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and Antoine Berry1*

Abstract

Background: Regular monitoring of the levels of anti-malarial resistance of Plasmodium falciparum is an essential
policy to adapt therapy and improve malaria control. This monitoring can be facilitated by using molecular tools,
which are easier to implement than the classical determination of the resistance phenotype. In Cameroon,
chloroquine (CQ), previously the first-line therapy for uncomplicated malaria was officially withdrawn in 2002 and
replaced initially by amodiaquine (AQ) monotherapy. Then, artemisinin-based combination therapy (ACT), notably
artesunate-amodiaquine (AS-AQ) or artemether-lumefantrine (AL), was gradually introduced in 2004. This situation
raised the question of the evolution of P. falciparum resistance molecular markers in Yaoundé, a highly urbanized
Cameroonian city.

Methods: The genotype of pfcrt 72 and 76 and pfmdr1 86 alleles and pfmdr1 copy number were determined
using real-time PCR in 447 P. falciparum samples collected between 2005 and 2009.

Results: This study showed a high prevalence of parasites with mutant pfcrt 76 (83%) and pfmdr1 86 (93%)
codons. On the contrary, no mutations in the pfcrt 72 codon and no samples with duplication of the pfmdr1 gene
were observed.

Conclusion: The high prevalence of mutant pfcrt 76T and pfmdr1 86Y alleles might be due to the choice of
alternative drugs (AQ and AS-AQ) known to select such genotypes. Mutant pfcrt 72 codon was not detected
despite the prolonged use of AQ either as monotherapy or combined with artesunate. The absence of pfmdr1
multicopies suggests that AL would still remain efficient. The limited use of mefloquine or the predominance of
mutant pfmdr1 86Y codon could explain the lack of pfmdr1 amplification. Indeed, this mutant codon is rarely
associated with duplication of pfmdr1 gene. In Cameroon, the changes of therapeutic strategies and the
simultaneous use of several formulations of ACT or other anti-malarials that are not officially recommended result
in a complex selective pressure, rendering the prediction of the evolution of P. falciparum resistance difficult. This
public health problem should lead to increased vigilance and regular monitoring.
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Background
Monitoring the level of Plasmodium falciparum resis-
tance against anti-malarial drugs is one of the keys to a
successful malaria control. Although controlled clinical
trials are the best available tool for assessing the rele-
vance of anti-malarial treatments, molecular monitoring
offers some advantages. Studies on single-nucleotide
polymorphisms (SNPs) and duplication of genes
involved in resistance can be carried out with more ease
and are less time-consuming. Furthermore, molecular
monitoring may reveal trends, allowing anticipation in
the changes of treatment policies.
In Cameroon, the first-line recommended therapy for

uncomplicated malaria was chloroquine (CQ) until 2002
and amodiaquine (AQ) monotherapy between 2002 and
2004. In January 2004, the artesunate-amodiaquine
(AS-AQ) combination was officially adopted and arte-
mether-lumefantrine (AL) was added as an alternative arte-
misinin-based combination therapy (ACT) in 2006 [1]. In
practice, AS-AQ and AL have been used nationwide since
2007. AS-AQ is widely available in public health care cen-
tres while AL is relatively less prescribed because of its low
supply in the public sector at a subsidized price [2].
The amplification of pfmdr1 gene is a common molecu-

lar marker of mefloquine (MQ) resistance. An increase in
the pfmdr1 copy number is associated with clinical failures
to MQ [3] and in vitro resistance to lumefantrine, which is
an amino-alcohol, like MQ [4]. The amplification of
pfmdr1 gene has also been demonstrated to decrease the
susceptibility to artemisinin derivatives in the field as well
as in laboratory-adapted P. falciparum strains [4-8].
Furthermore, a recent study in eastern Sudan reported an
association between the carriage of parasites with
increased pfmdr1 copy number before treatment and
recurrent parasitaemia after AL therapy [9].
In vitro, the pfmdr1 N86 wild-type allele, independently

of the pfmdr1 copy number, is associated with a higher
susceptibility to lumefantrine and MQ [3,10,11]. In paral-
lel, in the field, pfmdr1 N86 and pfcrt K76 wild-type alleles
were selected by artemether-lumefantrine (AL) treatment
whereas they were not selected by artesunate-amodiaquine
(AS-AQ) or amodiaquine-sulphadoxine-pyrimethamine
(AQ-SP) [12-15]. Conversely, the pfmdr1 86Y and pfcrt
76T mutant alleles are associated with CQ resistance and
also with AQ monotherapy failure [16-19]. Likewise, these
haplotypes are selected by the association AS-AQ [20,21].
A pfcrt genotype conferring high levels of resistance to

