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Summary

The evolution of dispersal rate is studied with a model of several local populations 

linked by dispersal. Three dispersal strategies are considered where all, half, or none of 

the offspring disperse. The spatial scale (number of patches) and the temporal scale 

(probability of local extinction) of the environment are critical in determining the 

selective advantage of the different dispersal strategies. The results from the simulations

suggest that an interaction between group selection and individual selection results in a 

different outcome in relation to the spatial and temporal scales of the environment. Such

an interaction is able to maintain a polymorphism in dispersal strategies. The 

maintenance of this polymorphism is also scale-dependent. This study suggests a 

mechanism for the short-term evolution of dispersal, and provides a testable prediction 

of this hypothesis, namely that loss of dispersal abilities should be more frequent in 

spatially more continuous environments, or in temporally more stable environments.
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Introduction

Dispersal (permanent movement of individuals among local populations) is a ubiquitous

characteristic of living beings. Clearly, any species that has not the ability to move in 

space at one moment or another is greatly exposed to extinction risks. The evolution of 

dispersal rate (the proportion of dispersing offspring) has received considerable 

attention from theoreticians (e.g., Johnson and Gaines, 1990; Ludwig and Levin, 1991; 

McPeek and Holt, 1992; Olivieri et al., 1995) that showed an apparent paradox: some 

theoretical studies, based on either ecological or population genetic models, showed that

dispersal is counter-selected in a spatially heterogeneous but temporally stable 

environment (Balkau and Feldman, 1973; Teague, 1977; Asmussen, 1983; Hastings, 

1983; Holt, 1985). This paradox is not surprising if we look at the long-term fitnesses of

the disperser and philopatric strategies. The fact that some offspring disperse towards 

unfavourable habitats decreases the fitness of the disperser strategy relative to the 

philopatric one. Only the strategy with no dispersal can persist in the long-term (Morris,

1991). Temporal variability in the environment, however, favors non-null dispersal rates

(Kuno, 1981). Competitve interactions also favors dispersal when the environment is 

temporally constant (Hamilton and May, 1977; Comins et al., 1980; Frank, 1986). It has

been suggested by some theoreticians that a combination of spatial and temporal 

variations is required to select for dispersal (Gadgil, 1971; Roff, 1975; Levin et al., 

1984). Furthermore, some observations of polymorphism in dispersal strategies in 

natural populations suggest that selection against dispersal could be actually important 

(Harrison, 1980; Venable, 1985; Gouyon and Couvet, 1987; Olivieri et al., 1990; 

Peroni, 1994; Roff, 1994a; O’Riain et al., 1996). Most theoretical studies on the 

evolution of dispersal focus on the equilibrium conditions (often by means of ESS 

techniques), and do not consider the transient behaviours of their model, thus ignoring 

the time scale of the evolution of dispersal rate. Nevertheless, such a time scale has been

suggested to be critical in the maintenance of dispersal polymorphism in some insects 

(Roff, 1994a).

In this paper I examine the temporal scale of the evolution of dispersal rate in a 

variable and heterogeneous environment, and propose a mechanism for the maintenance
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of dispersal polymorphism. This theoretical study results in testable predictions on the 

short-term evolution of dispersal rate.

Model

I considered a model where space was structured into several discrete habitat patches. 

Population growth during reproduction was modelled by the discrete-time exponential 

logistic model: Nit+1 = Nit exp(ri(1 – Nit/Ki)), where Nit is size of population i at time t, 

ri is the growth rate of population i, and Ki is the carrying capacity for population i. 

