

Weathering history and landscape evolution of Western Ghats (India) from 40 Ar/ 39 Ar dating of supergene K-Mn oxides

A. Jean, Anicet Beauvais, D. Chardon, Nicolas Olivier Arnaud, M.

Jayananda, P.-E. E Mathe

▶ To cite this version:

A. Jean, Anicet Beauvais, D. Chardon, Nicolas Olivier Arnaud, M. Jayananda, et al.. Weathering history and landscape evolution of Western Ghats (India) from 40 Ar/ 39 Ar dating of supergene K-Mn oxides. Journal of the Geological Society of London, 2020, 177 (3), pp.523-536. 10.1144/jgs2019-048 . ird-02356085v2

HAL Id: ird-02356085 https://ird.hal.science/ird-02356085v2

Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2	Weathering history and landscape evolution of Western Ghats
3	(India) from ⁴⁰ Ar/ ³⁹ Ar dating of supergene K-Mn oxides
4	
5 6 7	A. Jean ¹ , A. Beauvais ^{1*} , D. Chardon ^{2,3} , N. Arnaud ⁴ , M. Jayananda ⁵ & P.E. Mathe ¹
8	¹ Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
9 10	² IRD and Département des Sciences de la Terre, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
11	³ GET, Université de Toulouse, CNRS, IRD, UPS, CNES, F-31400 Toulouse, France
12 13	⁴ Université de Montpellier 2, Géosciences Montpellier, UMR CNRS 5243, 34095 Montpellier, France
14 15	⁵ Centre for Earth, Ocean and Atmospheric Sciences, University of Hyderabad, P.O. Central Gachibowli, Hyderabad 500 046, India
16	
17	
18 19 20	* Correspondence: (beauvais@cerege.fr)
21 22 23 24	Running title: Western Ghats landscape evolution
25 26	Accepted to Journal of the Geological Society November 05, 2019
27	DOI: 10.1144/jgs2019-048
28	
29	
30	
31	
32	

Abstract

Laterites preserved on both sides of the Western Ghats Escarpment of Peninsular India 34 have formed by long-term lateritic weathering essentially after India-Seychelles continental 35 36 break up following Deccan Traps emplacement (c. 63 Ma ago). Supergene manganese ores of the Western Ghats were formed on Late Archean manganese protores. Among Mn oxides 37 composing the ores, cryptomelane (K-rich Mn oxide) was characterized and dated by 38 ⁴⁰Ar/³⁹Ar geochronology. Measured ages complement those previously obtained in other 39 South-Indian manganese ores from the hinterland plateau (Bonnet et al., 2016) and further 40 document three major weathering periods, c. 53-44 Ma, c. 39-22 Ma, and c. 14-10 Ma, the 41 42 later being documented for the first time in India. These periods coincide with global paleoclimatic proxies and date the lateritic weathering of three successive paleolandscapes of 43 the Western Ghats that evolved under slow denudation (c. 8 m/myr) over the last 44 Myr and 44 were mostly incised during the Neogene (< 22 Ma). That indicates the Western Ghats are a 45 relict of a South Indian plateau preserved at the headwaters of very long east-flowing river 46 systems and above the Western Ghats escarpment. Topography and denudation history of this 47 landscape do not require Neogene tilt of the Peninsula as recently proposed. 48

49

50 <u>Keywords</u>: ⁴⁰Ar/³⁹Ar geochronology – Manganese oxides – Lateritic weathering – Cenozoic –
 51 Denudation – Indian Western Ghats

52

Supplementary material: [Full details of field and samples description, methodology, and
 analytical data including electron probe microanalyses of cryptomelane, and isotopic analyses
 and degassing spectra of irradiated cryptomelane grains] is available at

57	Lateritic regoliths of the continental inter-tropical belt have formed by supergene
58	chemical weathering of rocks and landscape evolution under evolving tropical climates. Over
59	long-time scale, weathering profiles accumulate clays (mainly kaolinite), and metal oxides
60	(Al, Fe, or Mn oxy-hydroxides), which are mostly concentrated in lateritic duricrusts capping
61	the profiles (Bárdossy and Aleva, 1990; Nahon, 1986; Thomas, 1994; Tardy, 1997). Lateritic
62	weathering profiles (up to c.100 m thickness) are currently exposed on relict
63	paleolandsurfaces over large cratonic areas of Africa, South America, Australia and India.
64	Much work was done for dating weathering profiles on most continents of the tropical belt,
65	using ⁴⁰ Ar/ ³⁹ Ar dating of K-rich Mn oxides (e.g., Vasconcelos, 1999; Vasconcelos et Conroy,
66	2003; Beauvais et al., 2008; Bonnet et al., 2016; Deng et al., 2016; Li et al., 2007; Riffel et
67	al., 2015), or (U-Th)/He dating of iron oxy-hydroxides (e.g., Shuster et al., 2005; Vasconcelos
68	et al., 2013; Monteiro et al., 2018; Allard et al., 2018). For instance, ages of cryptomelane
69	formed in situ in lateritic regolith of West Africa and Brazil allowed calibrating continental
70	denudation over geological time scales (Beauvais and Chardon, 2013; Vasconcelos and
71	Carmo, 2018). But a reliable geochronological geomorphology is still often lacking to better
72	calibrate the long-term erosion history of many areas of the tropical World that would allow
73	linking lateritic weathering episodes, continental denudation and the evolving
74	paleolandscapes, particularly on passive continental margins and their cratonic hinterlands
75	(e.g., Bonnet et al., 2016).
76	In Peninsular India, relicts of several generations of stepped lateritic paleolandscapes

(termed paleosurfaces) were distinguished (e.g., Widdowson, 1997; Gunnell, 1998), but only
 recently characterized and dated by ⁴⁰Ar/³⁹Ar radiometry (Bonnet et al, 2014; 2016; Beauvais
 et al., 2016). Paleolandscape remnants preserved on either side of Western Ghats Escarpment
 (WGE) separating the coastal lowland plain from a continental-scale high plateau (i.e. the

81	Karnataka plateau; Fig. 1b), are most numerous upon the Western Ghats proper, i.e., the belt
82	of high topography (800 m - 1500 m) running along the escarpment. These remnant
83	landscapes are key paleotopographic markers of the denudation history of the Peninsula.
84	Three major weathering periods, c. 53-45 Ma, c. 37-26 Ma and c. 26-19 Ma, and two discrete
85	pulses, c. 9 and 2.5 Ma, were previously defined from ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages series of cryptomelane,
86	which formed <i>in situ</i> in the lateritic profiles and supergene Mn-ore deposits on the highland
87	plateau and coastal lowland plain (Bonnet et al., 2016). These ages combined with regional
88	geomorphological observations imply very slow denudation, c. 5-6 m/myr in the lowland and
89	a maximum of c. 15 m/myr in the highland over the last 50 Myr (Beauvais et al., 2016).
90	The present study focuses on ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ dating of the cryptomelane-rich Mn ore deposits
91	of North Kanara region in the Western Ghats, which have been loosely dated so far by
92	Neogene palynostratigraphic record in their sedimentary overburden (Krishna Rao et al.,
93	1989a). New data further document the major Cenozoic weathering periods previously
94	identified upon the Karnataka plateau and in the coastal lowland (Bonnet et al., 2016) and
95	reveal for the first time a well-characterized Mid-Miocene (14-10 Ma) weathering period. All
96	the ages obtained here establish the first geochronology of lateritic weathering in the North
97	Kanara region and further document the evolution of Western Ghats landscapes that was
98	previously outlined (e.g., Sethumadhav et al., 2010). The geomorphological structuration of
99	the Western Ghats into three major lateritic paleolandscapes and the new ages obtained imply
100	a slow denudation regime varying between c. 4.5 and c. 12.5 m/myr over the last 44 Myr, and
101	limited landscape dissection mostly in the Neogene. These results also document the
102	persistence of a lateritic paleolandscape above the West-facing escarpment as a relict of an
103	Eocene plateau in South India comparable to that of current Southern Africa.

Geological and geomorphological setting of the Western Ghats

Lithologies of North Kanara region consist of Archean gneisses/granites and Late 106 107 Archean (c. 2.6 Ga) supracrustals comprising greywackes, banded iron formations and quartzite with strips of cherts, phyllites, and shales, as well as some stromatolitic dolomites 108 109 and limestones (Fig. 2a; Sawkar, 1980; Sethumadhav et al., 2010). Greenschist facies metamorphism and moderate deformation affect the supracrustal sequence (Shivaprakash, 110 111 1983; Roy, 1981). Supracrustals of North Kanara constitute the northward extension of the Shimoga greenstone belt, and host many Mn supergene ore deposits (Sethumadhav et al., 112 2010) as other belts of the Dharwar craton (e.g., Sandur and Chitradurga; Figs. 1 and 2) (e.g., 113 Mohopatra et al., 1996; Manikyamba et Naqvi, 1997). Most of the North Kanara ore deposits 114 developed upon phyllites/argilites and cherts forming three hilly structural strips trending 115 NNW-SSE (Fig. 2a; Sawkar, 1980). 116

The Kali River drains the region, sourcing near Diggi east of the escarpment; it first flows 117 eastward then south before turning and incising the escarpment westward (Fig. 2b). Relicts of 118 three lateritic paleolandscapes have been distinguished and mapped on the basis of their 119 120 regolith, morphology and topography (Figs. 2b-c and 3). The first and older one, noted S1, is mostly flat and carries Al-Fe rich laterites, mostly bauxitic, between altitudes of c. 770 m and 121 c. 1000 m (Figs. 2b-c and 3). This S1 paleolandscape is equivalent to the S2 paleosurface 122 123 described by Gunnell (1998). The second lateritic paleolandscape, noted S2, bears thick weathering profiles rich in kaolinite and iron oxy-hydroxides, which are often duricrusted by 124 an Al-Fe rich duricrust (Bonnet et al., 2016) between altitudes of c. 650 m and c. 930 m (Figs. 125 126 **2b-c and 3**). The lateritic weathering profile related to the S2 paleolandscape has been previously interpreted as resulting from the late geochemical epigenetic evolution of bauxites 127 (Krishna Rao et al., 1989b; see also Boulangé, 1986). The two paleolandscapes (S1-S2) form 128

