance and institutional structures at the local, state 494 and national levels remain unattended, which the outcome is the continuing degradation of the 495 WAC ecosystems. The major lingering governance issues are poor coordination by the 496 governments of the WAC countries at different levels, the lack of understanding of the fragility of 497 the environment and the importance of its protection amongst policymakers, inappropriate and 498 weak legislation and inadequate institutional frameworks and capacities for managing coastal 499 development pressures. The main concern is given to economic and infrastructural development 500 and resources exploitation whereas environmental objectives are loosely implemented and 501 enforced (Hofmann et al., 2005; Karageorgis et al., 2006). There is a continuing rise of slums in 502 many Sub-Saharan African coastal cities owing to rural-urban migration and rapid urbanization 503 without proper planning (Badmos et al., 2018).

504 Under this scenario, the general approach to ecosystem services is reactive, rather than 505 proactive (Butler and Oluoch-Kosura, 2006; Carpenter et al., 2006). Thus, it may leave WAC 506 communities vulnerable to frequent adverse surprises (e.g., flooding, ocean surge, pollution, 507 coastal eutrophication, saline intrusion, climate change), which may be tardily recognized and ill-508 managed. Some of these adverse ecological surprises may surpass a threshold, overwhelming 509 social capacity and, consequently, affect human well-being (Butler and Oluoch-Kosura, 2006).

510 The main management approach being the construction of sea dike systems to prevent 511 erosion, flooding and salinization of the soil, and protect economic and wealthy residential areas and maintain agricultural productivity and aquaculture inside the dikes. Earthen dikes (rubble 512 mound breakwaters) have mainly been constructed along with ancillary structures like groins, 513 514 embankments and breakwaters. However, most time, this approach is confronted with poor 515 technical standards and the challenge of protecting the entire coastline. Grey (human-engineered) infrastructure negatively impacts the WAC ecosystem and environment, and the high costs 516 517 involved make it to be less widely applied, and consequently, the effectiveness is reduced.

518 Coastal protection works are prioritized in areas with higher socio-economic values that 519 lead to inequality in areas with lower socio-economic values, where people are at bigger risk of 520 the social effects of displacement. As a result, political and social tensions are on the increase. 521 Also, losses of properties are arising because coastal protection works are failing. Likewise, the

values or prices of the properties are declining, and property owners are finding it difficult to get insurance or mortgages for their properties. WAC communities depending on coastal tourism as a means of livelihoods are experiencing a decrease in income. The reduced productivity of businesses that rely on infrastructures that are affected by coastal degradation or incur costs in its mitigation, will have a knock-on effect on the local economy.

527 Without adaptation, more intense and frequent extreme sea level (ESL) events, together 528 with trends in coastal development will increase expected annual flood damages by 2-3 orders of magnitude by 2100 (Oppenheimer et al., 2019). Coastal processes and associated land-use 529 530 changes continue as "business as usual" toward a negative 'facing the wall' situation with too 531 much risk (flooding/ erosion/ pollution) for a dense rather poor unprotected population. Coastal 532 scenario 1 can be tied with the occurrences straddle between the Shared Socioeconomic 533 Pathways (SSP) 3 and 4 used by IPCC (Merkens et al., 2016; Moss et al., 2010; O'Neill et al., 2020). 534

535 **The second coastal (Anthro-ecocentric) scenario** (Fig. 10B) is characterized by increasing 536 population growth, infrastructural and economic development, and significant advancement in 537 technology and also, a modest improvement in environmental quality as a result of improved 538 governance.

539 Under this scenario, which could occur in the same global context as the previous one, 540 there is no alternative but to adopt traditional sea defence and coastal protection schemes (both 541 soft and hard engineering works) to protect those areas that are economically viable. Research 542 in coastal risk management and capacity building with the help of foreign partners result in hybrid 543 solutions that combine natural infrastructure with built infrastructure. Such adaptation measures 544 are implemented along the WAC to adapt to SLR in the 21st century.

The goal is to preserve, restore, and enhance elements of the natural system that will enable natural ecosystems to function in conjunction with built infrastructure to maximize benefits and reduce the cost of adaptations. Using this approach, while the degraded coastal ecosystems are restored, built infrastructures are put in place to provide protection benefits as natural infrastructure becomes stronger.

The hybrid solutions are retrofitted onto existing infrastructures in most of the coastal urban cities like Lagos, Dakar, Cotonou, Abidjan, Accra, Lome. These cities are densely populated and there is insufficient space to use only natural infrastructure for coastal defence. Although the hybrid system provides some co-benefits besides coastal protection, it does not provide all the same benefits that natural systems provide owing to the built component that has some negative impacts on ecological diversity (Sutton-Grier et al., 2015). They negatively

556 influence economic interests and human health and wellbeing that rely on ecological goods such 557 as ecotourism, recreation and fisheries, clean air and abundant freshwater, and ecological 558 services like air and water purification, biodiversity maintenance, waste decomposition, soil and 559 vegetation generation and renewal, groundwater recharge, greenhouse gas mitigation, and 560 aesthetically landscapes.

Also, with the SLR, the heights of the hard structures will need to be raised to remain effective. This is an expensive endeavour that ultimately may prove unaffordable and unachievable. Even with well-designed hard protection, the risk of possibly catastrophic effects in the event of failure of defenses cannot be overruled (Oppenheimer et al., 2019). Coastal scenario 2 portrays many similarities with SSP 2 (Merkens et al., 2016; Moss et al., 2010; O'Neill et al., 2020).

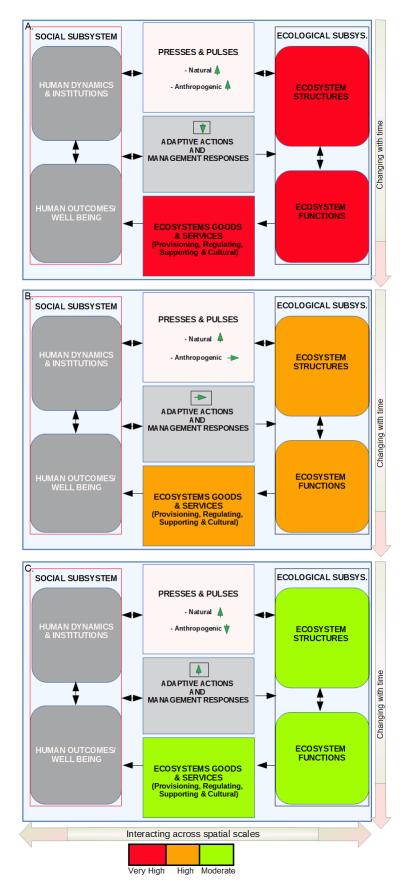
The third (Ecocentric) scenario (Fig. 10C), being environment-focused, is characterized by 567 568 government incentives for environmental conservation, green energy, and land-use planning. 569 More confidence is placed on the development of environmental engineering, climate and energy-570 friendly technology, and new ways of farming that incorporate provisioning with regulating and 571 cultural ecosystem services (Butler and Oluoch-Kosura, 2006; Carpenter et al., 2006). Besides, ecological systems sustainability is promoted. Ecosystem-based approach policies are 572 strengthened, ecotourism principles are supported, and environmental laws and regulations are 573 strictly adhered to. The pace of population growth and economic development is wholly 574 575 determined by environmental quality. There is also a considerable improvement in technological 576 advancement.

