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Summary

1. Haplotype network construction is a widely used approach for analysing and

visualising the relationships among DNA sequences within a population or3

species. This approach has some problems such as how to quantify alternative

links among sequences, or how to plot efficiently networks to compare them easily.

2. In this paper, a new method is presented: the randomized minimum spanning tree6

method, based on randomizing the input order of the data in order to produce

alternative branchings in the haplotype network. It is shown that this new method

can produce, at least in some situations, networks with less alternative links than9

the minimum spanning network method.

3. A new graphical display of haplotype networks is introduced here. This is based

on calculating the coordinates of the haplotypes from a multidimensional scaling12

of the haplotype distance matrix. The display can be done in two or three

dimensions. The eigenvalues extracted from the multidimensional scaling analysis

give an indication of the relevant number of dimensions.15

4. These tools are illustrated with the analyses of published data on the leopard and

on the jaguar. These analyses show interesting and contrasting patterns between

these two species of big cats.18

5. All tools are implemented in R and available in the package pegas.

Keywords: Hamming distance, haplotype network, microevolution, minimum spanning

tree, Panthera21
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Introduction

The analysis of DNA sequences from individuals sampled in one or several populations

makes possible to address different questions on microevolutionary processes such as24

population structure, gene flow, past demographic bottlenecks and expansions, or

geographical events of colonizations and extinctions (Bossart & Prowell, 1998; Emerson

et al., 2001; Buerkle & Lexer, 2008). An important aspect of these analyses is the27

inference of ancestry–descendance relationships among haplotypes. Typically, if the

sequences are assumed to be contemporaneous, two alternative approaches can be

adopted: inferring either a phylogenetic tree, or a network. The phylogenetic approach30

assumes that the ancestral sequences are unobserved and associated with the internal

nodes of the tree while the observed sequences are associated with its terminal nodes.

On the other hand, if some observed sequences may be ancestral to others, a network33

approach is more appropriate, in which case these sequences will be associated with the

internal nodes of the network. It is clear that choosing an approach or the other will

depend on the time frame and the mutation rate of the sequences. If the sequences are36

sampled sequentially through time (e.g., pathogens sampled through an epidemic, or

ancient DNA), several approaches have been developed to take this temporal dimension

into account (e.g., Jombart et al., 2011).39

Network methods can be classified according to different criteria (Table 1). For

instance, it is possible to define two categories depending on their main objective: the

‘explicit’ networks depict reticulated processes of evolution such as hybridization,42

horizontal gene transfer, or admixture, whereas the ‘implicit’ networks represent some

form of uncertainty over a tree (i.e., without reticulation) representation (Huson &

Bryant, 2006; Kloepper & Huson, 2008). Another way to classify network methods45

considers the reconstruction method: these include parsimony, distances, maximum

likelihood, Bayesian inference, split decomposition, or consensus methods (Holland
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et al., 2004). Another important criterion is whether unobserved haplotypes can be48

included in the network: distance-based methods cannot generally do this because they

do not consider explicitly the evolving characters (Table 1). It is crucial to assess the

reliability of a phylogeny or network of haplotypes since its construction may be affected51

by sampling biases (i.e., missing haplotypes). A badly estimated network is likely to lead

to wrong inference of population or history.

The present paper focuses on the distance-based, implicit network approach. Two54

methods are commonly used to build a haplotype network: the minimum spanning tree

(MST) method (Kruskal, 1956) and the method from Templeton et al. (1992, TCS). The

MST method has been applied in many fields (Nešetřil et al., 2001). Its principle is to57

first build a matrix of pairwise distances among sequences (or haplotypes), and then find

the shortest set of paths that link all observations where the length of each link is taken

from the pairwise distance. The TCS method, often referred to as statistical parsimony,60

is based on a model of evolution of the genetic characters measured on each

individual—originally restriction fragment lengths but the method can be applied to