After breeding, a fraction f (determined genetically) of the offspring dispersed and were 

then distributed equally in all patches. No mortality during dispersal was assumed. Each

generation consisted of a population growth episode and a dispersal episode. The 

existence of two kinds of habitat was assumed: a high-quality habitat (source habitat) 

where ri > 0, and a low-quality habitat (sink habitat) where ri < 0. Persistence in sink 

habitats may be allowed by dispersal, since an isolated population in this kind of habitat 

declines to extinction. Three genotypes were considered which differed in the fraction 

of offspring dispersing: f = 0, 0.5, or 1, respectively. Each genotype can mutate to any 

others at a rate of 10–4. The evolutionary dynamics of this model were studied by 

numerical simulations. I considered different values of population growth rates in 

source (rs) and sink habitats (rk), of carrying capacity in both habitats (Ks and Kk, 

respectively), and number of patches of both habitats (xs and xk, respectively). For a 

given combination of these parameters simulations were replicated and run with various

initial conditions to check the repeatability of the results and the stability of the 

equilibria observed. Most simulations were run for 2,500 generations; for some 

combinations of parameters, equilibrium was not reached after 2,500 generations and 

were run for longer times (up to 200,000 generations). The initial model was set with rs 

= 1, rk = –1, Ks = Kk = 1000, xs = xk = 1. This two-patch source-sink model was then 

modified in order to evaluate: (i) the effect of fragmentation of source and/or sink 

habitats (by varying xs and/or xk and keeping total carrying capacity constant), (ii) 

increase of ‘quality’ in the sink habitat (by increasing rk but keeping it negative), (iii) 
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and variation in patch sizes (by varying Ks and/or Kk). Temporal variability in the 

environment was then included in the model in the form of local extinction. Extinctions 

in each patch occurred with a probability pe varying between 0.001 and 0.5, and were 

not temporally or spatially correlated.

Further simulations were made to evaluate how critical are some assumptions on the 

dynamics of the model. It was assumed that only three dispersal strategies can exist to 

make the model more tractable but also because this is realistic with respect to some 

empirical studies that showed, for some organisms, dispersal strategies to have a similar

categorization (Gouyon and Couvet, 1987; Roff 1994a). Some simulations were 

replicated with a fuller range of genotypes; specifically two situations were examined: 

11 genotypes with f = 0, 0.1, 0.2, … or 1; and 21 genotypes with f = 0, 0.05, 0.1, 0.15, 

… or 1. The assumption on the mutation rate was also tested by replicating some 

simulations with different values for this parameter (10–5 or 10–6). The importance of the

assumed genetic mechanism (i.e., three clones with mutations) was evaluated by 

running simulations with no mutation at all and five individuals of each genotype in 

each population as initial conditions.

There were no selective values associated with the different genotypes, they grew 

equally within each population during the population growth process. Differential 

growth of genotypes was only caused by differential reproductive output in the whole 

set of populations.

In the present model variations in spatial and temporal scales were modelled by 

variations in the grain of the environment, and in the rate of local extinction, 

respectively (Fahrig, 1992). The scale of dispersal did not vary since in all situations the

modelled organisms could reach all patches during dispersal; however, the grain of the 

encountered environment varied when the number of patches did so. This also applies to

the temporal scale of the organisms which was modelled by the time step of the 

simulations; on the other hand, the temporal scale of the environment varied when the 

rate of local extinction did so.
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Results

In all simulations with a constant environment (pe = 0) the equilibrium was finally 

reached when the f = 0 genotype was fixed in all populations. However, the 

convergence towards this equilibrium was markedly different in relation to the spatial 

structure of the environment. Results below are with five f = 1 individuals in a source 

patch as initial conditions. For the initial model described above, the mean value of f 

among populations (denoted μ), quickly decreased and was equal to zero after around 

200 generations (Fig. 1). A similar result was observed when both source and sink 

habitats were fragmented (2 ≤ xs = xk ≤ 50). When only the source habitat was 

fragmented (2 ≤ xs ≤ 200, xk = 1), the convergence towards the equilibrium μ = 0 was 

slower: the stronger the fragmentation, the slower the convergence (Fig. 1a). When only

the sink habitat was fragmented (xs = 1, 2 ≤ xk ≤ 200), the convergence towards the 

equilibrium was quick. When the rate of population growth in the sink habitat was 

increased (–0.5 ≤ rk ≤ –0.005), the convergence towards the equilibrium μ = 0 was 

critically slower (Fig. 1b). When patch sizes varied (50 ≤ Ks ≤ 5000, 50 ≤ Kk ≤ 5000), 

convergence was always quick.