577 This is an ideal scenario for the WAC areas over the long term, but it is prefaced on parting 578 with the past, which may induce some degree of strain in the short term. This may likely occur in 579 the context of the global IPCC SRES B1-2 scenario (Rogelj et al., 2012) or the most recent 580 scenario, the SSP 1 (Merkens et al., 2016; Moss et al., 2010; O'Neill et al., 2020).

581 The scenario is the most radical of the three and assumes a general shift in attitudes of 582 the stakeholders and policymakers towards more environmentally sound ways of life (Fig. 10C). 583 The coast tends toward a wilder scenario owing to sustainable policies implementation and enforcement (e.g., widespread adoption of managed realignment or abandonment policy). This 584 585 may be due to a "do-nothing approach" in which the disturbed area is left alone to recover naturally 586 without any management intervention. It could also be a situation whereby nature (risk e.g., 587 natural hazards) forces people to leave the coast because of too much risk. In such a situation, 588 less pressure is on the ecosystems. Hence the coastal ecosystems are more resilient to face and

adapt to natural events and extreme climatic conditions. By this means, providing the best benefits/services that can be obtained from the ecosystems (e.g., natural protections and decontamination of wetlands, flooding protection of wide beaches and dunes, resilience abilities of the buffer coastal zone to extremes, fisheries, beautiful wild coasts for tourism, etc.).

593 Under this scenario, more importance is given to environmental issues and nature 594 conservation. People are long-term, risk-averse planners, who attempt to minimize environmental 595 risk, even at high costs (Hofmann et al., 2005; Karageorgis et al., 2006). It assumes a general 596 shift in attitudes of the stakeholders and policymakers towards more environmentally sound ways 597 of life.


Although SLR remains a problem, policy responses are more flexible, for example, abandonment and managed realignment approaches with compensation for victims. The built environment expansion is discontinued, and a major recovery and reconversion of lost habitats are initiated to ensure increases in biodiversity. Overall, most coasts move closer to integrated coastal management systems, while in others, basic coastal management measures are put in place and historical zoning plans revitalized.

604 Policy responses at the coast embrace wholly integrated coastal management principles, 605 and these principles are more effectively enabled because of voluntary partnerships across 606 stakeholders and other participatory arrangements at the local level. This 'bottom-up' approach 607 paves way for the implementations of the coastal sustainable development agenda (Burdon et 608 al., 2018). Noteworthy, managed realignment brings with it several positive externality impacts. It produces more habitat with potential biodiversity, amenity, and recreational values; a more far-609 610 reaching nutrient and contaminants storage capacity; and a carbon sequestration function. All 611 these potential economic benefits are apart from its sea defence or coastal protection benefits 612 with regards to increased resilience in response to SLR and climate change, and so reduced 613 maintenance costs.

During this period, there is an SLR of 1 m, storms and extreme wave events that cause a 614 615 significant elevation in the coastal hazards. First, reaching the WAC low-lying sandy coasts and 616 mangroves, and also coastal zones that are composed of easily erodible materials. Then the major lagoon systems are affected, and the lowest-lying sectors are subjected to increasing 617 618 erosion or temporary or permanent submersion. But because the natural coastal systems are not 619 passive about the rise in sea level, and there are numerous threshold effects. The natural systems 620 respond by adapting to the new configurations. For instance, in the case of submersion hazard, 621 sediments are trapped by coastal plant formations, river flow rates are modified by the variability

of continental precipitations, and the lagoons and estuary outlets are partially closed by the advance of sand spits, etc.

624 According to the most recent study, the restored coastal wetlands can trap more sediment 625 (Liu et al., 2021). The effectiveness of this restoration is primarily driven by sediment availability, 626 and not by wetland elevation, tidal range, local rates of SLR, and significant wave height. This suggests that nature-based solutions can mitigate coastal wetland vulnerability to SLR. Though 627 they are most effective in coastal locals where there is abundant sediment supply (Liu et al., 628 2021). Further, restoration of vegetated coastal ecosystems, such as mangroves or tidal marshes 629 630 (coastal "blue carbon" ecosystems), provide climate change mitigation through increased carbon uptake and storage of around 0.5% of current global emissions annually (IPCC, 2019; Ungera et 631 632 al., 2020).

Figure 10 A-C. The three constructed future scenarios for the W. African coastal social-ecological systems in the 21st century. Each scenario will exert different pressures on the 21st coastal systems. In this context, the ecosystems will experience different (intensities of) pressures, and, consequently, different impacts on their integrity and functionality, thus implying different environmental risk for society. Note: The green arrows illustrate varying levels of effect (up = strong, down = weak, and horizontal = moderate). The red, orange and green colours depict different levels of adverse impacts.

642 5. Discussion

641

5.1 Diagnosing sustainable coastal management and planning along the WAC

In this study, we have presented an mPPD framework (Fig. 5) adapted to the integrated analysis 644 of the coastal system that facilitates scenarios assessment (Fig. 10) under a range of plausible 645 646 future climatic and socio-economic conditions to support decision-making. We evidenced that the 647 vulnerabilities of the CSES are not independent, and it is inappropriate to consider a coastal issue in isolation. Rather, it requires analysis at a broader scale that accounts for interdependencies. 648 649 Presently, this is generally not the case. For example, coastal flooding and erosion are usually 650 assessed independently and the governance structures do not always match the scale at which 651 management is required.

Our cross-cutting narratives of the different future scenarios using the mPPD framework offer valuable insight into the development of WAC management strategies, policies and other agendas. The scenarios analysis is to help in defining the plausible implications of following, or not, a particular management path. This also helps to highlight internal conflicts and inconsistencies, for example between the aspirations of different resource users or countries in the region.

The assessment of the WA coastal ecosystems using our framework (Figs 8, 9; Table 1) brings to the fore lack of coordination of various human activities taking place on land and in the coastal zone relating to their implications on the coastal ecosystems. This is partly due to the disconnection/fragmentation of institutions and weak coastal governance. And it is responsible for the conflict over the use of resources and forgoes opportunities for more sustainable coastal development planning along the WAC.

The continued sectoral or piece-meal approaches to managing the WAC has continued to exacerbate coastal vulnerability. When this is combined with the implications of climate change due to global warming, it is likely to get worse (Oppenheimer et al., 2019). The rising and continuing human activities (in form of economic activities, urbanization, resources exploitation, tourism, land use and conversion, infrastructural development) call for new requirements for adaptation. So also, the challenges of new sources and forms of change (climate change, extreme wave events, storm surges, sea-level rise), and the increasing complexity of policy goals (e.g.,

related to the duplicity of responsibilities and acute multi-use conditions). New forms of adaptive
governance that consider the coastal situation and the governance path is therefore necessary
for the WAC.

674

5.2 Strengthening integrated and sustainable management of WACA ecosystems

676 It has been argued that the traditional governance framework is inadequate to ensure the 677 sustainable use of marine and coastal resources and to safeguard the global commons for human 678 wellbeing and intergenerational equity (Borgese, 1999). Besides, more recent developments 679 along global coasts, coupled with future scenarios, further challenge the governance mechanisms 680 and the need for regionally, cross-border coordinated efforts. In the present study, the mPPD 681 framework lays bare important information that helps to connect different processes that occur in 682 the coastal system (Fig. 5). Consequent decoupling of different components of the coastal systems via case studies (Figs 8,9), followed by the construction of the plausible 21st coastal 683 684 scenarios for the WAC (Figs 6,7,10) allows identification of the gaps and where management actions may be necessary. As earlier mentioned, the identified management actions or responses 685 686 constitute an attempt at proffering solutions to those identified issues.