DNA sequences. The main difference between both methods is that an MST is a network63

with no reticulation, thus for n sequences, the resulting MST will have n−1 links. On

the other hand, a TCS network may have reticulations defining alternative branchings,

and include unobserved haplotypes in the network. Thus, this method may be used to66

infer micro-evolutionary events such as putative recombinations (Posada & Crandall,

2001). Bandelt et al. (1999) developed another method called the median-joining

network (MJN) where alternative branchings are found by examining potential ancestral69

sequences for each triplet of sequences. MJN belongs to a class of methods which

includes several variants such as reduced median network or quasi-median network

(Bandelt et al., 1995, 1999). Thus, the MST usually cannot represent possible72

ambiguous or alternative branchings. Another limitation of the MST construction is that,
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for a given data set, the MST may not be unique. Figure 1 shows a simple illustration of

this problem: the three represented data sets are identical but the inferred MSTs are75

different because the observations are ordered differently. This is a consequence of the

presence of ties in the distance matrix (see the algorithm descriptions below). With real

data, this problem and its consequences may be very hard to detect with a large number78

of observations. Bandelt et al. (1999) pointed out that instead of constructing a single

tree, it is possible to construct a minimum spanning network (MSN) by modifying

slightly Kruskal’s (1956) algorithm as explained below.81

In this paper, I propose a new algorithm to construct a network which can be seen as

intermediate between the MST and MSN methods. I also present tools to compare

networks programmed in R (R Core Team, 2017).84

Methods

MINIMUM SPANNING TREE AND NETWORK

The MST algorithm can be sketched as follows (Kruskal, 1956):

1. Compute the matrix of pairwise distances among the n observations and sort them87

in increasing order.

2. Assign each observation to its own group; there are thus n initial groups.

3. Set i← 1.90

4. Take the ith distance from step 1: if the two corresponding observations are not in

the same group, then create a link between them and pool the two groups.

5. Set i← i+1.93

6. Repeat steps 4 and 5 until there is a one group.
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The number of groups is decreased by one at each iteration of step 4. The issue with this

algorithm is how ties in the distance matrix are treated in step 1, and this is, obvioulsy,96

dependent on the implementation. The MSN tries to solve this problem (Bandelt et al.,

1999); its algorithm is:

1. Compute the matrix of pairwise distances among the n observations, extract the99

unique values, and sort them in increasing order (denoted as δ1,δ2, . . .).

2. Set i← 1.

3. Create the links for all pairs of observations with distance equal to δi.102

4. If all observations are linked in a single group, then stop.

5. Set i← i+1, and go to step 3.

THE RANDOMIZED MINIMUM SPANNING TREE

The input data are a set of aligned sequences from which a distance matrix is computed.105

The sequences could be DNA or other kinds as long as there is a method to compute

pairwise distances. In most applications, a simple Hamming distance (or Manhattan in

the case of binary characters) will be relevant. In order to remove the influence of the108

order of the input data, the procedure is based on a randomization of this order. This is

repeated many times and for each replication an MST is constructed. The MSTs are then

post-processed in order to return a single network including all the links observed among111

the replications. Because of the nature of the proposed algorithm, it is called here the

randomized minimum spanning tree (RMST) method.

The RMST usually has less links than the MSN. Figure 2 shows a simple example114

with four binary sequences. The first step of the network construction is to consider links

of length one A–C and A–B; the second step considers the links of length two A–D and
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B–C. During the MST construction, the link B–C is never included because B and C117

were already grouped together during the first step, so the RMST does not include this

link. On the other hand, the MSN includes this link thus resulting in two alternative

paths, B–A–C and B–C, both of the same length. The RMST avoids this ambiguity. Note120

the difference between the present example and the one in Figure 1: in the latter, the

additional link output by the MSN creates a path shorter than the one created by the

MST.123

GRAPHICAL TOOLS

Plotting networks is a notoriously difficult problem (e.g., Kloepper & Huson, 2008).