AQ, corresponding to SVMNT haplotype of the codons
72-76, has been identified, first in Tanzania and more
recently in Angola [22,23]. This haplotype, widely
observed in Asia and South America, seems to be
strongly selected by the use of AQ [24,25].
The objective of this study was to determine the pre-

valence of pfmdr1 multiple copies and mutant pfcrt 72

and 76 and pfmdr1 86 codons in Yaoundé, Cameroon at
the time of the introduction of ACT. It is important to
have a “molecular snapshot” of P. falciparum isolates at
the beginning of this new anti-malarial therapeutic strat-
egy, first, in order to make meaningful comparisons in
the future and, secondly, to determine if there is any
evidence of molecular mark suggesting a rapid evolution
towards resistance.

Methods
Study sites and origin of samples
The study was carried out between 2005 and 2009, on a
total of 447 samples from patients with a microscopy-con-
firmed diagnosis of uncomplicated falciparum malaria.
The recruitment sites were in Yaoundé intra-muros (3° 52’
N, 11° 31’ E), including the healthcare centre of Nkoln-
dongo (49 patients, median of three years old [0 month to
47 years]), the healthcare centre of Olembe (42 children,
median of 2.5 years old [eight months to 12 years]), and
the healthcare centre of Nlongkak (125 patients, median
of two years old [six months to five years]). Two hundred
and thirty-one samples were obtained from asymptomatic
children aged from five to 11 years in Mfou (3°43’N, 11°
38’E), 26 km from the centre of Yaoundé. This study was
reviewed and approved by the Cameroonian National
Ethics Committee and Cameroonian Ministry of Public
Health.
Before patients with a positive thick smear have received

an ACT treatment, finger-pricked capillary blood sample
was collected on different filter papers, Whatman (What-
man plc, Middlesex, UK) or IsoCode STIX (Schleicher &
Schuell, Keene, NH, USA). DNA from paper filters was
extracted using the chelex-100 boiling method [26], con-
centrated by ethanol precipitation and frozen at -20°C
until amplification.

Determination of pfmdr1 copy number
To determine the copy number of pfmdr1, a qPCR
method described previously was used [27]. All samples
were tested in triplicate in 96-well plates on a LightCy-
cler® 480 system (Roche Diagnostics, Neuilly sur Seine,
France). Each run included two control DNA samples of
reference P. falciparum clones, FCM29/Cameroon and
Dd2/Indochina, which are known to have one and two-
three copies of pfmdr1 gene, respectively [27].

Genotyping of pfcrt and pfmdr1
Genotyping of pfcrt 76 and pfmdr1 86 codons was per-
formed with a qPCR assay using Fluorescence Reso-
nance Energy Transfer (FRET) hybridization probes and
an analysis of the melting curve described previously
[28,29]. Each run included two control DNA samples of
P. falciparum: the CQ-susceptible F32/Tanzania strain
with pfcrt K76 and pfmdr1 N86 wild-type alleles and the
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CQ-resistant FCM29/Cameroon clone, carrying pfcrt
76T and pfmdr1 86Y mutant alleles.
The detection of the pfcrt 72S mutant allele was

