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Abstract

We present an approach to analyse dispersal distance data. This approach allows one

to take into account accuracy of the recorded dispersal distances. Three distributions were 

used, all assuming continuous space; a maximum likelihood approach was used for 

parameter estimation and model selection. Numerical simulations showed that our method 

is statistically consistent since it selected the correct model with increasing frequency when

sample size increased. Ringing data on two species of tits (Parus caeruleus and P. major) in

Britain and Ireland were used to illustrate the potentialities of our method. In both species, 

adults dispersed significantly further than juveniles. The differences between species within

an age-class were not statistically significant. In all species and age-classes, the model 

finally selected was the one assuming a heavy-tailed half-Cauchy distribution where long-

distance dispersers are predicted to be more frequent than in the exponential model. The 

proposed methodology can potentially be applied to any organisms, and the model selection

procedure can be used with any model of the distribution of dispersal distances. Several 

extensions are presented in the discussion, such as generalized linear modelling of the 

dispersal parameters, or interfacing with capture-recapture models.

Keywords: Dispersal; Estimation; Hypothesis testing; Likelihood; Model; Spatial scale.
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1. Introduction

The last few years have seen an increasing interest in dispersal from ecologists and 

population biologists (Kot et al., 1996; Fagan, 1997; McCarthy, 1997). At least four reasons

justify this focus of attention. First, the development of spatially-explicit population models

which integrate the spatial structure of the landscape where plants and animals live 

underlines the importance of how they move in their natural habitat for the dynamics of 

their populations (Conroy et al., 1995). Second, theoretical studies have shown that the 

frequency distribution of dispersal distances affect invasion patterns and processes (Shaw, 

1995; Clark, 1998; Clark et al., 1998; Higgins and Richardson, 1999). Third, dispersal is 

the vector of gene flow, and the relationship between dispersal and genetic differentiation 

among local populations was recognized a long time ago (Mayr, 1963); this also has 

impacts for considering the likely spread of genes from genetically modified crops. Fourth, 

it has been realized recently that dispersal has an impact on the way we estimate fitness in 

local populations: taking into account dispersal is necessary to better understand the 

processes underlying adaptation (Lambrechts et al., 1999).

There are two main approaches to modelling dispersal in biological populations. 

The first one considers the rates of movement among discrete populations. The second 

approach considers the frequency distribution of dispersal distances in a continuous space. 

In the first approach, the dispersal parameters can be estimated from capture-recapture or 

mark-resight data (Brownie et al., 1993). These parameters have a straightforward 

biological meaning as they are the probabilities of movement from a given population to 
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another. Their estimation requires a large quantity of data (Spendelow et al., 1995; Lindberg

and Sedinger, 1998). In the second approach, the observed distribution of dispersal 

distances (DDD) is compared to an expected distribution derived from a model; we will 

distinguish two categories of such models. The first one can be called mechanistic because 

the expected DDD is derived from biological relationships involving parameters (e.g., seed 

weight and shape, wind direction) which have intuitive interpretations (Okubo and Levin, 

1989; Nurminiemi et al., 1998). However, it seems that these models can be developed only

for organisms with passive dispersal since similar models for actively dispersing animals 

are likely to include too many parameters to be tractable. In the second category of models, 

the DDD is described by a frequency curve involving few parameters; the shape of the 

curve depends on the value(s) of the parameter(s). In both categories of models, the 

parameters can be estimated from dispersal distance data.

The purpose of this paper is to present an approach for the modelling of DDD. 

Three simple models, derived from some probability density functions, with one or two 

parameters were used. A maximum likelihood method was used to estimate the parameters, 

to test which model best describes the data, and to test biological hypotheses. A 

probabilistic approach was used to account for uncertainty in the observations. The 

developed approach is general and applies to other models of dispersal. Some simulations 

to assess the performances of our approach were run. Finally, we analysed some data 

collected on two bird species.

