

Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf

Leandro Nolé Eduardo, Thierry Frédou, Alex Souza Lira, Beatrice Padovani Ferreira, Arnaud Bertrand, Frédéric Ménard, Flávia Lucena Frédou

▶ To cite this version:

Leandro Nolé Eduardo, Thierry Frédou, Alex Souza Lira, Beatrice Padovani Ferreira, Arnaud Bertrand, et al.. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Continental Shelf Research, 2018, 166, pp.108-118. 10.1016/j.csr.2018.07.002. ird-01905980

HAL Id: ird-01905980 https://ird.hal.science/ird-01905980

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DOI: https://doi.org/10.1016/j.csr.2018.07.002

Abstract

Knowledge of the spatial distribution of fish assemblages biodiversity and structure is essential for prioritizing areas of conservation. Here we describe the biodiversity and community structure of demersal fish assemblages and their habitat along the northeast Brazilian coast by combining bottom trawl data and underwater footage. Species composition was estimated by number and weight, while patterns of dominance were obtained based on frequency of occurrence and relative abundance. A total of 7,235 individuals (830 kg), distributed in 24 orders, 49 families and 120 species were collected. Community structure was investigated through clustering analysis and by a non-metric multidimensional scaling technique. Finally, diversity was assessed based on six indices. Four major assemblages were identified, mainly associated with habitat type and depth range. The higher values of richness were found in sand substrate with rocks, coralline formations and sponges (SWCR) habitats, while higher values of diversity were found in habitats located on shallow waters (10-30m). Further, assemblages associated with sponge-reef formations presented the highest values of richness and diversity. In management strategies of conservation, we thus recommend giving special attention to SWCR habitats, mainly those located on depths between 30–60 m. This can be achieved by an offshore expansion of existing MPAs and/or by the creation of new MPAs encompassing those environments.

Keywords: Demersal fish assemblage; Northeast Brazilian coast; Underwater footages;

Fish assemblage structure; Marine Protected Areas; Habitat composition.

1. INTRODUCTION

Resource exploitation, climate change, habitat modification, and pollution have led to dramatic modifications in the composition of marine coastal ecosystems (Lotze et al., 2006). These changes are causing rapid loss of populations, species, and entire functional groups (Lotze et al., 2006; Worm et al., 2006). To protect these environments, marine protected areas (MPAs), where fishing and other human activities are restricted or prohibited, have been highly recommended (Dahl et al., 2009). MPAs conserve habitats and marine populations and, by exporting biomass, may also sustain or increase the overall yield of nearby fisheries (Halpern, 2003; Roberts et al., 2001). However, implementing MPAs and prioritizing biodiversity conservation requires human, biophysical and ecological knowledge that is often lacking in some parts of the world (Miloslavich et al., 2011).

Biodiversity has been positively correlated with the structural habitats complexity (Curley et al., 2002). Understanding the relationship between habitat type and fish and describing the spatial distribution of those habitats are therefore essential for informing fisheries management (Curley et al., 2002) and implementing MPAs. Recent advances in collecting and analyzing marine data using cameras and towed video enable direct observation of marine species and their habitats, in more affordable and efficient ways, and in places divers cannot access (Letessier et al., 2013). Even if these approaches may contribute to more effective conservation and management of living marine resources (Mellin et al., 2009) they have not been applied in many marine ecosystems around the world, especially in tropical regions.

Among the Brazilian coastal areas, the northeast coast is the largest (3,000 km) and one of the most densely populated. This region has high biodiversity and includes Ecologically or Biologically Significant Marine Areas (EBSA) (CBD, 2014). Small-scale fisheries (SSF) in the region, directly and indirectly, involve more than 200,000 persons and are responsible for the highest landed volume of the country (Nóbrega et al., 2009). Previous studies focused on fish assemblages in this region, mostly through underwater visual censing (UVC) (e.g. Feitoza et al., 2005; Ferreira et al., 2004) or based on fishery-dependent data (e.g Frédou and Ferreira, 2005; Silva Júnior et al., 2015), provided specific information on the ecology and biology of a variety of species. Nevertheless,

there is a lack of large-scale studies describing biodiversity and assemblage structure in relation to the habitat composition.

Here we describe the biodiversity and community structure of demersal fish assemblages and their habitat along the northeast Brazilian coast by combining bottom trawl data and underwater footages. Overall, this study fills the current gap of knowledge in the area providing a relevant contribution for effective conservation and management of marine resources.

2. MATERIAL AND METHODS

2.1. Study area

The study area (Figure 1) comprises the northeast Brazilian continental shelf, between the states of Rio Grande do Norte and Alagoas (4° - 9°S). This area is located in the eastern part of the northeastern region of the South American Platform, a few degrees north of the southern branch of the South Equatorial Current nearshore bifurcation (Ekau and Knoppers, 1999) and holds a high biodiversity and many priority areas for conservation and sustainable use (CBD, 2014). Within this area, several Marine Protected Areas have been established (e.g. "APA dos Corais", 'APA Costa dos Corais', 'APA Guadalupe', 'APA Santa Cruz', 'APA Barra de Mamanguape) (Ferreira and Maida, 2007; Prates et al., 2007). The continental shelf is 40 km width in average with mean depth per latitude ranging from 40 to 80 m and is almost entirely covered by biogenic carbonate sediments (Vital et al., 2010).

2.2. Sampling and sample processing

Data were collected during the Acoustics along the BRAzilian COaSt (ABRACOS) surveys, carried out on 30 August - 20 September 2015 and 9 April – 9 May 2017, on board the French R/V ANTEA. Sampling was conducted using a bottom trawl (body mesh: 40 mm, cod-end mesh: 25mm, entrance dimensions horizontal x vertical: 28 x10 m) at 35 stations (Figure 1). Hauls were performed between 10 and 60 m of depth, for about 5 minutes at 3.2 kt. Tow duration was considered as the moment of the arrival of the net on the pre-set depth to the lift-off time, recorded by means of a SCANMAR system. The net geometry has also been monitored using SCANMAR sensors, to give headline height, depth, and distance of wings and doors to ensure the net was fishing correctly. To reduce impacts on benthic habitat and to avoid net damage, the bottom trawl

net was adapted in the second cruise, where bobbins where added to the ground rope. Sampled habitats and geographic areas were similar between surveys, except for the very north oriented coastal area of Rio Grande do Norte which was sampled only during the second cruise. To test for possible changes in gear selectivity among surveys, we compared the size of individuals caught in both surveys. The test was significant, but results did not show important differences (Supplementary Material 1). In addition, we performed a non-parametric permutation procedure ANOSIM (Analysis of Similarity) based on a Bray-Curtis similarity resemblance matrix to test for possible assemblage changes among surveys due to gear adaptation and/or seasonal changes (Clarke et al. 1994). A significant difference was found (R=0.073, p<0.05) but the explained variance was too low for any robust conclusion. Indeed, differences could be due to a survey effect (gear or season) but also to stochastic differences due to unlike sampling locations among surveys. We therefore acknowledge for potential limitation, but we combined both surveys in further analyses to propose a more comprehensive vision of the distribution of fish assemblage.

Temperature, salinity, and oxygen profiles were collected for each haul using a CTD (model: SeaBird911). To classify bottom habitat, a video footage was achieved through an underwater camera (GOPRO HERO 3) fitted on the upper part of the mouth of the net. In laboratory, a detailed video analysis was undertaken, where all major habitats were identified. Based on this frame by frame analyses combined with an adaptation of the methodology from Monaco et al. (2012), we were able to consistently identify 3 major types of habitat: (i) Sand with rocks, coralline formations and sponges (SWCR) - primarily sand bottom with 10% or greater distribution of biogenic rocks, corals, calcareous algae and sponges; (ii) Sand - coarse sediment typically found in areas exposed to currents or wave energy; and (iii) Algae - substrates with 10% or greater distribution of any combination of numerous species of leafy red, green or brown algae (Figure 2). After identifying the major habitats, a photo data library with habitats was created to ensure consistency in the video classification process.

Figure 1 - Study area with the bottom-trawl stations (black dots). The position of the Marine Protected Areas (MPA) is indicated (black tick lines and dashed areas).

For each haul, fish were identified, counted, weighed on a motion-compensating scale (to the nearest 0.1 kg), and preserved with a solution of 4% formalin in seawater or by freezing until processing.

2.3. Data analyses

2.3.1. Fish fauna biodiversity and community descriptors

The relative indexes of density and biomass (catch per unit of effort – CPUE) were calculated considering the number of individuals and the weight of fish caught per trawled area (ind.km⁻² – kg.km⁻²). The trawled area was estimated by multiplying the distance covered by the net through the bottom (in m) with the estimated gear mouth opening obtained through the SCANMAR sensors. In six trawls the SCANMAR system was not operative and the average mouth opening (13 m) was utilized.

Figure 2 - Collection of images examples used in habitat classifications along the northeast Brazilian continental shelf (4°- 9°S)

Species composition was estimated by number (%N) and weight (%W). Patterns of dominance were obtained following the methodology of Garcia et al. (2006) and species were classified based on frequency of occurrence (number of occurrences of a species divided by the total number of trawls (x100), %F) and relative abundance (catch per unit effort; %CPUE) per latitude stratum (4°-9°S, intervals of 1°). Species showing %FO > average %FO in each latitude stratum were considered frequent fishes, whereas those with %FO < average %FO were considered rare (Garcia et al., 2006). A similar method was applied to %CPUE, resulting in Higher Abundant (%CPUE > average %CPUE) and Scarce (%CPUE < average %CPUE) categories. Finally, based on these criteria, species were classified in four groups of relative importance (relative importance index): (1) higher abundant and frequent, (2) higher abundant and rare, (3) scarce and frequent and (4) scarce and rare (Garcia et al., 2006). Species were considered dominant when classified within first, second and third categories (Garcia et al., 2006). We also classified the species according to the IUCN Red List categories at the regional level (ICMbio, 2016), which comprises 10 levels: Extinct (EX), Regionally Extinct (RE), Extinct in the Wild (EW), Critically Endangered (CR), Endangered (EN), Vulnerable

(VU), Near Threatened (NT), Least Concern (LC), Data Deficient (DD) and Not Evaluated (NE). The classification criteria, application guidelines, and IUCN Red List methodology on how to apply the Criteria are publically available (IUCN, 2012, 2000).