Several computer programs perform graphical display of various types of evolutionary

networks, such as igraph (Csardi & Nepusz, 2006), network (Butts, 2008), phangorn126

(Schliep, 2011), pegas (Paradis, 2010), or SplitsTree (Huson, 1998), among many others.

In practice, it would be very useful to graphically compare networks constructed under

different methods or assumptions. However, this is usually not possible (or very difficult)129

because there is no standard procedure for plotting haplotype networks. To propose a

solution to this problem, an implementation based on multidimensional scaling (MDS;

Torgerson, 1952) is developed here. The procedure is to first perform an MDS on the132

distance matrix in order to extract two or three sets of coordinates. These coordinates are

then used to plot the observed sequences or haplotypes in 2-D or in 3-D, and the links

inferred from the network are then drawn. Thus, this procedure contrasts with most135

existing ones which compute the layout of haplotypes trying to minimize line crossings

(e.g., Kloepper & Huson, 2008). The proposed procedure has several advantages. First,

an MDS on the original distance matrix will arrange the sequences depending on their138

similarity. Second, the eigenvalues extracted from the MDS make possible to assess

whether it is relevant to use two or three dimensions in this projection. Third, the
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coordinates of the observations will be the same for all networks since they depend only141

on the distance matrix, making graphical comparisons easier. Fourth, the procedure is

computationally straightforward since an MDS is usually fast to perform even with

several hundreds observations.144

The tools presented in this article have been implemented in the R package pegas

(Paradis, 2010). This package has already implemented a standard 2-D plot using an

“energy-minimisation” algorithm to optimise the layout. Plots in three dimensions have147

been implemented using the rgl package (Adler et al., 2016).

SIMULATION STUDY

To assess how the RMST is able to find alternative links in a network of haplotypes,

some simulations were run under different situations of mutation rate (µ), sequence150

length (l), and number of sequences (n). A set of n sequences was simulated under the

JC69 model of sequence evolution (Jukes & Cantor, 1969) along a random network with

no reticulation and link lengths taken from a standard uniform distribution. The network153

was simulated by generating a random binary tree where the internal nodes were

considered contemporaneous to the leaves. The sequences were then analysed with the

RMST using different numbers of randomizations (5, 10, 20, 50, 100): the number of156

additional links found by the RMST as well as the number of unique distances were

recorded. The other parameters were: n = 50, 100, 500, or 1000, l = 500 or 1000, and

µ = 0.01 or 0.1. These parameter values were chosen to result in substantial numbers of159

ties in the distance matrices. The simulations were replicated 100 times for each

combination of n, l, and µ. The code used is provided in the Supplementary Information.
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DATA

Two data sets were considered to apply the methods introduced in this paper: a set of162

mtDNA sequences from 33 leopards (Panthera pardus) published by Uphyrkina et al.

(2001), and a set of mtDNA sequences from 37 jaguars (P. onca) published by Eizirik

et al. (2001). Both data sets were downloaded from GenBank (accession numbers:165

AY035227–AY035292 and AF244814–AF244887, for each species, respectively). The

sequences were aligned separately for the different genes (using information from

GenBank and from the original publications) with MUSCLE (Edgar, 2004), and then168

combined into two global alignments with 726 and 707 sites, respectively. All sequences

were unique for the leopard data, but 22 unique sequences were identified for the jaguar

data. For each alignment, a matrix of Hamming distances was calculated with ape171

(Paradis et al., 2004). These matrices were used as input for the construction of the

networks. The individual labels from the original studies were kept for the present

analyses. The R scripts used for these analyses is provided in the Supplementary174

Information.