This paper gives some emphasis on hypothesis testing. This may seem odd with 

respect to recent trends in statistical modelling where the emphasis seems to be on 
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parameter estimation. However, tests of hypotheses are particularly valuable in the present 

context since the biology of dispersal is still poorly known and testing biological 

hypotheses on dispersal is likely to be valuable to quantify this trait.

2. Statistical modelling of dispersal distances

Like other field measurements, dispersal distances may be observed with errors. 

Two reasons why a dispersal distance is not know accurately are considered here. First, this

may arise because of the accuracy of the data recording procedure. For instance, in most 

studies on dispersal of insects, distances are recorded in discrete sampling units that catch 

individuals (e.g., Mayer and Atzeni, 1993; Smith and Wall, 1998). In studies on plants, data

on dispersal are usually recorded as the quantity of pollen or seeds dispersing a distance-

class (Nathan and Muller-Landau, 2000). Second, a dispersal distance may be unknown but

it may be known that it is greater than a given distance; this is likely to occur when a 

disperser has moved out of the study area, which is typical for birds, for instance.

Now define for dispersal data three kinds of observation. When the dispersal 

distance is precisely known, the observation is said to be accurate. When the observation 

falls within an interval, it is said to be interval-censored. When the distance dispersed is 

known to be greater than a distance given, the observation is said to be censored (by 

analogy with censoring in survival studies, Cox and Oakes, 1984).

A probability density function is appropriate to describe the theoretical DDD since, 

by definition, such a function sums to one when integrated over space. If we have a 
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probability density function fθ(d) which describes the expected DDD with some 

parameter(s) θ, then it is possible to compute the probabilities of the events corresponding 

to the three kinds of precision just described. Note that these probabilities are not strictly 

equal but proportional to those given by the probability density function, but since they are 

subsequently used in a likelihood function, only their definition up to a constant is needed 

(Edwards, 1992). The probability of a dispersal distance D to be equal to d is given by:

Pr(D = d) = fθ(d).

The probability of D to fall between d' and d'' is given by the integration on this interval:

Pr (d '≤D≤d ' ' )=∫d '

d ' '
f θ(u)d u .

Similarly, the probability of D to be greater than c is given by the integration between c and

infinity:

Pr (D≥c )=∫c

+∞

f θ(u)du .

For a sample of n observations of dispersal distances, we have for the ith observation one of

the followings: (i) an exact distance denoted di, (ii) an interval denoted (di', di''), or (iii) a 

censored distance denoted ci. Let y1, y2, and y3 be three indicator variables such that for the 

ith observation y1i = 1 if it is accurate (y1i = 0 otherwise), y2i = 1 if it is interval-censored (y2i

= 0 otherwise), and y3i = 1 if it is censored (y3i = 0 otherwise). The likelihood of the sample 

for the model of DDD defined by fθ is:
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L=∏
i=1

n

[ y1 i f θ(d i)+ y2i∫di '

di ' '
f θ(u)d u+ y3 i∫c i

+∞

f θ(u)d u] .

If the cumulative density function Fθ corresponding to fθ is known, it is possible to re-write 

the likelihood as:

L=∏
i=1

n

{y1 i f θ(di)+ y2 i [Fθ(d i ' ' )−Fθ(d i ' )]+ y3 i [1−Fθ(c i)]}.                                         (1)

This paper considers three distributions: exponential, half-Cauchy, and Weibull. 

This restriction is mainly due to the fact that we studied birds for which mechanistic models

are likely to have too many parameters. However, as mentioned in the Introduction, our 

approach is general, and the algorithms and computer programs (see below) were written in

a way that they can easily be extended to other models of DDD.