687 Given the importance of the coastal zone to WA populations and the economy of the 688 region at large, there is an urgent need to adopt a long-term management paradigm that promotes 689 sustainable and equitable utilization of coastal resources. However, to safeguard and achieve the 690 sustainable use of the WAC resources, the future coastal governance of this region is faced with a two-directional challenge. The first is to integrate a range of crosscutting local to global 691 692 environmental challenges. These are often associated with unsustainable exploitation and 693 utilization of coastal resources, an increasing population as opposed to earthly diminishing 694 resource, the weakening resilience of natural ecosystems, combined with anthropogenic climate change and variability. The second challenge rests on how to address the complexity of an 695 already overburdened and fragmented coastal system governance. Many activities taking at 696 697 several places on land have consequences on the coast, while the coastal areas are equally 698 under the pressure of competing for land uses (Walsh and Döring, 2018).

This two-directional governance challenge can be achieved in the mPPD framework. First, in the mPPD, a wide range of crosscutting local, regional and global environmental issues occurring in a coastal system can be linked through the instrumentality of press and pulse dynamics (refers to Fig. 5). As shown in Figure 5, the mPPD interlinks the traditional four core PPD framework components (i.e., the press-pulse events, ecological subsystem, ecosystems goods and services, and social subsystem; see Fig. 1) of a complete earth system; and in our

705 case, the coastal system. Thus, the mPPD can be concurrently applied locally, nationally, 706 regionally and globally, e.g., at different scales relevant for ecological processes and potential 707 drivers of change. This shows there is no limit to the scale of application or analysis whether large 708 or small.

709 The second challenge, which dwells on how to address the complexity of an already 710 overburdened and fragmented coastal system governance, is addressed by the mPPD with the 711 coupling of an extra management component (i.e., adaptive actions/ management responses) to 712 the traditional PPD (Fig. 1).

713 The mPPD can accommodate all activities taking at several places on land that have 714 consequences on the coast, even those taking place within the coastal system. For example, the 715 upland river damming. The framework advances understanding on coastal issues that come 716 about, possibly, owing to inadequacy in coastal management apparatuses at governance levels 717 or weak human and institutional capacity or lack of public awareness about coastal issues or low 718 stakeholders' interest in the efficient and sustainable use of the coastal potential and resources. The coastal situation, from the mPPD management viewpoint, focuses on different forms of 719 720 dependencies, observational complexity, and multiplicity of boundaries, supporting each other 721 into a need for policy integration.

722

723

5.3 Management efforts at addressing coastal challenges along the WAC

724 While our study should be considered as a significant contribution towards providing 725 decision-makers with some information and a tool to support integrated coastal zone 726 management, key challenges remain, how to lessen the vulnerability of WAC populations to 727 climate impacts and the implementation of appropriate governance processes for the 728 management of a transition towards a more sustainable coast. Within the WA there are, however, 729 moves to develop a more holistic approach to coastal risks management (UEMOA, 2017), and 730 recently there has been a range of strategies, consultations and planning documents produced 731 that impact the management of the WAC. Notable is the creation of the West African Coast Master 732 Plan (SDLAO) which involves 12 countries (From Mauritania to Nigeria) and the establishment of 733 the West African Regional Coastal Observation (WARCO).

734 The WARCO has the mandate to monitor shoreline and reduce coastal risks in WA and 735 disseminate good quality information among WA advisory and existing decision-making bodies. While the SDLAO is saddled with identifying coastal area issues and national coastal risks in a 736 737 wide context, by emphasizing on inter-State's solidarity and reciprocity for shoreline management. Also, it has the responsibility to identify priority coastal issues and analyze the performance of the 738

government's existing instruments for the management of different issues. Shoreline
 Management Plans include the division of the entire WAC into 179 sectors based on the
 relationship between observed characteristics of coastal sensitivity and local communities' issues
 (UEMOA, 2017).

Other important initiatives include the establishment of the West Africa Coastal Areas Management Program (WACA) in 2015 by the World Bank Group as part of its long-term strategic engagement in the region. The program is designed to improve the livelihoods of WAC communities by reducing the vulnerability of its coastal areas and promoting climate-resilient integrated coastal management. It aims to work with the region's countries to create multi-year, multi-country coastal management initiatives that will be implemented in several stages, in collaboration with other development partners.

750 One of the projects under the WACA program is the \$210 million WACA Resilience Investment Project (WACA ResIP) to address coastal erosion, floods and pollution problems in 751 752 selected target areas of six WA countries of Benin, Cote d'Ivoire, Mauritania, Sao Tome and Principe, Senegal and Togo. The project was developed in collaboration with four regional 753 754 institutions - the West African Economic and Monetary Union (WAEMU), the Abidjan Convention, 755 the Dakar-based Center for Ecological Monitoring (CSE), and the International Union for 756 Conservation of Nature (IUCN). It is jointly funded by the Nordic Development Fund, and the 757 French Facility for Global Environment (FFEM). More partners are joining the effort through a new 758 WACA Platform that has been set up to boost the transfer of knowledge, mobilize additional 759 finance and foster political dialogue among countries, and protect the West African coast. The 760 WACA Platform has created a coastal master plan through the exchange of knowledge, crowding 761 in investments, and political dialogue among countries (World Bank, 2018).

Also, part of the WB's efforts is the setting up of the Africa Centre of Excellence in Coastal Resilience (ACECoR) hosted by the University of Cape Coast (UCC), Ghana to support the development of the technical and scientific capacity of young African professionals to develop integrated solutions to address coastal degradation through short- to long-term professional and academic training programmes.

Besides, when it comes to coastal research and human capacity development, both WA and non-WA research institutions are involved. One of such non-WA research institutions is the Institut de Recherche pour le Développement (IRD; the French National Research Institute for Sustainable Development), an internationally recognized multidisciplinary French research organization. The PSIP research group under the IRD's Oceans, Climate and Resources (OCEANS) Department is training young researchers from WA institutions of which the first author

is a beneficiary. IRD is also jointly working with WB and UCC to develop a coastal Policy Brief forthe WA policymakers.

775 The coastal countries in the region are also making other substantial efforts. For instance, 776 in July 2019, the Environment Ministers to the Abidjan Convention met in Abidjan and deliberated 777 on steps at achieving the conservation and sustainable management of marine and coastal 778 ecosystems. The Abidian Convention provides countries in the region with the tools and 779 information they need to safeguard the fragile coastal ecosystems and the people and biodiversity 780 that depend on them. The 18 Parties to the Convention signed four Protocols designed to improve 781 the management of their respective and collective ocean and coastal zones. The four Protocols 782 are the Pointe-Noire Protocol which provides sustainable approaches to Integrated Coastal Zone 783 Management (ICZM). The Calabar Protocol provides a technical framework to ensure the 784 sustainable management of mangroves. The Malabo Protocol determines minimum standards to 785 combat the risks associated with pollution caused by oil and gas activities. While the Grand-786 Bassam Protocol focuses on regulating the land and atmospheric sources of pollution.

787

788 5.4 The Way Forward- Interdisciplinary approaches

789 Studies have shown that about 40% of the present WA's GDP is generated in coastal 790 provinces, where one-third of the population resides (World Bank, 2018). This is bound to 791 continue. So, whether resources provided by the ecosystem are exploited for local uses or 792 exported, demand for ecosystems goods and services will continue to increase. This will result in 793 overexploitation and activities that will cause further coastal degradation (in terms of erosion and 794 flooding), habitat loss, pollution. Intensity from human use, coupled with the sea-level rise due to 795 climate change, will either lead to moderate or very high or extreme impacts on the WAC 796 ecosystems (Fig. 10).