I examined the interactions between spatial and temporal scales of the environment 

by including local extinctions in the simulations with xs = 1, 5, 20, or 100. As expected, 

selection of high dispersal rates occurred in these simulations, the intensity of this 

selection being stronger when the rate of local extinction pe increased (Fig. 2). 

Important differences, however, were apparent with respect to xs. When xs was large (20

or 100) μ quickly increased with increasing pe and the f = 1 genotype was selected for 

even for moderate values of pe. For xs = 5, μ was equal to 0.5 for some range of 

extinction probability (0.05 ≤ pe ≤ 0.2). Examination of the genotypic frequencies for 

these simulations shows that the mixed dispersal strategy (f = 0.5) was selected for 

(Figs. 3 and 4). For a relatively high extinction rate (pe = 0.4), two genotypes coexisted 

(Fig. 5). For a very high extinction rate (pe = 0.5), the pure dispersal strategy (f = 1) was

fixed. When xs = 1, the situation was similar to the one just previously described for xs 

= 5 as long as pe ≤ 0.2 (Fig. 2). If pe increased further then there was no transition with 

a stable polymorphism as previously described, that is for pe = 0.25 the f = 0.5 genotype
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was fixed, and for pe = 0.3 the f = 1 genotype was fixed.

Simulations done to evaluate some of the assumptions gave different output for some

aspects of the present model. When a larger range of dispersal rates was assumed and 

there was no temporal variability in the environment, the final result was not changed. 

i.e. the f = 0 genotype was fixed; fixation occurred after longer times (two to three times

compared to the same habitat structure) as on average more mutation events were 

necessary for this genotype to appear in the populations. When local extinctions 

occurred (pe > 0), the results changed remarkably. In the different situations examined, 

there was one genotype almost fixed (one or two other genotypes remained at low 

frequencies) but fixation occurred after considerably more time (between 10,000 and 

20,000 generations), and fluctuations in genotypic frequencies still occurred. There was 

a positive association between pe and the f-value of the fixed genotype, the genotypes 

persisting at low frequencies had an f-value close to that of the fixed genotype (for 

instance, when the f = 0.8 genotype was nearly fixed, the f = 0.75 and f = 0.85 

genotypes persisted at frequencies lower than 0.05).

When the genotypic mutation rate was varied, the only difference with the results 

described above was that they were observed after a time that was inversely 

proportional to the mutation rate. When absence of mutation was assumed, no change 

was noticed relative to the equilibria, the only difference was that they were reached far 

more quickly (less than 10 generations with the initial model) because the occurrence of

the different genotypes was no more conditioned on mutation (note that now the model 

is fully deterministic when there is no local extinction). Nevertheless, the same 

differences were observed with respect to the time to reach equilibrium.

Discussion

The present study suggests that interactions between spatial and temporal scales are 

critical in the evolution of dispersal. Two results emerge that seem fairly new: (i) the 

difference in selective advantage between a disperser and a philopatric strategy is 

critically affected by the fragmentation of the favourable habitat, and (ii) a 
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polymorphism in dispersal strategy can be maintained provided the favourable habitat is

fragmented and the probability of local extinction is correctly tuned.

The first result can be explained by a mix of effects previously observed in models of

the evolution of dispersal. When the environment is constant in time and all patches are 

of equal quality there is a selective advantage for dispersal because this strategy can 

replace the philopatric one in all sites while the latter can compete only on the sites 

where it is present (Hamilton and May, 1977). On the other hand, when habitat quality 

varies among sites then there is a selective disadvantage for dispersal since some 

offspring disperse in patches of less quality decreasing the long-term fitness of this 

strategy (Hastings, 1983; Morris, 1991). In the present model with environment 

constant in time, the selective advantage of the philopatric strategy could be 

considerably decreased by fragmentation of the favourable habitat, and needs 

considerably more time to be fixed when this fragmentation is high than in the two-

patch model.