To investigate the community structure, we performed a Bray-Curtis similarity resemblance matrix, which was used to perform an unweighted arithmetic complete clustering analysis. The non-parametric permutation procedure ANOSIM (Analysis of Similarity) was applied to test for differences among habitat types and depth ranges (intervals of 10 m) (Clarke et al. 1994). To reduce bias in these analyses, species data were log-transformed (log (x + 1)), and infrequent species (those representing <0.1% of abundance) were not considered. As we tested differences among habitats, hauls where the habitat type was classified as unknown were removed from the analysis. The similarity percentage routine (SIMPER) was applied to determine the species contribution to the similarity within a group of sampled sites and the dissimilarity were classed as consolidating, and the set of species contributing to over 70% of dissimilarity between groups were classified as discriminating (Gregory et al., 2016).

Diversity was assessed based on six indices calculated for each haul and by assemblages identified in cluster analyses (Table 1). Diversity indexes were chosen according to the expected complementarity of their conceptual and statistical properties, aiming to access the richness, rarity, commonness and taxonomic distance between species of the community studied (Magurran, 2004; Gaertner et al., 2005; Farriols et al., 2017). The diversities measures Hill's N1, Hill's N2 and Pielou's evenness (J') were obtained using untransformed relative abundance data, while Margalef's richness was estimated using untransformed abundance data (Hill, 1973; Margalef, 1978; Pielou, 1966). The Taxonomic diversity (Δ) and Taxonomic distinctness (Δ^*), which require taxonomic information for the estimation of the path lengths between each pair of species (Warwick and Clarke, 1995), were calculated using a taxonomic hierarchy based on Nelson et al (2016). Five taxonomic levels were used: species, genera, families, orders, and classes. The weights given to each level ω_{ii} were equidistant, being 20 for species belonging to the same genera, 40 for species of different genera and same family, 60 for species belonging to different family but same order, 80 for species of different order and same class, and 100 for individuals belonging to different class (Warwick and Clarke, 1995).

Table 1- Diversity indices analyzed. x_1 (i = 1, ..., S) denotes the number of individuals of the *i*th species, N (= $\sum_{i=1}^{S} x_1$) is the total number of individuals in the sample, p_i (= $\frac{x_i}{N}$) is the proportion of all individuals belonging to species *i*, ω_{ij} is the taxonomic path length between species *i* and *j*, f_{ij} is the functional dissimilarity between species *i* and *j*.

Diversity index	Formula	Symbol	Description	References
Margalef's richness	$d = \frac{s-1}{lnN}$	D	Number of species adjusted to the number of individuals	Margalef (1958)
Pielou's evenness	$J' = \frac{H'}{lnS}$	J'	Equitability in the distribution of abundances of species in a community	Pielou (1966)
Hill's N1	N1=expH'	N1	Exponential of Shannon, which measure the uncertainty about the species of the nearest neighbor of an individual from the community	Hill (1957)
Hill's N2	$N2 = \frac{1}{\sum_{i=1}^{S} pi^2}$	N2	Reciprocal of Simpson, which is the probability that two individuals drawn at random from an infinite community belong to the same species	Hill (1957)
Taxonomic diversity	$\Delta = 2 \frac{\sum \sum_{(i < j)}^{(\omega_{ij} x_{ij} x_{j})}}{(N(N-1))}$	Δ	Taxonomic distance expected between two individuals randomly	Warwick and Clark (1995)
Taxonomic distinctness	$\Delta^* = \frac{\sum \sum_{(i < j)^{(\omega_{ij}x_{ij}x_j)}}}{\sum \sum_{(i < j)^{(x_{ij}x_j)}}}$	Δ^*	Taxonomic distance expected between two individuals randomly selected, considering that they belong to different species	Warwick and Clark (1995)

To test for differences among assemblages and latitude strata values of biodiversity indices, the Kruskal-wallis nonparametric test were applied (P< 0.05). All the statistical analyses and diversity indices mentioned above were performed using the software PRIMER6 + Permanova (Anderson et al., 2008) and R version 3.3.3 (R Core Team, 2016). The packages used were "vegan" (Oksanen et al., 2017) and "FD" (Laliberté and Legendre, 2010).

3. RESULTS

The thirty-five hauls performed along the Northeast Brazilian continental shelf corresponded to a total effort of 200 minutes and 257,000 m² of trawled area. Totally, three major types of bottom habitats were identified along the study area. Eighteen samples were classified as SWCR, seven as Algae and six as Sand. Four sample habitats could not be classified and were considered unknown. SWCR and Algae habitats were found in all depth ranges (10-60 m). The sand habitat, however, were found only in samples near to the shore (10-30 m). The oceanographic conditions in sampling stations were rather similar among surveys and regions (Supplementary Material 2 and 3). Bottom temperatures were higher during the second survey performed in summer but overall ranged from 25.5°C to 29.6°C (mean equals 27.5°C), while salinity and dissolved oxygen

varied from 36.4 to 37.5 (mean equals 36.9) and 4 mg.l⁻¹ to 4.4 mg.l⁻¹ (mean equals 4.2 mg.l⁻¹), respectively.

In total, 7,235 individuals (830 kg), distributed in 24 orders, 49 families, and 120 species were collected. The order with the highest number of taxa was Perciforms (10 families, 36 species; 60% of total individuals caught); followed by Tetraodontiformes (5 families, 18 species; 14% of total individuals caught) (Table 2). The families with the highest %N were Haemulidae (3,052 individuals; 41%); Mullidae (527 individuals; 7%), Holocentridae (446 individuals; 6%), Gerreidae (393 individuals; 5%) and Diodontidae (368 individuals; 5%) (Table 2). The five most representative families in %W were Haemulidae (226 kg; 27%), Diodontidae (80 kg; 10%), Ostraciidae (77 kg; 9%), Dasyatidae (76 kg; 9%) and Pomacanthidae (51 kg; 6%).

Considering the relative importance index, 19 species were classified as higher abundant and frequent, representing 80% of sampled individuals. The other species were classified as higher abundant and rare (two species, 2% of sampled individuals), scarce and frequent (15 species, 7% of sampled individuals) and scarce and rare (81 species, 11% of sampled individuals). A strong discontinuity was observed in fish species distribution among latitude stratum. A clear shift was observed at 8°S (south of Pernambuco), with most species classified as scarce and rare being observed south of 8°S (Table 2). The species *Hypanus marianae*, *Holocentrus adscensionis*, *Pseudupeneus maculatus*, *Haemulon aurolineatum*, *Haemulon plumierii*, *Lutjanus synagris*, *Acanthostracion polygonius*, *Acanthostracion quadricornis* and *Diodon holocanthus* were present and classified as higher abundant and frequent in almost all study area, being characterized, therefore, as important components of the demersal ichthyofauna assemblage in Northeast Brazil (Table 2).

Within the assemblage, according to the Brazilian IUCN Red List classification, three species were classified as Vulnerable (VU) (*Sparisoma axillare, Sparisoma frondosum* and *Mycteroperca bonaci*), 9 species as Near Threatened, 92 species as Least Concern (LC), 17 as Data deficient (DD) and two as Not Evaluated (NE) (Table 2). All species VU were also classified as scarce and rare.

						Latitu	de Stratu	m/ Stat	te	
					4 ° -	5° -		7° -	00 00	
Order	Family	Species	NT		5 °	0 °	<u>6° - 7°</u> DN		8° - 9° DE	
			IN	IUCN	RN	RN	PB	гд- РЕ	ге- AL	Total
						R	elative In	nportar	nce index	X
Rajiformes	Rhinobatidae	Pseudobatos percellens (Walbaum, 1792)	25	DD			3	4	3	3
Myliobatiformes	Dasyatidae	Dasyatis guttata (Bloch & Schneider, 1801)	1	LC					4	4
		Hypanus marianae Gomes, Rosa & Gadig, 2000	77	DD	3	1	3	3	3	3
Elopiformes	Elopidae	Elops cf. smithi McBride, Rocha, Ruiz-Carus & Bowen, 2010	1	LC	4					4
Albuliformes	Albulidae	Albula vulpes (Linnaeus, 1758)	3	DD				4	4	4
Anguilliformes	Muraenidae	Gymnothorax moringa (Cuvier, 1829)	1	DD		4				4
-		Gymnothorax vicinus (Castelnau, 1855)	11	DD		4	4	4		4
Clupeiformes	Pristigasteridae	Chirocentrodon bleekerianus (Poey, 1867)	93	LC				2	2	2
-	Engraulidae	Lycengraulis grossidens (Agassiz, 1829)	3	LC					4	4
	Clupeidae	Opisthonema oglinum (Lesueur, 1818)	165	LC				4	1	1
Siluriformes	Ariidae	Bagre marinus (Mitchill, 1815)	9	DD	4			4	4	4
Aulopiformes	Synodontidae	Synodus foetens (Linnaeus, 1766)	29	LC		4	4	3	3	3
-	-	Synodus intermedius (Spix & Agassiz, 1829)	9	LC		4	4	4	3	3
		Synodus synodus (Linnaeus, 1758)	7	LC			4		4	4
		Trachinocephalus myops (Forster, 1801)	17	LC		3		4	3	3
Holocentriformes	Holocentridae	Holocentrus adscensionis (Osbeck, 1765)	425	LC	4	1	1	1	1	1
		Myripristis jacobus Cuvier, 1829	17	LC					4	4
Kurtiformes	Apogonidae	Astrapogon puncticulatus (Poey, 1867)	2	LC					4	4
		Phaeoptyx pigmentaria (Poey, 1860)	4	LC					4	4
Gobiiformes	Pomacentridae	Stegastes pictus (Castelnau, 1855)	1	LC		4				4
		Stegastes fuscus (Cuvier, 1830)	1	LC				4		4
	Microdesmidae	Ptereleotris randalli Gasparini, Rocha & Floeter, 2001	1	LC					4	4
Carangiformes	Echeneidae	Echeneis naucrates Linnaeus, 1758	4	LC			4	3		4
	Carangidae	Caranx crysos (Mitchill, 1815)	1	LC	4					4
		Caranx latus Agassiz, 1831	1	LC					4	4
		Chloroscombrus chrysurus (Linnaeus, 1766)	196	LC	4			2	1	1