performed with a TaqMan probe-based genotyping assay
the originality of which resides in the presence of Locked
Nucleic Acid (LNA) inside the probes. LNA is a synthetic
RNA analogue which, when integrated into an oligonu-
cleotide, shows a strong affinity for their complementary
targets [30]. Because of their thermal stability when
hybridized to DNA, oligonucleotides containing LNA
have a higher melting temperature (Tm) and could be
used as primers, probes or clamps to improve molecular
detection [31-33]. In general, sequences from P. falci-
parum contain a high percentage of adenine (A) and thy-
mine (T) resulting in a low Tm and complicating
molecular analysis. The introduction of LNA bases is a
powerful tool to obtain discriminating probes with a
moderate length and a probe hybridization that may
occur during the annealing step in PCR. Consequently,
this technique was particularly well suited for the experi-
mental conditions described here. The pfcrt gene was
amplified by using primers P.falcA (5’-CAATT
TTgTTTAAAgTTCTTTTAgCAA-3’) and P.falcF (5’-
gTTCTTgTCTTggTAAATgTgCTCA-3’). To genotype
the different alleles, the amplified product was detected
with one of the specific TaqMan probes: AF233067
probe, 5’-YAK-AATTgTATTCATT + A + C + ACTT +
A + CA–BBQ-3’ hybridized with the pfcrt 72S mutant
allele (SVMNT haplotype) and HM854027 probe, 5’-
LC670-AATTgTTTCAATT + A + C + ACATA + CA–
BBQ-3’ hybridized with the pfcrt C72 wild-type allele
(CVIET haplotype) (the presence of a LNA nucleotide is
preceded by the sign +). The primers and probes were
designed in collaboration with Tib MolBiol Syntheselabor
(Berlin, Germany). Master mixes contained 1 μl Gen-
eAmp® 10 × PCR Gold Buffer (Applied Biosystems,
Branchburg, NJ), 2.5 mM MgCl2, 200 μM pooled dNTP,
500 nM of forward and reverse primers, 250 nM of each
probe, 1 U per reaction of AmpliTaq® Gold DNA Poly-
merase (Applied Biosystems) and 2 μl of template DNA
for a total reaction volume of 10 μl. Each reaction plate
was run with control DNA samples of P. falciparum, in
particular the 7G8/Brazil strain known to harbour the
pfcrt 72S mutated allele [34], F32/Tanzania and FCM29/
Cameroon as pfcrt C72 wild-type control [28], water and
DNA of healthy patient, which served as negative exter-
nal amplification controls. The multiplex TaqMan assay
reactions were carried out in a LightCycler® 480 Multi-
well Plate 384 (Roche Diagnostics) with the following
PCR programme: an initial step at 95°C for 12 minutes
followed by 45 cycles of 10 seconds at 95°C and 45 sec-
onds at 60°C. Data analysis for allelic discrimination was
performed with the LightCycler® 480 software (Roche
Diagnostics).

Statistical analysis
The proportions were compared using c2 test thanks to
SigmaStat® software. The significance level (P) was fixed
at 0.05.

Results
Pfmdr1 copy number
The copy number of pfmdr1 was determined for only 215
isolates from healthcare centres of central Yaoundé
because of the limited amount of DNA samples from
Mfou. Regardless of where the tested isolates were col-
lected, none of them were identified with pfmdr1 gene
amplification (Table 1). The estimated gene copy number
from all analysed isolates was close to 1, with an average
copy number of 1.05 and a standard deviation of 0.20
(data not shown).

Pfmdr1 and pfcrt genotypes
The prevalence of pfmdr1 and pfcrt alleles in blood sam-
ples obtained from different sites in Yaoundé is presented
in Table 1. The frequencies of the pfmdr1 86Y mutant
genotype were 76% (153/201) and 84% (175/209) in
Yaoundé and Mfou, respectively. Wild-type pfmdr1 N86
genotype was observed in 10% (20/201) and 4% (9/209) of
isolates, and 14% (28/201) and 12% (25/209) of isolates
presented a mixed genotype in Yaoundé and Mfou,
respectively. No significant differences were observed
between Yaoundé and Mfou.
The frequencies of pfcrt 76T mutant genotype were

71% (145/203) and 55% (125/229), the pfcrt K76 wild-
type allele was present in 19% (38/203) and 15% (35/229)
and mixed pfcrt alleles occurred in 10% (20/203) and 30%
(69/229) of the isolates in Yaoundé and Mfou, respec-
tively, with a significant difference (p < 0.001).
Contrary to pfcrt 76, a significant difference (p =

0.042) of the distribution of the alleles was observed
between Yaoundé and Mfou when all samples with
mixed pfmdr1 86 genotype are classified in mutant
group.
No significant differences were observed either

between the different healthcare centres of Yaoundé or
between the different times of sample collection (data
not shown).
None of the 414 samples tested for the codon 72 of pfcrt

gene was found with the mutant 72S allele (SVMNT
haplotype).