797 Planning for the future use of the goods and services offered by the coastal ecosystems 798 will continue to be influenced or disturbed by unpredictable events, whether within the social 799 ecosystem or natural ecosystem. Adopting an exploratory and synthetic approach to the three 800 pathways, uncertainties in future, especially drastic changes or surprises, may require greater 801 resilience within the WAC systems. It will be beneficial to follow plausible future shocks and 802 integrate anticipatory adaptive actions and dynamic, sustainable management policies in 803 responses as the situation may require. There is a need to initiate a scenario-based approach 804 within future science policy fora of the WACA Platform and WARCO regarding the management 805 of WAC resources, to detail future anticipation using interdisciplinary approaches, to define the 806 key challenges and risks facing policies, marine- and coastal-related interdisciplinary research

and development in the WAC region in the next century. This will allow more informed anticipation
 of the management, research and policy need in various sectors, over the medium and long terms.

809 Most of the management efforts at addressing WAC challenges are sectoral-oriented and designed to address specific environmental problems. These management interventions are 810 concentrated at the coastal zone, and their design and configuration do not usually account for 811 linkages between the realms (land-coast interactions). To compound matter, most anthropogenic 812 813 pressures, including land-based activities, that translate into ecological and socio-economic 814 challenges at the coast are possibly located far from their source or in jurisdictional areas under 815 different governance regimes. Yet these coastal-related activities are regulated and managed by 816 sector-specific rules and bodies that are not designed to consider cumulative and transboundary 817 impacts or cannot consider impacts on coastal ecosystems.

818 According to Wilson et al. (2005), the critical role of managing a natural environment in 819 conservation management is to mitigate or prevent proximate threats. Coastal management 820 involves the consideration of cross-system threats that can have significant impacts on coastal 821 ecosystems. Incorporating cross-system threats into the coastal management plan entails 822 identifying those threats that are most critical for coastal and marine conservation and mapping 823 their sources and zones of influence, and also evaluating their magnitude and potential impacts 824 (Álvarez-Romero et al., 2011). Thus, an assessment of both single-realm and cross-system 825 threats is necessary for sustainable coastal management of the region. This may require 826 strengthening collaboration among countries involved.

827 Our scenario analysis (Figs 6, 7, 10) identified 'governance' as the key driver to 828 sustainable management and conservation planning of the WAC and its resources. Presently, the 829 coastal governance and institutional structures at different levels in the region are weak and 830 fragmented. This fragmentation is obvious in the sectoral institutions set up for the management 831 of the different human activities and jurisdictional differences. While specialization of regulation is needed to manage specific sectors, the lack of coordination between sectoral approaches makes 832 833 it difficult to achieve integrated management of pressures from various impacts and activities or 834 to assess their cumulative effects. This also complicates the implementation of integrative 835 horizontal policies for sustainable coastal development.

Therefore, strengthening and integrating coastal governance at all levels and across all actors is necessary to achieve sustainable management goals. All institutions and actors in the region should be adequately equipped to coordinate or cooperate across sectors and achieve effective measures, or to translate important sustainability principles, such as the ecosystem approach, or transparent and inclusive decision-making processes, into practice.

841 6. Conclusions and closing remarks

The mPPD-CSES framework presented in this study is a simplified representation of the links between human and overwhelmingly natural coastal ecosystems. It is grounded by the interdisciplinary and cross-cultural understanding crucial to bring together the information of a wide range of knowledge systems and stakeholders on the status, trends and vulnerabilities of the coastal ecological systems, what to do about them now and what to expect in the future.

We evidenced that by helping to identify the important components and interactions that 848 849 are the causes of and solutions to detrimental changes in the CSES and subsequent loss of their ecological benefits to present and future generations, the mPPD framework has 850 851 the potential to be useful with no limit to the scale of application or analysis, whether large or small. In this context, the mPPD-CSES framework can be used to investigate how the 852 ecosystems can experience different (intensities of) press as well as different frequencies 853 of pulse and, consequently, different impacts on their integrity and functionality, and 854 articulate the plausible future reciprocal relationship between the natural- and social sub-855 systems within the coastal to understand changes and the pathways to successful coastal 856 857 zone management and adaptation.

For the WAC ecosystems to be managed sustainably, there is a need to follow a plausible 858 future pathway that integrates anticipatory adaptive actions and dynamic, and sustainable 859 management policies in responses as the situation may require. There is also a need to 860 initiate a scenario-based approach within future science policy fora of the WACA Platform 861 and WARCO regarding the management of WAC resources, to detail future anticipation 862 863 using interdisciplinary approaches, to define the key challenges and risks facing policies, marine- and coastal-related interdisciplinary research and development in the WAC 864 region in the next century. This will allow more informed anticipation of the management, 865 866 research and policy need in various sectors of the region, over the short, medium and 867 long terms.

868

869 Acknowledgements

This work was carried out as part of the IRD PSIP-Littoral Project for the study of coastal vulnerability in West Africa through the construction of an interdisciplinary model and capacity building. The first author is grateful to the IRD for granting him a postdoctoral fellowship.

873 **References**

- Abessolo,G.O, Almar, R., Jouanno, J., Bonou, F., Castelle, B. and Larson, M., 2020. Beach adaptation to intraseasonal sea level changes. Environ. Res. Commun. 2 051003
- Almar, R., Kestenare, E., Reyns, J., Jouanno, J., Anthony, E.J., Laibi, R., Hemer, M., Du Penhoat,
 Y. and Ranasinghe, R., 2015. Response of the Bight of Benin (Gulf of Guinea, West Africa)
 coastline to anthropogenic and natural forcing. Part 1: Wave Climate variability and
 impacts on the longshore sediment transport. J. Cont. Shelf Res. 110, 48–59.
- Almar, R., Kestenare, E. and Boucharel, J., 2019. On the key influence of remote climate
 variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the
 Senegalese coast (West Africa). Environ. Res. Commun. 1, 071001.
- Álvarez-Romero, J.G., Pressey, R.L., Ban, N.C., Vance-Borland, K., Willer, C., Klein, C.J.,
 Gaines, S.D., 2011. Integrated land-sea conservation planning: the missing links. Annu.
 Rev. Ecol., Evol., Syst., 42 (1), pp. 381-40.
- Alves, B., Angnuureng, D.B., Morand, P. and Almar, R., 2020. A review on coastal erosion and
 flooding risks and best management practices in West Africa: what has been done and
 should be done. J Coast Conserv 24, 38. https://doi.org/10.1007/s11852-020-00755-7
- Appeaning Addo, K., 2013. Shoreline morphological changes and the human factor. Case study of Accra Ghana. J Coast Conserv 17, 85–91.
- Appeaning Addo, K., Larbi, L., Amisigo, B., Ofori-Danson, P.K., 2011. Impacts of coastal inundation due to climate change in a cluster of urban coastal communities in Ghana, West Africa. Remote Sensing 3(9), 2029-2050.
- Appeaning Addo K., 2009. Detection of coastal Erosion hotspots in Accra, Ghana. Journal of Sustainable Development in Africa 11(4), 253–265
- Appeaning Addo, K., 2015. Monitoring sea level rise-induced hazards along the coast of Accra in
 Ghana. Natural Hazards 78(2), 1293-1307.
- Andrieu, J., 2018. Land cover changes on the West-African coastline from the Saloum Delta
 (Senegal) to Rio Geba (Guinea-Bissau) between 1979 and 2015. European Journal of
 Remote Sensing 51 (1), 314–325.
- Andrieu, J. and Mering, C., 2008. Cartographie par télédétection des changements de la couverture végétale sur la bande littorale ouest-africaine: exemple des Rivières du
 Sud du delta du Saloum au Rio Geba. Télédétection, 8 (2), pp. 93-118.
- Andrieu, J., Lombard, F., Fall, A., Thior, M., Ba, B. D., & Dieme, B. E. A, 2020. Botanical fieldstudy and remote sensing to describe mangrove resilience in the Saloum Delta (Senegal) after 30 years of degradation narrative. Forest Ecology and Management 461, 117963.
- Andrieu, J., et al., 2019. Correctly assessing forest change in a priority West African mangrove
 ecosystem: 1986–2010 an answer to Carney et al. (2014) paper "Assessing forest change
 in a priority West African mangrove ecosystem: 1986–2010". In: Remote Sensing
 Applications: Society and Environment, 13, 337–347.
- Angnuureng, D.B., Appeaning, A.K., Wiafe, G., 2013. Impact of sea defense structures on Downdrift coasts: the case of Keta in Ghana. Acad J Environ Sci 1(6),104–121.
- Angnuureng, D.B., Appeaning Addo, K., Almar, R., et al., 2017. Influence of sea level variability
 on a microtidal beach. Nat. Hazards 93 (3), 1611-1628.
- Anthony, E.J., Almar, R., Aagaard, T., 2016. Recent shoreline changes in the Volta River delta,
 West Africa: the roles of natural processes and human impacts. Afr. J. Aquat. Sci. 41 (1),
 81-87.
- Anthony, E.J., 2015. Patterns of sand spit development and their management implications on deltaic, drift-aligned coasts: the cases of the Senegal and Volta River delta spits, West