Results

SIMULATION STUDY

To simplify the presentation of the results, the number of additional links was calculated177

as successive differences with increasing number of randomizations (i.e., the numbers of

links found with five randomizations compared to zero, with ten randomizations

compared to five, and so on). The results were clearly related to the number of unique180

distances among the simulated distances. Considering that the total number of distances

is given by n(n−1)/2, the percentage of unique distances was always less than 1%

(Table 2). Increasing l and/or µ resulted in more variation among the sequences and,183
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consequently, less additional links for the same n. On the other hand, increasing n for the

same values of l and µ resulted in more closely related sequences, and thus more

additional links found by the RMST. In three cases, some additional links were still186

found with 100 randomizations. In the scenario simulating the most diversity (l = 1000,

µ = 0.1), five randomizations were enough to find the additional links of the RMST for

all values of n.189

APPLICATION

The MDS analysis of the distance matrices resulted in slightly different patterns of

eigenvalues. For the leopard data, the first eigenvalue was much larger than the others

though the second and third ones were substantially larger than the remaining ones192

(Fig. 3a). For the jaguar data, the first and the second eigenvalues were much larger than

all the other ones (Fig. 3b). Thus, we may anticipate that three dimensions may represent

the distribution of sequences for the leopard data whereas two dimensions may be195

enough for the jaguar data.

The MSN and RMST analyses revealed large numbers of additional links compared

to the MST ones (Table 3). In the case of the leopards, the number of links was198

multiplied by 6.7 from the MST to the MSN, and by 1.9 to the RMST. This increase in

number of links was slightly smaller in the case of the jaguar: 5 to the MSN and 1.3 to

the RMST. The RMST analyses were repeated with different numbers of201

randomizations. For the leopard data, 59 links were found with 10 randomizations while

60 links were found with 50 randomizations or more. For the jaguar data, 28 links were

found with 10 randomizations or more.204

The MDS-based plots of the leopard sequences showed a clear continental separation

with the African individuals (SHO*) on the right-hand side of the plot, and the Asian

ones on the left-hand side (Fig. 4). Interestingly, two individuals laid outside of these207
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two groups: the one from the Arabian Peninsula (NIM1) and the one from Java,

Indonesia (MEL1). Remarkably, the RMST did not add any further link from NIM1 to

the others, whereas two additional links were observed between MEL1 and the Asian210

ones. The MSN kept NIM1 with a single link to SAX2, but added one further link

between MEL1 and the others. The 3-D displays revealed that the African individuals,

which are apparently aligned in the 2-D plots, are actually arranged along an arc in the213

third dimension of the MDS (videos provided in the Supplementary Information).

For the jaguar data, the arrangement of the individuals on the first axis followed a

North–South axis with individuals from the South on the right-hand side of the plot216

(Fig. 5). Two individuals remained single-linked with the MSN and RMST analyses:

Pon23 from Nicaragua which was linked with two individuals from Nicaragua and from

Costa Rica, both with the same haplotype, and Pon63 from Venezuela which was linked219

with Pon73, an individual of unknown origin but presumably from Brazil (Eizirik et al.,

2001). Except for Pon63, very little dispersion was observed in the third dimension as

expected from the eigenvalues of the MDS (videos provided in the Supplementary222

Information).

Discussion

The analysis of the relationships among DNA sequences and haplotypes within and225

among populations is crucial for testing hypotheses on microevolutionary processes.

However, such analyses often suffer from shortcomings. Typically, two issues are often

observed. First, practitioners usually construct a single haplotype network which is then228

interpreted depending on the context of the study. This can be a problem when the

assumptions of the method are not met, which can usually be assessed by comparing

different constructions, for instance, by using different distances. The second problem is231

that there seems to be a confusion in the literature between MST and MSN. It is common
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to read “minimum spanning network” when an MST is obviously shown since no loop is

present. This is problematic since the MST may not be unique as already mentioned by234

Bandelt et al. (1999).