129	a composite landscape, the S2 relicts being preserved mostly as gentle slopes under scarp-
130	bounded S1 remnants that have undergone limited incision (a few tens of meters) but clear
131	relief inversion before final installation of S2. The composite S1-S2 landscape can reach c.
132	100 m of relief (Figs. 2c and 3). This paleolandscape is best preserved near the escarpment
133	(Fig. 2b) and represents the westernmost relict of a more extended low relief and gently
134	sloping S1-S2 paleolandscape on the Karnataka plateau, whose remnants have been also
135	observed on the Chitradurga and Sandur greenstone belts at 900-1100 m elevation (Fig. 1; see
136	Bonnet et al., 2016; Beauvais et al., 2016). The third paleolandscape, noted S3, consists of
137	coalescent pediments between c. 750 and 500 m elevation (Figs. 2c and 3). The pediments
138	are covered by clay-rich ferruginous soils (Gunnell and Bourgeon, 1997), which can be
139	locally duricrusted. S3 surface once formed a pediplain resulting from the dissection of the
140	composite S1/S2 landscape. The pediplain fossilizes the foot of steep, regolith-free slopes,
141	150 to 250 m in amplitude, which formed by incision of the S1-S2 relict landscape (Figs. 2c
142	and 3; Bonnet et al., 2016; see also Chardon et al., 2018 and references therein). The S3
143	pediplain therefore integrates relicts of the S1-S2 landscape. The pediplain is incised by about
144	50 to 100 m (locally 300 m by the Kali River valley, Figs 2b-c and 3). The regolith
145	underlying the S3 pediment surfaces hosts most of the Mn ore deposits at altitudes ranging
146	from 520 to 650 m (Fig. 2b and Tab. 1). The S1-S3 landscape sequence in the Western Ghats
147	is similar to that previously described on the Karnataka plateau (Bonnet et al., 2016).

149 Materials and methods

150 *Sampling, characterization and collection of cryptomelane*

151 Eleven samples of Mn-rich duricrusted ore were collected for their richness in152 cryptomelane on sections and benches of five-abandoned open mine workings of supergene

153	Mn ore deposits et Diggi, Terali, Nagari, Illva and Pradhani (Figs. 2 and 4a). Most of
154	collected manganese ores show massive, botryoidally colloform-mineralized structures, or
155	infiltration ore in lateritic iron duricrust rich in cryptomelane and other Mn oxides, as well as
156	secondary goethite (Figs. 4b-e). Some samples also show the primary lithological banding of
157	parent rocks and protores.
158	The different operations for identifying, characterizing and sampling cryptomelane grains
159	are summarized in the Figure 3 (see also Bonnet et al., 2016). Cryptomelane and other Mn
160	oxides were first identified on fully polished thin sections (200-300 μ m-thickness), which
161	were observed under reflected light microscopy and analysed by X-ray micro-fluorescence, μ -
162	XR, (Figs. 4d-e). The μ -XRF analysis allowed mapping Mn, K and Fe concentrations on the
163	polished thin sections to identify the area the richest in cryptomelane. Cryptomelane was also
164	analysed by Electron Probe Micro-Analysis (EPMA) in polished thin sections.
165	Additional small grains were extracted from the remaining Mn ore duricrust specimens
166	for observation under a scanning electron microscope and characterization by X-ray
167	diffraction (Figs. 4f-g). Cryptomelane grains of 0.5 to 2 mm in size were picked on thick
168	counterparts (500 μ m-thickness) of each thin section where K and Mn are both present (Fig.
169	4e). Fifty-one grains were selected and divided into two batches, one reduced to powder (c. 64
170	μ m size fraction) and analysed by XRD (Fig. 4f), and the other one kept for dating.
171	
172	Cryptomelane grain irradiation and $^{40}Ar/^{39}Ar$ dating

173 Cleaned and purified cryptomelane grains were conditioned in aluminium foil packets,
174 and placed into an irradiation vessel including also the monitor VN-FCT-98 of Fish Canyon
175 Tuff volcanic (U.S.A.) dated at 28.172 ± 0.028 Ma (Rivera *et al.*, 2011) every ten grains.
176 Isotopic analyses and dating were performed using the step-heating method of irradiated

grains with a CO2 laser emitting in the infrared. Measured isotopic ratios were corrected for irradiation interferences and air contamination using the up-to-date mean ${}^{40}\text{Ar}/{}^{36}\text{Ar}_{atm}$ value of 298.56 ± 0.31 (Lee *et al.*, 2006; Renne *et al.*, 2011).

180	Plateau ages are generally derived using several apparent ages integrated over continuous
181	degassing steps overlapping at 2σ error level and integrating at least 70% ³⁹ Ar released
182	(Fleck, 1977; Maluski, 1985; McDougall and Harrison, 1988). A plateau age is still valid
183	when it integrates 50 % to 70 % of 39 Ar released over at least three continuous degassing
184	steps whose individual ages overlap in the 2σ error (e.g., Vasconcelos, 1999; Li and
185	Vasconcelos, 2002; Vasconcelos and Conroy, 2003; Colin et al., 2005; Li et al., 2007; Feng
186	and Vasconcelos, 2007; Vasconcelos et al., 2013; Riffel et al., 2015; Bonnet et al., 2014;
187	Deng <i>et al.</i> , 2016). When more than two degassing steps integrate only 40 to 50% of 39 Ar
188	released in the 2σ level, a "pseudo-plateau" age was preferred (Vasconcelos <i>et al.</i> , 2013;
189	Riffel et al., 2015). When at least three consecutive reasonably flat steps do not strictly
190	overlap in the 2σ level, a "forced" plateau was required to calculate an age weighted by error
191	and the ³⁹ Ar released for each degassing step (Vasoncelos et al., 2013; Riffel et al., 2015).
192	Picked cryptomelane are generally pure, but sometimes, hypogene contaminations
193	(muscovite), mixed cryptomelane generations, or cryptomelane mixed with authigenic phases
194	(e.g., todorokite ((Na,Ca,K) ₂ (Mn^{4+} , Mn^{3+}) ₆ O ₁₂ •3-4.5(H ₂ O)) result in very perturbed degassing
195	spectra including analysis biases and dating errors. For such cases, although pseudo-plateau
196	and forced plateau ages can be estimated, the 36 Ar/ 40 Ar vs. 39 Ar/ 40 Ar correlation diagrams
197	may be required to derive age from best-fitted isochron with a mean square weighted
198	deviation (MSWD) as close as possible to 1 (ideally less than 2.5; see Roddick et al., 1980)
199	and a ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ intercept as close as possible to the air value of 298.56 in the 2σ error level.

Results and interpretations

Characterization and stoichiometric composition of cryptomelane

203	All samples contain mostly cryptomelane (Fig. 4d-f), but iron oxy-hydroxides such as
204	goethite and sometimes hematite were also identified, with other manganese oxy-hydroxides,
205	i.e., lithiophorite ((Al, Li) $Mn^{4+}O_2(OH)_2$), nsutite (γ -MnO ₂) (see Figs. 4d-e), and even
206	pyrolusite (β -MnO ₂). Similar Mn oxides have been previously described in same Mn ore
207	deposits of Western Ghats (Sethumadhav et al., 2010). The relative richness in iron oxide
208	such as goethite is linked to banded iron formations associated with phyllites/argillites. Quartz
209	and muscovite were also determined as minor components.
210	The stoichiometric compositions of cryptomelane were calculated from EPMA and
211	plotted in a ternary diagram (Fig. 5). Some microanalyses from Nagari Mn deposit samples
212	have relatively high aluminium content owing to possible intergrowth with lithiophorite, or
213	mixture with a primary mineral like muscovite inherited from parent phyllites and argilites
214	(Bonnet et al., 2016). Microanalyses from Pradhani samples show high Fe content up to 20
215	wt.%. Cryptomelane from Terali deposit can be Al-rich (Fig. 5) owing to relict muscovite.
216	Cryptomelane from Diggi, Illva and some from Pradhani have less aluminous impurities (Al
217	never exceeding 2.73 wt.%, Fig. 5).

219 Weathering geochronology of the Western Ghats

Fifty-one cryptomelane grains collected in samples from five Mn ore deposits were
analysed and dated, and thirty-eight have significant geological ages (Tab. 1). Synthetic
results presented in the Table 1 allow distinguishing three family or groups of ages, MidMiocene (Fig. 6), Early Miocene – Late Eocene (Fig. 7), and Mid-Eocene (Fig. 8).

