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Abstract: Multidimensional scaling has a wide range of applications when observa-

tions are not continuous but it is possible to define a distance (or dissimilarity) among

them. However, standard implementations are limited when analyzing very large data sets3

because they rely on eigendecomposition of the full distance matrix and require very long

computing times and large quantities of memory. Here, a new approach is developed based

on projection of the observations in a space defined by a subset of the full data set. The6

method is easily implemented. A simulation study showed that its performance are satis-

factory in different situations and can be run in a short time when the standard method

takes a very long time or cannot be run because of memory requirements.9

Keywords: dimension reduction, distance data, projection method, random matrices

1



1 Introduction

Multidimensional scaling (MDS) aims to find a set of coordinates in one or several dimen-12

sions, so that the distances derived from these coordinates are the closest possible to the

observed distances. By contrast to principal component analysis (PCA), MDS (also called

principal coordinates analysis, PCoA) does not require a set of original coordinates. This15

is a very attractive feature since a distance can naturally be defined for many types of

data whereas these data do not easily define a system of coordinates (e.g., DNA sequences,

graphs, psychological profiles). A search of the string “multidimensional scaling” in the18

Web of Science returned 7313 hits (accessed 2017-07-31) with the highest proportions of

publications in the fields of environmental sciences & ecology (15.9%), psychology (14.9%),

and computer science (14.7%).21

MDS is basically done through a decomposition of the symmetric distance matrix among

observations. This matrix as thus has many rows and columns than there are observations,

and its decomposition with standard eigenvalue analysis algorithm can be a limiting factor24

when this number is large. In a context where many scientific fields collect large amounts

of data, this is clearly a severe limitation. Some examples include genomic analyses from

high throughput sequencing technologies which typically handle millions of DNA sequences,27

or environmental data from high-resolution remote sensing which represent variables for

millions of localities on the Earth’s surface.

In this paper, I present an approach to avoid the limitations of the standard procedure30

of MDS. In the next section, I present the different computational procedures considered in

this paper. Section 3 reports the results from a simulation study. The last section discusses

these results and presents some perspectives.33

2 Computational procedures

Section 2.1 below describes the standard MDS procedure; Section 2.2 explains how this

procedure can be extended with random matrix algorithms. Sections 2.3 and 2.4 introduce36

new procedures.
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2.1 Standard multidimensional scaling

Let us denote n the number of observations, and ∆ the n×n symmetric matrix of distances39

with δij (= δji) being the distance between observations i and j. MDS proceeds by doing

an eigendecomposition of the doubly-centred distance matrix:

−1

2
J∆2J, (1)

with J = I − 1
n
11T. The matrix of coordinates Z are calculated with:42

Z = V Λ1/2,

where V is an n × k matrix with the first k eigenvectors extracted from (1), and Λ is a

diagonal k× k matrix with the first k eigenvalues (λ1, . . . , λk). Z has therefore n rows and

k columns. The value of k is the number of dimensions of the projected space and is chosen45

by the investigator, usually depending on the values of λ.

This procedure involves manipulating matrices with n2 elements which is very expensive

in terms of memory requirements and computing times when n is large.48

2.2 Eigendecomposition with random matrices

Halko et al. (2011) presented several algorithms to decompose very large matrices. These

algorithms are based on random matrices and can extract several eigenvalues in a few51

seconds while it would take several hours to perform the same operation with classical

eigendecomposition. The eigenvalues are extracted sequentially, by contrast to the standard

MDS where all eigenvalues are calculated at once, even if only some of them are used to54

calculate the coordinates in Z. Therefore, random matrix algorithms make possible to

decompose very large matrices which could not be analyzed with the standard approach

because of memory limitations. Here, we use the implementation from Abraham & Inouye57

and their package flashpcaR (Abraham & Inouye 2014).

2.3 1-D projection

The principle of this method is quite simple. In a first step, m observations are selected60

(m < n) and a standard MDS is performed on them setting k = 1. We denote as zi the
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coordinate of the ith observation (i = 1, . . . ,m). In a second step, for each observation j

not among the m selected in step 1, the coordinate zj is found by minimizing:63

f =
m∑
i=1

(δij − dij)2, (2)

with dij = |zi − zj|. We may write the latter as:

dij = γi(zi − zj) γi =

 +1 zj < zi

−1 zj ≥ zi,

A simple algebraic development leads to:

f =
m∑
i=1

δ2ij − 2
m∑
i=1

(δijγizi − δijγizj) +
m∑
i=1

z2i − 2zj

m∑
i=1

zi +mz2j .

