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Abstract

Dating the divergence in a phylogenetic tree is a fundamental step in evolutionary analysis. Some
extensions and improvements of the penalised likelihood method originally presented by Sander-
son are introduced. The improvements are the introduction of alternative models, including one
with non-correlated rates of molecular substitution (“relaxed” model), a completely reworked fit-
ting algorithm that considers the high-dimensionality of the optimisation problem, and the devel-
opment of a new information criterion for model selection in the presence of a penalised term.
It is also shown that the strict clock model is a special case of the present approach. An exten-
sive simulation study was conducted to assess the statistical performance of these improvements.
Overall, the different estimators studied here appeared as unbiased though their variance varied
depending on the fitted and the simulated models and on the number of calibration points. The
strict clock model gave good estimates of branch lengths even in the presence of heterogeneous
substitution rates. The correlated model gave the best estimates of substitution rates whatever the
model used to simulate the data. These results, which are certainly the first from an extensive sim-
ulation study of a molecular dating method, call for more comparison with alternative methods, as
well as further work on the developments introduced here.

Keywords: large-scale estimation, molecular dating, penalised likelihood, rate smoothing,
relaxed molecular clock

1. Introduction

The molecular divergence among a set of molecular sequences is the product of the time they sep-

arated and the rate at which substitutions accumulated. The crux of the problem of phylogenetic

molecular dating lies in the fact these two components are generally confounded, and untangling

them can be done only with some assumptions. One of these assumptions is that molecular sub-

stitutions accumulate at a constant rate—the molecular clock. When this assumption is applied

in its most radical version (i.e., a single rate for all taxonomic groups and constant in time), the

exercise of molecular dating is considerably simplified since it can be accomplished even without

a phylogenetic tree, for instance with pairwise genetic distances.

It is a fact that the molecular clock cannot be held generally, though this assumption may be
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of some value for recently diverged sequences (Brown and Yang, 2011). A number of studies

have characterized variation in substitution rates among taxonomic groups and through time (e.g.,

Pereira and Baker, 2006). Thus, a rooted phylogenetic tree appears as appropriate to handle this

problem because the internal nodes of such a tree might be interpreted as branching points through

time. Sanderson (1997) was one of the first authors to propose a general solution by assuming that

substitution rates on two contiguous branches are likely to be similar (in other words, they are

auto-correlated). By contrast, previous authors handled the same problem by applying strong

restrictions on how rates vary in a tree (see citations in Sanderson, 1997).

In a subsequent paper, Sanderson (2002) refined his approach by introducing a likelihood com-

ponent while keeping the assumption of auto-correlated rates. At the same time, Bayesian methods

were developed with similar modeling assumptions though with different fitting approaches (e.g.,

Thorne et al., 1998; Thorne and Kishino, 2002). Since then, the Bayesian approach to molecular

dating has flourished in a diversity of refinements (e.g., Drummond et al., 2006; Yang and Ran-

nala, 2006; Lepage et al., 2007; Lartillot et al., 2009; Guindon, 2010; dos Reis and Yang, 2011;

Wilkinson et al., 2011). The Bayesian approach has not been the only one explored during the last

decade. Britton et al. (2002) proposed the mean path length to estimate divergence times from a

non-ultrametric tree with branch lengths in number of substitutions. Xia and Yang (2011) devel-

oped a method based on least squares to estimate a chronogram including the possibility to model

auto-correlated rate variation. These two methods have the advantage of being easily and quickly

run.

In the next section, I first review Sanderson’s framework and show how it can be generalized

to include other models of substitution rate variation. I then introduce a new information criterion

that helps to decide which models of rate variation best describes the data. I also propose some

improvements on model fitting by penalised likelihood. An extensive simulation was done to

assess the statistical properties of the methods presented in this paper.

2. Methods

2.1. Sanderson’s penalised likelihood framework

Sanderson’s penalised likelihood function (denoted Ψ) is based on two components:

2



Ψ = lnL−Φ, (1)

where L is the likelihood function of a model of the branch lengths, and Φ is a function con-

straining rate variation. Essentially, L is a parametric component and Φ is a nonparametric one.

Sanderson (2002) originally used a Poisson model for the first component and a constraint that

rates on contiguous branches are more likely to be similar. Specifically, the likelihood function is:

L = ∏
i

ζxi
i

e−ζi

xi!
,

with xi being the number of substitutions observed on branch i, and ζi = riti where ri is the substi-

tution rate and ti is the time length of the same branch. The xi’s are the input data usually from a

non-ultrametric tree estimated by maximum likelihood, Bayesian estimation, or a distance-based

method. Typically, they will be expressed as mean number of substitution per site, so it is not

required to know the sequence length. The product is made over all branches of the tree. The

log-likelihood function is thus:

lnL = ∑
i

xi lnζi−ζi− lnxi!. (2)

The nonparametric part is:

Φ = ∑
k, j
(rk− r j)

2 +var(rbasal),

where k and j denote two contiguous branches (i.e., consecutive in time), and the subscript ‘basal’

denotes the basal branches of the tree. Φ is further multiplied by a “smoothing” parameter λ

which controls the trade-off between both components. In the present paper, I will leave aside the

problem of estimating the smoothing parameter and will set, somehow arbitrarily, λ = 1 in the rest

of the study.

It appears clearly that such a penalised likelihood approach can be a general framework which

does not need to be restricted to the above assumptions on rate variation. Kim and Sanderson

(2008) discussed how this can be generalised in a broader context of phylogenetic inference in-
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cluding linking likelihood, parsimony, and Bayesian methods. In the next section I show how

non-correlated relaxed clock models can be implemented using this framework in the context of

molecular dating.