The fact that dispersal is selected for when there is temporal variation in the 

environment is not surprising (Kuno, 1981; Levin et al., 1984). More interesting is that 

different results were observed depending on the number of patches of source-habitat 

and the probability of local extinction. How to explain such results? In the present 

model no selective values were assigned to the different genotypes, and their relative 

growth is only due to the dynamic properties of the model. It has been argued that the 

evolution of dispersal is dictated by the opposite forces of individual and group 

selections (Van Valen, 1971; Craig, 1982; Olivieri et al., 1995). Individual selection 

favours the genotype that produces the largest number of offspring by differential 

growth within each site; group selection favours the genotype that produces the largest 

number of offspring by differential extinction and colonization among sites. One can 

question whether it is appropriate to invoke group selection for the evolution of 

dispersal since dispersal is an individual trait and so should evolve in response to 

individual selection. The controversy about group selection comes from that some 

authors claimed that it is not necessary to invoke group selection since individual 

selection can account for the evolution of individual traits in general (Wilson, 1983). 

Several recent studies, however, showed that group selection can be an effective 
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evolutionary force on individual traits acting in the same direction than individual 

selection or in an opposite direction (Goodnight et al., 1992; Avilés, 1993). Individual 

selection and group selection have the same effects, changes in the frequencies of genes 

or genotypes through time, but with different processes that are described above. Both 

selective forces are potentially present in a spatially structured population model (and in

all real populations) and need to be considered equally.

In my model all genotypes experience the same extinction rate, so dispersal accounts 

for differences in the intensity of each type of selection. Dispersal is counter-selected by

individual selection since it lowers growth within a patch compared to philopatry, but is 

selected for by group selection since it has a non-null colonization rate. When the 

number of patches increases there are greater opportunities for group selection to occur 

as well as when the probability of local extinction increases. For moderate number of 

patches and moderate extinction probability, individual selection and group selection 

balance each other so that the mixed strategy (half of the offspring disperse) is selected 

for. If the extinction probability slightly increases (for instance pe = 0.3) then a 

polymorphism is maintained only if the source-habitat is fragmented (xs = 5). On the 

other hand, the pure dispersal strategy is fixed and there is no polymorphism if xs = 1. 

This seems contradictory with the above statement that selection for dispersal is more 

intense when the number of patches increases. The contradiction is only apparent since 

with this value of pe the probability of simultaneous extinctions of all populations is 

relatively high if xs = 1 (0.32 = 0.09) compared to the case with xs = 5 (0.36 = 0.0007) 

leading to more opportunities for group selection to operate.

Several theoretical studies on the evolution of dispersal have been published. The 

originality of the present study is that I considered varying numbers of habitat patches. 

Roff (1994b) studied a model where dispersal evolved in relation to habitat persistence 

time, however, he assumed a different genetic mechanism for the transmission of 

dispersal rate. Roff concluded that the gene coding for a positive dispersal rate, even if 

recessive, is maintained in any population occupying a habitat with finite persistence 

time. The gene coding for a null dispersal rate can invade the population but is never 

fixed (Roff, 1994a, 1994b). The present model goes further than Roff’s, and shows that 

there could be a relation between habitat persistence time and number of patches 
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influencing the selective advantages of the different dispersal strategies.

McPeek and Holt (1992) showed that a polymorphism for dispersal rate could be 

maintained in a two-patch model when habitat quality varied spatially and, either habitat

selection was assumed, or the environment was temporally variable. In this latter 

situation, however, a strategy with habitat selection was able to invade the system and 

the polymorphism collapsed. McPeek and Holt (1992) modelled environmental 

temporal variability by random draws from a bivariate normal distribution. In the 

present study, the mechanism maintaining polymorphism in dispersal strategy is distinct

from the one evidenced by McPeek and Holt (1992) and I showed that it is scale-

dependent.