Overview of ³⁹Ar release spectra

226	Fifteen grains have homogenous degassing spectra allowing calculation of plateau ages
227	integrating 70 to 90 % of ³⁹ Ar released and thirteen with 50 to 70 % of ³⁹ Ar released (Tab. 1 ,
228	Figs. 6 and 8). Many irradiated grains picked in the same sample have reproducible
229	homogeneous degassing spectra. Seven spectra do not strictly respect the overlap upon the 2σ
230	error that requires calculation of acceptable age from forced plateaus and/or best-fitted
231	isochrons in correlation diagrams (Figs. 7 and 8 and Tab. 1).
232	Three types of perturbed degassing spectra have been identified. Hump-shape degassing
233	spectra, tagged HS (see Figs. 7 and 8) typify a mixture of at least two cryptomelane
234	generations that only allow estimating the minimum age of the oldest phase and the maximum
235	age of the youngest phase (Beauvais et al., 2008). Saddle shape degassing spectra, tagged SS
236	(Fig. 7) result from mixture of several supergene phases, or contamination by a hypogene
237	mineral (Hautmann et Lippolt, 2000; Ruffet et al., 1996; Vasconcelos et al., 1995). Staircase-
238	degassing spectra, tagged SD, suggest possibly a system opening, or a mixing of different
239	cryptomelane generations with a disturbance at high energy, owing generally to a
240	contamination by a hypogene phase (Fig. 7).
241	
242	Mid-Miocene cryptomelane ages
243	Most of the Mid-Miocene ages have been calculated for cryptomelane of samples
244	collected in Diggi and Illva Mn ore deposits (Figs. 6a-b). Three grains, DIG-1A-T4 to T6,
245	picked in the same thick section, have very similar degassing spectra allowing to derive
246	reproducible plateau ages between c.11 and c.12 Ma integrating more than 70 % of 39 Ar (Fig.
247	6a). Two other grains DIG-1B-T2 to T3 have a same age of c.13 Ma. The first one (DIG-1B-

T2) is a "pure" cryptomelane grain, with a regular ³⁹Ar-releasing spectrum allowing to

249	calculate a meaningful plateau age, based on 85 % ³⁹ Ar released. The second one (DIG-1B-
250	T3), picked in the same thick section, has a plateau like degassing spectrum with 79 $\%$ ³⁹ Ar
251	released confirming the reproducibility of plateau age calculation for the two grains (Fig. 6a).
252	Grain DIG-1B-T4 is also a "pure" cryptomelane characterized by a regular degassing
253	spectrum with 74 $\%$ ³⁹ Ar released, providing a robust plateau age of c.12 Ma.
254	One grain (ILV-1B-T4) has a homogeneous degassing spectrum providing plateau ages of c.
255	13 Ma integrating more than 90 $\%$ ³⁹ Ar released (Fig. 6b). Two others grains picked in
256	botryoïdal crystallizations from a same thick section (ILV-2C-T3 and -T4) also have
257	reproducible homogenous degassing spectra with robust plateau ages of c.12 to c.13 Ma
258	accounting for more than 80 % of ³⁹ Ar released. Grain ILV-3C-T4 picked in allochthonous
259	Mn ore sample has degassing spectra allowing calculation of a plateau age of c. 14 Ma
260	integrating more than 60 $\%$ ³⁹ Ar released (Fig. 6b). Two other grains picked in a same thick
261	plate have reproducible degassing spectra providing plateau age of c. 12 Ma (ILV-6A-T2) and
262	c. 10 Ma (ILV-6A-T3) both integrating c. 80% of ³⁹ Ar released.
263	

264

Late Eocene to Early Miocene Cryptomelane ages

This group (Fig. 7) comprises ages obtained for cryptomelane of samples from deposits 265 of Terali and Pradhani. Two cryptomelane rich grains (TER-1A-T1, TER-1B-T3) have 266 degassing spectrum with a slight hump-shape (Fig. 7a) suggesting mixture of two 267 cryptomelane generations. Such spectra allow defining only forced plateau ages c. 29 and c. 268 27.5 Ma, respectively, both accounting for at least 60% ³⁹Ar released. 269 270 One grain (PRA-1B-T1) is characterized by a staircase-degassing spectrum (Fig. 7b), which at best allows estimating poorly robust pseudo or forced plateau ages c. 25 Ma integrating 61 271 % of ³⁹Ar released. Three cryptomelane grains (PRA-2A-T1, -T3 and -T5) have similar slight 272

273	staircase degassing spectra allowing to derive plateau ages of c. 24.5 Ma, c. 23.7 and c. 21.6,
274	integrating 58 to 78-79 % of ³⁹ Ar released, respectively (Fig. 7b). The degassing spectra of
275	the other four grains (PRA-2B-T1, -T4; PRA-3B-T1, and -T2) provide plateau and/or forced
276	plateau ages varying from c. 23 Ma to c. 37.5 Ma (Fig. 7 and Tab. 1). Two grains (PRA-3B-
277	T1 –T2) have reproducible "saddle shape" spectra (Fig. 7b) suggesting opened systems
278	and/or supergene phase's mixture with a hypogene phase at high energies. Nonetheless,
279	plateau and forced plateau accounting for more than 50 % of ³⁹ Ar released, allow deriving
280	ages c. 32.8 and c. 37.5 Ma (Tab. 1), which may be the less poorly estimated maximum ages.
281	
282	Mid-Eocene cryptomelane ages
283	Most of Mid-Eocene cryptomelane grains (Fig. 8) were picked in samples from the
284	deposits of Nagari and Pradhani (Tab. 1). Two grains picked in the same thick section (NAG-
285	3B-T1 and T2) have a more or less homogenous degassing, allowing calculation of plateau
286	ages at c. 45 and c. 44 Ma, respectively (Fig. 8a). The ³⁹ Ar release spectrum of NAG-3B-T2
287	shows a slight hump shape with three steps accounting for 78 % of 39 Ar released and
288	overlapping in 2σ error, which provides a reliable plateau age. The last grain NAG-3B-T3 has
289	a perturbed ³⁹ Ar release spectrum resulting from mixing of cryptomelane generations that
290	only allows consideration of a forced plateau age c. 45 Ma accounting for more than 50 % of
291	³⁹ Ar release (Fig. 8a). Grain PRA-1B-T3 has a pronounced hump-shape degassing spectrum
292	typifying phases mixing that provide only a forced-plateau age of c. 45 Ma accounting for 50
293	% of ³⁹ Ar released (Fig. 8b).
294	

Summary and interpretation of the 40^{A} Ar/ 39 Ar ages

The three groups of ages (Table 1), c. 45-44 Ma, c. 37.5-22 Ma, and c. 14-10 Ma, complement ages obtained previously in other manganese ore deposits from the Karnataka

298	plateau (Sandur) and Western Ghats (Shimoga) south of the present study area that further
299	document the weathering periods previously established by Bonnet et al. (2016): Eocene and
300	Oligocene-Early Miocene, with a new period in Mid-Miocene. Altogether, the ages define
301	three main weathering periods, c. 53 to c. 44 Ma (W1), c. 39 to c. 22 Ma (W2), and c. 14 to c.
302	10 Ma (W3). Those periods mostly coincide with warm and humid climatic global trends
303	(Fig. 9), which were potentially conducive to intense lateritic weathering in the Peninsula as
304	well on most continents of the tropical belt (Retallack, 2010). Under such conditions, and
305	especially during the two first periods W1 and W2, relatively fast deepening of weathering
306	fronts (up to 10 m/myr; Boulangé et al., 1997; see also Tardy and Roquin, 1992) allowed
307	early segregation of aluminium, iron and manganese, controlled by their relative mobility
308	(Eh- and pH-dependent) in weathering profiles and landscapes (Melfi and Pedro, 1974; Hem,
309	1981; Beauvais et al., 1987). Early weathering of parental minerals such as illite or muscovite
310	into kaolinite or gibbsite released K ⁺ ions required to form cryptomelane (Parc et al., 1989).
311	Like in West Africa (Beauvais et al., 2008) or upon the Karnataka plateau (Bonnet et al.,
312	2014, 2016), Al-Fe-Mn geochemical differentiations have resulted in early formation of
313	manganese ore deposits including K-rich Mn oxides (cryptomelane) at depth in the profiles of
314	the S1 bauxitic paleolandscape (Fig. 10a). Such a surface geochemical dynamics typifies the
315	weathering regime of cratonic tropical regions, where slow base level lowering warranties
316	coeval landscape incision/dissection and long lasting deepening of weathering fronts. A slight
317	change in climatically driven surface erosional processes after c. 44 Ma (Fig. 9) allowed for
318	the abandonment of a duricrust-capped paleosurface S1 and installation of the S2 surface
319	without stripping the entire thickness of the S1 bauxitic weathering profile (Fig. 10b). A
320	comparable scenario applies for the abandonment of S2 and installation of S3, even though S3
321	has allochtonous clasts of older weathered material dispersed on its surface. Such a

322	punctuated erosion-weathering regime therefore allowed for the preservation of early-formed
323	weathering materials including manganese ores rich in cryptomelane in the S1 profiles, as
324	well as in those of S2 and S3 (Fig. 10b-c). Therefore, the weathering profiles of the youngest
325	S3 surface were able to host and keep record of "the roots" of manganese-rich profiles formed
326	during the S1 and S2 stages (Fig. 10c). The minimum age of weathering periods marks the
327	stabilization of weathering fronts at each stage responding to the lowering of base levels
328	resulting in landscape dissections and the abandonment of S1 at c. 44 Ma, S2 at c. 22 Ma, and
329	S3 at c. 10 Ma (Figs. 10a-c). The time intervals between the age groups, i.e., 44-39 Ma, 22-14
330	Ma, and 10-0 Ma (Fig. 9) document periods of subdued weathering under seasonally drier
331	climatic conditions with correlative landscape dissection and evolution into three stepped
332	lateritic paleolandscapes, S1 to S3 (Figs. 2c and 3; see also Beauvais and Chardon, 2013).
333	Therefore, the Western Ghats have seen their early low-relief S1 landscape differentiated
334	during three major denudation periods bounded by terminal ages of W1, W2, W3 and the
335	present-day, i.e., 44-22 Ma, 22-10 Ma, and 10-0 Ma.