		Selar crumenophthalmus (Bloch, 1793)	8	LC					4	4
		Selene brownii (Cuvier, 1816)	11	LC	4			4	4	4
		Selene vomer (Linnaeus, 1758)	1	LC					4	4
Istiophoriformes	Sphyraenidae	Sphyraena barracuda (Edwards, 1771)	1	LC		4				4
		Sphyraena guachancho Cuvier, 1829	8	LC	4			3		4
Pleuronectiformes	Paralichthyidae	Cyclopsetta fimbriata (Goode & Bean, 1885)	4	LC		4			4	4
		Syacium micrurum Ranzani, 1842	75	LC		3	3	4	3	3
		Syacium papillosum (Linnaeus, 1758)	7	LC			4		4	4
	Bothidae	Bothus lunatus (Linnaeus, 1758)	40	LC		1				4
		Bothus ocellatus (Agassiz, 1831)	156	LC		2	2	3	3	1
		Bothus robinsi Topp & Hoff, 1972	2	LC					4	4
	Achiridae	Achirus achirus (Linnaeus, 1758)	6	LC					4	4
		Achirus lineatus (Linnaeus, 1758)	2	LC					4	4
Syngnathiformes	Fistulariidae	Fistularia tabacaria Linnaeus, 1758	67	LC		3		1	1	1
	Aulostomidae	Aulostomus maculatus Valenciennes, 1841	37	NE			2	4	4	4
		Aulostomus strigosus Wheeler, 1955	4	LC		4			4	4
	Dactylopteridae	Dactylopterus volitans (Linnaeus, 1758)	28	LC		4	4	3	3	3
Scombriformes	Scombridae	Scomberomorus brasiliensis Collette, Russo & Zavala-Camin, 1978	1	LC				4		4
Labriformes	Labridae	Halichoeres dimidiatus (Agassiz, 1831)	3	LC				4	4	4
		Halichoeres poeyi (Steindachner, 1867)	3	LC			4			4
	Scaridae	Cryptotomus roseus cope, 1871	36	LC			2			4
		Sparisoma axillare (Steindachner, 1878)	12	VU		4		4	4	4
		Sparisoma frondosum (Agassiz, 1831)	17	VU	4	2		4	4	4
		Sparisoma radians (Valenciennes, 1840)	55	LC			2		4	4
Perciformes	Gerreidae	Diapterus auratus Ranzani, 1842	12	LC				4		4
		Diapterus rhombeus (Cuvier, 1829)	6	LC				4		4
		Eucinostomus argenteus (Baird & Girard, 1855)	95	LC	4	2		4	3	1
		Eucinostomus gula (Quoy & Gaimard, 1824)	78	LC	4	4		2	4	1
		Ulaema lefroyi (Goode, 1874)	85	LC			4		1	2
	Mullidae	Mulloidichthys martinicus (Cuvier, 1829)	4	LC			4		4	4
		Pseudupeneus maculatus (Bloch, 1793)	477	LC	3	1	1	1	1	1
		Upeneus parvus Poey, 1852	1	LC				4		4
	Serranidae	Cephalopholis fulva (Linnaeus, 1758)	10	DD				4	4	4

		Mycteroperca bonaci (Poey, 1860)	1	VU					4	4
		Paranthias furcifer (Valenciennes, 1828)	6	NE					4	4
		Rypticus bistrispinus (Mitchill, 1818)	3	LC		4	4			4
		Alphestes afer (Bloch, 1793)	53	DD		4	1	4	4	4
		Diplectrum formosum (Linnaeus, 1766)	14	LC		3	4	3	4	3
	Priacanthidae	Heteropriacanthus cruentatus (Lacepède, 1801)	1	LC					4	4
		Priacanthus arenatus Cuvier, 1829	26	LC					4	4
	Chaetodontidae	Chaetodon ocellatus Bloch, 1787	22	DD	4	2	4			4
		Chaetodon striatus Linnaeus, 1758	53	LC	4	4	3	3	3	1
	Pomacanthidae	Holacanthus ciliaris (Linnaeus, 1758)	6	DD		4	4	4	4	4
		Holacanthus tricolor (Bloch, 1795)	4	DD					4	4
		Pomacanthus paru (Bloch, 1787)	30	DD	3	1	4	3	4	3
	Malacanthidae	Malacanthus plumieri (Bloch, 1786)	2	LC					4	4
	Haemulidae	Anisotremus virginicus (Linnaeus, 1758)	6	LC					3	4
		Conodon nobilis (Linnaeus, 1758)	1	LC				_	4	4
		Haemulon aurolineatum Cuvier, 1830	1977	LC	1	1	2	4	1	1
		Haemulon melanurum (Linnaeus, 1758)	5	LC					4	4
		Haemulon parra (Desmarest, 1823)	1	DD					4	4
		Haemulon plumierii (Lacepède, 1801)	216	LC	3	1	1	1	1	1
		Haemulon squamipinna Rocha & Rosa, 1999	704	LC				1	1	1
		Haemulon steindachneri (Jordan & Gilbert, 1882)	91	LC		1	3	1	1	1
		Haemulopsis corvinaeformis (Steindachner, 1868)	8	LC					4	4
		Orthopristis ruber (Cuvier, 1830)	42	LC		1		2	4	3
	Lutjanidae	Lutjanus analis (Cuvier, 1828)	10	NT				4	3	4
		Lutjanus synagris (Linnaeus, 1758)	171	NT	3	1	1	1	1	1
		Ocyurus chrysurus (Bloch, 1791)	16	NT	3	4	4	4	4	3
	Polynemidae	Polydactylus virginicus (Linnaeus, 1758)	1	LC					4	4
Scorpaeniformes	Scorpaenidae	Scorpaena bergii Evermann & Marsh, 1900	11	LC			4			4
		Scorpaena inermis Cuvier, 1829	3	LC					4	4
		Scorpaena isthmensis Meek & Hildebrand, 1923	6	LC		4			4	4
		Scorpaena plumieri (Bloch, 1789)	2	LC				4	4	4
		Scorpaena melasma Eschmeyer, 1965	6	LC		4			4	4
	Triglidae	Prionotus punctatus (Bloch, 1793)	9	LC			4	4	4	4

Moroniformes	Ephippidae	Chaetodipterus faber (Broussonet, 1782)	9	LC					4	4
Acanthuriformes	Sciaenidae	Odontoscion dentex (Cuvier, 1830)	5	LC					4	4
		Pareques acuminatus (Bloch & Schneider, 1801)	9	LC			4		4	4
	Acanthuridae	Acanthurus bahianus (Castelnau, 1855)	42	LC			4	1	4	3
		Acanthurus chirurgus (Bloch, 1787)	90	LC		4	3	1	4	1
		Acanthurus coeruleus Bloch & Schneider, 1801	18	LC				4	4	4
Spariformes	Sparidae	Calamus calamus (Valenciennes, 1830)	14	DD				4	4	4
		Calamus pennatula Guichenot, 1868	23	LC		4	4			4
Lophiiformes	Antennariidae	Antennarius multiocellatus (Valenciennes, 1837)	1	DD			4			4
	Ogcocephalidae	Ogcocephalus vespertilio (Linnaeus, 1758)	3	LC			4		4	4
Tetraodontiformes	Ostraciidae	Acanthostracion polygonius Poey, 1876	204	LC	4	1	1	1	1	1
		Acanthostracion quadricornis (Linnaeus, 1758)	81	LC	3	1	3	1	3	1
		Lactophrys trigonus (Linnaeus, 1758)	48	LC	4	3	3	3	3	3
	Balistidae	Balistes capriscus Gmelin, 1789	2	NT	4					4
		Balistes vetula Linnaeus, 1758	3	NT			4	4	4	4
		Xanthichthys ringens (Linnaeus, 1758)	1	LC					4	4
	Monacanthidae	Aluterus heudelotii Hollard, 1855	3	LC				4	4	4
		Aluterus monoceros (Linnaeus, 1758)	4	NT		3				4
		Aluterus scriptus (Osbeck, 1765)	3	LC			3			4
		Cantherhines macrocerus (Hollard, 1853)	13	LC				3	3	3
		Cantherhines pullus (Ranzani, 1842)	3	LC			3		4	4
		Monacanthus ciliatus (Mitchill, 1818)	66	LC		4	2	4	4	4
		Stephanolepis hispidus (Linnaeus, 1766)	59	LC		4	2	4	3	3
	Tetraodontidae	Canthigaster figueiredoi Moura & Castro, 2002	2	DD			4	4		4
		Sphoeroides spengleri (Bloch, 1785)	141	LC		4	1	3	2	1
		Sphoeroides testudineus (Linnaeus, 1758)	1	DD			3		4	4
	Diodontidae	Chilomycterus spinosus spinosus (Linnaeus, 1758)	5	LC				3	4	4
		Diodon holocanthus Linnaeus, 1758	344	LC	4	3	1	1	1	1

3 4 5 Table 2- List of species, number of individuals (n), relative importance index (4 scarce and rare; 3 scarce and frequent; 2 higher abundant and rare; 1 higher abundant and frequent), IUCN classification (Vulnerable (VU), Near Threatened (NT), Least Concern (LC), Data Deficient (DD) and Not Evaluated (NE)) for demersal fish species sampled

along the northeast Brazilian continental shelf $(4^{\circ}-9^{\circ}S)$.