We can now write the partial derivative of f with respect to zj:66

∂f

∂zj
= 2

m∑
i=1

δijγi − 2
m∑
i=1

zi + 2mzj.

Writing z̄ = 1
m

∑m
i=1 zi and solving the last expression leads us to find the value zj that

minimizes f :

1

m

m∑
i=1

δijγi − z̄ + zj = 0.

Given that there are only m distances δij to calculate, and that z̄ is calculated only once,69

this equation can be solved numerically relatively easily. During the first step, m(m− 1)/2

distances are computed for the classical MDS. Thus, the memory requirements of this

method are very small. Overall, instead of calculating n(n− 1)/2 distances for a full MDS,72

this method requires to calculate nm−m(m+ 1)/2 distances.

The choice of the m observations is important for this projection procedure to work

as best as possible. They should represent as much as possible the distribution of the n75

observations. This is not straightforward since the projection of these n points in the MDS

space is not known a priori. In order to solve this issue, the following algorithm selects m

observations so their distances are representative of the whole set of distances:78

1. Select one observation i at random among the n ones; store i.

2. Compute the distances δij with j among the values not yet stored.
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3. Find j′ so that δij′ is max of the distances calculated at step 2; store j′.81

4. Compute the distances δj′j with j among the values not yet stored.

5. Select i so that δj′i is median of the distances calculated at step 4; store i.

6. Repeat steps 2–5 until m values are stored.84

This algorithm may be used whatever the number of dimensions k. There could be some

variants of this algorithm: for instance, instead of the median in step 5, one could select

a random distance δj′i so that the observations will be represented in proportion of their87

relative frequencies (somehow similar to an MCMC procedure).

2.4 Higher dimension projection

The method developed above can be generalized to more than one dimension in a straight-90

forward way. The distances dij in (2) would then be calculated as Euclidean distances in

the projection space:

dij =

√√√√ k∑
l=1

(zil − zjl)2

In this case, the partial derivatives can be derived but are too complicated to be useful,93

so it is more efficient to rely on a standard minimization procedure to minimize (2). Two

procedures were tested here: the classical BFGS method (Broyden 1970, Fletcher 1970,

Goldfarb 1970, Shanno 1970) and the PORT routine (Gay 1990).96

3 Simulation study

A simulation study was conducted to answer two questions: What are the computing times

of the different procedures described above? and, What are their respective accuracy? The99

data were simulated from a standard normal distribution with one or two dimensions and

with different samples sizes n (1000, 5000, 10,000, and 50,000). The projection procedures

were performed with m = 100 points chosen randomly. To assess the accuracy of the results,102

two quantities were calculated. First, the classical stress was calculated with Kruskal’s

formula (Kruskal 1964):
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S =

√√√√√√√√√
n∑
i,j

(δij − dij)2

n∑
i,j

δ2ij

.

This quantity varies between 0 (complete mismatch of the distances) and 1 (perfect match).105

Second, a measure of the accuracy of the inferred distances was calculated with:

S ′ =
n∑
i,j

(δij − dij)2

δij
.

This second quantity is similar to Sammon’s criterion (Sammon 1969) and gives more

emphasis on the precision of each distance whereas Kruskal’s stress puts emphasis on the108

overall precision of the distances. In addition, in order to assess whether the observed

results were better than simply randomly positioning the points in the MDS space, both

quantities were calculated after randomizing the simulated data.111

The simulations were run with k = 1 and k = 2. In the second case, the two variables

were either independent or with a correlation of 0.7. Additionally, skewed distributions

were generated with k = 1 in order to simulate aggregation of points. Two cases were114

considered: an exponential distribution with rate equal to one, and a mixture of two

normal distributions with means −5 and 5 and proportions 0.9 and 0.1, respectively. In

these two cases, the analyses were performed with m = 100 observations selected randomly117

like previously, and using the algorithm described above. All simulations were replicated

100 times and run on a computer equipped with a duo-core, 2.1 GHz processor and 16 GB

of RAM, and running Ubuntu 16.04. All computations were implemented in R version 3.4.1120

(R Core Team 2017); the code is available as supplementary material with this article.

3.1 1-D MDS

With a moderate sample size n = 1000, the three methods considered here completed in less123

than one second (Table 1). However, with n = 10,000, the standard MDS took almost dour

minutes while the same procedure with a random decomposition took slightly more than

eleven seconds, and the projection method took less than one second. Most importantly,126

the computing times of the latter appeared to be linearly related with n whereas the two

others seemed to run proportionally to n3 for the standard MDS, or to n2 for the random
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Table 1: Computing times of different 1-D MDS methods (in seconds).