337 Weathering and morphoclimatic history of the Western Ghats

338 *Early to Mid Eocene weathering period, W1 (53 - 44 Ma)*

The Eocene period documented here by four ages around 44-45 Ma attests to the minimum age boundary of this first weathering period (**Fig. 9**), which begun at least c. 53 Ma ago as documented further east at Sandur (Bonnet *et al.*, 2016). The Eocene is known as a period of bauxitization worldwide, particularly from cratonic domains of the inter-tropical belt (Prasad, 1983; Valeton, 1999; Retallack, 2010). This first weathering period of at least 9 Myr coincided with the global Early Eocene climatic optimum (c. 50 Ma; **Fig. 9**), and occurred in Peninsular India less than c. 5 Myr after the Paleocene-Eocene Thermal

346	Maximum and the onset of Himalayan collision c. 55-57 Ma ago (Hu et al., 2016; Najman et
347	al., 2010). During this period, India slowed its northward drift across the mostly equatorial
348	inter-tropical zone (Tardy and Roquin, 1998; Kent and Muttoni, 2008; see Bonnet et al.,
349	2016) and intense lateritic weathering, with segregation of aluminium from iron and
350	manganese in thick, mostly bauxitic profiles, affected most of lithologies including the
351	Deccan Traps (Bardossy and Aleva, 1990; Krishna Rao et al., 1989b; Valeton, 1999).
352	Remnants of such bauxitic paleolandscapes (S1) are distributed in the Western Ghats and
353	locally preserved on the Karnataka plateau (Bonnet et al., 2016). After 44 Ma, the S1 bauxitic
354	paleolandscape was reworked (see Krisna Rao et al., 1989b) allowing the establishment of the
355	S2 paleolandscape (Figs. 2c, 3 and 10b).
356	
357	Late Eocene - Early Miocene weathering period, W2 (39 - 22 Ma)
358	This long weathering period (c. 17 Myr) in the Western Ghats is documented by fifteen
359	ages complementing those previously obtained in Sandur on the Karnataka plateau and in
360	Shimoga (Western Ghats south of the Kanara district studied here) between 39 Ma and 23 Ma
361	(Bonnet et al., 2016). The oldest ages obtained in the Western Ghats (c. 37.5 Ma in the
362	present study and c. 39 Ma in Shimoga) document that lateritic weathering might have been
363	enhanced in South India by monsoon-like climatic regimes recently reported by authors
364	(Dupont-Nivet et al., 2008; Licht et al., 2014). This weathering period occurred a few million
365	years after the onset of global Mid-Eocene Climatic Optimum (c. 42 Ma; Fig. 9).
366	Late Eocene ages (c. 39 Ma) were obtained on cryptomelane in Shimoga Mn ore deposit
367	upon the S2 paleosurface (Bonnet et al., 2016; Fig. 9) and on kaolinite from a relict truncated
368	weathering profile from the southernmost Western Ghats in the upslope part of Kavery River
260	

370	the onset of lateritization and morphogenesis of S2 paleolandscape (Fig. 10b). Old concordant
371	ages obtained on the Karnataka plateau as well as in the Western Ghats belt are attributed to
372	the S2 paleolandscape that evolved slowly during a long-lasting period (c. 17 Myr) of intense
373	lateritic weathering, potentially under seasonally tropical humid climate.
374	The numerous ages between c. 30 and 23 Ma (Tab. 2 and Fig. 9) confirm those
375	previously obtained in Sandur and Shimoga (Fig. 1a; Bonnet et al., 2016) and document
376	enhanced weathering of S2 paleolandscape at the Oligocene-Miocene transition. These ages
377	bracket the global late Oligocene warming (LOW) at c. 26 Ma (Fig. 9), during which modern-
378	like monsoon regimes might have installed on the Peninsula (Chatterjee et al., 2013), with a
379	western/eastern rainfall contrast comparable to the modern one. Therefore, more humidity
380	supported intense lateritic weathering upon the Western Ghats and below the escarpment,
381	while further aridity and landscape dissection prevailed in the interior plateau, e.g., Sandur
382	where weathering was subdued from c. 26 Ma (Fig. 8; see also Bonnet et al., 2016). The
383	weathering period ended c. 22 Ma ago with the abandonment of paleolandscape S2 (Fig.
384	10b). Afterwards, landscape dissection prevailed in the Western Ghats and the S3
385	paleolandscape established (Figs. 2c, 3 and 10c).
386	

Mid-Miocene weathering period, W3 (14 - 10 Ma)

The mid-Miocene weathering period W3 is relatively short (c. 4 myr) but well documented by eighteen ages in the Western Ghats, and coincided with the global Mid-Miocene Climatic Optimum (**Fig. 9**). The ages also agree with palynostratigraphy in the same Mn deposits (Krishna Rao *et al.*, 1989a), and document renewed lateritic weathering in the Western Ghats once the S3 pediplain landscape was established (**Figs. 2c, 3 and 10c**). After c. 10 Ma, landscape dissection that formed the current incised valleys (**Fig. 2c**) would have been coeval with apparently subdued weathering attested to by the lack of ages (Fig. 9). However,
late Neogene ages (9 and 2.5 Ma) were previously recorded on cryptomelane in the coastal
lowland (Bonnet et al., 2016) or further south (9, 3.5 and 1 Ma) on kaolinite in the Western
Ghats (Mathian et al., 2019). Those weathering pulses date landsurface processes responses to
Neogene monsoon regimes, which are particularly marked in the Western Ghats and the
western lowland due to the orographic effect of the WGE (Bonnet *et al.*, 2016).

400

401

Landscape evolution of the Western Ghats

The well-preserved S1-S2 composite paleolandscape of Western Ghats has been mostly 402 shaped by c. 18 Myr of cumulated chemical weathering (45 to 44 and 39 to 22 Ma; Fig. 9) 403 404 and moderate denudation between 44 and 39 Ma (Figs. 2c and 10a-b). Most of the dissection of that landscape occurred from 22 to 14 Ma during which the S3 pediplain grew at its 405 expenses (Figs. 2c, 3 and 10c). Then, after a short episode of weathering (4 Myr), the S3 406 paleolandscape was finally dissected over the last 10 Myr. Therefore, after abandonment of 407 408 S1 paleolandscape 44 Ma ago (Fig. 10a), the Western Ghats relief gradually increased up to 409 350 m by punctuated base level falls (Fig. 2c), implying a maximal denudation rate of c. 8 410 m/myr over the last 44 Myr. In detail, the maximum 350 m of relief production in Western Ghats may be divided into three steps correlated to the abandonment of each paleolandscape, 411 412 S1 to S3 (Figs. 2c, 3 and 10). First, a maximum elevation difference of 100 m between S1 (44 Ma) and S2 (22 Ma) implies a maximum denudation rate of 4.5 m/myr, which is mostly 413 chemical (Fig. 9). Then, a maximum of 150 m elevation between S2 and S3 (Figs. 2c, 3 and 414 415 **10b-c**) implies 12.5 m/myr of maximum denudation rate between 22 Ma and 10 Ma. Finally, 416 the 100 m of maximum elevation difference between S3 and the current local base level in the upstream area of the Kali River drainage basin (Figs. 2c and 3) implies a river incision rate 417

that did not exceed 10 m/myr over the last 10 Myr. Locally, 300 m-deep gorges of the Kali
River imply imply an incision rate of 30 m/myr.

420	The estimated denudation rates are similar to millennial-scale erosion rates derived from
421	¹⁰ Be cosmogenic radionuclides measurements (CRN) on the southern Karnataka plateau
422	(Gunnell et al., 2007), or slightly lower than ¹⁰ Be-derived estimate (c. 15 m/myr) in river
423	borne sediments from the same region (Mandal et al., 2015). Although time scale (1 myr) and
424	hypotheses of CRN methods complicate comparisons, altogether same order estimates
425	derived from different time scales typify slow, steady state denudation regimes of landscapes
426	mostly controlled by climate rather than by epeirogeny (Beauvais and Chardon, 2013).
427	Over the last 22 Myr, slow denudation (c. 11 m/myr) and dissection have preserved a
428	Paleogene S1-S2 smooth paleolandscape over the Western Ghats (Figs. 2b-c, 3 and 10b-c).
429	This antique paleolandscape is the remnant of a South Indian plateau that once occupied most
430	of the peninsula, comparable to the current Southern African Plateau (Partridge and Maud,
431	1987; Burke and Gunnell, 2008). The great extension of the South Indian plateau is attested
432	to, for instance, by the preservation of large areas of smooth bauxitic paleolandscapes at 900-
433	1450 m elevation in the Eastern Ghats (Bardossy and Aleva, 1990; see also Subramanian and
434	Mani, 1979) or by the Sandur relict of the S1-S2 paleolandscape more than 250 km inland the
435	WGE (Bonnet et al., 2016). The current E-W asymmetric and eastward sloping topographic
436	profile of the Peninsula (e.g., Gunnell, 1998; Richards et al., 2016) would be due to the
437	regressive erosion of the plateau by the long east-flowing river systems that mostly preserved
438	a plateau relict near their headwaters, right above the Western Ghats escarpment as well as
439	residual patches such as the Eastern Ghats (Jean, 2019). The asymmetrically eroded plateau
440	model proposed here is an alternative to the c. 20 Ma eastward tilt model of the Peninsula
441	proposed by Richards et al. (2016) to explain the current eastward slope of Southern India.