6 The cluster analyses based on the log-transformed dataset exhibited four major 7 groups (assemblages) at the resemblance level of 20% (Figure 3), showing a significant 8 difference in the species composition among habitats types (R=0.192, p=0.042) and depth 9 range (R=0.201, p=0.001). Assemblage A (named Sand 20-30 m) included only the 10 habitat Sand located on the depth range of 20-30 m. Assemblage B (named SWCR 10-30 11 m) was comprised entirely of SWCR habitat (Sand with coralline formations and 12 sponges), distributed in areas between 10-30 m depth. Assemblage C (named Sand and 13 Algae 10-20 m), with 4 stations, was divided equally between Sand and Algae habitat, 14 both located in shallow areas (10-20 m). Assemblage D (named SWCR and Algae 30-60 15 m), grouped most part of the stations (13), encompassed the SWCR (9 stations) and Algae 16 (4 stations) habitats. All stations for this group were located on depths between 30 and 60 17 m.

18 SIMPER analysis showed low-moderate average within-group similarity ranging 19 from 29.2 to 55.7% (Table 3). There were only three consolidating species (those 20 cumulatively contributing to over 70% to the similarity) in Assemblage A: 21 Acanthostracion quadricornis, Lactophrys trigonus and Hypanus marianae. Assemblage 22 B had the greatest number of consolidating species (13), with Lutjanus synagris, 23 Eucinostomus argenteus and Bothus ocellatus contributing to the highest percentage 24 (29.2%). In Assemblage C, with 7 consolidating species, Acanthostracion polygonius, 25 Eucinostomus gula and Lutjanus synagris cumulatively contributed to the highest 26 contribution (36.6%). Assemblage D was composed by 9 consolidating species, with 27 Acanthostracion polygonius, Diodon holocanthus, Acanthostracion quadricornis and 28 Hypanus marianae showing the highest contribution (48 %).

29 The dissimilarity levels between the assemblages were much higher than the 30 within-assemblage similarity, ranging from 71.9% (B-C) to 81.9% (D-A) (Table 4). 31 Discriminating species (those cumulatively contributing to over 70% of the dissimilarity) 32 were more numerous than the consolidating species within assemblages, ranging from 18 33 to 29 species. Dissimilarities between assemblages B-A, D-A and A-C were primarily a 34 result of species that were absent (e.g. Eucinostomus argenteus, Eucinostomus Gula, 35 Lutjanus synagris and Diodon holocanthus) from one or other of the assemblages. 36 However, between D-B, B-C and D-C the dissimilarity was driven mostly by differences 37 in average abundance rather than presence/absence.

Figure 3 – Dendrogram showing habitat types and depth range obtained after cluster analysis applied on
the Bray Curtis similarities calculated among hauls (abundance data) for demersal fish assemblage in the
northeast Brazilian continental shelf (4°-9°S). SWCR is the habitat sand with coralline formations and
sponges.

46 Table 3 -SIMPER results of demersal fish species contributing > 70 % of similarity for the four community

47 assemblages (A, B, C and D) at the northeast Brazilian continental shelf identified using cluster analysis

48 (4°-9°S). Av. abund. is the average abundance, Av. Sim is the average similarity, Sim/SD is the ration
 49 between similarity and standard deviation, Contrib% is the percentage of similarity contribution and Cum%

between similarity and standard deviation, Contrib% is the percentage of similarity contribution

50 is the cumulative percentage of the total similarity.

51

Species	Av. Abund	Av. Sim	Sim/SD	Contrib%	Cum. %					
Assemblage A - Sand 20-30m: average similarity = 29.2										
Acanthostracion quadricornis	21.57	14.66	3.35	48.91	48.91					
Lactophrys trigonus	14.64	4.9	0.58	16.36	65.27					
Hypanus marianae	14.87	3.53	0.58	11.78	77.05					
Assemblage B - SWCR 10- 30m: average	similarity = 4	7.55								
Lutjanus synagris	21.25	5.25	6.42	11.05	11.05					
Eucinostomus argenteus	19.59	4.36	1.75	9.17	20.22					
Bothus ocellatus	19.28	4.29	1.76	9.01	29.23					
Synodus foetens	16.99	3.34	1.14	7.03	36.26					
Assemblage C- Sand and Algae 10-20: av	erage similari	ity = 55.69								
Acanthostracion polygonius	22.29	6.96	5.39	12.5	12.5					
Eucinostomus gula	21.66	6.75	5.33	12.12	24.62					
Lutjanus synagris	21.6	6.72	5.22	12.07	36.69					
Haemulon steindachneri	21.31	6.64	5.02	11.93	48.62					
Assemblage D- SWCR and Algae 30-60: a	average simila	arity = 46.7	6							
Acanthostracion polygonius	19.99	5.38	2.02	11.51	11.51					
Diodon holocanthus	20.09	5.22	2.02	11.16	22.67					
Acanthostracion quadricornis	18.28	4.4	1.39	9.42	32.1					
Hypanus marianae	18.17	4.14	1.4	8.87	40.96					

52

53

54 Table 4 - Global dissimilarity calculated through SIMPER analyses between the four community

assemblages (A, B, C and D) at the northeast Brazilian continental shelf identified using cluster analysis $(4^{\circ}-9^{\circ}S)$.

Assemblages	Global average dissimilarity
B-C	71.89
D-A	81.91
D-B	70.58
A-C	77.2
B-A	72.68
D-C	74.71

57

58

59

60

61

63 Margalef richness index d ranged from 0.48 to 5.93, with higher values in the south of Pernambuco (PE) (8°S - 9°S) (p<0.05). Stations with comparatively low values of richness 64 65 were observed along the entire study area. However, the state of Rio Grande do Norte aggregated most part of them $(5^{\circ} - 6^{\circ}S)$ (Figure 4). Hill's N1 and N2 indices varied between 66 67 1.65 to 16.72 effective species and 1.27 and 11.71 effective species, respectively. Based on Hill's indices, elevated values of diversity were found in specific locations along the entire 68 69 latitudinal range, with almost all higher values located in the deepest locations (40-60m) 70 (Figure 4). Pielou's evenness indicated a high equitability (0.77 -0.91) along the whole study 71 area, ranging from 0.23 to 0.95 and showing no significant differences among latitudes and depth (Figure 4). The taxonomic diversity (Δ) and Taxonomic distinctness (Δ^*) indices varied 72 73 from 9.5 to 74.7 and 28.3 to 89.7, respectively. Most part of higher values of taxonomic indices 74 found in the state of PE and Paraiba (PB) were sampled near to the shore (Figure 3).

In relation to assemblages, higher values of richness and taxonomic diversity were found for assemblage B (p<0.05), followed, in the decreasing order, by the assemblages C, D, and A (Figure 4). Hill's N1 and N2 indices presented higher values of diversity for assemblage C, followed by assemblages D, B and A (p<0.05) (Figure 5). The taxonomic distinctness and Pielou's evenness indices did not show significant differences among assemblages (p>0.05).

82 Figure 4 - Spatial representation of estimations of Margalef index, Pielou's evenness, Hill's Shannon index (N1),

34°40'0"W

33°20'0"W

36°0'0"W

34°40'0"W

33°20'0"W

83 Hill's Simpson's index (N2) and taxonomic diversity (Δ) and Taxonomic distinctness (Δ^*) of demersal fishes

36°0'0"W

84 caught along the northeast Brazilian continental shelf (4°- 9°S).

34°404

85

Figure 5 – Box plot of Margalef index, Pielou's evenness, Hill's Shannon index (N1), Hill's Simpson's index (N2) and taxonomic diversity (Δ) and Taxonomic distinctness (Δ^*) per assemblages from cluster analysis on demersal fishes caught along the northeast Brazilian continental shelf (4°-9°S).

92 4. DISCUSSION

93 The fish diversity found in the Brazilian northeast continental shelf (120 demersal fish species) is, overall, similar or higher than other tropical coastal shelf ecosystems in Brazil 94 (MMA, 2006), and around the world. For instance, in tropical systems, Willems and Backer 95 96 (2015) reported 98 species in Suriname and Gray and Otway (1994) observed 75 species in 97 Australia. In temperate areas, Beentjes et al. (2002) registered 100 species in New Zealand, 98 Jaureguizar et al. (2006) reported 94 species in Argentine and Prista et al. (2003) observed 36 99 species in Portugal. On the opposite, higher demersal fish diversity has been reported in Costa 100 Rica and Southern Tyrrhenian Sea, with 242 and 249 species, respectively (Busalacchi et al., 2010; Sousa et al., 2006; Wolff, 1996). Besides intrinsic biogeographic differences (e.g. 101 102 oceanographic conditions, climate pattern, habitat heterogeneity) (Ray and Grassle, 1991), 103 which are major factors driving the number of species, sampling strategy and effort were different among studies, which may also affect the observed image of the diversity (Magurran,2004).

106 The dominance pattern found in demersal fish assemblages of the Brazilian northeast 107 continental shelf is probably related to habitat type, once most of the dominant families are 108 classified as distinctive reef-associated (e.g. Haemulidae, Lutjanidae) (Rangel et al., 2007). In 109 addition, some of the dominant species also share the same food resource (sessile and mobile 110 invertebrates) (Bowen et al., 1995; Rangel et al., 2007). The dominance of the demersal 111 assemblage by few families (7 out of 49) has also been registered in other studies in Brazil 112 (Azevedo et al., 2007; Muto et al., 2000) and elsewhere (Jaureguizar et al., 2006; Johannesen et al., 2012; Prista et al., 2003), seeming to be an ecological pattern of demersal assemblages 113 114 (Gibson et al., 2007).

115 The highest values of richness (expressed through Margalef index) were found in the south of Pernambuco (8°30'S - 9°). This area encompassed species classified as highly 116 117 abundant and frequent but also most of the species classified as lower abundant and rare, 118 including species currently categorized as Vulnerable by IUCN (e.g. Sparisoma axillare, S. 119 frondosum and M. bonaci). Many species are also categorized as Data Deficient (DD). A wide 120 range of variables drives the number of species of a location (e.g. human activity, physical 121 factors, prey availability) (Ray and Grassle, 1991). The presence and extension of coral reefs 122 and associated ecosystems found in the south of Pernambuco (Costa et al., 2007; Ferreira et 123 al., 2006) as well as their conservation status, have motivated the creation of two Marine 124 Protected Areas ('APA Costa do Corais' and 'APA Guadalupe') (Ferreira and Maida, 2007; 125 Prates et al., 2007), that are now probably the main factor responsible for the maintenance of 126 such richness. The 'APA Costa do Corais' (ACC) was created in 1997, encompassing more 127 than 400 thousand hectares of marine area. Although artisanal fisheries are allowed inside the 128 ACC, and law enforcement is a challenge in these large areas, increased compliance may be a 129 possible expected effect (Gerhardinger et al., 2011; Pollnac et al., 2010). Zoning, for instance, 130 includes the creation of no-taken zones, where a rapid increase of richness, diversity, and 131 biomass of many species have been observed (Ferreira and Maida, 2007).

