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Multidimensional scaling has a wide range of applications when observations are not continuous but it is possible to define a distance (or dissimilarity) among them. However, standard implementations are limited when analyzing very large data sets because they rely on eigendecomposition of the full distance matrix and require very long computing times and large quantities of memory. Here, a new approach is developed based on projection of the observations in a space defined by a subset of the full data set. The method is easily implemented. A simulation study showed that its performance are satisfactory in different situations and can be run in a short time when the standard method takes a very long time or cannot be run because of memory requirements.

Introduction

Multidimensional scaling (MDS) aims to find a set of coordinates in one or several dimensions, so that the distances derived from these coordinates are the closest possible to the observed distances. By contrast to principal component analysis (PCA), MDS (also called principal coordinates analysis, PCoA) does not require a set of original coordinates. This is a very attractive feature since a distance can naturally be defined for many types of data whereas these data do not easily define a system of coordinates (e.g., DNA sequences, graphs, psychological profiles). A search of the string "multidimensional scaling" in the Web of Science returned 7313 hits (accessed 2017-07-31) with the highest proportions of publications in the fields of environmental sciences & ecology (15.9%), psychology (14.9%), and computer science (14.7%).

MDS is basically done through a decomposition of the symmetric distance matrix among observations. This matrix as thus has many rows and columns than there are observations, and its decomposition with standard eigenvalue analysis algorithm can be a limiting factor when this number is large. In a context where many scientific fields collect large amounts of data, this is clearly a severe limitation. Some examples include genomic analyses from high throughput sequencing technologies which typically handle millions of DNA sequences, or environmental data from high-resolution remote sensing which represent variables for millions of localities on the Earth's surface.

In this paper, I present an approach to avoid the limitations of the standard procedure of MDS. In the next section, I present the different computational procedures considered in this paper. Section 3 reports the results from a simulation study. The last section discusses these results and presents some perspectives.

Computational procedures

Section 2.1 below describes the standard MDS procedure; Section 2.2 explains how this procedure can be extended with random matrix algorithms. Sections 2.3 and 2.4 introduce new procedures.

Standard multidimensional scaling

Let us denote n the number of observations, and ∆ the n×n symmetric matrix of distances with δ ij (= δ ji ) being the distance between observations i and j. MDS proceeds by doing an eigendecomposition of the doubly-centred distance matrix:

- 1 2 J∆ 2 J, (1) 
with J = I -1 n 11 T . The matrix of coordinates Z are calculated with:

Z = V Λ 1/2 ,
where V is an n × k matrix with the first k eigenvectors extracted from (1), and Λ is a diagonal k × k matrix with the first k eigenvalues (λ 1 , . . . , λ k ). Z has therefore n rows and k columns. The value of k is the number of dimensions of the projected space and is chosen by the investigator, usually depending on the values of λ.

This procedure involves manipulating matrices with n 2 elements which is very expensive in terms of memory requirements and computing times when n is large. 

Eigendecomposition with random matrices

1-D projection

The principle of this method is quite simple. In a first step, m observations are selected (m < n) and a standard MDS is performed on them setting k = 1. We denote as z i the coordinate of the ith observation (i = 1, . . . , m). In a second step, for each observation j not among the m selected in step 1, the coordinate z j is found by minimizing:

f = m i=1 (δ ij -d ij ) 2 , (2) with d ij = |z i -z j |.
We may write the latter as:

d ij = γ i (z i -z j ) γ i =    +1 z j < z i -1 z j ≥ z i ,
A simple algebraic development leads to:

f = m i=1 δ 2 ij -2 m i=1 (δ ij γ i z i -δ ij γ i z j ) + m i=1 z 2 i -2z j m i=1 z i + mz 2 j .
We can now write the partial derivative of f with respect to z j :

∂f ∂z j = 2 m i=1 δ ij γ i -2 m i=1 z i + 2mz j .
Writing z = 1 m m i=1 z i and solving the last expression leads us to find the value z j that minimizes f :

1 m m i=1 δ ij γ i -z + z j = 0.
Given that there are only m distances δ ij to calculate, and that z is calculated only once, this equation can be solved numerically relatively easily. During the first step, m(m -1)/2 distances are computed for the classical MDS. Thus, the memory requirements of this method are very small. Overall, instead of calculating n(n -1)/2 distances for a full MDS, this method requires to calculate nm -m(m + 1)/2 distances.