Method n

1000 5000 10,000 50,000

Standard MDS 0.33 26.47 220.94 –

Random eigendecomposition 0.09 1.09 11.66 –

1-D Projection (m = 100) 0.11 0.41 0.79 3.91

Table 2: Stress (S) from different 1-D MDS methods.

Method n

1000 5000 10,000 50,000

Standard MDS 1.6× 10−15 2.7× 10−15 3.6× 10−15 –

Random eigendecomposition 1.7× 10−2 7.6× 10−3 6.9× 10−3 –

1-D Projection (m = 100) 9.1× 10−6 9.5× 10−6 9.3× 10−6 9.7× 10−6

“random” 9.5× 10−1 8.5× 10−1 8.5× 10−1 8.5× 10−1

decomposition. The computing time of the two decomposition-based methods was not129

assessed with n = 50,000.

Unsurprisingly, the standard MDS performed the best considering either the stress S

(Table 2) or the accuracy of the inferred distances S ′ (Table 3). The projection method132

performed the second best and better than the random decomposition method. All methods

performed better than randomly projecting the points.

Table 3: Accuracy of inferred distances (S ′) from different 1-D MDS methods.

Method n

1000 5000 10,000 50,000

Standard MDS 6.7× 10−24 1.3× 10−21 9.2× 10−21 –

Random eigendecomposition 2.8× 102 1.4× 103 3.7× 103 –

1-D Projection (m = 100) 3.8× 10−4 9.7× 10−3 3.8× 10−2 9.8× 10−1

“random” 8.7× 106 4.3× 108 1.1× 109 3.4× 1010
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Table 4: Computing times of different 2-D MDS methods (in seconds).

Method n

1000 5000 10,000 50,000

Standard MDS 0.32 26.32 221.60 –

Random eigendecomposition 0.07 1.13 12.35 –

2-D Projection (m = 100) with BFGS 0.59 3.01 6.06 33.58

with PORT 0.33 1.58 3.20 17.62

Table 5: Stress (S) from different 2-D MDS methods.

Method n

1000 5000 10,000 50,000

Standard MDS 1.6× 10−15 2.4× 10−15 4.5× 10−15 –

Random eigendecomposition 2.0× 10−2 9.2× 10−3 6.1× 10−3 –

2-D Projection (m = 100) with BFGS 5.4× 10−8 5.7× 10−8 5.7× 10−8 5.7× 10−8

with PORT 4.5× 10−10 4.9× 10−10 4.5× 10−10 4.7× 10−10

“random” 6.6× 10−1 6.5× 10−1 6.5× 10−1 6.5× 10−1

3.2 2-D MDS135

The two methods based on matrix decomposition showed similar computing times than in

one dimension (Table 4). On the other hand, the projection method was slower but its

computing times still scaled proportionally to n. The PORT-based projection method was138

almost twice faster than the BFGS-based one.

With two independent variables, the accuracy of the projection methods were less than

the standard MDS but these methods appeared still accurate (Tables 5 and 6). The PORT-141

based variant was more accurate than the BFGS-based one. By constrast, the random

decomposition method performed poorly. When the two variables were correlated, the

performance of the standard MDS and the projection methods were similar to the previous144

situation; however, the performance of the random decomposition method deteriorated

considerably and were only slightly better than randomly positioning the data (Tables 7

and 8).147
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Table 6: Accuracy of inferred distances (S ′) from different 2-D MDS methods.

Method n

1000 5000 10,000 50,000

Standard MDS 3.1× 10−24 2.0× 10−22 4.2× 10−21 –

Random eigendecomposition 4.3× 102 2.2× 103 3.5× 103 –

2-D Projection (m = 100) with BFGS 5.1× 10−9 1.2× 10−7 5.0× 10−7 1.2× 10−5

with PORT 4.0× 10−13 1.1× 10−11 4.0× 10−11 1.1× 10−9

“random” 8.8× 105 2.2× 107 8.9× 107 2.2× 109

Table 7: Stress (S) from different 2-D MDS methods with correlated variables.

Method n

1000 5000 10,000 50,000

Standard MDS 1.4× 10−15 2.2× 10−15 2.7× 10−15 –

Random eigendecomposition 5.5× 10−1 5.5× 10−1 5.5× 10−1 –

2-D Projection (m = 100) with BFGS 5.4× 10−8 5.9× 10−8 5.5× 10−8 6.0× 10−8

with PORT 1.9× 10−10 2.1× 10−10 2.0× 10−10 2.1× 10−10

“random” 7.4× 10−1 7.4× 10−1 7.5× 10−1 7.4× 10−1

Table 8: Accuracy of inferred distances (S ′) from different 2-D MDS methods with corre-

lated variables.