Among the assumptions made in the model that could affect the conclusions, the one 

relative to no mortality cost of dispersal may be important since many models suggest 

that this parameter is critical (Johnson and Gaines, 1990). However, dispersal is selected

for in some situations even when there is greater mortality of dispersing individuals, the 

optimal dispersal rate being inversely proportional to the mortality cost (Hamilton and 

May, 1977). It seems likely that a cost of dispersal would have changed the present 

results in that greater habitat fragmentation and extinction probability would have been 

required to select for dispersal, however, the general qualitative result would have 

remained unchanged.

Another assumption was that dispersal occurred spatially at random, i.e. there was no

habitat selection. Morris (1991) showed that habitat selection was necessary to select for

dispersal in a temporally constant environment, a similar result was obtained by 

McPeek and Holt (1992). These latter authors showed that a pure dispersal strategy with

habitat selection is strongly selected in a temporally and spatially variable environment 

(McPeek and Holt, 1992). This is due to the strong advantage of those strategies able to 

track environmental changes. These results seem to be easily extended to the present 

study: habitat selection would have selected for dispersal  in all situations. A similar 

result relative to the maintenance of dispersal polymorphism would also have been 

obtained by correctly tunig the parameters of habitat selection.

Other assumptions of the present model have been evaluated by simulations. The 

value of the mutation rate is important in that when it is decreased, unsurprisingly, the 
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dynamics of the model are slower. This shows that the time scale of mutation has also a 

role in the dynamics of the model. Mutation is critical here as it allows the philopatric 

strategy to appear in other populations. For some organisms (e.g. insects), passive 

dispersal may play the same role than mutation in allowing the philopatric strategy to 

disperse in distant patches; such passive dispersal being much less frequent than active 

dispersal.

Most of the simulations were run assuming that only three dispersal strategies could 

exist. Assuming more strategies showed that in most cases an intermediate strategy was 

selected for. This suggests that for each combination of habitat fragmentation and 

temporal variation there exists an optimal dispersal rate. Assuming continuous variation 

in dispersal rate may not be a realistic for some organisms. Further informations on the 

range of possible dispersal rates seem necessary in order to use the present model for 

particular organisms.

The present model gives rise to predictions on the short-term evolution of dispersal. 

Selection for dispersal is expected to occur when the environment is fragmented or 

variable in time. To give testable predictions, the argument should be reversed: that is 

loss of dispersal abilities (for instance, brachyptery in insects) should be more frequent 

in spatially more continuous environments all other things being equal, or in temporally 

more stable environments all other things being equal.

Acknowledgments

I thank Derek Roff for useful comments on a previous version of the manuscript. 

Financial support for this study was provided by NERC grant GST/02/1197 as part of 

the NERC/SOAFED special topic on Large Scale Processes in Ecology and Hydrology.

References

Asmussen, M.A. (1983) Evolution of dispersal in density-regulated populations: a 

10



haploid model. Theor. Pop. Biol. 23, 281–299.

Avilés, L. (1993) Interdemic selection and the sex ratio: a social spider perspective. Am.

Nat. 142, 320–345.

Balkau, B.J. and Feldman, M.W. (1973) Selection for migration modification. Genetics 

74, 171–174.

Comins, H.N., Hamilton, W.D. and May, R.M. (1980) Evolutionary stable dispersal 

strategies. J. theor. Biol. 82, 205–230.

Craig, D.M. (1982) Group selection versus individual selection: an experimental 

analysis. Evolution 36, 271–282.

Fahrig, L. (1992) Relative importance of spatial and temporal scales in a patchy 

environment. Theor. Pop. Biol. 41, 300–314.

Frank, S.A. (1986) Dispersal polymorphisms in subdivided populations. J. theor. Biol. 

122, 303–309.

Gadgil, M. (1971) Dispersal: population consequences and evolution. Ecology 52, 253–

261.

Goodnight, C.J., Schwartz, J.M. and Stevens, L. (1992) Contextual analysis of models 

of group selection, soft selection, hard selection, and the evolution of altruism. 

Am. Nat. 140, 743–761.

Gouyon, P.-H. and Couvet, D. (1987) A conflict between two sexes, females and 

hermaphrodites. In The Evolution of Sex and its Consequences. (S. C. Stearns, 

ed.), pp. 245–261. Birkhäuser Verlag, Basel.