High values of diversity (Pielou and Hill's indices) were found in specific locations along the entire latitudinal range, with almost all higher values located in the deepest habitats (30 -60m). Previous studies based on underwater visual sensing and bottom long-lines have also reported high values of diversity in deep coastal shelf environments on the Brazilian coast 136 (Feitoza et al., 2005; Olavo et al., 2011). This location is indeed a marine ecotone characterized by the coexistence of different communities of the continental shelf, upper slope and adjacent 137 138 pelagic biota (Olavo et al., 2011). This ecotone, characterized by high population densities and 139 species richness, concentrates fishing resources and sustain an important multispecific reef 140 fishery in the Tropical Atlantic (Costa et al., 2005; Frédou and Ferreira, 2005; Olavo et al., 141 2011). In addition, these deep coastal shelf environments on the Brazilian coast are part of a 142 faunal corridor that serves as a connection between cold habitats in southern Brazil and the 143 Caribbean (Olavo et al., 2011). Finally, the occurrence of small upwelling processes has been 144 reported near to these locations enhancing nutrient supply from deeper layers and increasing 145 food availability for fish assemblages (MMA, 2006).

146 Taxonomic diversity (Δ) and distinctness (Δ^*), which consider taxonomic differences 147 between species, presented high values distributed along the whole study area, evidencing the 148 presence of local hotspots supporting higher diversity. Most high values of taxonomic indices 149 were found in the shallowest habitats (10-30m). This result shows that, although the deepest 150 habitats (30-60m) holds the highest values of diversity (N1 and N2), the shallowest habitats 151 contains species that are more taxonomically distant. This pattern was largely driven by the 152 presence of rays (*Dasyatis spp.*), which were more abundant in sand shallow habitats near to 153 the coast. Indeed, habitat and bathymetric segregation are known for these species (Costa et 154 al., 2017). This pattern was also reported by Rogers et al. (1999) in the Northeast Atlantic.

155 The major factors structuring assemblages were habitat type and depth strata. Despite 156 the distinctive influence of habitat, the assemblages C and D were related to more than one 157 habitat type. It may be explained by the great mobility and feeding behavior of many species 158 found in this study (e.g. L. synagris, P. maculatus and H. plumierii) that may move between 159 habitats according to their use for food and shelter (Mora, 2015). In addition, the similarity 160 percentage procedure (SIMPER) revealed that many species are usually present in more than 161 one habitat type. Assemblages C (composed by Sand and Algae) and D (composed by SWCR 162 and Algae) presented the highest values of diversity (N1 and N2). This pattern is not only a 163 consequence of the presence of more complex habitats, which increases diversity, but also a 164 consequence of the ecological benefits provided by these locations. Habitats as algae and coralline formations mediate competition and predation, facilitate cohabitation of an increased 165 166 number of species, and provide essential habitats and resources for marine invertebrates and 167 fish (Bertelli and Unsworth, 2014; Darling et al., 2017). The highest values richness and taxonomic diversity were found in the assemblages B, which comprise only SWCR habitats inrelatively shallow waters (10-30 m depth).

170 **5. CONCLUSION**

171 Our results may be hampered by gear selectivity and by the sampling spatial extent. We do not propose an exhaustive inventory of demersal fish assemblages in the northeast Brazilian 172 173 coast, but our results provide valuable information on tropical fish fauna distribution in this 174 area, and relationships with habitat characteristics. These findings are useful for conservation 175 purposes. Indeed, we identified the presence of numerous sensitive and commercial species 176 deserving special attention from stakeholders since they are currently categorized within risk 177 categories by IUCN or Data Deficient. These species are mainly associated with the habitat 178 SWCR, which also holds the highest number of species classified as scarce/rare and the greatest 179 values of biodiversity. We also highlight the importance of the deepest coastal shelf 180 environments (30-60 m) as areas of high fish densities and diversity.

Ecosystem-based management practices have been implemented with the creation of marine protected areas encompassing interconnected habitats in a portion of the study area (Ferreira and Maida, 2007; Prates et al., 2007). However, most critical environments identified in this study remain unprotected. We thus recommend giving special attention on SWCR habitats, mainly those located close to the shelf-break, between 30 and 60 m of depth, in management strategies of conservation. Possible measures include specific regulations of use and/or creation or expansion of MPAs encompassing those environments (CBD, 2014).

188 Acknowledgements

We acknowledge the French oceanographic fleet for funding the at-sea survey Abraços 1 and 2 (http://dx.doi.org/10.17600/15005600 / http://dx.doi.org/10.17600/17004100) and the officers and crew of the R/V Antea for their contribution to the success of the operations. The present study could not have been done without the work of all participants from the BIOIMPACT Laboratory. We thank the CNPq (Brazilian National Council for Scientific and Technological Development), which provided student scholarship to Leandro Nolé Eduardo and Alex Souza Lira and research grant for Thierry Frédou, Beatrice Padovani Ferreira and Flávia Lucena Frédou. This work is a contribution to the LMI TAPIOCA and the EU RISE Project PADDLE.

Funding: This study was funded by the French oceanographic fleet, through the projects ABRACOS 1 and 2
(http://dx.doi.org/10.17600/15005600 / http://dx.doi.org/10.17600/17004100).

- 198 Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of
- 199 animals were followed. All procedures performed in this research were in accordance with the ethical standards of
- 200 the the institution (University Federal Rural de Pernambuco) and the Brazilian Ministry of Envirnomental.

201 6. REFERENCES

- Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA+ for PRIMER: Guide to
 Software and Statistical Methods. PRIMER-E, Plymouth.
- 204 Azevedo, M.C.C. d, Araújo, F.G., Cruz-Filho, A.G. d, Pessanha, A.L.M., Silva, M. d A.,

205 Guedes, A.P.P., 2007. Demersal fishes in a tropical bay in southeastern Brazil:

206 Partitioning the spatial, temporal and environmental components of ecological variation.

207 Estuar. Coast. Shelf Sci. 75, 468–480. doi:10.1016/j.ecss.2007.05.027

- Beentjes, M.P., Bull, B., Hurst, R.J., Bagley, N.W., 2002. Demersal fish assemblages along the
 continental shelf and upper slope of the east coast of the South Island, New Zealand. New
 Zeal. J. Mar. Freshw. Res. 36, 197–223. doi:10.1080/00288330.2002.9517080
- Bertelli, C.M., Unsworth, R.K.F., 2014. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83, 425–429.
 doi:10.1016/j.marpolbul.2013.08.011
- Borcard, D., Gillet, F., Legendre, P., 2011. Numerical Ecology with R, 1st ed, Media. Springer
 New York Dordrecht London Heidelberg, Québec.
- Bowen, S.H., Lutz, E. V., Ahlgren, M.O., 1995. Bowen SH, Lutz E V., Ahlgren MO (1995)
 Dietary protein and energy as determinants of food quality: Trophic strategies compared.
 Ecology 76:899–907. doi: 10.2307/1939355Dietary protein and energy as determinants
- of food quality: Trophic strategies compared. Ecology 76, 899–907. doi:10.2307/1939355
- Busalacchi, B., Rinelli, P., De Domenico, F., Profeta, A., Perdichizzi, F., Bottari, T., 2010.
 Analysis of demersal fish assemblages off the Southern Tyrrhenian Sea (central Mediterranean). Hydrobiologia 654, 111–124. doi:10.1007/s10750-010-0374-9
- Causse, R., Ozouf-Costaz, C., Koubbi, P., Lamy, D., Eléaume, M., Dettaï, A., Duhamel, G.,
 Busson, F., Pruvost, P., Post, A., Beaman, R.J., Riddle, M.J., 2011. Demersal
 ichthyofaunal shelf communities from the Dumont d'Urville Sea (East Antarctica). Polar
 Sci. 5, 272–285. doi:10.1016/j.polar.2011.03.004
- CBD, 2014. Ecologically or Biologically Significant Marine Areas (EBSAs). Special places in
 the world's oceans., 2nd ed. Secretariat of the Convention on Biological Diversity, Recife.
- Clarke, K., Somerfield, P.J., Warwick, R., 1994. Change in marine communities: an approach
 to statistical analysis and interpretation, 1st ed. PRIMER-E Ltd, Plymouth.