The choice of the m observations is important for this projection procedure to work as best as possible. They should represent as much as possible the distribution of the n observations. This is not straightforward since the projection of these n points in the MDS space is not known a priori. In order to solve this issue, the following algorithm selects m observations so their distances are representative of the whole set of distances: 1. Select one observation i at random among the n ones; store i.

2.

Compute the distances δ ij with j among the values not yet stored.

3. Find j so that δ ij is max of the distances calculated at step 2; store j . 4. Compute the distances δ j j with j among the values not yet stored. 5. Select i so that δ j i is median of the distances calculated at step 4; store i. 6. Repeat steps 2-5 until m values are stored. This algorithm may be used whatever the number of dimensions k. There could be some variants of this algorithm: for instance, instead of the median in step 5, one could select a random distance δ j i so that the observations will be represented in proportion of their relative frequencies (somehow similar to an MCMC procedure).

Higher dimension projection

The method developed above can be generalized to more than one dimension in a straightforward way. The distances d ij in (2) would then be calculated as Euclidean distances in the projection space:

d ij = k l=1 (z il -z jl ) 2
In this case, the partial derivatives can be derived but are too complicated to be useful, so it is more efficient to rely on a standard minimization procedure to minimize (2). Two procedures were tested here: the classical BFGS method [START_REF] Broyden | The convergence of a class of double-rank minimization algorithms 1. General considerations[END_REF][START_REF] Fletcher | A new approach to variable metric algorithms[END_REF][START_REF] Goldfarb | A family of variable metric updates derived by variational means[END_REF][START_REF] Shanno | Conditioning of quasi-Newton methods for function minimization[END_REF]) and the PORT routine [START_REF] Gay | Usage summary for selected optimization routines[END_REF]).

Simulation study

A simulation study was conducted to answer two questions: What are the computing times of the different procedures described above? and, What are their respective accuracy? The data were simulated from a standard normal distribution with one or two dimensions and with different samples sizes n (1000, 5000, 10,000, and 50,000). The projection procedures were performed with m = 100 points chosen randomly. To assess the accuracy of the results, two quantities were calculated. First, the classical stress was calculated with Kruskal's formula [START_REF] Kruskal | Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis[END_REF]:

S = n i,j (δ ij -d ij ) 2 n i,j δ 2 ij .
This quantity varies between 0 (complete mismatch of the distances) and 1 (perfect match).

Second, a measure of the accuracy of the inferred distances was calculated with:

S = n i,j (δ ij -d ij ) 2 δ ij .
This second quantity is similar to Sammon's criterion [START_REF] Sammon | A nonlinear mapping for data structure analysis[END_REF]) and gives more emphasis on the precision of each distance whereas Kruskal's stress puts emphasis on the overall precision of the distances. In addition, in order to assess whether the observed results were better than simply randomly positioning the points in the MDS space, both quantities were calculated after randomizing the simulated data.

The simulations were run with k = 1 and k = 2. In the second case, the two variables were either independent or with a correlation of 0.7. Additionally, skewed distributions were generated with k = 1 in order to simulate aggregation of points. Two cases were considered: an exponential distribution with rate equal to one, and a mixture of two normal distributions with means -5 and 5 and proportions 0.9 and 0.1, respectively. In these two cases, the analyses were performed with m = 100 observations selected randomly like previously, and using the algorithm described above. All simulations were replicated 100 times and run on a computer equipped with a duo-core, 2.1 GHz processor and 16 GB of RAM, and running Ubuntu 16.04. All computations were implemented in R version 3.4.1 (R Core Team 2017); the code is available as supplementary material with this article.