442	Indeed, negligible Neogene denudation rates documented on either side of the WGE
443	(Beauvais et al., 2016; Bonnet et al., 2016; present work) imply that the escarpment is at least
444	50 Ma old and challenge the popular model of uplift and/or rejuvenation of the escarpment in
445	the Neogene advocated by most authors (e.g., Radhakrishna, 1993; Widdowson and Gunnell,
446	1999; Mandal et al., 2017). Furthermore, combined geomorphology and Ar-Ar
447	geochronology of the western coastal lateritic lowland of the Peninsula infers negligible uplift
448	since c. 50 Ma (Beauvais et al., 2016; Bonnet et al., 2016). Therefore, geomorphological
449	observations and denudation rates quantified by Ar-Ar geochronology preclude the eastward
450	tilt model of Richard et al. (2016) that requires 30 to 100 m/myr of uplift - and thus
451	rejuvenation - of the Western margin of the Peninsula since 23 Ma. Our results also imply that
452	the largest volume of sediments produced from the dissection of the South Indian plateau was
453	routed towards the eastern margin of the Peninsula.

455 **Conclusions**

The ⁴⁰Ar/³⁹Ar ages of cryptomelane from supergene manganese ores of the Western 456 457 Ghats document three major weathering periods in South India: Early-Mid-Eocene (W1), Late Eocene-Early Miocene (W2) and Mid-Miocene (W3). These weathering periods coincide 458 with known global and regional climatic proxies and alternated after c. 22 Ma with periods of 459 460 subdued weathering during which landscape has been structured step by step into three composite lateritic paleolandscapes S1, S2 and S3. The minimum age of each weathering 461 period determines the abandonment of each paleolandscape, i.e., S1 at 44 Ma, S2 at 22 Ma 462 463 and S3 at 10 Ma, which bound three major periods of landscape denudation and shaping, i.e., 44-22 Ma, 22-10 Ma and 10-0 Ma. Maximum Cenozoic denudation rates in Western Ghats 464 range from 4.5 to 12.5 m/myr, which confirms previous estimates in South India (Beauvais et 465

466	al., 2016). Our results document very long-term slow denudation of tropical cratonic
467	mountains typified by the Western Ghats. That persistent topography is a relict of a South
468	Indian lateritic plateau of Eocene age.

470	Acknowledgements – This work is part of AJ PhD thesis, funded by the Indo-French Centre
471	for the Promotion of Advanced Research (IFCPAR) project 5007-1, the CNRS (INSU-2017-
472	programme TelluS-SYSTER) and the IRD (UMR 161 CEREGE). The Karnataka State Forest
473	Department (Wild Life Division) is gratefully acknowledged for guidance and logistic
474	support. The French Ministry for Scientific Research and Education granted AJ a PhD
475	scholarship (ED251, Aix Marseille Université, Obervatoire des Sciences de l'Univers
476	Pytheas). This work also benefited of technical support from D. Borschneck, Cerege (XRD
477	and µ-XRF analyses), B. Boyer (EPMA), and M. Bonno, A. Iemmolo, D. Jourdain, C.
478	Lanvin, P. Monié, P. Münch (Argon radiochronology), from Geosciences Montpellier. We
479	thank Peter Van der Beek for his remarks on a first draft, and suggestions from reviews of
480	Cécile Gautheron and Gregory Retallack. Igor Maria Vila is thanked for editorial handling.
481	
482	Funding information
483	IFCPAR (5007-1); INSU-2017- programme TelluS-SYSTER; IRD recurrent funding
484	
485	References
486	Allard, T., Gautheron, C., Riffel, S.B., Balan, E., Soares, B.F., Pinna-Jamme, R., Derycke, A.,
487	Morin, G., Bueno, G.T. & do Nascimento, N. 2018. Combined dating of goethites and
488	kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of
489	Central Amazonia. Chemical Geology, 479, 136-150.

490 Bárdossy, G. & Aleva, G.J.J. 1990. Lateritic Bauxites. *Elsevier Science*. Amsterdam; New

York, 624 p.

- Beauvais, A., Bonnet, N.J., Chardon, D., Arnaud, N. & Jayananda, M. 2016. Very long-term
 stability of passive margin escarpment constrained by ⁴⁰Ar/ ³⁹Ar dating of K-Mn oxides.
 Geology, 44, 299–302.
- Beauvais, A. & Chardon, D. 2013. Modes, tempo, and spatial variability of Cenozoic cratonic
 denudation: The West African example. *Geochemistry, Geophysics, Geosystems*, 14,
 1590–1608.
- Beauvais, A., Melfi, A., Nahon, D. & Trescases J-.J. 1987. Pétrologie du gisement latéritique
 managnésifère d'Azul (Brésil). *Mineralium Deposita*, 22, 124-134.
- Beauvais, A., Ruffet, G., Hénocque, O. & Colin, F. 2008. Chemical and physical erosion
 rhythms of the West African Cenozoic morphogenesis: The ³⁹Ar-⁴⁰Ar dating of
 supergene K-Mn oxides. *Journal of Geophysical Research: Earth Surface*, **113**, F04007.
- Bonnet, N.J., Beauvais, A., Arnaud, N., Chardon, D. & Jayananda, M. 2014. First ⁴⁰Ar/³⁹Ar
 dating of intense Late Palaeogene lateritic weathering in Peninsular India. *Earth and Planetary Science Letters*, **386**, 126–137.
- Bonnet, N.J., Beauvais, A., Arnaud, N., Chardon, D. & Jayananda, M. 2016. Cenozoic
 lateritic weathering and erosion history of Peninsular India from ⁴⁰Ar/³⁹Ar dating of
 supergene K–Mn oxides. *Chemical Geology*, **446**, 33–53.
- Boulangé, B., 1986. Relation between lateritic bauxitization and evolution of landscape. *Travaux du Comité International pour l'Etude des Bauxites, de l'Alumine et de l'Aluminium* (ISCOBA), 16–17, 155-162.
- Boulangé, B., Ambrosi, J.-P. & Nahon, D. 1997. Laterites and bauxites. In *Soils and sediments: Mineralogy and geochemistry*, Paquet, H. &Clauer, N. eds., Springer, Berlin,
 49-65.

516	geomorphology, tectonics, and environmental change over the past 180 million years.
517	Geological Society of America, Memoir, 201, 80.
518	Chardon, D., Grimaud, J.L., Beauvais, A. & Bamba, O. 2018. West African lateritic
519	pediments: Landform-regolith evolution processes and mineral exploration pitfalls.
520	Earth-Science Reviews, 179, 124-146.
521	Chardon, D., Jayananda, M., Chetty, T.R & Peucat J.J. 2008. Precambrian continental strain
522	and shear zone patterns/ south Indian case. Journal of Geophysical Research, 113,
523	B08402.
524	Chatterjee, S., Goswami, A. & Scotese, C.R. 2013. The longest voyage: Tectonic, magmatic,
525	and paleoclimatic evolution of the Indian plate during its northward flight from
526	Gondwana to Asia. Gondwana Research, 23, 238–267.
527	Colin, F., Beauvais, A., Ruffet, G. & Hénocque, O. 2005. First ⁴⁰ Ar/ ³⁹ Ar geochronology of
528	lateritic manganiferous pisolites: Implications for the Palaeogene history of a West
529	African landscape. Earth and Planetary Science Letters, 238, 172-188.
530	Deng, XD., Li, JW. & Vasconcelos, P.M. 2016. ⁴⁰ Ar/ ³⁹ Ar dating of supergene Mn-oxides
531	from the Zunyi Mn deposit, Guizhou Plateau, SW China: Implications for chemical
532	weathering and paleoclimatic evolution since the late Miocene. Chemical Geology, 445,
533	185–198.
534	Dupont-Nivet, G., Hoorn, C. & Konert, M. 2008. Tibetan uplift prior to the Eocene-Oligocene
535	climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 36, 987-
536	990.
537	Feng, YX. & Vasconcelos, P. 2007. Chronology of Pleistocene weathering processes,
538	southeast Queensland, Australia. Earth and Planetary Science Letters, 263, 275–287.

Burke, K. & Gunnell, Y. 2008. The African erosion surface: A continental-scale synthesis of

539	Fleck, R.J., Sutter, J.F. & Elliot, D.H. 1977. Interpretation of discordant ⁴⁰ Ar/ ³⁹ Ar age-spectra
540	of mesozoic tholeiites from antarctica. Geochimica et Cosmochimica Acta, 41, 15-32.
541	Grimaud, J.L., Chardon, D. & Beauvais, A. 2014. Very long-term incision dynamics of big
542	rivers. Earth and Planetary Science Letters, 405, 74-84.
543	Gunnell, Y. 1998. The interaction between geological structure and global tectonics in
544	multistroyed landscape development: a denudation chronology of the South Indian shield.
545	<i>Basin Research</i> , 10 , 281–310.
546	Gunnell, Y. & Bourgeon, G. 1997. Soils and climatic geomorphology on the Karnataka
547	plateau, peninsular India. Catena, 29, 239-262.
548	Gunnell, Y., Braucher, R., Bourlès, D. & André, G. 2007. Quantitative and qualitative
549	insights into landform erosion on the South Indian craton using cosmogenic nuclides and
550	apatite fission tracks. Geological Society of America Bulletin, 119 (5/6), 576-585.
551	Hautmann, S. & Lippolt, H.J. 2000. ⁴⁰ Ar/ ³⁹ Ar dating of central European K-Mn oxides - a
552	chronological framework of supergene alteration processes during the Neogene.
553	Chemical Geology, 170, 37–80.
554	Hem, J.D. 1981. Rates of manganese oxidation in aqueous system. Geochimica et
555	<i>Cosmochimica Acta</i> , 45 (8), 1369-1374.
556	Hu, X., Garzanti, E., Wang J., Huang, W., An W. & Webb A. The timing of India-Asia
557	collision onset – Facts, theories, controversies. Earth-Science reviews, 160, 264-299.
558	Jean, A. Histoire de la denudation en Inde Péninsulaire: Contraintes des ages ⁴⁰ Ar/ ³⁹ Ar des
559	oxydes de manganese supergenes et des reconstructions topographiques des paléo-
560	paysages latéritiques. PhD Thesis, Aix-Marseille University, Marseille, France.
561	Kent, D.V. & Muttoni, G. 2008. Equatorial convergence of India and early Cenozoic climate
562	trends. Proceedings of the National Academy of Sciences, 105, 16065–16070.