- Costa, P., Martins, A., Olavo, G., Haimovici, M., Braga, A., 2005. Pesca exploratória com
 arrasto de fundo no talude continental da região central da costa brasileira entre Salvador-
- BA e o cabo de São Tomé-RJ, in: Pescae Potenciais de Exploração de Recursos Vivos Na
- 234 Região Central Da Zona Econômica Exclusiva Brasileira. Museu Nacional, Rio de
- 235 Janeiro, pp. 145–165.
- Costa, P., Olavo, G., Martins, A.S., 2007. Biodiversidade na costa central brasileira. Museu
 Nacional, Rio de Janeiro.
- Costa, T.L.A., Pennino, M.G., Mendes, L.F., 2017. Identifying ecological barriers in marine
 environment: The case study of Dasyatis marianae. Mar. Environ. Res. 125, 1–9.
 doi:10.1016/j.marenvres.2016.12.005
- Curley, B.G., Kingsford, M.J., Gillanders, B.M., 2002. Spatial and habitat-related patterns of
 temperate reef fish assemblages: Implications for the design of Marine Protected Areas.
 Mar. Freshw. Res. 53, 1197–1210. doi:10.1071/MF01199
- Dahl, R., Ehler, C., Douvere, F., 2009. Marine spatial planning: A Step-by-Step Approach
 toward ecosystem based management, UNESCO IOC Manual and Guides.
 Intergovernmental Oceanographic Commission and Man and the Biosphere Programme,
 Paris.
- Darling, E.S., Graham, N.A.J., Januchowski-hartley, F.A., Nash, K.L., Pratchett, M.S., Wilson,
 S.K., 2017. Relationships between structural complexity, coral traits, and reef fish
 assemblages. Coral Reefs 36, 561–575. doi:10.1007/s00338-017-1539-z
- Ekau, W., Knoppers, B., 1999. An introduction to the pelagic system of the north-east and east
 Brazilian shelf. Arch. Fish. Mar. Res. 47, 113–132. doi:0944-1921/99/47/2/3-5/12.00\$/0
- 253 Farriols, M.T., Ordines, F., Somerfield, P.J., Pasqual, C., Hidalgo, M., Guijarro, B., Massutí,
- E., 2017. Bottom trawl impacts on Mediterranean demersal fish diversity: Not so obvious
 or are we too late? Cont. Shelf Res. 137, 84–102. doi:10.1016/j.csr.2016.11.011
- Feitoza, B.M., Rosa, R.S., Rocha, L.A., 2005. Ecology and Zoogeography of Deep- Reef
 Fishes in Northeastern Brazil. Bull. Mar. Sci. 76, 725–742.
- Ferreira, B.P.., Toniolo, L.M.., Maida, M., 2006. The Environmental Municipal Councils as an
 Instrument in Coastal Integrated Management: the Área de Proteção Ambiental Costa dos
 Corais (AL/ PE) Experience. J. Coast. Res. 39, 1003–1007.

- Ferreira, B.P., Maida, M., 2007. Características e Perspectivas para o Manejo da Pesca na Área
 de Proteção Ambiental Marinha da Costa dos Corais, in: Áreas Aquáticas Protegidas
 Como Instrumento de Gestão Pesqueira. Serie Areas Protegidas, Brasília, pp. 39–51.
- Ferreira, C.E.L., Floeter, S.R., Gasparini, J.L., Ferreira, B.P., Joyeux, J.C., 2004. Trophic
 structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31,
 1093–1106. doi:10.1111/j.1365-2699.2004.01044.x
- Frédou, T., Ferreira, B.P., 2005. Bathymetric trends of northeastern Brazilian snappers (pisces,
 lutjanidae): Implications for the reef fishery dynamic. Brazilian Arch. Biol. Technol. 48,
 787–800. doi:10.1590/S1516-89132005000600015
- 270 Gaertner, J.-C., Bertrand, J., Gil de Sola, L., Durbec, J.-P., Ferrandis, E., Souplet, A., 2005. 271 Large spatial scale variation of demersal fish assemblage structure on the continental shelf 272 of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297. 245-257. 273 doi:10.3354/meps297245
- Garcia, A.M., Bemvenuti, M.A., Vieira, J.P., Motta Marques, D.M.L., Burns, M.D.M.,
 Moresco, A., Vinicius, M., Condini, L., 2006. Checklist comparison and dominance
 patterns of the fish fauna at Taim Wetland, South Brazil. Neotrop. Ichthyol 4, 261–268.
- Gerhardinger, L.C., Godoy, E.A.S., Jones, P.J.S., Sales, G., Ferreira, B.P., 2011. Marine
 protected dramas: The flaws of the Brazilian national system of marine protected areas.
 Environ. Manage. 47, 630–643. doi:10.1007/s00267-010-9554-7
- Gibson, R.N., Atkinson, R.J. a, Gordon, J.D.M., 2007. Oceanography and Marine Biology An
 Annual Review Vol.45. Taylor & Francis, Boca Raton, FL.
- Gray, C.A., Otway, N.M., 1994. Spatial and temporal differences in assemblages of demersal
 fishes on the inner continental shelf off sydney, south-eastern australia. Mar. Freshw. Res.
 45, 665–676. doi:10.1071/MF9940665
- Gregory, S., Collins, M.A., Belchier, M., 2016. Demersal fish communities of the shelf and
 slope of South Georgia and Shag Rocks (Southern Ocean). Polar Biol. 40, 107–121.
 doi:10.1007/s00300-016-1929-7
- Halpern, B.S., 2003. The impact of marine reserves: do reserves work and does reserve size
 matter? Ecol. Appl. 13, 117–137. doi:10.1890/10510761(2003)013[0117:TIOMRD]2.0.CO;2

- Hanchet, S.M., Stewart, A.L., McMillan, P.J., Clark, M.R., O'Driscoll, R.L., Stevenson, M.L.,
- 2013. Diversity, relative abundance, new locality records, and updated fish fauna of the
 Ross Sea region. Antarct. Sci. 25, 619–636. doi:10.1017/S0954102012001265
- Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology
 54, 427–432. doi:10.2307/1934352
- ICMbio, 2016. Executive Summary Brazil Red Book of Threatened Species of Fauna sumario,
 Livro Vermelho. Instituto Chico Mendes de Conservaçã o da Biodiversidade, Ministério
 de Meio Ambiente, Brasília, DF.
- IUCN, 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National
 Levels: Version 4.0. IUCN, Gland, Switzerland and Cambridge, UK.
- 301 IUCN, 2000. IUCN Red List Categories and Criteria, IUCN Bulletin. IUCN, Gland,
 302 Switzerland and Cambridge, UK. doi:10.9782-8317-0633-5
- Jaureguizar, A.J., Menni, R., Lasta, C., Guerrero, R., 2006. Fish assemblages of the northern
 Argentine coastal system: Spatial patterns and their temporal variations. Fish. Oceanogr.
 15, 326–344. doi:10.1111/j.1365-2419.2006.00405.x
- Johannesen, E., Hoines, A.S., Dolgov, A. V., Fossheim, M., 2012. Demersal fish assemblages
 and spatial diversity patterns in the arctic-atlantic transition zone in the barents sea. PLoS
 One 7. doi:10.1371/journal.pone.0034924
- Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional
 diversity from multiple traits. Ecology 91, 299–305.
- Letessier, T.B., Meeuwig, J.J., Gollock, M., Groves, L., Bouchet, P.J., Chapuis, L., Vianna,
 G.M.S., Kemp, K., Koldewey, H.J., 2013. Assessing pelagic fish populations: The
 application of demersal video techniques to the mid-water environment. Methods
 Oceanogr. doi:10.1016/j.mio.2013.11.003
- Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., Kidwell,
 S.M., Kirby, M.X., Peterson, C.H., Jackson, J.B.C., 2006. Depletion, Degradation, and
 Recovery Potential of Estuaries and Coastal Seas. Science (80-.). 312, 1806–1809.
 doi:10.1126/science.1128035
- 319 Magurran, A.E., 2004. Measuring biological diversity. Blackwell Pub, Malden.

- 320 Margalef, R.D., 1978. Information Theory In Ecology. Gen. Syst.
- Mellin, C., Andréfouët, S., Kulbicki, M., Dalleau, M., Vigliola, L., 2009. Remote sensing and
 fish-habitat relationships in coral reef ecosystems: Review and pathways for multi-scale
 hierarchical research. Mar. Pollut. Bull. 58, 11–19. doi:10.1016/j.marpolbul.2008.10.010
- 324 Miloslavich, P., Klein, E., Díaz, J.M., Hernández, C.E., Bigatti, G., Campos, L., Artigas, F.,
- 325 Castillo, J., Penchaszadeh, P.E., Neill, P.E., Carranza, A., Retana, M. V, Díaz de Astarloa,
- 326 J.M., Lewis, M., Yorio, P., Piriz, M.L., Rodríguez, D., Valentin, Y.Y., Gamboa, L.,
- Martín, A., 2011. Marine biodiversity in the Atlantic and Pacific coasts of South America:
 Knowledge and gaps. PLoS One 6. doi:10.1371/journal.pone.0014631
- MMA, 2006. Programa REVIZEE. Avaliação do Potencial Sustentável de Recursos Vivos na
 Zona Econômica Exclusiva. Ministério do Meio Ambiente, Brasília, DF.
- Muto, E.Y., Soares, L.S.H., Rossi-wongtschowski, C.L.D.B., 2000. Demersal fish assemblages
 off São Sebastião, southeatern Brazil: structure and environmental conditioning factors
 (summer 1994). Rev. Bras. Oceanogr. 48, 9–27. doi:10.1590/S1413-77392000000100002
- Nelson, J.S., Grande, T., Wilson, M.V.H., 2016. Fishes of the world, 5th ed. Wiley.
- Nóbrega, M.F. de, Lessa, R., Santana, F.M., 2009. Peixes Marinhos da regiao Nordeste do
 Brasil. Martins & Cordeiro, Fortaleza.
- Oksanen, J., F. Guillaume Blanchet, M.F., Kindt, R., Legendre, P., Dan McGlinn, P.R.M.,
 Simpson, L., Solymos, P., Henry, M., Stevens, H., 2017. Vegan: Community Ecology
 Package.
- Olavo, G., Costa, P.A.S., Martins, A.S., Ferreira, B.P., 2011. Shelf-edge reefs as priority areas
 for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar.
 Freshw. Ecosyst. 21, 199–209. doi:10.1002/aqc.1174
- Pielou, E.C., 1966. Species-diversity and pattern-diversity in the study of ecological
 succession. J. Theor. Biol. 10, 370–383. doi:http://dx.doi.org/10.1016/00225193(66)90133-0
- Pollnac, R., Christie, P., Cinner, J.E., Dalton, T., Daw, T.M., Forrester, G.E., Graham, N.A.J.,
 McClanahan, T.R., 2010. Marine reserves as linked social-ecological systems. Proc. Natl.
- 348 Acad. Sci. 107, 18262–18265. doi:10.1073/pnas.0908266107