The three distributions have one (exponential, half-Cauchy) or two parameters 

(Weibull). The exponential distribution has a biological interpretation in the present 

context. Consider an animal or a seed moving in a landscape: if it has a constant probability

of settling then the dispersal distances will follow an exponential distribution with rate 

parameter λ equal to this probability. The Cauchy distribution is unimodal and symmetric 

(Kotz and Johnson, 1982). The half-Cauchy distribution is derived from the standard 

Cauchy distribution by mirrorring the curve on the origin so that only positive values can 

be observed. As a heavy-tailed distribution, the half-Cauchy has been used as an alternative 

to the exponential to model theoretical DDD (Shaw, 1995), since the former predicts more 

frequent long-distance dispersal events than the latter (Fig. 1). The Weibull distribution is a 

generalization of the exponential distribution (Antle and Bain, 1988). It has an additional 
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parameter (the shape β) determining how the probability of settling varies: this probability ) determining how the probability of settling varies: this probability 

increases (decreases) with increasing distance for β) determining how the probability of settling varies: this probability  > (<) 1. If β) determining how the probability of settling varies: this probability  = 1, then the Weibull 

distribution reduces to the exponential one. The probability density function f and the 

cumulative density function F for each distribution are given in Table 1.

<Table 1 near here>

All computations were programmed in the statistical language R (Ihaka and 

Gentleman, 1996); the codes are available upon request from the first author. R is an 

interpreted language derived mainly from the S language (Becker et al., 1988) which has 

many built-in functions for statistical analyses and computing (CRAN, 2001). The 

likelihood (Eq. 1) was transformed as the deviance: Dev = −2lnL. Thus, finding the 

maximum likelihood was similar to minimizing the deviance: this was done with the 

nonlinear minimization function of R which uses a Newton-type algorithm for 

unconstrained minimization (Schnabel et al., 1985). This method allows one to find the 

minimum of a function even when its partial and second derivatives are unknown, which is 

particularly useful for complicated expressions such as the likelihood function in Eq. 1. 

However, these derivatives can be computed numerically. The values of the parameters 

which maximize the likelihood are the maximum likelihood estimates (MLEs). The 

standard-errors of the MLEs can be computed using the second derivatives of the likelihood

function at its maximum under the assumption that this function is normal. However, it is 

known that the likelihood function may be asymmetric when there are censored data (Cox 
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and Oakes, 1984). An alternative is to compute directly the confidence interval of the MLE 

on the likelihood function (Hudson, 1971). Since twice the difference between two log-

likelihoods must be at least 3.84 to be significant with P = 0.05, then the area below 1.92 

units of the observed maximum lnL defines a 95% confidence interval of the MLEs. A third

method is to use a bootstrap approach: this was implemented giving equal probabilities of 

resampling for all observations whatever their precision (see Efron, 1981).

The deviance residuals and the interval lengths can be used as diagnostics of model 

adequacy and contributions of the individual observations (Farrington, 2000). The deviance

residual ri is the square root of the contribution of the ith observation to the deviance 

function. Unlike in a regression model, the deviance residuals are here all positive and thus 

not distributed around an expected value. However, residuals after fitting the data to two 

different distributions can be plotted against each others to see which observations are most

influential to the difference of fit between both distributions (see application below). The 

interval length Ii is defined as: (i) Ii = 0 if the ith observation is accurate, (ii) Ii = di'' − di' if 

the ith observation is interval-censored, (iii) Ii = −1 if the ith observation is censored. If the 

interval lengths vary among observations, a plot of these against the deviance residuals may

reveal some possibly influential observations.

Using distributions such as those we have described above, it is possible to build 

models that can be fitted to dispersal data. For instance, if one is interested in testing for 

sex-biased dispersal (Greenwood, 1980), we can consider two models: the first one with 

different parameters for the two sexes, and the second with the same parameter for both 

sexes. The second model is nested in the first one, and both models can be compared with a
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likelihood ratio test (LRT) which is twice the difference in lnL of both models. Under the 

null hypothesis of no difference in both categories, this test follows a χ2 distribution with a 

number of degrees of freedom df = Δp, where Δp is the difference in numbers of 

parameters of both models. For example, to test for a difference in dispersal between sexes 

assuming an exponential distribution, one will build two models: the first one with a 

common parameter for both sexes estimated by fitting the exponential distribution to the 

pooled data, and the second one with two parameters estimated by fitting the distribution 

separately for both sexes. Both models will be compared with a LRT with df = 1: if the test 

is significant, then one will reject the null hypothesis that both sexes have the same DDD.