Hamilton, W.D. and May, R.M. (1977) Dispersal in stable habitats. Nature 269, 578–

581.

Harrison, R.G. (1980) Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11, 

95–118.

Hastings, A. (1983) Can spatial variation alone lead to selection for dispersal? Theor. 

Pop. Biol. 24, 244–251.

Holt, R.D. (1985) Population dynamics in two-patch environments: some anomalous 

consequences of an optimal habitat distribution. Theor. Pop. Biol. 28, 181–208.

Johnson, M.L. and Gaines, M.S. (1990) Evolution of dispersal: theoretical models and 

empirical tests using birds and mammals. Annu. Rev. Ecol. Syst. 21, 449–480.

11



Kuno, E. (1981) Dispersal and persistence of populations in unstable habitats: a 

theoretical note. Oecologia 49, 123–126.

Levin, S.A., Cohen, D. and Hastings, A. (1984) Dispersal strategies in patchy 

environments. Theor. Pop. Biol. 26, 165–191.

Ludwig, D. and Levin, S.A. (1991) Evolutionary stability of plant communities and the 

maintenance of multiple dispersal types. Theor. Pop. Biol. 40, 285–307.

McPeek, M.A. and Holt, R.D. (1992) The evolution of dispersal in spatially and 

temporally varying environments. Am. Nat. 140, 1010–1027.

Morris, D.W. (1991) On the evolutionary stability of dispersal to sink habitats. Am. Nat.

137, 907–911.

O’Riain, M.J., Jarvis, J.U.M. and Faulkes, C.G. (1996) A dispersive morph in the naked

mole-rat. Nature 380, 619–621.

Olivieri, I., Couvet, D. and Gouyon, P.-H. (1990) The genetics of transient populations: 

research at the metapopulation level. Trends Ecol. Evol. 5, 207–210.

Olivieri, I., Michalakis, Y. and Gouyon, P.H. (1995) Metapopulation genetics and the 

evolution of dispersal. Am. Nat. 146, 202–228.

Peroni, P.A. (1994) Seed size and dispersal potential of Acer rubrum (Aceraceae) 

samaras produced by populations in early and late successional environments. 

Am. J. Bot. 81, 1428–1434.

Roff, D.A. (1975) Population stability and the evolution of dispersal in a heterogeneous 

environment. Oecologia 19, 217–237.

Roff, D.A. (1994a) Why is there so much genetic variation for wing dimorphism? Res. 

Pop. Ecol. 36, 145–150.

Roff, D.A. (1994b) Habitat persistence and the evolution of wing dimorphism in 

insects. Am. Nat. 144, 772–798.

Teague, R. (1977) A model of migration modification. Theor. Pop. Biol. 12, 88–94.

Van Valen, L. (1971) Group selection and the evolution of dispersal. Evolution 25, 591–

598.

Venable, D.L. (1985) The evolutionary ecology of seed heteromorphism. Am. Nat. 126, 

577–595.

Wilson, D.S. (1983) The group selection controversy: history and current status. Annu. 

12



Rev. Ecol. Syst. 14, 159–187.

13



Figure 1. Evolution of the mean dispersal rate (denoted μ in the text) in a theoretical 

metapopulation (see the text for a detailed description of the model and the parameters),

(a) the parameters are: rs = 1, rk = –1, Ks = Kk = 1000, xk = 1, xs varies as indicated on 

the curves, (b) the parameters are: xs = xk = 1, Ks = Kk = 1000, rs = 1, rk varies as 

indicated on the curves.

Figure 2. Mean dispersal rate in the metapopulation averaged along several time steps, 

(a) along the 2,500 time steps of the whole simulation, (b) along the last 500 time steps 

in order to remove possible transients effects.

Figure 3. Evolution of genotypic frequencies in the metapopulation with xs = 5 and pe = 

0.05. Other parameters as in Fig. 1.

Figure 4. Same as in Fig. 3 except pe = 0.2.

Figure 5. Same as in Fig. 3 except pe = 0.4.

14