1-D MDS

With a moderate sample size n = 1000, the three methods considered here completed in less than one second (Table 1). However, with n = 10,000, the standard MDS took almost dour minutes while the same procedure with a random decomposition took slightly more than eleven seconds, and the projection method took less than one second. Most importantly, the computing times of the latter appeared to be linearly related with n whereas the two others seemed to run proportionally to n 3 for the standard MDS, or to n 2 for the random Standard MDS 1.6 × 10 -15 2.7 × 10 -15 3.6 × 10 -15 -Random eigendecomposition 1.7 × 10 -2 7.6 × 10 -3 6.9 × 10 -3 -1-D Projection (m = 100) 9.1 × 10 -6 9.5 × 10 -6 9.3 × 10 -6 9.7 × 10 -6

"random" 9.5 × 10 -1 8.5 × 10 -1 8.5 × 10 -1 8.5 × 10 -1 decomposition. The computing time of the two decomposition-based methods was not 129 assessed with n = 50,000.

Unsurprisingly, the standard MDS performed the best considering either the stress S (Table 2) or the accuracy of the inferred distances S (Table 3). The projection method 132 performed the second best and better than the random decomposition method. All methods performed better than randomly projecting the points. with PORT 4.5 × 10 -10 4.9 × 10 -10 4.5 × 10 -10 4.7 × 10 -10 "random" 6.6 × 10 -1 6.5 × 10 -1 6.5 × 10 -1 6.5 × 10 -1

2-D MDS

The two methods based on matrix decomposition showed similar computing times than in one dimension (Table 4). On the other hand, the projection method was slower but its computing times still scaled proportionally to n. The PORT-based projection method was almost twice faster than the BFGS-based one.

With two independent variables, the accuracy of the projection methods were less than the standard MDS but these methods appeared still accurate (Tables 5 and6). The PORTbased variant was more accurate than the BFGS-based one. By constrast, the random decomposition method performed poorly. When the two variables were correlated, the performance of the standard MDS and the projection methods were similar to the previous situation; however, the performance of the random decomposition method deteriorated considerably and were only slightly better than randomly positioning the data (Tables 7 and8). 2.2 × 10 3 3.5 × 10 3 -2-D Projection (m = 100) with BFGS 5.1 × 10 -9 1.2 × 10 -7 5.0 × 10 -7 1.2 × 10 -5

with PORT 4.0 × 10 -13 1.1 × 10 -11 4.0 × 10 -11 1.1 × 10 -9

"random" 8.8 × 10 5 2.2 × 10 7 8.9 × 10 7 2.2 × 10 9

Table 7: Stress (S) from different 2-D MDS methods with correlated variables.

Method n 1000 5000 10,000 50,000

Standard MDS 1.4 × 10 -15 2.2 × 10 -15 2.7 × 10 -15 -Random eigendecomposition 5.5 × 10 -1 5.5 × 10 -1 5.5 × 10 -1 -2-D Projection (m = 100) with BFGS 5.4 × 10 -8 5.9 × 10 -8 5.5 × 10 -8 6.0 × 10 -8

with PORT 1.9 × 10 -10 2.1 × 10 -10 2.0 × 10 -10 2.1 × 10 -10 "random" 7.4 × 10 -1 7.4 × 10 -1 7.5 × 10 -1 7.4 × 10 -1

Table 8: Accuracy of inferred distances (S ) from different 2-D MDS methods with correlated variables.