563	Krishna Rao, B., Muzamil Ahmed, M. & Janardhana, M.R. 1989a. Age of manganiferous
564	laterite of Uttara Kanada district, Karnataka. Journal of Geological Society of India, 34,
565	413–420.
566	Krishna Rao, B., Satish, P.N. & Sethumadhav, M.S. 1989b. Syngenetic and epigenetic
567	features and genesis of the bauxite-bearing laterite of Boknur-Navge plateau, Belgaum
568	district, Karnataka. Journal of Geological Society of India, 34, 46-60.
569	Lee, JY., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, HS., Lee, J.B. & Kim, J.S.
570	2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et
571	<i>Cosmochimica Acta</i> , 70 , 4507–4512.
572	Li, JW., Vasconcelos, P., Duzgoren-Aydin, N., Yan, DR., Zhang, W., Deng, XD., Zhao,
573	XF., Zeng, ZP., Hu, MA. 2007. Neogene weathering and supergene manganese
574	enrichment in subtropical South China: An ⁴⁰ Ar/ ³⁹ Ar approach and paleoclimatic
575	significance. Earth and Planetary Science Letters, 256, 389-402.
576	Licht, A., van Cappelle, M., Abels, H. A., Ladant, JB., Trabucho-Alexandre, J., France-
577	Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lécuyer, C., Terry Jr, D.,
578	Adriens, R., Boura, A., Guo, Z., Soe, A.N., Quade, J., Dupont-Nivet, G., Jaeger, JJ.
579	2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513, 501-506.
580	McDougall, I. & Harisson, T.M. 1988. Geochronology and Thermochronology by the
581	⁴⁰ Ar/ ³⁹ Ar Method, Oxford University Press., New York, 62 p.
582	Maluski, H. 1985. Méthode argon 39-argon 40. Principe et applications aux minéraux des
583	roches terrestres. E Roth, B Poty (Eds.), Méthodes de Datation par les Phénomènes
584	Nucléaires Naturels, Masson, Paris, 341-372
585	Mandal, S.K., Burg, J.P. and Haghipour, N., 2017. Geomorphic fluvial markers reveal
586	transient landscape evolution in tectonically quiescent southern Peninsular India.

Geological Journal, **52**(4), 681–702.

Mandal, S.K., Lupker, M., Burg, J.P., Valla, P.G., Haghipour, N. & Christl, M. 2015. Saptial
 variability of ¹⁰Be-derived erosion rates across the southern Peninsular Indian
 escarpment : A key to landscape evolution across passive margins. *Earth and Planetary*

Science Letters, **425**, 154-167.

- Manikyamba, C. & Naqvi, S.M. 1997. Mineralogy and geochemistry of Archaean greenstone
 belt-hosted Mn formations and deposits of the Dharwar Craton: Redox potential of proto oceans. *Geological Society London Special Publication*, **119**, 91–103.
- 595 Mathian, M., Aufort, J., Braun, J.J., Riotte, J., Selo, M., Balan, E., Fritsch, E., Bhattacharya,
- S. & Allard , T. 2019. Unraveling weathering episodes in Tertiary regoliths by kaolinite
 dating (Western Ghats, India). *Gondwana Research*, 69, 89-105.
- Melfi, A.J. & Pedro, G. 1974. Etude sur l'altération expérimentale des silicates de manganèse
 et la formation exogène des gisements de manganèse. *Bulletin du Groupe Français des argiles*, 26, 91-95.
- Mohopatra, B.K., Rao, D.S., Nayak, B.D. & Sahoo, R.K. 1996. Mineralogical and chemical
 charcateristics of ferromanganese ores from Sandur, Karnataka, India. *Journal of Mineralogy, Petrology, Economic Geology*, 91, 46-61.
- Monteiro, H.S., Vasconcelos, P.M.P., Farley, K.A. & Lopes, C.A.M. 2018. Age and evolution
 of diachronous erosion surfaces in the Amazon: Combining (U-Th)/He and
 cosmogenic ³He records. *Geochimica et Cosmochimica Acta*, 229, 162-183.
- Nahon, D. 1986. Evolution of iron crusts in tropical landscapes. In Rates of chemical
 weathering of rocks and minerals, S.M. Coleman and D.P. Dethier, Eds., Academic
 Press, London, 169-191.
- Najman, Y., Appel, E., Boudgher-Fadel M., Brown, P., Carter, A., Garzanti, E., Godin, L.,

611	Han, J., Liebke, U., Oliver, G., Parrish, R. & Vezzoli, G. Timing of India-Asia collision:
612	Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical
613	<i>Researc</i> h, 115 , B12416.
614	Parc, S., Nahon, D., Tardy, Y. & Vieillard, P. 1989. Estimated solubility products and fields
615	of stability for cryptomelane, nsutite, birnessite, and lithiophorite based on natural
616	lateritic weathering sequences. American Mineralogist, 74, 466-475.
617	Partridge, T.C. & Maud, R.R. 1987. Geomorphic evolution of southern Africa since the
618	Meozoic. South African Journal of Geology, 90, 179-208.
619	Prasad, G. 1983. A review of the early Tertiary bauxite event in South America, Africa and
620	India. Journal of African Earth Sciences, 1, 305–313.
621	Radhakrishna, B.P., 1993. Neogene uplift and geomorphic rejuvenation of the Indian
622	Peninsula. Current Science, 64, 787–793.
623	Ramstein, G., Khodri, M., Donnadieu, Y., Fluteau, F. & Goddéris, Y. 2005. Impact of the
624	hydrological cycle on past climate changes: three illustrations at different time scales.
625	Comptes Rendus Geoscience, 337, 125–137.
626	Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R. & Min, K. 2011. Response to the comment
627	by W.H. Schwarz <i>et al.</i> on 'Joint determination of 40 K decay constants and 40 Ar*/ 40 K for
628	the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰ Ar/ ³⁹ Ar geochronology'
629	by P.R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 5097-5100.
630	Retallack, G.J. 2010. Lateritization and Bauxitization Events. Economic Geology, 105, 655-
631	667.
632	Richards, F.D., Hoggard, M.J. & White, N.J., 2016. Cenozoic epeirogeny of the Indian
633	peninsula. Geochemistry, Geophysics, Geosystems, 17, 4920-4954.
634	Riffel, S.B., Vasconcelos, P.M., Carmo, I.O. & Farley, K.A. 2015. Combined ⁴⁰ Ar/ ³⁹ Ar and

635	(U-Th)/He geochronological constraints on long-term landscape evolution of the Second
636	Paraná Plateau and its ruiniform surface features, Paraná, Brazil. Geomorphology, 233,
637	52–63.

- Rivera, T.A., Storey, M., Zeeden, C., Hilgen, F.J. & Kuiper, K. 2011. A refined
 astronomically calibrated ⁴⁰Ar/³⁹Ar age for Fish Canyon sanidine. *Earth and Planetary Science Letters*, **311**, 420–426.
- Roddick, J.C., Cliff, R.A. & Rex, D.C. 1980. The evolution of excess argon in alpine biotites A ⁴⁰Ar-³⁹Ar analysis. *Earth and Planetary Science Letters*, 48, 185–208.
- Roy, S. 1981. Manganese Deposits, *Academic Press*. London, 458 p.
- Ruffet, G., Innocent, C., Michard, A., Féraud, G., Beauvais, A., Nahon, D. & Hamelin, B.
 1996. A geochronological ⁴⁰Ar/³⁹Ar and ⁸⁷Rb/⁸¹Sr study of K-Mn oxides from the
 weathering sequence of Azul, Brazil. *Geochimica et Cosmochimica Acta*, 60, 2219–2232.
- Sawkar, R.H. 1981. Geology of the Manganese Ore Deposits of North Kanara District,
 Karnataka State, India, *Geology and Geochemistry of Managanese, II, Akademiai Kiadi,*Budapest, 281-295.
- 650 Sethumadhav, M.S., Gunnell, Y., Ahmed, M.M. & Chinnaiah. 2010. Late Archean
- 651 manganese mineralization and younger supergene manganese ores in the Anmod-Bisgod

region, Western Dharwar Craton, southern India: Geological characterization,

palaeoenvironmental history, and geomorphological setting. Ore Geology Reviews, **38**,

654 70–89.