- 920 Africa. In: Randazzo, G., Cooper, J.A.G. (Eds.), Sand and Gravel 921 Spits. Coastal Research Library Series 12. Springer, pp. 21-36.
- Anthony, E.J. and Blivi, A.B., 1999. Morpho-sedimentary evolution of a delta-sourced, drift-aligned sand barrier-lagoon complex, western Bight of Benin. Mar. Geol. **158**, 161–176.
- Anthony, E.J., Almar, R., Besset, M., et al., 2019. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part 2: Sources and patterns of sediment supply, sediment cells, and recent shoreline change. Cont. Shelf Res. 173, 93–103.
- Badmos, O., Rienow, A., Callo-Concha, D., Greve, K., & Jürgens, C., 2018. Urban Development
 in West Africa- Monitoring and Intensity Analysis of Slum Growth in Lagos: Linking Pattern
 and Process. Remote Sensing, 10(7), 1044. doi:10.3390/rs10071044
- Barry, B., 2009. Development of mangrove paddy fields in Casamance southern Senegal. Nat.
 Faune 24 (1), 96–102.
- Biasutti, M., 2019. Rainfall trends in the African Sahel: Characteristics, processes, and causes. Wiley Interdisciplinary Reviews: Climate Change, *e591*.
- Biggs, R., C. Raudsepp-Hearne, C. Atkinson-Palombo, E. Bohensky, E. Boyd, G. Cundill, H. Fox,
 S. Ingram, K. Kok, S. Spehar, M. Tengö, D. Timmer, and M. Zurek., 2007. Linking futures
 across scales: a dialogue on multiscale scenarios. *Ecology and Society* 12(1), 17.
- Binder, C. R., Hinkel, J., Bots, P. W. G. and Pahl-Wostl, C., 2013. Comparison of frameworks
 for analyzing social-ecological systems. Ecology and Society 18(4), 26.
- Boone, A. A., Xue, Y., De Sales, F., Comer, R. E., Hagos, S. M., Mahanama, S., ... Mechoso,
 C. R., 2016. The regional impact of land-use landcover change (LULCC) over West
 Africa from an ensemble of global climate models under the auspices of the WAMME2
 project. Climate Dynamics, 47(11), 3547–3573.
- Borgese, E.M., 1999. Global civil society: lessons from ocean governance. Futures, 31 (9–10), 945 983-991.
- Broderick K. 2008. Adaptive management for water quality improvement in the great barrier reef catchments: learning on the edge. *Geogr. Res.* 46, 303–13.
- Burdon, D., Boyes, S.J., Elliott, M., Smyth, K., Atkins, J.P., Barnes, R.A., Wurzel, R.K., 2018.
 Integrating natural and social sciences to manage sustainably vectors of change in the marine environment: Dogger Bank transnational case study. Estuarine, Coastal and Shelf
 Science 201, 234-247.
- Butler, C. D., and W. Oluoch-Kosura. 2006. Linking future ecosystem services and future human
 wellbeing. *Ecology and Society* 11(1), 30.
- Carpenter, S. R., E. M. Bennett, and Peterson, G. D., 2006. Scenarios for ecosystem services:
 an overview. *Ecology and Society* 11(1), 29.
- Collins S.L., Carpenter S.R., Swinton, S.M., Orenstein DE, Childers, D.L., et al., 2011. An
 integrated conceptual framework for long-term social-ecological research. Frontiers in
 Ecology and the Environment 9, 351–357.
- Conchedda, G., Lambin, E.F., Mayaux, P., 2011. Between land and sea: livelihoods and
 environmental changes in mangrove ecosystems of Senegal. Ann. Assoc. Am. Geogr.
 101 (6), 1259-1284.
- Cormier-Salem, M.-C. (ed.), 1999. Rivières du Sud: sociétés et mangroves ouest africaines, Vol.
 1. Paris: éd. de l'I. R. D., pp. 416.
- Cormier-Salem, M.C. and Panfili, J., 2016. Mangrove reforestation: greening or grabbing coastal
 zones and deltas? Case studies in Senegal, African Journal of Aquatic Science 41(1), 89 98.
- Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill

- 968 RV, Paruelo J, et al. 1997. The value of the world's ecosystem services and natural capital. 969 Nature. 387, 253–260.
- Costanza R, Groot R, De, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I., Farber S.,
 Turner R.K. 2014. Changes in the global value of ecosystem services. Global Environ
 Change. 26, 152–158.
- Croitoru, L., Miranda, J. J., and Sarraf, M., 2019. The cost of coastal zone degradation in West
 Africa: Benin, Côte d'Ivoire, Senegal and Togo. World Bank, Washington, DC.
- Dada, O.A., Qiao, L.L., Ding, D., Li, G.X., Ma, Y.Y., Wang, L.M., 2015. Evolutionary trends of the
 Niger Delta shoreline during the last 100 Years: Responses to rainfall and river discharge.
 Marine Geology 367, 202-211.
- Dada, O.A., Li, G.X., Qiao, L.L., Ding, D., Ma, Y.Y., Xu J.S., 2016a. Seasonal shoreline
 behaviours along the arcuate Niger Delta coast: Complex interaction between fluvial and
 marine processes. Continental Shelf Research 122, 51-67.
- Dada, O.A., Li, G., Qiao, L.L., Asiwaju-Bello, Y.A., Anifowose, A.Y.B., 2018. Recent Niger Delta
 shoreline response to Niger River hydrology: Conflict between force of Nature and
 Humans. J. African Earth Sciences 139 (03), 222-231.
- Dada, O.A., Almar, R. and Oladapo, M.I., 2020. Recent coastal sea-level variations and flooding
 events in the Nigerian Transgressive Mud coast of Gulf of Guinea. Journal of African Earth
 Sciences 161,103668.
- Dada, O.A., Agbaje, A.O., Adesina, R.B., Asiwaju-Bello, Y.A., 2019. Effect of coastal land
 use change on coastline dynamics along the Nigerian transgressive Mahin mud coast.
 J. Ocean. Coast. Manag. 168, 251–264.
- Dada, O.A., Li, G.X., Qiao, L.L., Ding, D., Ma, Y.Y., Xu J.S., Li, P., Yang, J., 2016b. Response
 of wave and coastline evolution to global climate change off the Niger Delta during the
 past 110 years. Marine Systems 160, 64-80.
- de Andrés M, Barragán JM, Scherer M. 2018. Urban centres and coastal zone definition: which
 area should we manage?. Land Use Policy. 71:121–128.
- de Boer, W., Mao, Y., Hagenaars, G., de Vries, S., Slinger, J. and Vellinga, T., 2019. Mapping
 the sandy beach evolution around seaports at the scale of the African Continent. J. Mar.
 Sci. Eng. 7, 151.
- Denis, E, and Moriconi-Ebrard, F., 2009. Urban growth in West Africa: from explosion to proliferation. La Chronique du CEPED, 2009, pp.1-5.
- 1000 Descroix, L., Diongue Niang, A., Panthou, G., Bodian, A., Sané, T., Dacosta, H., Malam
 1001 Abdou, M., Vandervaere, J.-P., Quantin, G., 2015. Evolution Récente de la Mousson en
 1002 Afrique de l'Ouest à Travers Deux Fenêtres (Sénégambie et Bassin du Niger Moyen).
 1003 Climatologie 12, 25-43.
- Dia Ibrahima, M., 2012. Vulnerability Assessment of Central Coast Senegal (Saloum) and The
 Gambia Marine Coast and Estuary to Climate Change Induced Effects. Coastal
 Resources Center and WWF-WAMPO, University of Rhode Island, pp. 40
- 1007Dièye, E.B., Diaw, A.T., Sané, T., Ndour, N., 2013. Dynamique de la mangrove de l'estuaire du1008Saloum (Sénégal) entre 1972 et 2010. Dynamics of the Saloum estuary mangrove1009(Senegal) from 1972 to 2010. Cybergeo. Eur. J. Geogr. Environ. Nat. Environ. Nat.1010Paysage.
- Diop, E.S., Soumare, A., Diallo, N., Guisse, A., 1997. Recent changes of the Saloum River
 Estuary. Mangrove Salt Marshes 1 (3), 163-172.
- Diop S., Fabres J., Pravettoni R., Barusseau JP., Descamps C., Ducrotoy JP., 2014. The Western
 and Central Africa Land-Sea Interface: A Vulnerable, Threatened, and Important Coastal
 Zone Within a Changing Environment. In: Diop S., Barusseau JP., Descamps C. (eds)
 The Land/Ocean Interactions in the Coastal Zone of West and Central Africa. Estuaries of
 the World. Springer, Cham. https://doi.org/10.1007/978-3-319-06388-1_1

- 1018Diop, S., Arthurton, R., Scheren, P., Kitheka, J., Koranteng, K., Payet, R., 2011. The coastal and1019marine environment of Eastern and Western Africa: challenges to sustainable1020management and socioeconomic development. E. Wolanski, D.S. McLusky (Eds.),1021Treatise on Estuarine and Coastal Science, vol. 11, Academic Press, Waltham (2011), pp.1022315-335
- 1023 Ebisemiju, F.S., 1987. An Evaluation of factors controlling present rate of shoreline retrogradation 1024 in the Western Niger Delta Nigeria. Catena 14 (1–3).
- 1025 Ekundayo, EO and Obuekwe, CO. 2001. Effects of an oil spill on soil physico-chemical properties
 1026 of a spill site in a typic udipsamment of the Niger delta basin of Nigeria. Environ Manag
 1027 Assess, 60(2), 235–249.
- Feka, Z.N. and Morrison, I., 2017. Managing mangroves for coastal ecosystems change: A
 decade and beyond of conservation experiences and lessons for and from west-central
 Africa. Journal of Ecology and The Natural Environment. 9(6), 99-123.
- Feka, N.Z. and Ajonina, G.N., 2011. Drivers causing decline of mangrove in West-Central Africa:
 a review, International Journal of Biodiversity Science, Ecosystem Services &
 Management, 7(3), 217-230, DOI: 10.1080/21513732.2011.634436
- Failler, P., Touron-Gardic, G., Drakeford, B., Sadio, O., and Traoré, M.-S., 2020b. Perception of threats and related management measures: The case of 32 marine protected areas in West Africa. Marine Policy 117, 103936.
- Failler, P., Touron-Gardic, G., Sadio, O., and Traoré, M.-S., 2020a. Perception of natural habitat
 changes of West African marine protected areas. Ocean & Coastal Management 187,
 105120.
- 1040 Fent, A., Bardou, R., Carney, J., and Cavanaugh, K., 2019. *Transborder political ecology of* 1041 *mangroves in Senegal and The Gambia. Global Environmental Change* 54, 214–226.
- Gain AK, Ashik-Ur-Rahman M, Vafeidis A., 2019. Exploring human-nature interaction on the
 coastal floodplain in the Ganges-Brahmaputra delta through the lens of Ostrom's social ecological systems framework. Environ Res Commun. 1(5):051003.
- Gain AK, Hossain MS, David B, Giuliano DB, Giupponi C, Huq N., 2020. Social-ecological
 system approaches for water resources management. Int J Sustainable Dev World Ecol.
 1–16.
- Gallopín, G.C. and Raskin, P, 1998. Windows on the Future: Global Scenarios and Sustainability,
 Environment: Science and Policy for Sustainable Development 40 (3), 6-11.
- Gallopín, G. C. 1991. Human dimensions of global change: linking the global and local
 processes. *International Social Science Journal* 43(4), 707-718.
- 1052 Gallup, L., Sonnenfeld, D. A., & Dahdouh-Guebas, F., 2019. *Mangrove use and management within the Sine-Saloum Delta, Senegal. Ocean & Coastal Management, 105001.*
- Gari, S.R., Newton, A., Icely, J.D., 2015. A review of the application and evolution of the DPSIR
 framework with an emphasis on coastal social-ecological systems. Ocean & Coastal
 Management 103, 63-77.
- Gautier, D., Denis, D., & Locatelli, B., 2016. Impacts of drought and responses of rural populations
 in West Africa: a systematic review. Wiley Interdisciplinary Reviews: Climate Change 7(5),
 666-681.
- Giardino, A., Schrijvershof, R., Nederho, C., De Vroeg, H., Brière, C., Tonnon, P. K., Caires, S.,
 Walstra, D., Sosa, J., and Van Verseveld, W., 2017. A quantitative assessment of human
 interventions and climate change on the West African sediment budget. Ocean. Coast.
 Manag. 156, 249–265.
- 1064 Goussard JJ., Ducrocq M., 2014. West African Coastal Area: Challenges and Outlook. In: Diop 1065 S., Barusseau JP., Descamps C. (eds) The Land/Ocean Interactions in the Coastal Zone of West
 - 37