If several models are not nested, they can be compared with the Akaike Information 

Criterion (AIC, Akaike, 1973). It is computed for each model as AIC = −2lnL + 2p, where 

p is the number of parameters in the model. The model with the smallest AIC is accepted as

the one that best describes the data.

3. Simulation study

3.1 Methods

<Fig. 1 near here>

An important current issue in dispersal theory is whether long-distance dispersers 

are more frequent than expected under the exponential distribution. If true, the half-Cauchy 
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distribution with its heavy tail would be an appropriate model to describe DDDs. Fig. 1 

shows the theoretical curves for the exponential distribution with rate λ = 0.5, and for the 

half-Cauchy distribution with scale σ = 1.8. The similarity of the two curves is obvious. 

However, the half-Cauchy distribution predicts more frequent long-distance dispersers than 

the exponential one. Thus a central question was: can the AIC-based approach find the 

distribution that generated a sample of dispersal distances in a realistic sampling frame? We

considered the curves on Fig. 1. Two sampling frames were simulated with respect to 

spatial scale. In both cases, random samples were generated from one of both distributions. 

On the small spatial scale (0–5 km), if the generated observation was less than or equal to 5

km, then it was considered as accurate; if it was greater than 5 km, then it was considered 

as censored (thus, even the individuals that dispersed outside the study area were taken into 

account in the analysis). On the large spatial scale (0–500 km), if the generated observation 

was less than or equal to 500 km, then it was considered as interval-censored using the two 

nearest integer values; if it was greater than 500 km, then it was considered as censored. We

considered four sample sizes (50, 100, 200 and 400), and replicated the simulations for 

each set of parameters 1000 times. The exponential and the half-Cauchy distributions were 

fitted to each sample: the two AIC values were stored for comparisons.

<Fig. 2 near here>

The problem of heterogeneity in dispersal may be illustrated with a hypothetical 

population composed of two types of individuals dispersing according to an exponential 
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distribution but with different rates (see Rees, 1993). Then, if heterogeneity is ignored, the 

population mean rate will appear as decreasing with distance (because the individuals with 

the lowest rate are settling first), even though the parameters are constant. The question 

was: can our method detect such heterogeneity if it is present in the population? A 

population with two types of dispersers was simulated using two Weibull distributions: the 

first type had a decreasing probability of settling with distance (β) determining how the probability of settling varies: this probability  < 1) and were called 

philopatric, and the second type had an increasing probability of settling with distance (β) determining how the probability of settling varies: this probability  > 

1) and were called dispersers. We considered three pairs of Weibull distributions with a 

high (0.5, 2), medium (0.65, 1.5), or low (0.8, 1.2) difference in the shape β) determining how the probability of settling varies: this probability . In all cases, we

took the scale δ = 1. Fig. 2 shows the contrast for the three pairs of distributions on the 

range 0–5 km; all curves look very similar when plotted on the range 0–500 km. It should 

be noted that the tail of the curve for a Weibull distribution becomes heavier with smaller β) determining how the probability of settling varies: this probability .