- Shivaprakash, C. 1983. Petrology of quartzofeldspathic schists and phyllites associated with
 manganese formations of North Kanara and Kumsi, Karnataka. *Journal of the Geological Society of India*, 24, 571–587.
- 658 Shuster, D.L., Vasconcelos, P.M., Heim, J.A. & Farley, K.A. Weathering geochronology by

659	(U-Th)/He dating of goethite. Geochimica et Cosmochimica Acta, 69 (3), 659-673.
660	Subramanian, K.S. & Mani, G. 1979. Geomorphic significance of lateritic bauxite in the
661	Shevaroy and Kollaimalai hills, Salem district, Tamil Nadu. Journal Geological Society
662	of India, 20 , 282-289.
663	Tardy, Y. 1997. Petrology of Laterites and Tropical Soils, Balkema. Rotterdam, 408 p.
664	Tardy, Y. & Roquin, C. 1992. Geochemistry and evolution of lateritic landscapes. In
665	Westhering, Soils & Paleosols, I.P. Martini & W. Chesworth, Eds., Developments in
666	Earth Surface Processes 2, 16, 407-443.
667	Tardy, Y. & Roquin, C. 1998. Dérive des continents. Paléoclimats et altérations tropicales,
668	Éd. BRGM. Orléans, 473 p.
669	Thomas, M.F. 1994. Geomorphology in the Tropics: A Study of Weathering and Denudation
670	in Low Latitudes, John Wiley & Sons Ltd. Chichester, England, 482 p.
671	Valeton, I. 1999. Saprolite-bauxite facies of ferralitic duricrusts on palaeosurfaces of former
672	Pangea. Special Publications of the international Association of Sedimentologists, 27,
673	153–188.
674	Vasconcelos, PM. 1999. K-Ar and ⁴⁰ Ar/ ³⁹ Ar geochronology of weathering processes.
675	Annual Review of Earth and Planetary Sciences, 27, 183–229.
676	Vasconcelos, P.M. & Carmo, I. de O. 2018. Calibrating denudation chronology through
677	⁴⁰ Ar/ ³⁹ Ar weathering geochronology. <i>Earth-Science Reviews</i> , 179 , 411–435.
678	Vasconcelos, P.M. & Conroy, M. 2003. Geochronology of weathering and landscape
679	evolution, Dugald River valley, NW Queensland, Australia. Geochimica et
680	<i>Cosmochimica Acta</i> , 67 , 2913–2930.
681	Vasconcelos, P.M., Heim, J.A., Farley, K.A., Monteiro, H. & Waltenberg, K. 2013. ⁴⁰ Ar/ ³⁹ Ar
682	and $(U-Th)/He - {}^{4}He/{}^{3}He$ geochronology of landscape evolution and channel iron

- deposit genesis at Lynn Peak, Western Australia. *Geochimica et Cosmochimica Acta*,
 117, 283–312.
- Vasconcelos, P.M., Renne, P.R., Becker, T.A. & Wenk, H.-R. 1995. Mechanisms and kinetics
 of atmospheric, radiogenic, and nucleogenic argon release from cryptomelane during
 ⁴⁰Ar/³⁹Ar analysis. *Geochimica et Cosmochimica Acta*, **59**, 2057–2070.
- Widdowson, M. 1997. Tertiary paleosurfaces of the SW Deccan, Western India: implication
 for passive margin uplift. M. Widdowson (Ed.), Palaeosurfaces: Recognition,
- Reconstruction and Palaeoenvironmental Interpretation. *Geological Society Special Publication*, London, 221–248.
- Widdowson, M. & Gunnell, Y., 1999. Tertiary palaeosurfaces and lateritization of the coastal
 lowlands of Western Peninsula India. in Palaeoweathering, Palaeosurfaces and Related
 Continental Deposits, Edited by Médard Thiry and Régine Simon-Coinçon, Special
 Publication, 27, 245–274.
- Zachos, J.C., Dickens, G.R. & Zeebe, R.E. 2008. An early Cenozoic perspective on
 greenhouse warming and carbon-cycle dynamics. *Nature*, 451, 279–283.
- 698

699 FIGURES AND TABLE CAPTION

700

Fig. 1. (a) Simplified geology (adapted from Bonnet et al., 2016 based on Chardon et al.,

2008) of the western part of Peninsular India, and (b) 30 m SRTM topography. Location of
studied area (North Kanara region) is shown.

704

```
Fig. 2. (a) Geological map of the study area in North Kanara region with the three
```

morphogeological strips upon which Mn ore deposits formed; (b) Topo-geomorphologic map

of the region showing the distribution area of remnants of three major landsurfaces, S1, S2,

708	and S3, with location of the studied/dated Mn ore deposits; (c) Synthetic geomorphogical
709	section across the study area in upstream Kali river drainage basin (section lines shown in Fig.
710	2b). Vertical exaggeration = 4.
711	
712	Fig. 3. 3-D distribution of relicts of the three major lateritic landsurfaces of the Western Ghats
713	landscape, S1, S2, and S3; (a) Google-Earth view showing the landscape geomorphology
714	around the Terali Mn ore deposit, TER, (Image Landsat/Copernicus, Image©2018
715	DigitalGlobe); (b) Geomorphological interpretation map of this image. The altitudes are those
716	given by Google Earth (black dots).
717	
718	Fig. 4. Field characteristics and petrographic structures of sample DIG-1 collected in the
719	Diggi Mn ore deposits. (a) Diggi open cast mine; (b) sample DIG-1 showing infiltration Mn
720	ore in iron duricrust; (c) Polished thin section of sample DIG-1A; (d) microscopic observation
721	of the polished thin section showing the colloform structure of infiltration Mn ore (C=
722	cryptomelane; Li= lithiophorite; ns= nsutite G= goethite); (e) micro X-ray fluorescence
723	analysis showing cryptomelane (C) and goethite (G) determined from a colour code, blue
724	(Mn) and green (K), and iron in red; (f) Scanning Electron Microscopy (SEM) image of
725	cryptomelane "needles"; (g) X-ray diffraction diagram of the sample powder.
726	
727	Fig. 5. Micro-chemical compositions of cryptomelane obtained by electron probe
728	microanalyses (EPMA) distributed in a ternary diagram whose poles are Mn, 10 K and 10 Al.
729	
730	Fig. 6. 40 Ar/ 39 Ar age spectra of crytpomelane grains from Mn ore deposits of (a) Diggi and
731	(b) Illva, with K/Ca (black) and Ar* (grey) step curves. (SS = Saddle shape)

733	Fig. 7 . 40 Ar/ 39 Ar age spectra of crytpomelane grains from Mn ore deposits of (a) Terali, and
734	(b) Pradhani, with K/Ca (black) and Ar* (grey) step curves. (HS = Hump shape; SD = Stair
735	case degassing; SS = Sadde shape)
736	
737	Fig. 8 . 40 Ar/ 39 Ar age spectra of crytpomelane grains from Mn ore deposits of (a) Nagari, and
738	(b) Pradhani, with K/Ca (black) and Ar* (grey) step curves. (HS = Hump shape)
739	
740	Fig. 9. Synthesis of the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages results with individual ages probability curves
741	accounting for results from this study and previous ones (Bonnet et al., 2016). Each age
742	probability curve accounts for 1/3 of the total signal integrating individual ages degassing at
743	least 5% ³⁹ Ar from all the preferred calculated ages (table. 1) weighted by the error margin for
744	the three sites ($N_{Sandur} = 19$ ages, $N_{Shimoga} = 10$ ages; $N_{This study} = 38$ ages). The calculated ages
745	are also plotted against the altitude. Altogether, the probability curves and the calculated ages
746	document major weathering peaks and periods W1, W2 and W3 (vertical colour bands),
747	which are compared to major trends of the global paleoclimatic curve (from Zachos et al.,
748	2008). PETM = Paleocene-Eocene Thermal Maximum; EECO = Early Eocene Climatic
749	Optimum; MECO = Mid-Eocene Climatic Optimum; EOC = Early Oligocene Cooling;
750	LOW= Late Oligocene Warming; MMCO = Mid-Miocene Climatic Optimum. Ages in bold
751	and arrowed are terminal ages of weathering periods W1 to W3.
752	
753	Fig. 10. Landscape and lateritic weathering dynamical evolution in Western Ghats of
754	Peninsular India illustrating early cryptomelane-rich Mn ores formation at (a) the first
755	bauxitic step S1 (red), and their preservation over the Cenozoic at each next landscape (b)

756	stage S2 (in blue), and (c) S3 pediment (in green). Coloured dashed lines represent successive
757	weathering fronts of S1, S2 and S3 profiles. After 10 Ma, the S3 landscape is dissected.
758	

Table 1. Synthesis of the 40 Ar/ 39 Ar ages calculated from plateaus in 39 Ar release spectra and isochrons, with the integrated and the preferred ages.

Α		³⁹ Ar release spectrum			Isochrone					Integrated Age	Preferred age	
Sample ID	Altitude (m)	Age ± 2σ, Ma	Step(s)	% ³⁹ Ar	Age ± 2σ, Ma	40Ar/36Ar	MSWD	Steps	% ³⁹ Ar	Age ± 2σ, Ma	Age ± 2σ, Ma	Comments
DIGGI												
DIG-1A-T4	623	12.3 ± 0.3	7-11	72	11.3 ± 0.5	318 ± 10	1.11	7-11	72	12.0 ± 0.3	12.3 ± 0.3	Plateau > 70 % ³⁹ Ar
					11.1 ± 0.3	298 ± 4	0.13	5-6, 12-14	21			
DIG-1A-T5	623	11.6 ± 0.2	5-8	71	11.8 ± 0.2 11.6 ± 0.2	289 ± 3 298 ± 3	1.32	5-8 1-4, 7-8	62	11.7 ± 0.5	11.6 ± 0.2	Plateau > 70 % ³⁹ Ar
DIG-1A-T6	623	12.3 ± 0.3	7-12	83	12.6 ± 0.2	284 ± 6	1.36	6-7, 9-10, 14- 15, 17-18	58	12.4 ± 0.2	12.3 ± 0.3	Plateau > 70 % ³⁹ Ar
DIG-1B-T2	623	13.3 ± 0.2	4-8	85	13.0 ± 0.7	302 ± 31	1.43	4, 6-8	61	13.3 ± 0.3	13.3 ± 0.2	Plateau > 70 % ³⁹ Ar
DIG-1B-T3	623	13.3 ± 0.3	3-9	79	13.3 ± 0.4	296 ± 6	0.69	3-9	79	13.4 ± 0.5	13.3 ± 0.3	Plateau > 70 % ³⁹ Ar
DIG-1B-T4	623	12.4 ± 0.2	9-13	74	12.4 ± 0.2	298 ± 3	1.19	2-3, 10-13	73	12.2 ± 0.5	12.4 ± 0.2	Plateau > 70 % ³⁹ Ar
TERALI												
TER-1A-T1	644	28.7 ± 0.5	6-8	61	28.5 ± 0.4	289 ± 7	2.41	1-4, 6, 8-9	63	28.2 ± 0.5	28.7 ± 0.5	Min of oldest Forced plateau > 50 % 39Ar
TER-1A-T2	644	32.3 ± 0.4	11-14	49	22.6 ± 0.6	289 ± 3	0.61	2-5, 7-8	10	31.5 ± 0.9	32.3 ± 0.4	Min of oldest Forced plateau < 50 % 39Ar
TER-1B-T3	644	27.5 ± 0.3	6-8	73	27.8 ± 0.2	278 ± 4	2.88	1, 3, 6-7, 12	63	26.7 ± 1.2	27.5 ± 0.3	Min of oldest Plateau > 70 % 39Ar