The RMST method is an alternative to the MSN with the advantage of creating less

links among haplotypes while fully taking into account the ambiguities induced by data237

ordering. In the applications with real data presented in this paper, 100 randomizations

were done and the results were identical than with smaller numbers. The computing

times of the method is thus proportional to the product of n (since n−1 links are built at240

each replication of the MST algorithm) with the number of randomizations. The

implementation in pegas resamples the distance matrix by reordering its rows and

columns simultaneously, instead of reordering the original data matrix, and thus avoids243

to recalculate the distance matrix at each iteration of the MST (which requires a

computing time proportional to n2).

The simulation study showed that the number of randomizations required to reach246

convergence of the RMST procedure is affected by the number of sequences, the

sequence length, and the mutation rate. Because it is not easy to define a priori how

many randomizations are required for a given data set, it is recommended to repeat the249

analyses with increasing numbers of randomizations and check that the constructed

networks are identical (see code in Supplementary Information).

The respective merits of the methods used to construct haplotype networks are still252

debated (e.g., Mardulyn, 2012). However, comparing different methods is not without

difficulties because some of them construct networks that have inherently different

structures. Parsimony-based methods seek to combine all most parsimonious255

phylogenetic trees into a network which, as a consequence of this estimation procedure,

have the observed sequences only at its terminal nodes (Branders & Mardulyn, 2016).

This contrasts with, on one hand, the MST-based methods where the observed sequences258
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are at both the internal and the terminal nodes of the network, and, on the other hand, the

TCS or MJN method which includes unobserved sequences in the network. For instance,

the MJN constructed with the data in Figure 1 would have four nodes and three links all261

of length one, but this network is not strictly different from the MSN and RMST ones

(Fig. 1c) because they all define paths of length two between each pair of observed

sequences. Clearly, the presence of loops in RMST or MSN networks must be264

interpreted cautiously with respect to potentially unsampled haplotypes (e.g., Joly et al.,

2007). On the other hand, the MJN inferred from the data in Figure 2 would be identical

to the RMST (Fig. 2d) but different from the MSN (Fig. 2c).267

Plotting networks (i.e., graphs with reticulations) is notoriously difficult for graphical

software developers. This is another difficulty in the analysis of haplotype relationships.

The graphical approach proposed here is a solution to this problem. By using the270

coordinates inferred from the MDS applied on the distance matrix, the haplotypes are

always positioned in the same way, for a given distance matrix, whatever the links

among them. Furthermore, the analysis of the eigenvalues extracted from the MDS gives273

information on the general structure of the data as illustrated by the examples above.

The analyses of the leopard and the jaguar data were mainly illustrative, although

they show some interesting results. For the leopards, the contrast between African and276

Asian individuals was very clear. Two individuals were outside the bulk of the other

individuals: one from the Arabian Peninsula, and the other from Java. Both represent

two subspecies (P. pardus nimr and P. pardus melas) that are morphologically markedly279

different from the others (Stein & Hayssen, 2013). Variation within the African group

was also substantial and appeared in the third dimension of the plot. For the jaguars,

variation was much less than for the leopards, and the MSN and the RMST showed282

much more additional links than the MST. Interestingly, Eizirik et al. (2001) reported an

MSN with only one additional link. However, the present analysis showed that the
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RMST had seven additional links and the MSN even more.285

Another interesting result is the presence of a “horseshoe effect” with the leopard

data but not with the jaguar data. This effect, which is sometimes observed in

multivariate analyses like MDS or principal component analysis (PCA), is a288

consequence of the dominance of local structures in the data. Such dominance can be the

result of the inherent structure of the original data matrix (Ahmed et al., 1974), a

transformation of the distances that gives more emphasis on the most similar291

observations (e.g., an exponential decay function; Diaconis et al., 2008), or, typically for

population genetic data, local processes such as isolation by distance (Novembre &

Stephens, 2008). Whatever the origin of such structures, the decomposition of the data294

matrix (in the case of PCA) or of the distance matrix (in the case of MDS) results in the

second axis to be related to the first one in a polynomial-like manner (actually a

sinusoidal function; see Ahmed et al., 1974; Diaconis et al., 2008), and the subsequent297

axes with increasing degrees of the polynomials. In practice, the proximities of the

sequences on the second and third axes must therefore be interpreted with caution.