We considered the same sampling scales (0–5 km, and 0–500 km), sample sizes (50, 100, 

200, and 400), and number of replications (1000) than above. We assumed that both types 

of individuals (philopatric and disperser) could be identified (e.g., sex), and that each 

sample was composed of half of each type. Four models were fitted to the simulated data 

sets: (i) assuming an exponential distribution, (ii) assuming a half-Cauchy distribution, (iii) 

assuming a Weibull distribution (ignoring heterogeneity in all these three models), and (iv) 

assuming a Weibull distribution with different parameters for both categories (i.e. the true 

model). The fitted models had one, one, two, and four parameters, respectively. The AIC 

values were computed and compared.
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3.2 Results

<Table 2 near here>

On the range 0–5 km, when the data were simulated with the half-Cauchy 

distribution, the correct model was detected in 85% of the cases with the smallest sample 

size (Table 2). This figure increased with increasing sample size to reach 100% when n = 

400. On the other hand, when the simulated data were from the exponential distribution, the

performance were less satisfying, though still statistically consistent as the percentage of 

correct model selection increased with increasing sample size (Table 2). On the range 0–

500 km, the performance of model selection were very good reaching more than 95% when

n = 50, and 100% for n ≥ 200.

<Table 3 near here>

For the simulations where heterogeneity was present, the efficiency of model 

selection generally increased with increasing sample size and/or increased contrast between

the shape parameters (Table 3). The “exponential” model provided a good fit when the 

contrast between the shapes was low which was due to the fact that both shapes were close 

to one, and thus both Weibull distributions were well approximated by an exponential one. 

On the other hand, the “half-Cauchy” model fitted well to the data when the contrast 

between the shapes was high, particularly on the range 0–500 km. This is due to the fact 
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that the Weibull distribution with β) determining how the probability of settling varies: this probability  = 0.5 has a relatively heavy tail which is well fitted by 

the half-Cauchy distribution; however, this artifact disappears progressively with increasing

sample size. Note that the Weibull model assuming homogeneity provided the best fit 

(averaged over the replications) to the data in no cases.

4. Application: dispersal in tits

There is considerable interest in the dynamics of bird populations at a large spatial 

scale where long distance dispersal is likely to have a critical rôle in population dynamics 

(Baillie et al., 2000). Most field studies are spatially limited to quantify dispersal distances, 

we thus analysed data from a large scale ringing programme. Since such data are likely to 

be recorded with some inaccuracies, it was essential to take them into account in the 

analyses.

4.1 Methods

The Ringing Scheme of the British Trust for Ornithology (BTO) has been run since 

1909: birds have been ringed by volunteers in Britain and Ireland since this time (Clark et 

al., 1996). Recoveries are largely by members of the general public, often when they find 

dead birds. Distances moved by recovered birds between ringing and recovery sites are 

stored in computerized databases to the nearest kilometer. Unlike most other studies of 

dispersal, this data set has the advantage that the relocation is not restricted to a limited 
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number of sites. We considered here two species: the blue tit (Parus caeruleus) and the 

great tit (P. major). This choice was directed by the quantity of data for these two species 

which are very abundant in the British Isles (Gibbons et al., 1993), but also because they 

are extremely sedentary so that winter movements are unlikely to contaminate significantly 

the dispersal data. For both species, we considered ring recoveries from 1948 to 1994. Only

birds ringed and recovered during breeding season (between April and July), and recovered 

at least one year after ringing were used (see Paradis et al., 1998 for details on data 

selection). Two age-classes were defined with respect to the age of the birds when ringed: 

juvenile for birds ringed in their year of birth (either as nestlings or as fledglings), and adult

for birds ringed later.

All data were considered as interval-censored: we took the value stored in the 

databases as the lower bound of the interval (d'), and this value plus one as the upper bound

of the interval (d'').

The four data sets were first analysed separately, then different possibilities of 

pooling (among species, or age-classes) were considered. We had some data on sex for the 

great tits ringed as adults, and tested for a possible difference between males and females in

breeding dispersal.

4.2 Results

<Fig. 3, Fig. 4, and Table 4 near here>
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Figure 3 shows the frequencies of the observed dispersal distances for all four data 

sets. In all four data sets, the half-Cauchy distribution was selected by the AIC (Table 4). 