- Prates, A.P.L., Cordeiro, A.Z., Ferreira, B.P., Maida, M., 2007. Unidades de Conservação
 Costeiras e Marinhas de Uso Sustentável como Instrumento para a Gestão Pesqueira, in:
 Áreas Aquáticas Protegidas Como Instrumento de Gestão Pesqueira. Serie Areas
 Protegidas, Brasília, pp. 27–39.
- Prista, N., Vasconcelos, R.P., Costa, M.J., Cabral, H., 2003. The demersal fish assemblage of
 the coastal area adjacent to the Tagus estuary (Portugal): Relationships with
 environmental conditions. Oceanol. Acta 26, 525–536. doi:10.1016/S03991784(03)00047-1
- R Core Team, 2016. R: A language and environment for statistical computing. R Foundation
 for Statistical Computing, Vienna, Austria.
- Rangel, C.A., Chaves, L.C.T., Monteiro-Neto, C., 2007. Baseline Assessment of the Reef Fish
 Assemblage From Cagarras Archipelago, Rio De Janeiro, Southeastern Brazil. Brazilian
 J. Oceanogr. 55, 7–17. doi:10.1590/S1679-87592007000100002
- Ray, G.C., Grassle, J.F., 1991. Marine Biological Diversity Program. Bioscience 41, 453–457.
 doi:10.2307/1311799
- Roberts, C.M., Bohnsack, J.A., Gell, F., Hawkins, J.P., Goodridge, R., 2001. Effects of marine
 reserves on adjacent fisheries. Science 294, 1920–3. doi:10.1126/science.294.5548.1920
- Rogers, S.I., Clarke, K.R., Reynolds, J.D., 1999. The Taxonomic Distinctness of Coastal
 Botton-Dwelling Fish Communities of the North-East Atlantic. J. Anim. Ecol. 68, 769–
 782. doi:10.1046/j.1365-2656.1999.00327.x
- Silva Júnior, C.A.B. da, Viana, A.P., Frédou, F.L., Frédou, T., 2015. Aspects of the 369 370 reproductive biology and characterization of Sciaenidae captured as bycatch in the prawn 371 trawling in the northeastern Brazil. Acta Sci. Biol. Sci. 37, 1. 372 doi:10.4025/actascibiolsci.v37i1.24962
- Sousa, P., Azevedo, M., Gomes, M.C., 2006. Species-richness patterns in space, depth, and
 time (1989-1999) of the Portuguese fauna sampled by bottom trawl. Aquat. Living
 Resour. 19, 93–103. doi:10.1051/alr:2006009
- Vital, H., Gomes, M.P., Tabosa, W.F., Fraz??o, E.P., Santos, C.L.A., Placido Junior, J.S., 2010.
 Characterization of the Brazilian continental shelf adjacent to Rio Grande do Norte State,
- 378 Ne Brazil. Brazilian J. Oceanogr. 58, 43–54. doi:10.1590/S1679-87592010000500005

- Warwick, R.M., Clarke, K.R., 1995. New "biodiversity" measures reveal a decrease in
 taxonomic distinctness with increasing stress." Mar. Ecol. Prog. Ser. 129, 301–305.
 doi:10.3354/meps129301
- Willems Tomas; Backer, A.M.J.H., V.M.H.K., 2015. Distribution patterns of the demersal fish
 fauna on the inner continental shelf of Suriname. Reg. Stud. Mar. Sci. 2, 177–188.
 doi:10.1016/j.rsma.2015.10.008
- Wolff, M., 1996. Demersal fish assemblages along the Pacific coast of Costa Rica: a
 quantitative and multivariate assessment hased on the Victor Hensen Costa Rica
 Expedition (199311994). Rev. Biol. Trop. 44, 187–214.
- Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, J.B.C.,
- 389 Lotze, H.K., Micheli, F., Palumbi, S.R., Sala, E., Selkoe, K.A., Stachowicz, J.J., Watson,
- 390 R., 2006. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science (80-.).
- 391 314, 787–790. doi:10.1126/science.1132294

404Supplementary Material 1- Size histogram of fish captured during the Abraços 1 (red) and 2 (blue) surveys405in the latitudinal range 4°- 9°S.

Supplementary Material 2- Spatial representation of bottom environmental variables collected using a
 CTD along the northeast Brazilian continental shelf (4°- 9°S).

Supplementary Material 3- CTD profiles of environmental variables collected through two surveys along
 the northeast Brazilian continental shelf (4°- 9°S).

- 429
- 430
- 431

Supplementary material 4 -SIMPER results of demersal fish species contributing > 70 % of similarity for the four
 community assemblages (A, B, C and D) at the northeast Brazilian continental shelf identified using cluster
 analysis (4°-9°S).

Species	Av. Abund	Av. Sim	Sim/SD	Contrib%	Cum. %
Assemblage A - Sand 20-30m: average simil	larity = 29.2				
Acanthostracion quadricornis	21.57	14.66	3.35	48.91	48.91
Lactophrys trigonus	14.64	4.9	0.58	16.36	65.27
Hypanus marianae	14.87	3.53	0.58	11.78	77.05
Assemblage B - SWCR 10- 30m: average sin	nilarity = 47.55	5			
Lutjanus synagris	21.25	5.25	6.42	11.05	11.05
Eucinostomus argenteus	19.59	4.36	1.75	9.17	20.22
Bothus ocellatus	19.28	4.29	1.76	9.01	29.23
Synodus foetens	16.99	3.34	1.14	7.03	36.26
Hypanus marianae	14.79	2.17	0.82	4.56	40.83
Stephanolepis hispidus	14.69	1.99	0.83	4.19	45.01
Haemulon plumierii	14.7	1.99	0.83	4.18	49.19
Syacium micrurum	14.72	1.98	0.83	4.16	53.35
Pseudupeneus maculatus	14.45	1.96	0.82	4.12	57.47
Diodon holocanthus	14.41	1.94	0.83	4.08	61.55
Trachinocephalus myops	11.95	1.4	0.6	2.94	64.48
Synodus intermedius	12.01	1.37	0.6	2.89	67.37
Holocentrus adscensionis	12.1	1.34	0.61	2.81	70.18
Assemblage C- Sand and Algae 10-20: avera	age similarity =	55.69			
Acanthostracion polygonius	22.29	6.96	5.39	12.5	12.5
Eucinostomus gula	21.66	6.75	5.33	12.12	24.62
Lutjanus synagris	21.6	6.72	5.22	12.07	36.69
Haemulon steindachneri	21.31	6.64	5.02	11.93	48.62
Pseudupeneus maculatus	21.11	6.49	4.99	11.66	60.28
Hypanus marianae	18.29	4.03	1.34	7.25	67.53
Diplectrum formosum	15.03	2.52	0.78	4.53	72.06
Assemblage D- SWCR and Algae 30-60: ave	erage similarity	v = 46.76			
Acanthostracion polygonius	19.99	5.38	2.02	11.51	11.51
Diodon holocanthus	20.09	5.22	2.02	11.16	22.67
Acanthostracion quadricornis	18.28	4.4	1.39	9.42	32.1
Hypanus marianae	18.17	4.14	1.4	8.87	40.96
Pseudupeneus maculatus	17.28	3.61	1.28	7.73	48.69
Fistularia tabacaria	16.44	3.59	1.04	7.69	56.38
Lactophrys trigonus	14.82	3.03	0.82	6.49	62.87
Holocentrus adscensionis	14.56	2.59	0.84	5.55	68.42
Pomacanthus paru	12.79	1.93	0.67	4.12	72.54

Species	Av. Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum%	Species	Av. Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum%
-1	(Assemblage D)	(Assemblage B)						(Assemblage B)	(Assemblage C)				
Eucinostomus argenteus	0	19.59	2.76	2.44	4.11	4.11	Eucinostomus gula	0	21.66	3.05	5.29	4.98	4.98
Synodus foetens	1.55	16.99	2.31	1.6	3.45	7.56	Eucinostomus argenteus	19.59	0	2.81	2.41	4.59	9.57
Bothus ocellatus	5.43	19.28	2.2	1.47	3.28	10.84	Bothus ocellatus	19.28	3.83	2.38	1.71	3.89	13.45
Lactophrys trigonus	14.82	5.03	1.87	1.16	2.78	13.62	Acanthostracion polygonius	8.23	22.29	1.98	1.31	3.23	16.68
Acanthostracion polygonius	19.99	8.23	1.84	1.28	2.75	16.37	Synodus foetens	16.99	7.44	1.96	1.18	3.21	19.89
Syacium micrurum	5.62	14.72	1.74	1.18	2.59	18.96	Stephanolepis hispidus	14.69	0	1.91	1.35	3.12	23.01
Fistularia tabacaria	16.44	9.46	1.7	1.05	2.54	21.5	Diplectrum formosum	4.76	15.03	1.84	1.19	3	26.01
Pomacanthus paru	12.79	0	1.7	1.15	2.53	24.03	Haemulon steindachneri	9.78	21.31	1.74	1.13	2.85	28.86
Stephanolepis hispidus	7.44	14.69	1.67	1.1	2.49	26.52	Syacium micrurum	14.72	7.07	1.69	1.11	2.76	31.62
Haemulon plumierii	9.22	14.7	1.62	1.05	2.41	28.93	Synodus intermedius	12.01	0	1.62	1.06	2.65	34.26
Chaetodon ocellatus	12.75	4.73	1.61	1.08	2.39	31.33	Trachinocephalus myops	11.95	7.56	1.6	1.03	2.62	36.89
Trachinocephalus myops	0	11.95	1.6	1.07	2.39	33.72	Orthopristis ruber	7.11	11.12	1.58	0.98	2.58	39.46
Lutjanus synagris	10.92	21.25	1.6	1.01	2.39	36.1	Opisthonema oglinum	12.35	3.68	1.58	1.05	2.58	42.04
Acanthostracion quadricornis	18.28	9.5	1.6	1.1	2.39	38.49	Acanthostracion quadricornis	9.5	11.13	1.57	0.98	2.56	44.6
Synodus intermedius	3.6	12.01	1.57	1.03	2.33	40.82	Haemulon plumierii	14.7	12.38	1.56	1.04	2.55	47.15
Opisthonema oglinum	0	12.35	1.56	1.08	2.33	43.15	Holocentrus adscensionis	12.1	14.6	1.55	0.97	2.53	49.68
Dactylopterus volitans	10.93	9.81	1.54	0.99	2.29	45.45	Haemulon aurolineatum	11.81	10.99	1.54	1.02	2.52	52.2
Holocentrus adscensionis	14.56	12.1	1.53	0.98	2.29	47.73	Chloroscombrus chrysurus	9.79	0	1.5	0.86	2.45	54.64
Haemulon aurolineatum	5.99	11.81	1.48	1.08	2.2	49.93	Chaetodon ocellatus	4.73	11.02	1.49	0.98	2.43	59.51
Achirus achirus	10.91	2.43	1.47	0.98	2.2	52.13	Acanthurus bahianus	2.53	11.07	1.48	0.97	2.42	61.92
Chloroscombrus chrysurus	0	9.79	1.47	0.86	2.19	54.32	Pseudobatos percellens	9.55	7.25	1.48	0.93	2.41	64.34
Eucinostomus gula	0	9.66	1.45	0.86	2.17	56.49	Dactylopterus volitans	9.81	7.29	1.47	0.95	2.4	66.74
Selene brownii	0	9.58	1.42	0.86	2.12	58.61	Diodon holocanthus	14.41	14.48	1.47	0.92	2.4	69.14
Pseudobatos percellens	3.66	9.55	1.41	0.9	2.1	60.71	Selene brownii	9.58	0	1.45	0.85	2.37	71.5
Haemulon steindachneri	3.61	9.78	1.4	0.91	2.08	62.79							
Pseudupeneus maculatus	17.28	14.45	1.38	0.89	2.05	64.84							
Haemulon squamipinna	3.53	9.82	1.31	0.92	1.95	66.8							
Diodon holocanthus	20.09	14.41	1.31	0.81	1.95	68.74							