However, this does not affect the interpretation of the network layouts which are the300

same for all networks as long as the distance matrix is the same.

As rightly pointed out by Leigh & Bryant (2015), the haplotype network

methodology does not generally rely on an evolutionary model. However, a303

distance-based approach is very valuable because distances can be computed for different

kinds of data, and they are straightforward to interpret in terms of number of changes.

An interesting perspective will be to develop an approach to incorporate models of DNA306

sequence evolution into haplotype network analyses. A challenge will be to find how to

compute a likelihood in the presence of loops in the network (Maynard Smith, 1989).
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Table 1: Comparison of some features of different methods to contruct haplotype net-
works. MST: minimum spanning tree; MSN: minimum spanning network; RMST: ran-
domized minimum spanning tree; TCS: statistical parsimony; MP: maximum parsimony;
MJN: median-joining network; n: number of haplotypes; L: number of links in the net-
work.
Method Input data L Unobserved haplotypes Reference

MST Distances n−1 No Kruskal (1956)
MSN ′′ ≥ n−1 No Bandelt et al. (1999)
RMST ′′ ′′ No This paper
TCS Sequences ′′ Possibly Templeton et al. (1992)
MP ′′ ′′ Yes, at internal nodes Branders & Mardulyn (2016)
MJN ′′ ′′ Possibly, as median-vectors Bandelt et al. (1999)

Table 2: Simulation results: mean number of additional links found by increasing the
number of randomizations in the RMST algorithm (l: sequence length; µ: mutation rate;
n: number of sequences; NUD: mean number of unique distances).

l µ n Number of randomizations NUD
5 10 20 50 100

500 0.01 50 29.96 7.79 3.24 1.16 0.04 39.11
100 60.25 15.62 6.78 2.75 0.31 50.40
500 302.88 74.31 33.65 12.29 1.61 80.24

1000 613.10 156.06 75.05 28.22 3.44 94.85
0.1 50 2.48 0.18 0.02 0.00 0.00 216.09

100 5.71 0.52 0.01 0.00 0.00 270.74
500 33.26 2.89 0.25 0.04 0.00 340.92

1000 63.49 4.96 0.38 0.04 0.00 363.05
1000 0.01 50 14.58 1.78 0.68 0.07 0.01 71.25

100 26.42 3.61 0.79 0.14 0.00 96.87
500 147.65 23.23 7.15 1.58 0.00 149.60

1000 292.88 45.67 11.77 2.46 0.16 177.73
0.1 50 1.33 0.21 0.00 0.00 0.00 390.53

100 2.74 0.23 0.00 0.00 0.00 520.35
500 15.37 1.58 0.05 0.00 0.00 671.83

1000 31.22 2.18 0.11 0.00 0.00 707.06
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Table 3: Number of links in the networks constructed with the two data sets analysed. n:
number of haplotypes.

Species n Number of links
MST MSN RMST

Leopard 33 32 214 60
Jaguar 22 21 105 28
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Figure 1: (a) Three identical data sets but with rows in different order and the correspond-
ing distance matrices. (b) The three minimum spanning trees (MST) are different. (c) The
minimum spanning network (MSN) and the randomized minimum spanning tree (RMST)
are identical for the three data sets.
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Figure 2: (a) A matrix of four sequences with four sites. (b) The inferred distances. (c)
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Figure 3: Eigenvalues extracted from the distance matrix for (a) leopards and (b) jaguars.
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Figure 4: (a) Minimum spanning tree, (b) minimum spanning network, and (c) random-
ized minimum spanning tree for the leopard data.
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Figure 5: (a) Minimum spanning tree, (b) minimum spanning network, and (c) random-
ized minimum spanning tree for the jaguar data.
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