The difference in AIC values with the Weibull distribution was slight, however, particularly

for juveniles. Plots of deviance residuals of these two distributions show that the 

observations that were most influential on this difference of fit were those with the longer 

distances (and thus the greater residuals, Fig. 4). Since all interval lengths were equal, it 

was possible to compute for each observed distance the expected frequency at this 

particular distance under the fitted half-Cauchy distribution: the plots of these expected 

frequencies against the observed ones suggest a good agreement between them (Fig. 5).

<Fig. 5, and Table 5 near here>

The estimates of the scale parameters show some similarities across species for both

age-classes (Table 5). The 95% confidence intervals were globally congruent, though the 

normal approximation yielded the smallest intervals, and the bootstraps the larger ones. The

profile likelihood and bootstrap intervals were slightly asymmetric. We pooled the data of 

both species separately for juveniles and adults, and fitted the half-Cauchy distribution: the 

LRTs were computed to test for difference between species within each age-class. The 

differences were not significant, either for juveniles (χ2 = 0.17, df = 1, P = 0.677), or for 

adults (χ2 = 0.01, df = 1, P = 0.920). Within species, the difference between age-classes was

statistically significant: χ2 = 80.19, df = 1, P < 0.0001, for blue tits, and χ2 = 62.69, df = 1, 

P < 0.0001, for Great Tits.
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Identification of sex was done on 152 great tits (83 males and 69 females). The 

estimated scale was slightly greater for males (= 0.640, SE = 0.076, 95% profile likelihood 

CI: 0.459-0.885), than for females (= 0.460, SE = 0.060, 95% profile likelihood CI: 0.343-

0.577), but the difference was not significant (χ2 = 1.766, df = 1, P = 0.183).

5. Discussion

The likelihood approach of model fitting is, certainly in the present context, superior

to the least squares method because the latter is scale-dependent and yields different results 

when the scale of the data is changed (Edwards, 1992). Hence, fitting a model to dispersal 

data by least squares is likely to depend on the spatial scale of the study. No such 

abnormalities are expected with the likelihood method. Colbach and Sache (2001) fitted a 

Weibull distribution to seed dispersal data, but they used a least squares approach. Baker et 

al. (1995) presented a Bayesian method that corrects mean dispersal distance using data 

collected on a limited study area, but this method actually ignores long-distance dispersers.

Wu et al. (2000) studied a two dimensional random walk model of animal 

movement for which they derived the expected mean dispersal distance. Comparing this 

expected mean with a population observed mean is a more approximative approach than 

computing the likelihood. However, it seems possible to derive the probability distributions

of dispersal distances from Wu et al.'s (2000) model, making thus possible the likelihood 

approach presented here.

Simulations in our study were focused on model selection, since the most important 
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problem in the study of dispersal is that of hypothesis testing. The simulation study showed 

that the model selection procedure was statistically consistent (the proportion of correctly 

identified model increased with increasing sample size), and had power to detect long-

distance dispersal, and power to detect heterogeneity. When the latter was present, 

statistical consistency was also observed as the proportion of correctly selected models was 

positively associated with the contrast between both categories of dispersers. It should be 

noted that good performance (see Tables 2 and 3) was observed when a large spatial scale 

was simulated even though the data were considered as only accurate to the nearest 

kilometer. The results from these simulations served to illustrate some properties of the 

method. From a practical point of view, they cannot serve directly as a guide to choose 

sampling sizes to optimize statistical power for a particular study; however, these can be 

very easy assessed in R using our functions and some very simple programming.

There are two straightforward extensions of our approach. The first one is in using 

other distributions to describe the theoretical DDD. These distributions can be either simple

ones (such as those developed here: e.g. gamma, normal, or lognormal), or mechanistic 

such as those developed for plants (see references in the Introduction). The statistical 

approach presented here can be used provided the theoretical DDD can be described in 

probabilistic terms. Such distributions can be obtained from Monte Carlo simulations.