Method n 1000 5000 10,000 50,000

Standard MDS 3.3 × 10 -24 2.7 × 10 -22 1.6 × 10 -21 -Random eigendecomposition 2.9 × 10 5 7.0 × 10 6 2.9 × 10 7 -2-D Projection (m = 100) with BFGS 8.9 × 10 -9 2.5 × 10 -7 7.7 × 10 -7 2.3 × 10 -5

with PORT 1.1 × 10 -14 2.8 × 10 -12 1.0 × 10 -11 2.8 × 10 -10

"random" 1.5 × 10 6 3.7 × 10 7 1.5 × 10 8 3.7 × 10 9 

Skewed Distributions

For the two methods based on matrix decomposition, the results with the skewed distributions were very similar to the previous ones, and are thus not reported here. For the 1-D projection method, the analyses were performed with a uniform random sample and using the algorithm described above. Both algorithms resulted in similar computing times; however, the uniform sampling resulted in decreased accuracy while the above algorithm yielded performance comparable to the previous ones with non-aggregated data. This difference in accuracy was small for the data simulated from an exponential distribution (Table 9) whereas it was important for the mixture of normal variables where the skewness of the data was much more pronounced (Table 10).

Discussion

This article presents a method to perform MDS on very large data sets in short times and with small memory requirements. The objective of the present study was to develop a method easily implemented and generally applicable. One initial motivation was to avoid the need to perform a matrix decomposition of the full distance matrix as used in standard MDS.

Two approaches were considered in this study: the first one used matrix decomposition algorithms based on random matrices, and the second one used a projection algorithm based on a subset of points. The first approach did not appear as a viable solution to handle large data sets: it was too slow for sample sizes larger than 10,000 and was very inacurrate in some situations. This method performed poorly with correlated variables, which was an unexpected result. It is unclear whether this a pathological specific case or a more general problem with random decomposition of distance matrices. Further tests will be needed to clarify this point.

One issue not treated in depth in the present work is how to select the number of dimensions (k). In standard MDS, this value is selected depending on the eigenvalues extracted from the decomposition of the distance matrix. Typically, in practical applications of MDS two dimensions are selected in order to provide an interpretable graphical display. With the projection method proposed in this paper, since the number of dimensions determines the algorithm used, this number may be selected with respect to the eigenvalues of the standard MDS done on the subset of size m.

Another issue not explored here is the choice of the size of the subset (m). It was found that a value m = 100 is appropriate in the situations considered here: it makes possible to perform the projection easily since a larger value would make this procedure slower and more complicated. An interesting result was the good performance of the selection algorithm presented in this paper, particularly if the data were aggregated. This also deserves further study.

The present approach can have a wide range of practical applications. Many applied researchers need to analyze increasingly larger data sets, such as in ecological habitat modeling based on remote sensing [START_REF] Hansen | Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data[END_REF] or in genomic analysis [START_REF] Erlich | A vision for ubiquitous sequencing[END_REF]. It will thus be interesting to see how the present method behaves and performs in practical applications.

Table 1 :

 1 Computing times of different 1-D MDS methods (in seconds).

	Method	n		
		1000 5000 10,000 50,000
	Standard MDS	0.33 26.47 220.94	-
	Random eigendecomposition 0.09 1.09 11.66	-
	1-D Projection (m = 100)	0.11 0.41	0.79 3.91
	Table 2: Stress (S) from different 1-D MDS methods.
	Method	n		
	1000	5000	10,000	50,000

Table 3 :

 3 Accuracy of inferred distances (S ) from different 1-D MDS methods.

	Method

Table 4 :

 4 Computing times of different 2-D MDS methods (in seconds).

	Method

2-D Projection (m = 100) with BFGS 5.4 × 10 -8 5.7 × 10 -8 5.7 × 10 -8 5.7 × 10 -8

Table 6 :

 6 Accuracy of inferred distances (S ) from different 2-D MDS methods.

	Method

Table 9 :

 9 Results of simulations with an exponential variable. CT: computing times (in seconds). Sampling m = 100 observations with the algorithm presented in this paper (A) or uniformly (U).

	n

Table 10 :

 10 Results of simulations with a mixture of two random variables. CT: computing times (in seconds). Sampling m = 100 observations with the algorithm presented in this paper (A) or uniformly (U).

	n
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SUPPLEMENTARY MATERIAL

functions MDS.R: R functions used to perform the methods described in this paper.

sim.R: R functions used to perform the simulations reported in this paper.