- 1066and Central Africa. Estuaries of the World. Springer, Cham. https://doi.org/10.1007/978-3-319-06388-1_2
- 1068 Guerrero, A. M., N. J. Bennett, K. A. Wilson, N. Carter, D. Gill, M. Mills, C. D. Ives, M. J. Selinske,
- 1069 C. Larrosa, S. Bekessy, F. A. Januchowski-Hartley, H. Travers, C. A. Wyborn, and A. Nuno. 2018.
 1070 Achieving the promise of integration in social-ecological research: a review and
 1071 prospectus. Ecology and Society 23(3), 38. https://doi.org/10.5751/ES-10232-230338
- 1072 Güneralp, B., Lwasa, S., Masundire, H., Parnell, S., and Seto, K., 2017. Urbanization in Africa: 1073 challenges and opportunities for conservation. Environ. Res. Lett. 13 015002
- Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X,
 Lonescu C, Levermann A. 2014. Coastal flood damage and adaptation costs under 21st
 century sea-level rise. Proc Natl Acad Sci U S A. 111:3292–3297.
- 1077 Hinrichsen D. 1998. Coastal waters of the world. Trends, threats, and strategies. Washington (DC): Island Press.
- Hofmann, J., Behrendt, H., Gilbert, A., Janssen, R., Kannen, A., Kappenberg, J., Lenhart, H.,
 Lise, W., Nunneri, C. and Windhorst, W., 2005. Catchment–coastal zone interaction based
 upon scenario and model analysis: Elbe and the German Bight case study. Regional
- Hossain, M.S., Gain, A.K. and Rogers, K.G., (2020). Sustainable coastal social-ecological
 systems: how do we define "coastal"?, International Journal of Sustainable Development
 & World Ecology, 27(7), 577-582.
- 1085 Ibe, A. C., and L. F. Awosika. 1991. Sea level rise impact on African coastal zones. In *A change* 1086 *in the weather: African perspectives on climate change*, ed. S.H. Omide and C. Juma,
 1087 105-12. Nairobi, Kenya: African Centre for Technology Studies.
- IPCC, 2014. Coastal systems and low-lying areas: contribution of working group II. In: Field CB, Barros VR, Dokken DJ, Mach KJD, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC et al., editors. Climate Change 2014: impacts, adaptation, and vulnerability. part a: global and sectoral aspects: fifth assessment report of the intergovernmental panel on climate change. Cambridge, p. 361–409.
- IPCC, 2018. Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report
 on the impacts of global warming of 1.5°C above pre-industrial levels and related global
 greenhouse gas emission pathways, in the context of strengthening the global response
 to the threat of climate change, sustainable development, and efforts to eradicate
- 1097 poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, 1098 A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y.
- 1099 Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)].
 1100 World Meteorological Organization, Geneva, Switzerland, 32 pp.
- 1101 IPCC., 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Edited Ρ. 1102 bv H.O. Pörtner. D.C. Roberts. V. Masson-Delmotte. Zhai. M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. 1103 1104 Rama, and N. Weyer. In press.
- Jonah, F.E., Agbo, N.W., Agbeti, W., Adjei-Boateng, D. and Shimba, M.J., 2015. The ecological
 effects of beach sand mining in Ghana using ghost crabs (Ocypode species) as biological
 indicators. Ocean & Coastal Management 112, 18-24.
- Kaki, C.; Laïbi, R.A.; Oyédé, L.M., 2011. Evolution of Beninese coastline from 1963 to 2005:
 Causes and consequences. Br. J. Environ. Clim. Chang. 1, 216–231.
- Karageorgis, A.P., Kapsimalis, V., Kontogianni, A., Skourtos, M., Turner, K.R., and Salomons,
 W., 2006. Impact of 100-Year Human Interventions on the Deltaic Coastal Zone of the
 Inner Thermaikos Gulf (Greece): A DPSIR Framework Analysis. Environmental
 Management, 38(2), 304-315.

- Laïbi, R.A., Anthony, E.J., Almar, R., Castelle, B., Senechal, N., and Kestenare, E., 2014.
 Longshore drift cell development on the human-impacted Bight of Benin sand barrier coast, West Africa. J. Coast. Res. 78–83.
- 1117 Ledoux, L., Beaumont, N., Cave, R. and Turner, R.K., 2004. Scenarios for integrated river 1118 catchment and coastal zone management. Reg Environ Change **5**, 82-96 (2005).
- Lewis, K. and C. Buontempo, C., 2016. Climate Impacts in the Sahel and West Africa: The Role
 of Climate Science in Policy Making", <u>http://dx.doi.org/10.1787/5jlsmktwjcd0-en</u>
 <u>Resilient Coasts (worldbank.org)</u>
- Liu, Z., Fagherazzi, S. and Cui, B., 2021. Success of coastal wetlands restoration is driven by sediment availability. Commun Earth Environ 2, 44.
- Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX,
 Peterson CH, Jackson JBC., 2006. Depletion, degradation, and recovery potential of
 estuaries and coastal seas. Science. 312:1806–1809.
- Ly, C.K., 1980. The role of the Akosombo Dam on the Volta River in causing erosion in central and eastern Ghana (West Africa). J. Mar. Geol. 35, 323–332.
- Marti, F., Cazenave, A., Birol, F., Marcello Passaro, P., Fabien Le ´ger, F., Nin˜o, F., Almar, R.,
 Benveniste, J., and Legeais, J.F., 2019. Altimetry-based sea level trends along the coasts
 of Western Africa. Advances in Space Research,
 https://doi.org/10.1016/j.asr.2019.05.033.
- 1133 MEA, 2005. Ecosystems and Human Well-Being: Biodiversity Synthesis, 100pp.
- 1134 Melet, A., Almar, R., Meyssignac, B., 2016. What dominates sea level at the coast: a case study 1135 for the Gulf of Guinea. Ocean Dyn. **66**, 623-636.
- Merkens, J-L., Reimann, L., Hinkel, J., Vafeidis, A.T., 2016. Gridded population projections for
 the coastal zone under the Shared Socioeconomic Pathways. Global and Planetary
 Change 145, 57–66
- Moss RH, Edmonds JA, Hibbard K, Manning M, Rose SK et al., 2010. The next generation of
 scenarios for climate change research and assessment. Nature 463, 747 -756.
 https://doi.org/10.1038/nature08823
- 1142 Ndour, A., Laïbi, R., Sadio, M., Degbé, C.D.E., Diaw, A.T., Oyédé, L.M., Anthony, E.J., 1143 Dussouillez, P., Sambou, H., Dièye, E.H.B., 2018. Management strategies for coastal
- erosion problems in West Africa: Analysis, issues, and constraints drawn from examples from Senegal and Benin. Ocean Coast. Manag. 156, 92–106.
- 1146 Newton, A., 2012. A systems approach for sustainable development in coastal zones. Ecol. Soc.
 1147 17 (3), 41.
- Nicholls, R.J., Tol, R.S.J., 2006. Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philosophical Transactions of the Royal Society, London A 364, 1073–1095
- Nicholson SE, Some B, Kone B., 2000. An analysis of recent rainfall conditions in West Africa,
 including the rainy seasons of the 1997 El Nino and the 1998 La Nina years. Journal of
 Climate 13, 2628-2640.
- Nicholson, S.E., 2005. On the question of the "recovery" of the rains in the West African Sahel. J.
 Arid Environ. 63 (3), 615-641.
- 1156 Nicholson, S.E., 2013. The West African Sahel: A review of recent studies on the rainfall regime 1157 and its interannual variability. *ISRN Meteorol.* 453521.
- 1158 Nielsen, J. and Reenberg, A., 2010. Temporality and the problem with singling out climate as a 1159 current driver of change in a small West African village. J Arid Environ **74**, 464-474.
- Nouaceur, Z., and Murarescu, O., 2020. Rainfall Variability and Trend Analysis of Rainfall in West
 Africa (Senegal, Mauritania, Burkina Faso), Water **12**(6), (1754).
- Olsen, S.B., 2003. Frameworks and indicators for assessing progress in integrated coastal
 management initiatives. Ocean Coast. Manag. 46, 347-361.