В	³⁹ Ar release spectrum			Isochrone					Integrated Age	Preferred age	0	
Sample ID	Altitude (m)	Age ± 2σ, Ma	Step(s)	% ³⁹ Ar	Age ± 2σ, Ma	40Ar/36Ar	MSWD	Steps	% ³⁹ Ar	Age ± 2σ, Ma	Age ± 2σ, Ma	comments
NAGARI												
NAG-1B-T2	520	32.0 ± 1.9 41.2 ± 1.4	1-4 5-7	50 50	32.4 ± 2.0	293 ± 6	0.78	1-4, 7	52	38.0 ± 3.4	32.4 ± 2.0	Best fitted isochrone
NAG-3A-T3	520	31.3 ± 0.1	9-11	24	31.6 ± 1.1 50.3 ± 0.4	295 ± 2 292 ± 1	2.07 1.1	3-4, 9-12 1-2, 5, 7	32 42	43.8 ± 4.5	31.6 ± 1.1	Best fitted isochrone
NAG-3B-T1	520	45.0 ± 1.0	7-11	53	40.6 ± 1.6	301 ± 4	0.5	2-6, 10-11	49	44.3 ± 1.3	45.0 ± 1.0	Plateau > 50 % ³⁹ Ar
NAG-3B-T2	520	44.0 ± 0.9	4-6	78	44.3 ± 0.8	299 ± 4	1,74	2, 4-5	58	43.6 ± 1.3	44.0 ± 0.9	Min of oldest Plateau > 70 % ³⁹ Ar
NAG-3B-T3	520	44.9 ± 3.6	8-10	52	35.3 ± 4.7 46.4 ± 2.6	297 ± 16 297 ± 5	0.25 1.88	7, 11-14 5-6, 8-9	28 43	43.2 ± 2.9	44.9 ± 3.6	Forced plateau > 50 % ³⁹ Ar

TABLE. 1a-b

С	³⁹ Ar release spectrum						Isochron	e	Integrated Age	Preferred age		
Sample ID	Altitude (m)	Age ± 2σ, Ma	Step(s)	% ³⁹ Ar	Age ± 2σ, Ma	⁴⁰ Ar/ ³⁶ Ar	MSWD	Steps	% ³⁹ Ar	Age ± 2σ, Ma	Age ± 2σ, Ma	- Comments
ILLVA												
ILV-1B-T4	524	12.7 ± 0.8	2-8	92	12.7 ± 0.9	296 ± 9	1.11	2-8	92	12.6 ± 0.8	12.7 ± 0.8	Plateau > 70 % ³⁹ Ar
ILV-1B-T5	524	12.3 ± 0.1	6-9	73	12.3 ± 0.1	298 ± 3	1.22	2, 7-9	57	12.3 ± 0.5	12.3 ± 0.1	Plateau > 70 % ³⁹ Ar
ILV-2C-T3	524	12.1 ± 1.3	1-9	100	12.1 ± 1.6	29 ± 40	0.14	1, 4-6, 8	82	12.1 ± 1.3	12.1 ± 1.3	Plateau > 70 % ³⁹ Ar
ILV-2C-T4	524	12.9 ± 0.3	7-9	70	12.9 ± 0.7	295 ± 48	0.46	6-9	85	12.9 ± 0.3	12.9 ± 0.3	Plateau > 70 % ³⁹ Ar
ILV-3A-T1	524	13.1 ± 0.4	6-7	63	13.2 ± 0.2	300 ± 7	2.7	5- 6, 10-12	48	13.1 ± 0.2	13.1 ± 0.4	Forced plateau > 50%
ILV-3A-T3	524	14.0 ± 0.7	6-10	76	14.0 ± 0.8	304 ± 79	0.4	7-9	66	14.1 ± 2.9	14.0 ± 0.7	Plateau > 70 % ³⁹ Ar
ILV-3C-T4	524	13.6 ± 0.3	1-6	65	13.5 ± 0.3	294 ± 16	1.14	3-6, 8	61	13.7 ± 0.4	13.6 ± 0.3	Plateau > 50 % ³⁹ Ar
ILV-6A-T1	524	11.3 ± 0.1	9-11	50	11.3 ± 0.1	293 ± 2	1.84	1-3, 4-5, 9-11	59	11.6 ± 0.7	11.3 ± 0.1	Best fitted isochrone
ILV-6A-T2	524	11.6 ± 0.2	8-11	79	11.4 ± 0.1	296 ± 3	0.94	3, 7, 10-11, 14-15	42	11.6 ± 0.2	11.6 ± 0.2	Plateau > 70 % ³⁹ Ar
ILV-6A-T3	524	10.0 ± 0.2	7-9	84	10.1 ± 0.1	297 ± 6	0.45	1, 4, 6, 8-9	56	10.0 ± 0.2	10.0 ± 0.2	Plateau > 70 % ³⁹ Ar
ILV-6B-T1	524	11.0 ± 0.1	7-9	55	11.0 ± 0.1	289 ± 4	2.85	2-3, 7-9, 12	64	11.1 ± 0.2	11.0 ± 0.1	Pseudo-Plateau > 50 % ³⁹ Ar
ILV-6B-T2	524	14.4 ± 0.4	7-9	62	14.5 ± 0.1	292 ± 2	1.24	3-5, 7, 9	55	14.0 ± 1.0	14.5 ± 0.1	Best fitted isochrone
ILV-6B-T3	524	12.0 ± 0.2	8-11	66	11.9 ± 0.2	310 ± 6	0.99	5, 8-11	69	12.8 ± 0.8	12.0 ± 0.2	Plateau > 50 % ³⁹ Ar
PRADHANI												
PRA-1B-T1	620	25.2 ± 0.2	5-6	61	-	-	-	-	-	25.2 ± 1.7	25.2 ± 0.2	Pseudo-Plateau > 50 % ³⁹ Ar
PRA-1B-T2	620	29.8 ± 0.4	8-10	48	24.2 ± 0.2	276 ± 3	1.21	2, 4-5	8	28.6 ± 4.2	29.8 ± 0.4	Forced plateau < 50 % ³⁹ Ar
	620	4E 4 ± 0 0	7.0	EO	30.8 ± 1.7	277 ± 8	0.96	2-4, 12	18	120122	45.4 ± 0.9	Forced plateau ~ 50 % ³⁹ Ar
PNA-1D-15	020	43.4 <u>1</u> 0.9	7-9	50	44.9 ± 0.6	289.5 ± 27	2.13	1, 7, 9, 11	40	45.0 ± 2.2		
PRA-2A-T1	620	24.5 ± 0.2	7-9	58	24.6 ± 0.2	252 ± 19	4.7	2, 7-9	60	24.5 ± 0.6	24.5 ± 0.2	Plateau > 50 % ³⁹ Ar
PRA-2A-T3	620	23.7 ± 0.2	10-16	78	23.7 ± 0.2	272 ± 28	0.44	1, 3, 10-14	61	23.7 ± 0.4	23.7 ± 0.2	Plateau > 70 % ³⁹ Ar
PRA-2A-T5	620	21.6 ± 0.1	9-15	79	21.6 ± 0.1	294 ± 9	1.07	1-2, 9-16	81	21.5 ± 0.3	21.6 ± 0.1	Plateau > 70 % ³⁹ Ar
PRA-2B-T1	620	27.8 ± 0.2	15-22	59	20.3 ± 1.1	294 ± 11	0.84	4, 7-11	11	27.5 ± 0.6	27.8 ± 0.2	Plateau > 50 % ³⁹ Ar
PRA-2B-T2	620	22.4 ± 0.2	12-15	47	19.9 ± 0.6	292 ± 20	1.05	2, 5-7	4	22.5 ± 0.4	22.4 ± 0.2	Forced plateau < 50 % ³⁹ Ar
PRA-2B-T4	620	23.4 ± 0.1	9-12	62	21.2 ± 0.5	291 ± 1	4.81	3-6	6	23.6 ± 0.7	23.4 ± 0.1	Plateau > 50 % ³⁹ Ar
PRA-3B-T1	620	32.8 ± 0.2	10-12	54	29.1 ± 0.7	277 ± 6	2.73	2-6	8	36.2 ± 4.3	32.8 ± 0.2	Plateau > 50 % ³⁹ Ar
PRA-3B-T2	620	37.5 ± 0.5	11-13	58	28.7 ± 0.8	277 ± 4	1.1	1-3, 6-7	6	41.6 ± 8.7	37.5 ± 0.5	Forced plateau > 50 % ³⁹ Ar

TABLE. 1c

FIGURE. 1 (Jean et al., 2019)

Figure. 2 (Jean et al., 2019)

S3 pediment surface

S2 AI-Fe duricrusted surface

S1 bauxitic surface

FIGURE. 3 (Jean et al., 2019)

FIGURE. 5 (Jean et al., 2019)

FIGURE. 6 (Jean et al., 2019)

FIGURE. 7 (Jean et al., 2019)

FIGURE. 8 (Jean et al., 2019)

FIG. 10 (Jean et al., 2019)