Method n

1000 5000 10,000 50,000

Standard MDS 3.3× 10−24 2.7× 10−22 1.6× 10−21 –

Random eigendecomposition 2.9× 105 7.0× 106 2.9× 107 –

2-D Projection (m = 100) with BFGS 8.9× 10−9 2.5× 10−7 7.7× 10−7 2.3× 10−5

with PORT 1.1× 10−14 2.8× 10−12 1.0× 10−11 2.8× 10−10

“random” 1.5× 106 3.7× 107 1.5× 108 3.7× 109
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Table 9: Results of simulations with an exponential variable. CT: computing times (in

seconds). Sampling m = 100 observations with the algorithm presented in this paper (A)

or uniformly (U).

n

Sampling 1000 5000 10,000 50,000

CT A 0.06 0.35 0.72 3.86

U 0.06 0.36 0.73 3.93

S A 8.3× 10−6 8.6× 10−6 8.9× 10−6 8.6× 10−6

U 1.0× 10−5 1.1× 10−5 1.1× 10−5 1.1× 10−5

S ′ A 5.6× 10−4 1.4× 10−2 6.0× 10−2 1.33

U 8.7× 10−4 2.1× 10−2 8.3× 10−2 2.16

3.3 Skewed Distributions

For the two methods based on matrix decomposition, the results with the skewed distri-

butions were very similar to the previous ones, and are thus not reported here. For the150

1-D projection method, the analyses were performed with a uniform random sample and

using the algorithm described above. Both algorithms resulted in similar computing times;

however, the uniform sampling resulted in decreased accuracy while the above algorithm153

yielded performance comparable to the previous ones with non-aggregated data. This

difference in accuracy was small for the data simulated from an exponential distribution

(Table 9) whereas it was important for the mixture of normal variables where the skewness156

of the data was much more pronounced (Table 10).

4 Discussion

This article presents a method to perform MDS on very large data sets in short times and159

with small memory requirements. The objective of the present study was to develop a

method easily implemented and generally applicable. One initial motivation was to avoid

the need to perform a matrix decomposition of the full distance matrix as used in standard162

MDS.

Two approaches were considered in this study: the first one used matrix decomposition

algorithms based on random matrices, and the second one used a projection algorithm165
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Table 10: Results of simulations with a mixture of two random variables. CT: computing

times (in seconds). Sampling m = 100 observations with the algorithm presented in this

paper (A) or uniformly (U).

n

Sampling 1000 5000 10,000 50,000

CT A 0.06 0.35 0.70 3.68

U 0.07 0.36 0.73 3.85

S A 2.9× 10−6 3.0× 10−6 3.0× 10−6 2.9× 10−6

U 4.1× 10−2 4.3× 10−2 4.2× 10−2 4.2× 10−2

S ′ A 3.0× 10−4 7.4× 10−3 2.9× 10−2 7.3× 10−1

U 9.8× 103 2.1× 105 7.8× 105 1.8× 107

based on a subset of points. The first approach did not appear as a viable solution to

handle large data sets: it was too slow for sample sizes larger than 10,000 and was very

inacurrate in some situations. This method performed poorly with correlated variables,168

which was an unexpected result. It is unclear whether this a pathological specific case or a

more general problem with random decomposition of distance matrices. Further tests will

be needed to clarify this point.171

One issue not treated in depth in the present work is how to select the number of dimen-

sions (k). In standard MDS, this value is selected depending on the eigenvalues extracted

from the decomposition of the distance matrix. Typically, in practical applications of MDS174

two dimensions are selected in order to provide an interpretable graphical display. With

the projection method proposed in this paper, since the number of dimensions determines

the algorithm used, this number may be selected with respect to the eigenvalues of the177

standard MDS done on the subset of size m.

Another issue not explored here is the choice of the size of the subset (m). It was found

that a value m = 100 is appropriate in the situations considered here: it makes possible180

to perform the projection easily since a larger value would make this procedure slower

and more complicated. An interesting result was the good performance of the selection

algorithm presented in this paper, particularly if the data were aggregated. This also183

deserves further study.

The present approach can have a wide range of practical applications. Many applied
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researchers need to analyze increasingly larger data sets, such as in ecological habitat186

modeling based on remote sensing (Hansen et al. 2008) or in genomic analysis (Erlich

2015). It will thus be interesting to see how the present method behaves and performs in

practical applications.189
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SUPPLEMENTARY MATERIAL

functions MDS.R: R functions used to perform the methods described in this paper.

sim.R: R functions used to perform the simulations reported in this paper.195
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