Discussion
As elsewhere in the world, a very rapid development of
resistance to anti-malarial drugs in Africa requires a reg-
ular monitoring in multiple and strategic points. With
53% of the population living in cities against 38% WHO
African region, Cameroon is a highly urbanized African
country [35]. This demonstrates the importance of
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epidemiological studies in large cities such as Yaoundé,
which currently has a population of over 1,800,000
inhabitants.
In the present study, a high prevalence of mutations

associated with drug resistance was found in Yaoundé
and its suburbs in both codon 76 of the pfcrt gene (83%)
and codon 86 of the pfmdr1 gene (93%) when all samples
with mixed genotype were classified as mutant (Table 1).
These results are in agreement with several other studies.
Previous works of Basco et al carried out in Yaoundé
showed that 70% of 157 P. falciparum clinical isolates
had the mutant pfcrt 76T codon in 2001 [36], and a large
majority of isolates (88% of 64) carried the pfmdr1 86Y
mutant allele between 1997 and 2000 [37]. Similarly,
Mbacham et al reported 77% and 76% prevalence of
mutant pfcrt 76T and pfmdr1 86Y codons, respectively,
in samples collected during the period 2004-2006 in
Yaoundé [38]. Despite different classification of double
populations and techniques with different sensitivity, the
prevalence of mutations appears to increase (pfcrt) or
remains at a high and relatively stable level (pfmdr1)
until 2009 in spite of the official withdrawal of CQ from
Cameroon in 2002. In some endemic areas, stopping the

widespread use of CQ resulted in a return of chloro-
quine-sensitivity associated with the reappearance of
wild-type genotypes. In the absence of drug pressure,
P. falciparum wild-type haplotypes have a selective
advantage over mutants. For example, in 1993, Malawi
was the first sub-Saharan African country to replace CQ
with SP nationwide in response to the high rates of CQ-
resistant falciparum malaria. This change resulted in a
decrease in the prevalence of the mutant pfcrt haplotype
associated with CQ resistance from 85% in 1992 to 13%
in 2000. For pfmdr1 86Y mutant codon, the same study
showed similar results but with lower amplitude (from
about 60% in 1993 to around 20% in 2000) [39]. The
recovery of CQ-sensitivity phenotype and genotype was
also observed elsewhere in Malawi [40], Kenya [41] and
China [42].
This stability of mutant pfcrt 76T and pfmdr1 86Y

genotypes observed in Yaoundé and suburb may be the
result of many factors. First of all, the choice of the
replacement treatment logically influences the type of
selected isolates. The use of SP, which has no influence
on the selection of mutant pfcrt and pfmdr1 genotypes,
has been shown to favour, by a phenomenon of selective

Table 1 Frequency of mutations and/or gene amplification in anti-malarial resistance markers pfmdr1 and pfcrt in
Plasmodium falciparum isolates in Yaoundé and Mfou, Cameroon

Genes and alleles Number of samples (%) P

Both sites Yaoundé Mfou
(Suburb of Yaoundé)

pfmdr1 amplification (na = 215, nb = NA)

1 pfmdr1 copy number 215 (100%) 215 (100%) NA NA NA

> 1 pfmdr1 copy number 0 (0%) 0 (0%) NA NA

pfmdr1 codon 86 (na = 201, nb = 209)

Mutant 86Y haplotype only 328 (80%) 153 (76%) 175 (84%) NS

Mixed N86 and 86Y haplotypes 53 (13%) 28 (14%) 25 (12%)

Wild-type N86 haplotype only 29 (7%) 20 (10%) 9 (4%)

Total mutant 86Y haplotypec 381 (93%) 181 (90%) 200 (96%) 0.042d

pfcrt codon 76 (na = 203, nb = 229)

Mutant 76T haplotype only 270 (62%) 145 (71%) 125 (55%) < 0.001e

Mixed K76 and 76T haplotypes 89 (21%) 20 (10%) 69 (30%)

Wild-type K76 haplotype only 73 (17%) 38 (19%) 35 (15%)