The second extension is a generalized linear modelling of the parameters of an 

exponential or a half-Cauchy distribution in order to test biological hypotheses (McCullagh 

and Nelder, 1989). For instance, it is simple to fit an exponential distribution where the rate 

parameter depends, using a logarithmic link, on covariate(s) X such as: lnλ = γ X + ζ, where
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γ is a coefficient and ζ an intercept, both to be estimated. If γ = 0, then this model reduces 

to the exponential distribution used in this paper with rate λ = exp(ζ); so the two models are

nested and can be compared with a LRT. The same approach is apparently possible with the

half-Cauchy distribution, however, there are theoretical considerations that GLMs cannot 

be fitted to data which are Cauchy distributed (McCullagh and Nelder, 1989, p.20, see also 

Lindsey, 1996). On the other hand, there are statistical approaches to the regression analysis

of data when the dispersion of residuals is higher than expected with the normal 

distribution, which is the case with the Cauchy distribution (Ronchetti, 1997). Further 

investigation in this area of research is definitely needed.

Another extension, which seems less easy, would be to combine our approach on 

modelling dispersal distances with capture-recapture (Pollock et al., 1990) and ringing-

recovery (Brownie et al., 1985) probabilistic models. The aim of these models is to estimate

survival probabilities taking into account the recapture and/or resighting probabilities. 

Pollock (1982) developed a sampling design that can estimate separately local recruitment 

from immigration, but this requires some assumptions which may be difficult to check 

(Pollock et al., 1993). Generally, capture-recapture models cannot estimate separately local 

survival and emigration. It may seem possible to include the DDD in the recapture 

parameters of a capture-recapture model, and so constrain the recapture probabilities with 

respect to the frequency of dispersal movements. Further studies are needed to make this 

approach feasible. A more straightforward approach may be to combine a model of DDD 

with a multi-strata capture-recapture model (Brownie et al., 1993) to include constraints on 

transition probabilities between strata with respect to the distance separating them.
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The results from our analyses on dispersal distances of two species of tits revealed 

similar patterns of natal and breeding dispersal. The half-Cauchy distribution was preferred 

in all cases. There was a marked contrast between adults and juveniles, meaning that the 

well-documented difference between natal and breeding dispersal on small-scale study 

areas (e.g., Greenwood and Harvey, 1982) has some large-scale consequences for the 

dispersal of individuals. We note the observed difference, though not significant, with 

respect to sex in the DDD of adult great tits: males had a greater estimated scale than 

females. This is in contrast with local scale studies (Greenwood, 1980) which recorded 

greater dispersal distances in females compared to males for this species. It could be that 

the mechanisms acting on dispersal at a local scale (such as inbreeding avoidance, 

Greenwood and Harvey, 1982) are not relevant at a large-scale, thus explaining the lack of 

significant difference between sexes with our data.

If it appears that the half-Cauchy distribution adequately describes DDD in real 

situations (as suggested by our analyses with the British tits data), then this suggests a 

reconsideration of comparisons of mean dispersal distances estimated from different studies

(as usually done in comparative analyses, e.g. Cain et al., 1998) if there are some 

discrepancies in the areas sampled.
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Table 1

The three distributions used in this paper to model dispersal distances

Distribution Probability density function Cumulative density function Parameter(s)
(name)

Exponential λ e−λd 1 − e−λd λ (rate)

Half-Cauchy 2σ/π(σ2 + d2) (2/π)arctan(d/σ) σ (scale)

Weibull β) determining how the probability of settling varies: this probability /δ(d/δ)β) determining how the probability of settling varies: this probability  – 1exp[–(d/δ)β) determining how the probability of settling varies: this probability ] 1 – exp[–(d/δ)β) determining how the probability of settling varies: this probability ] β) determining how the probability of settling varies: this probability  (shape),

δ (scale)

27



Table 2

Simulation results. CAU and EXP give the number of simulations where the half-Cauchy 

and exponential distributions, respectively, were accepted out of the 1000 replicates; n: 

sample size. The distance ranges (0–5 km and 0–500 km) are the simulated sampling areas 

(see more details on the simulation procedure in the text).

