Critical Success Factors of the ReefTEMPS sensors-oriented environmental information system for a real operationality.

Fiat Sylvie, Régis Hocdé, David Varillon, Antoine de Ramon N'yeurt, Jérôme

Aucan

To cite this version:

Fiat Sylvie, Régis Hocdé, David Varillon, Antoine de Ramon N'yeurt, Jérôme Aucan. Critical Success Factors of the ReefTEMPS sensors-oriented environmental information system for a real operationality.. Geospatial Sensing Conference, Sep 2019, Münster, Germany. ird-03245731

HAL Id: ird-03245731
https://ird.hal.science/ird-03245731
Submitted on 2 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Presentation
Sylvie FIAT
UMR ENTROPIE IRD

Team collaboration
Régis Hocdé,
David Varillon,
Antoine De Ramon
N'Yeurt,
Jérôme Aucan

Critical Success Factors

of the
ReefTEMPS
sensors-oriented
environmental information system for a real operationality

Component of the French

 Seashore and Coastal Research Infrastructure
marbec

ReefTEMPS

Network of coastal oceanic sensors
since 1953

4 data management sub-networks

CUSP N〇C
\square Global ReefTEMPS pacific zone

- Institute of Research for Sustainable Development
- University of South Pacific
- South Pacific Community
- University of New Caledonia

164

History

More than 60 years of data collection

7
physical
parameters
> Temperature, sea pressure, salinity, wave, furbidity, conductivity
> Global warming, Lagoon water circulation, Tsunamis, Coral bleaching, Algae proliferation, decision manager

Live

Data cycle

60s / 30mins acquisition rates
> NetCDF following Climate and Forecast (CF) Convention and OceanSites Data Format Reference
> Data qualification includes manual and automatic controls

Catalog with ISO19115 and Marine Community Profile

Metadata and dataset identified by DOls

Reference in international catalogs

Open and normalized

Interoperable

Be interoperable and provide data to data warehouses

- France

Ex: CORIOLIS

- Europe

Ex: SeaDataNet,

- South Pacific region, International

Ex : SOPAC, PI-GOOS, IMOS

```
How to cite ( 1
```


Reusable

- Produce and disseminate maps and indicators

Clear and accessible data usage licence

Objectives

Data dissemination

Understandable formats for (all kind of) researchers
> NetCDF, WMS, WFS, SOS, CSW, CSV, raw images access formats availables
> Compliance with FAIR data practices

SOS v. 1

Geospatial sensing conference, September 3rd, 2019

SOS v. 1 - GetObservation

SOS Server limitation of the request set to 1 year
Pressure
measurements
frequency up to
every 60 s

Requesting one year returns more than 500.000 entries

Download reaching
10 mins

Strength \& Weakness SOS v. 1

Strength

\checkmark Findable
\rightarrow Well referenced
\checkmark Accessible
\rightarrow Data easy to get

Weakness

\searrow Interoperable
\times SOS mapping
\star Reusable
x Response time

GeoNetwork Catalog service

Docker
$=$
Container as a service

SOS RESTful Extension =
JSON data

Information system design v. 2 - 2016/2017
SEANOE

National reference
$>$ Architecture made as services consumed by ReefTEMPS data portal
> SEANOE is a publisher of scientific data in the field of marine sciences. It is managed by the ODATIS data center of France's Earth System research

Data Discovery OGC Services

Data Discovery SOS API

Dataset DOI, Archive download (SEANOE) \& License

Critical success factors \#1

\square SOS vl was too permissive
\square Offering as physical parameter instead of platform prevented us from using 52North client solution
\square SOS v2 is more explicit

Critical success factors \#2

\square XML generation is too expensive
\square XML download is too heavy
$\square J S O N$ is a better data exchange format.
\square XML is a better document exchange format.
\square REST is easy of implementation
$\square J S O N$ is easy to read

Critical success factors \#3

\square Ad hoc database is to be kept
\square SQL Join are heavy with volumetry
\square SQL Views are the same
\square Materialized views are an option
\square Duplication of data in dedicated SOS schema is fast

Critical success factors \#4

\square No user identification required
\square No delay due to id validation
\square No permission to ask
\square Users will get used to using a DOI for data used in publication
\square Seamless interface

Critical success factors \#5

\square Oceanograph physicists can use NetCDF
\square Sensor Information systems can use SOS
\square Ecologists (among others) can understand CSV
\square Catalogs can browse CSV
\square Geo Catalogs can browse GIS
\square People can have a quick look at the data on images
\square Remote systems can listen to data publications updates
\square As in marketing strategy, the implementation of services competing with SOS leads to an increase in the attractiveness and use of SOS

Conclusion

How to cite ${ }^{(1)}$

Varillon David, Fiat Sylvie, Magron Franck, Allenbach Michel, Hoibian Thierry, De Ramon N'Yeurt Antoine, Ganachaud Alexandre, Aucan Jérôme, Pelletier Bernard, Hocdé Régis (2018). ReefTEMPS : The Pacific Island coastal ocean observation network. SEANOE. https://doi.org/10.17882/55128

More usages / visits / citations

Trajectories of Ange fogats in the westerf Coral Sea
3 survivors, a toast ot weo

More datas and types of data

Future

\square From timeseries to
series
\square NoSQL?
\square Big Data?
\rightarrow Integration of profile data is ready to go
\rightarrow Document oriented $=$ direct insertion of netcdf files?
\rightarrow Handling exponential growth of data

Geospatial Sensing Conference, Muenster, September 3rd, 2019