Total mutant 76T haplotypec 359 (83%) 165 (81%) 194 (85%) NSd

pfcrt codon 72 (na = 202, nb = 212)

Mutant 72S haplotype 0 (0%) 0 (0%) 0 (0%) NS

Wild-type C72 haplotype 414 (100%) 202 (100%) 212 (100%)

NA: not analysable because of the limited amount of DNA samples

NS: non significant
a: Number of total samples tested in the centre of Yaoundé
b: Number of total samples tested in the suburb of Yaoundé
c: Total mutant haplotype regroups single mutant haplotype and mixed haplotype, all samples with mixed genotype for the considered allele are classified in
mutant group.
d: comparison of total mutant haplotypes versus wild-type haplotypes
e: comparison of mutant, wild-type and mixed haplotypes
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advantage, the reappearance of CQ-sensitive isolates
harbouring wild-type pfcrt K76 and pfmdr1 N86 geno-
types [39-41]. The use of AL or artesunate-mefloquine
(AS-MQ) seems to favour the return to the predomi-
nance of wild-type pfmdr1 N86 genotype and, to a lesser
extent, to the wild-type pfcrt K76 genotype by an active
selection [14,43-45]. Inversely, AQ, a close Mannich
base analogue of CQ, or AS-AQ promotes the mainte-
nance of CQ-resistant isolates with the mutant pfcrt and
pfmdr1 genotypes by an active selective pressure [20,46],
as observed in the present study. Whereas in East Afri-
can countries like Malawi or Kenya, SP or AL had lar-
gely replaced CQ [47], in Yaoundé, in 2005, AQ was
still prescribed as a first-line anti-malarial drug in 20%
and 63% of adults and children under five years old,
respectively [2], and AS-AQ in 4.5% and 1.5%. AL was
used only in 8.3% and 2.4%, AS-MQ in 1.5% and 0.8%,
and SP in 5.8% and 0% of adults and children less than
five years old, respectively [2].
Secondly, the changes of P. falciparum resistance phe-

notype and genotype after the withdrawal of CQ depend
on the rapidity of drug replacement. For example, in
Malawi where a profound and rapid return to CQ sensi-
bility was observed, the change in drug policy from CQ
to SP was swift and efficient, so that SP became the only
available anti-malarial drug in less than one year after the
implementation of the new drug policy. In contrast, these
changes were progressive and lasted several years in
many areas as in Cameroon. In fact, in Yaoundé,
although the National Malaria Control Programme of
Cameroon had replaced CQ by AQ in 2002 and then AQ
monotherapy by AS-AQ since January 2004, CQ was still
largely accessible through the informal outlets (e.g. food
market) in August 2005 [2].
Finally, in a more general way, fitness loss of mutant

P. falciparum might be associated with the development
of compensatory mechanisms able to maintain mutant
parasites even in the absence of drug pressure [48]. This
feature might explain, at least in part, the persistence of
mutant pfcrt codon in Southeast Asia and South America
[49-51] and also in Cameroon, as described here.
In Mfou, a higher frequency of mixed pfcrt haplotypes

was observed at the expense of mutant pfcrt population.
This observation was not done for pfmdr1 haplotypes. A
possible reason for this observation is a drug pressure
selection different from that existing in Yaoundé.
Since the probes used to detect the mutation in codon

76 of pfcrt gene were not able to detect that of codon 72, a
new technique using LNA probes was developed in the
present study to discriminate the mutant SVMNT haplo-
type (72S mutation) from the wild-type CVIET haplotype
(C72 wild-type). Previous studies and data collected from
countries like Bolivia or India suggested that AQ has an
early and prominent role in the selection of parasites