O'Neill BC, Carter TR, Ebi K, Harrison PA, Kemp-Benedict E et al., 2020. Achievements and
 needs for the climate change scenario framework. Nat Clim Chang.
 <u>https://doi.org/10.1038/s41558-020-00952-0</u>

1167 Oppenheimer, M., B.C. Glavovic, J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai,

- M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac,
 and Z. Sebesvari, 2019: Sea Level Rise and Implications for Low-Lying Islands, Coasts
 and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing
 Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E.
 Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M.
 Weyer (eds.)]. In press.
- Ostrom, E. 2009. A general framework for analyzing sustainability of social-ecological systems.
 Science 325, 419-422. <u>http://dx.doi.org/10.1126/science.1172133</u>
- Ouikotan, R., J. V. Der Kwast, A. Mynett, and A. Afouda, 2017. "Gaps and Challenges of Flood
 Risk Management in West African Coastal Cities." Paper presented at the Proceedings of
 the XVI World Water Congress, Cancun Quintana Roo.
- 1179 Ozer P, Hountondji YC, de Longueville F., 2017. Evolution récente du trait de côte dans le golfe 1180 du Bénin. Exemples du Togo et du Bénin. Geo-Eco-Trop Numéro Spécial 41(3), 529–541
- 1181 Ozer, P., Erpicum, M., Demarée, G., Vandiepenbeeck., 2003. The Sahelian drought may have 1182 ended during the 1990s. Hydrol. Sci. J. **48** (3), 489-492.
- Peterson, G. D., Beard Jr., T. D., Beisner, B. E., Bennett, E. M., Carpenter, S. R., Cumming, G.
 S., Dent, C. L. and Havlicek, T. D., 2003. Assessing future ecosystem services: a case
 study of the Northern Highlands Lake District, Wisconsin. Conservation Ecology 7(3): 1.
- Petrosillo, I., Aretano, R., Zurlini, G., 2015. Socioecological Systems. Encycl. Ecol. (Second Ed.),
 4, 419–425.
- Rangel-Buitrago, N.G., Anfuso, G., Williams, A.T., 2015. Coastal erosion along the Caribbean
 coast of Colombia: magnitudes, causes, and management. Ocean Coast. Manag. 114,
 129-144.
- 1191 Rogelj, J., Meinshausen, M., and Knutti, R., 2012. Global warming under old and new scenarios 1192 using IPCC climate sensitivity range estimates. Nature climate.
- Ruttan, V.W., 1999. The transition to agricultural sustainability. Proc. National Acad. Sci., 96,
 5960-5967.
- Sadio, M., Anthony, E.J., Diaw, A.T., Dussouillez, Ph., Fleury, J.T., Kane, A., Almar, R.,
 Kestenare, E., 2017. Shoreline changes on the wave-influenced Senegal River delta,
 West Africa: the roles of natural processes and human interventions. Water 9(5) 357, 117. https://doi.org/10.3390/w9050357.
- Sarkar S, Pressey RL, Faith DP, Margules CR, Fuller T, et al. 2006. Biodiversity conservation
 planning tools: present status and challenges for the future. *Annu. Rev. Environ. Res.* 31,
 123–59.
- Sakho, I., Mesnage, V., Deloffre, J., Lafite, R., Niang, I., Faye, G., 2011. The influence of natural and anthropogenic factors on mangrove dynamics over 60 years: The Somone Estuary, Senegal. Estuarine, Coastal and Shelf Science 94, 93-101.
- Schlüter, Achim, Partelow, Stefan, Torres-Guevara, Luz Elba and Jennerjahn, Tim C., 2019.
 Coastal commons as social-ecological systems. In: Routledge Handbook of the Study of the Commons., ed. by Hudson, B, Rosenbloom, J and Cole, D. Routledge, London, pp.
 170-187. ISBN 9781315162782 DOI <u>https://doi.org/10.4324/9781315162782-14</u>.
- 1209 Spalding, M., Kainuma, M., Collins, L., 2010. World Atlas of Mangroves. Earthscan, London.
- 1210 Temudo, M.P. and Cabral, A.I., 2017. 'The social dynamics of mangrove forests in Guinea Bissau, 1211 West Africa', human ecology. Hum. Ecol. **45** (3), 307-320.

- 1212Sutton-Grier, A. E., Wowk, K., & Bamford, H., 2015. Future of our coasts: The potential for natural1213and hybrid infrastructure to enhance the resilience of our coastal communities, economies1214and ecosystems. Environmental Science & Policy, 51, 137–1215148. doi:10.1016/j.envsci.2015.04.006
- Taylor, C. M., Belušic, D., Guichard, F., Parker, D. J., Vischel, T., Bock, O., ... Panthou, G.
 (2017). Frequency of extreme Sahelian storms tripled since 1982 in satellite observations.
 Nature, 544(7651), 475–478.
- Tendeng, M., Ndour, N., Sambou, B., Diatta, M., Aouta, A., 2016. Dynamique de la mangrove du marigot de Bignona autour du barrage d'Affiniam (Casamance, Sénégal) Int. J. Biol.
 Chem. Sci. 10 (2), 666-680.
- Turner R.K., 2005. Integrated environmental assessment and coastal futures. In: Vermaat J.,
 Salomons W., Bouwer L., Turner K. (eds) Managing European Coasts. Environmental
 Science. Springer, Berlin, Heidelberg.
- Turner, B. L., R. E. Kasperson, P. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, N. Eckley,
 J. X. Kasperson, A. Luers, M. L. Martello, C. Polsky, A. Pulsipher, and A. Schiller. 2003.
 A framework for vulnerability analysis in sustainability science. *Proceedings of the National Academy of Sciences* 100(14), 8074-8079.
- UEMOA, 2011. Regional study for shoreline monitoring and drawing up a management schemefor the West African Coastal Area. 16p.
- 1231 UEMOA, 2017. Assessment 2016 West Africa coastal areas. General Document, 148p.
- Ungera, S., Neumann, B. and Botelera, B., 2020. Improving the international ocean governance
 framework. EU International Ocean Governance Forum. Discussion paper for Thematic
 Working Group 1. https://webgate.ec.europa.eu/maritimeforum/en/system/files/iog discussions-paper-twg1.pdf (Accessed: 02 March 2021).
- Valiela, I., Bowen, J.L., York, J.K., 2001. Mangrove forests: One of the world's threatened major tropical environments. *Bioscience* 51, 807–815.
- 1238 Walsh, C., and Döring, M., 2018. Cultural geographies of coastal change Area, 50 (2), 146-149
- Willcock S, Hossain MS, Poppy G. 2016. Managing complex systems to enhance sustainability.
 In: Solan M, Whiteley N, editors. Stressors in the marine environment: physiological and
 ecological responses. Oxford University Press; p. 301–312.
- 1242 Wilson K, Pressey RL, Newton A, Burgman M, Possingham H, Weston C. 2005. Measuring and 1243 incorporating vulnerability into conservation planning. *Environ. Manag.* 35, 527–43.
- World Bank, 2020. Effects of climate change on coastal erosion and flooding in Benin, Côte
 d'Ivoire, Mauritania, Senegal, and Togo. World Bank Technical Report May 2020, 127p.
- 1246 World Bank, 2018. WACA-Brochure.
- 1247 http://pubdocs.worldbank.org/en/672821541605032147/41249-WACA-Brochure-2018.pdf
- 1248 (Accessed: 02 March 2021).
- 1249