Average dissimilarity = 71.89

0.9

1.93

70.68

1.3

439 Supplementary material 5 - SIMPER results of demersal fish species contributing > 70 % of dissimilarity between the four community assemblages (A, B, C and D) at the northeast Brazilian continental shelf identified using cluster analysis ($4^{\circ}-9^{\circ}$ S).

Average dissimilarity = 70.58

Eucinostomus lefroyi

1.87

9.76

441

442

44	4
----	---

Species	Av. Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum%	Species	Av. Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum%
	(Assemblage B)	(Assemblage A)					-	(Assemblage D)	(Assemblage A)				
Lutjanus synagris	21.25	0	3.99	3.9	5.02	5.02	Diodon holocanthus	20.09	0	4.25	2.21	5.81	5.81
Bothus ocellatus	19.28	0	3.7	2.25	4.65	9.68	Acanthostracion polygonius	19.99	7.05	3.31	1.21	4.52	10.32
Synodus foetens	16.99	0	3.33	1.63	4.2	13.87	Holocentrus adscensionis	14.56	0	3.01	1.29	4.11	14.43
Eucinostomus argenteus	19.59	7.18	2.87	1.21	3.61	17.49	Pseudupeneus maculatus	17.28	7.55	2.9	1.2	3.96	18.39
Lactophrys trigonus	5.03	14.64	2.54	1.09	3.2	20.68	Diplectrum formosum	0	14.5	2.73	1.32	3.73	22.12
Haemulon plumierii	14.7	0	2.49	1.31	3.13	23.82	Pomacanthus paru	12.79	0	2.6	1.1	3.55	25.67
Syacium micrurum	14.72	0	2.48	1.32	3.12	26.93	Chaetodon ocellatus	12.75	0	2.54	1.11	3.46	29.13
Stephanolepis hispidus	14.69	0	2.47	1.32	3.11	30.05	Dactylopterus volitans	10.93	0	2.43	0.86	3.31	32.44
Diodon holocanthus	14.41	0	2.43	1.32	3.06	33.1	Fistularia tabacaria	16.44	14.81	2.31	0.8	3.15	35.59
Pseudupeneus maculatus	14.45	7.55	2.25	1.09	2.84	35.94	Achirus achirus	10.91	0	2.24	0.94	3.06	38.65
Diplectrum formosum	4.76	14.5	2.25	1.15	2.83	38.77	Hypanus marianae	18.17	14.87	2.21	0.8	3.02	41.67
Fistularia tabacaria	9.46	14.81	2.15	1.04	2.7	41.47	Lutjanus synagris	10.92	0	2.14	0.94	2.93	44.59
Synodus intermedius	12.01	0	2.14	1.01	2.69	44.17	Lactophrys trigonus	14.82	14.64	2.12	0.89	2.89	47.48
Trachinocephalus myops	11.95	7.59	2.13	1	2.68	46.85	Pseudobatos percellens	3.66	7.45	1.88	0.74	2.57	50.06
Acanthostracion quadricornis	9.5	21.57	2.12	1.12	2.67	49.52	Haemulon plumierii	9.22	0	1.87	0.8	2.55	52.61
Holocentrus adscensionis	12.1	0	2.1	1.04	2.64	52.16	Ocyurus chrysurus	8.94	0	1.85	0.79	2.53	55.14
Chloroscombrus chrysurus	9.79	7.36	2.09	0.89	2.63	54.79	Haemulon steindachneri	3.61	7.59	1.84	0.76	2.51	57.66
Opisthonema oglinum	12.35	0	2.05	1.05	2.58	57.37	Sparisoma axillare	3.74	7.59	1.67	0.77	2.28	59.93
Eucinostomus gula	9.66	0	2.04	0.83	2.56	59.93	Sphoeroides spengleri	7.4	0	1.62	0.66	2.22	62.15
Pseudobatos percellens	9.55	7.45	2.01	0.91	2.53	62.46	Cantherhines macrocerus	1.81	7.22	1.57	0.72	2.14	64.29
Haemulon steindachneri	9.78	7.59	2	0.92	2.52	64.98	Stephanolepis hispidus	7.44	0	1.55	0.64	2.12	66.41
Hypanus marianae	14.79	14.87	2	0.87	2.51	67.5	Sparisoma frondosum	7.17	0	1.53	0.67	2.09	68.5
Selene brownii	9.58	0	1.98	0.82	2.5	69.99	Bothus lunatus	1.9	7.65	1.5	0.73	2.04	70.54
Haemulon aurolineatum	11.81	0	1.9	1.06	2.39	72.38							

Average dissimilarity = 81.89

Average dissimilarity = 72.68

445

Λ	1	0
-		•

~ .	Av. Abund	Av. Abund				
Species			Aviais	Diss/SD	Contrib%	Cum%
	(Assemblage D)	(Assemblage C)				
Haemulon steindachneri	3.61	21.31	2.79	2	4.67	4.67
Eucinostomus gula	3.6	21.66	2.78	2.07	4.66	9.33
Fistularia tabacaria	16.44	0	2.58	1.56	4.33	13.65
Diplectrum formosum	0	15.03	2.22	1.35	3.72	17.37
Lactophrys trigonus	14.82	7.39	1.98	1.06	3.31	20.69
Pomacanthus paru	12.79	0	1.91	1.14	3.2	23.89
Acanthostracion quadricornis	18.28	11.13	1.87	0.99	3.12	27.01
Lutjanus synagris	10.92	21.6	1.85	0.99	3.1	30.11
Orthopristis ruber	0	11.12	1.8	0.93	3.01	33.12
Haemulon plumierii	9.22	12.38	1.75	1.08	2.94	36.05
Chaetodon ocellatus	12.75	11.02	1.74	0.99	2.92	38.97
Dactylopterus volitans	10.93	7.29	1.74	0.96	2.91	41.88
Achirus achirus	10.91	3.53	1.67	0.97	2.79	44.67
Acanthurus bahianus	5.41	11.07	1.66	0.98	2.78	47.45
Haemulon aurolineatum	5.99	10.99	1.64	1.01	2.74	50.19
Holocentrus adscensionis	14.56	14.6	1.63	0.9	2.74	52.93
Sphoeroides spengleri	7.4	7.44	1.5	0.87	2.52	55.45
Diodon holocanthus	20.09	14.48	1.48	0.79	2.47	57.92
Ocyurus chrysurus	8.94	3.61	1.47	0.86	2.46	60.38
Syacium micrurum	5.62	7.07	1.36	0.84	2.28	62.66
Pseudobatos percellens	3.66	7.25	1.34	0.77	2.24	64.9
Hypanus marianae	18.17	18.29	1.2	0.67	2	66.91
Stephanolepis hispidus	7.44	0	1.12	0.67	1.88	68.79
Prionotus punctatus	0	7.44	1.12	0.69	1.87	70.66

Species	Av. Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum%
	(Assemblage A)	(Assemblage C)				
Eucinostomus gula	0	21.66	4.87	3.03	6.44	6.44
Lutjanus synagris	0	21.6	4.86	3	6.44	12.88
Acanthostracion polygonius	7.05	22.29	3.74	1.27	4.95	17.83
Pseudupeneus maculatus	7.55	21.11	3.58	1.29	4.74	22.57
Haemulon steindachneri	7.59	21.31	3.44	1.25	4.55	27.12
Holocentrus adscensionis	0	14.6	2.93	1.28	3.87	30.99
Diodon holocanthus	0	14.48	2.89	1.28	3.82	34.82
Lactophrys trigonus	14.64	7.39	2.89	0.95	3.82	38.64
Fistularia tabacaria	14.81	0	2.85	1.3	3.78	42.41
Acanthostracion quadricornis	21.57	11.13	2.85	0.94	3.77	46.18
Orthopristis ruber	0	11.12	2.65	0.84	3.51	49.69
Haemulon plumierii	0	12.38	2.43	1.13	3.22	52.92
Diplectrum formosum	14.5	15.03	2.41	0.88	3.19	56.1
Hypanus marianae	14.87	18.29	2.28	0.8	3.02	59.12
Acanthurus bahianus	0	11.07	2.21	0.92	2.92	62.04
Chaetodon ocellatus	0	11.02	2.2	0.92	2.91	64.95
Haemulon aurolineatum	0	10.99	2.13	0.92	2.82	67.78
Pseudobatos percellens	7.45	7.25	2.11	0.84	2.8	70.57

Average dissimilarity = 77.02

Average dissimilarity = 74.71 450