carrying SVMNT haplotype associated with drug resis-
tance [24]. These parasites are highly resistant to AQ, but
only moderately resistant to CQ. Contrary to CVIET hap-
lotype, once the SVMNT haplotype emerges in a given
parasite population and CQ and AQ are removed, the
repopulation of sensitive strains may be very slow to occur
[24]. As the SVMNT haplotype was recently described in
Tanzania and Angola [22,23], it was important to verify
whether this haplotype existed in Yaoundé. None of the
samples tested for the codon 72 of pfcrt was found to
carry the SVMNT haplotype. These results are contrary to
what was observed in nearby African countries, such as in
Ghana [52], Tanzania [22] and Angola [23] where the pre-
valence of this haplotype was between 3.9% and over 50%.
It is possible that the observed predominance of SVMNT
haplotype in Angola is the result of frequent travels of Bra-
zilian and Angolan citizens between the two countries
[23], which is not the case in Cameroon. However, the
monitoring of pfcrt codons 72-76 should be pursued
because AQ has long been prescribed in Cameroon before
and since the cessation of the use of CQ (2002) and until
2005 [2] and seems to have an important role in the selec-
tion of the SVMNT haplotype [22].
The amplification of pfmdr1 gene has been more closely

linked to MQ and halofantrine (HAL) resistance [53-55].
In this study, pfmdr1 amplification was not observed in
Yaoundé between 2005 and 2009. Elsewhere in Africa, the
situation seems to be contrasted. In various studies con-
ducted in East Africa, only four samples were found with
pfmdr1 gene duplication, one in Kenya and three in Sudan
(near the Ethiopian border) among 475 isolates tested (57
in Sudan [9], 72 in Kenya [46], 186 in Zanzibar [53] and
160 in Malawi [54]). In West Africa, on the one hand,
none of 580 samples tested in Liberia and Guinea-Bissau
between 1981 and 2005 was found to be duplicated [55];
on the other hand, two studies had identified in Burkina
Faso, Ivory Coast, Togo and Madagascar, six pfmdr1
duplications among 112 samples tested [27,56]. In Central
Africa, data are limited since only 32 samples were
screened and all of them had a single copy of pfmdr1 gene
[27]. In this region, an exception is the study of Uhlemann
et al who found the duplication of pfmdr1 gene in five of
62 clinical isolates tested (8%) in 1995 in Lambaréné,
Gabon [57]. Four of these five patients harboured the
wild-type N86 pfmdr1 codon even though during this per-
iod 90% of isolates carried the mutant pfmdr1 codon 86
around Lambaréné [58]. However, in 2002 at the same
study site, none of 37 samples tested had pfmdr1 gene
duplication. These observations on pfmdr1 gene amplifica-
tion in Lambaréné are difficult to explain outside of the
possible selection of such a clone by previous clinical trials
on the same site, using low dose of mefloquine [58-60].
Nevertheless, these data showed that P. falciparum isolates
from Central Africa can have pfmdr1 gene duplication.
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The lack of pfmdr1 gene duplication in Yaoundé may
possibly be due to the very low use of MQ or HAL,
which represented only 1.5% of first-line treatments
against malaria in 2005 [2], but also partly to the high
prevalence of the pfmdr1 Y86 mutant allele. Indeed, in
Southeast Asia, pfmdr1 amplification has been suggested
to be incompatible in the presence of the mutant
pfmdr1 86Y allele [61]. However, the conclusion of that
Asian study has not been confirmed in Africa, where
the existence of parasites harbouring a duplicated
pfmdr1 gene with mutant 86Y codon has been reported
from Sudan [9], Gabon [57] and Ivory Coast [27,56].
The molecular analysis performed in the present study

did not find any pfcrt 72S mutation, which may be a
good sign for the continued use of AQ in combination
with AS. A regular evaluation of AS-AQ efficacy, in par-
allel with molecular surveillance, is required to ensure
the utility of AS-AQ in Cameroon. This ACT contri-
butes to the maintenance of a high prevalence of mutant
pfcrt 76T and pfmdr1 86Y alleles. The pressing question
is to predict how these parasites will evolve in the pre-
sence of AL pressure. Several scenarios can be envi-
sioned. Firstly, they could behave like Southeast Asian
isolates and will not progress to the duplication of
pfmdr1 gene in the absence of wild-type pfmdr1 N86
allele. Secondly, as already observed in some cases in
Africa [9,27,56,57], the parasites may acquire multico-
pies of pfmdr1 despite the pfmdr1 86Y mutation. Only
regular and exhaustive molecular monitoring of P. falci-
parum clinical isolates can provide the answer. How-
ever, the relevance of these results would be improved if
they were associated with information on different anti-
malarial drugs that are really taken by the patients
because these data often differ from the current national
recommendation.
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