Simulated distributions n 0–5 km 0–500 km

CAU EXP CAU EXP

Half-Cauchy 50 853 147 968 32

100 921 79 997 3

200 983 17 1000 0

400 1000 0 1000 0

Exponential 50 267 733 43 957

100 165 835 16 984

200 124 876 0 1000

400 65 935 0 1000
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Table 3

Simulation results when heterogeneity was present in the data. CAU, EXP, W(1) and W(2) 

give the number of simulations where the half-Cauchy, exponential, Weibull (assuming 

homogeneity), and Weibull (assuming heterogeneity) “models”, respectively, were accepted

out of the 1000 replicates; shapes: values of β) determining how the probability of settling varies: this probability  used to generate the two Weibull samples; n: 

sample size. The distance ranges (0–5 km and 0–500 km) are the simulated sampling areas 

(see more details on the simulation procedure in the text).

Shapes n 0–5 km 0–500 km

CAU EXP W(1) W(2) CAU EXP W(1) W(2)

0.5, 2 50 0 0 0 1000 67 19 8 906

100 0 0 0 1000 105 0 0 895

200 0 0 0 1000 195 0 0 805

400 0 0 0 1000 319 0 0 681

0.65, 1.5 50 6 39 1 954 16 191 49 744

100 0 0 0 1000 2 45 3 950

200 0 0 0 1000 3 0 0 996

400 0 0 0 1000 5 0 0 995

0.8, 1.2 50 30 472 65 433 10 619 115 256

100 3 268 29 700 0 401 90 509

200 0 47 7 946 0 191 37 772

400 0 1 0 999 0 27 5 968
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Table 4

Model fitting results for two species of birds in Britain and Ireland.

Species Age-class n Model AIC

Blue Tit adult 201 exponential 856

half-Cauchy 583

Weibull 692

juvenile 703 exponential 3965

half-Cauchy 3558

Weibull 3585

Great Tit adult 173 exponential 761

half-Cauchy 508

Weibull 602

juvenile 560 exponential 3179

half-Cauchy 2757

Weibull 2819
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Table 5

Maximum likelihood estimates of the scale parameters of the half-Cauchy distribution for 

two species of birds in Britain and Ireland.

Species Age-class σ̂ 95% confidence intervals

Normal 
approximation

Profile 
likelihood

Bootstrap

Blue Tit adult 0.525 0.446–0.604 0.423–0.649 0.451–0.623

juvenile 1.604 1.462–1.746 1.415–1.818 1.361–1.900

Great Tit adult 0.561 0.471–0.652 0.445–0.704 0.474–0.670

juvenile 1.619 1.466–1.772 1.415–1.851 1.380–1.923
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Fig. 1. Half-Cauchy and exponential distributions with scale σ = 1.8 and rate λ = 0.5, 

respectively.

Fig. 2. Three pairs of Weibull distributions with different shapes β) determining how the probability of settling varies: this probability , the scale is the same in 

all cases (δ = 1).

Fig. 3. Observed frequencies (numbers) of dispersal distances for two species of birds in 

Britain and Ireland. A: adult blue tits, B: juvenile blue tits, C: adult great tits, D: juvenile 

great tits.

Fig. 4. Deviance residuals for two fitted distributions (half-Cauchy and Weibull). A: adult 

blue tits, B: juvenile blue tits, C: adult great tits, D: juvenile great tits. Dotted lines are x = 

y.

Fig. 5. Observed and expected frequencies of dispersal distances under the fitted half-

Cauchy distribution. A: adult blue tits, B: juvenile blue tits, C: adult great tits, D: juvenile 

great tits. Dotted lines are x = y.
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