2.2. Non-correlated relaxed clock model

It is possible to relax the assumption of auto-correlation among rates; however, to permit estima-

tion it is necessary to introduce another constraint on rate variation. Bayesian methods typically

use a lognormal prior on substitution rates: such a distribution can be used to constrain the overall

variation of these rates over the tree. Other distributions may be used, such as Γ, uniform, or Beta.

Let F be the theoretical cumulative density function of the distribution of the substitution rates.

The nonparametric component can now be defined as:

Φ = ∑
i

[
F̃ (ri)−F(ri)

]2
,

where F̃ (ri) is the empirical cumulative distribution function of the rates. This is then used in

Equation (1) to estimate the parameters in the same way than for the auto-correlated model (see

Fitting Algorithm). This penalty function can be seen as a special case of the general formulation

from Kim and Sanderson (2008, their eq. 3).

How to choose a formulation for F? Typically, previous studies suggest that substitution rate

variation follows a power-like distribution with most rates being small and few large. Several

probabilistic functions may be used to model such distributions. The gamma law, Γα,s, appears as

a practical choice here since the shape parameter α can be estimated with the mean of the rates

throughout the tree, and the scale parameter s can be fixed equal to one, resulting in an appropriate

distribution. Thus the penalty term above can be calculated without the need to estimate additional

parameters.

It must be noted that the expression ‘relaxed clock’ has been used with different meanings in

the literature. To avoid confusion, in this paper I name “relaxed” model the model assuming that

each branch of the tree has its own substitution rate with no assumption on correlation between

contiguous branches.
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2.3. Maximum likelihood approach with discrete rate variation

An issue in dating a phylogenetic tree with variable rates is how one decides which part of the

tree evolves faster than others. Yang (2004) discussed the problem of assigning a rate value to a

particular branch (see also a critique of earlier approaches by Sanderson, 1997). On the other hand,

the penalised likelihood approach does not assign rates to branches, though it requires to estimate

a rate value to each branch which may result in the need to estimate a large number of parameters.

Yang (2004) developed a method to assign rates to branches based on the initial (non-clock) tree.

The divergence times are then estimated by maximum likelihood.

Here I propose a method that is inspired from discrete rate category method used in phylo-

genetic inference (Yang, 1994). With this method, it is assumed that rates vary in a discrete way

so that we can make categories of branches characterised by different rates. However, we do not

know in which category each branch belongs to, but by estimating the frequency of each category,

we can calculate the contribution of each branch to Equation (2) by summing the contribution of

each rate weighted by its frequency. Let us denote as c the number of categories, so the number of

parameters to be estimated, apart of the dates, will be 2c−1. Typically, c will be small (between 1

and 10) because if it is large then the present model tend to the “relaxed” one with the additional

cost of estimating frequencies. Obviously, c = 1 implies a strict clock model.

By contrast to the two previous non-clock models, the present one is fitted by full maximum

likelihood since there is no penalty term Φ.

2.4. A new information criterion

The recent literature has seen a number of contributions developing alternative models relaxing the

molecular clock hypothesis. An important issue is how to select the correct model. Bayesian meth-

ods use criteria based on Bayes factors (e.g., Lepage et al., 2007; Ho and Lanfear, 2010). In the

present framework, a likelihood-based criterion must be used. A widely used model selection cri-

terion is the Akaike information criterion (AIC, Akaike, 1973). We recall that AIC =−2lnL+2k

with k being the number of parameters estimated from the data (sometimes called the free param-

eters). Here lnL is given by Equation 2, but we must also include the contribution of the penalty

term Φ so that the smaller Φ the smaller the information criterion. In other words, we should
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favour models with predictions on rate variation that best conform to the data. A simple solution

could be to compute −2lnL+ 2k+λΦ but this would ignore the fact that Φ is actually made of

several elements. A solution is to make a multivariate decomposition of Φ which will summarize

how its elements vary. Among the possibilities to do this, a singular value decomposition comes

as a good choice since it does not require a special form of Φ (eigenvalue decomposition requires

a square matrix). So the new criterion, which I denote as ΦIC, is defined as:

ΦIC =−2lnL+2k+λδ{Φ},

where δx is the singular value of x. The notation {Φ} is to point out that the decomposition is done

on a vector made with the elements of Φ and not on Φ itself. Like for other information-based

criteria (see review in Konishi and Kitagawa, 2008), the model with the smallest value of ΦIC is

selected as the best model describing the data.

2.5. Fitting algorithm

Molecular dating of phylogenies usually implies estimating a large number of parameters. For

instance, fitting the penalised models to a fully dichotomous tree with n tips and a single calibration

point will need to estimate 3n− 4 parameters (2n− 2 rates and n− 2 dates) whereas fitting the

discrete categories model will imply estimating n+ 2c− 3 parameters. For instance, if n = 100

(a medium-sized tree in today’s standards) and c = 1, the number of free parameters will be 296

and 99, respectively. Giving the difficulties of optimising a function with so many parameters,

Bayesian methods have clearly known a wide success.

Sanderson (2002) reported several algorithmic difficulties when optimising his penalised like-

lihood function. He used a gradient-free method as well as quasi-Newton gradient-based methods.

Here, I use the PORT optimization routines (Gay, 1990) as implemented in R version 2.15.2 (R

Development Core Team, 2012). The advantage of PORT is that they are relatively robust to ir-

regularities in the objective function (by contrast to some other non-linear optimisation methods

such as Schnabel et al., 1985). Furthermore, they can handle infinite values, and can be used with

or without gradients (i.e., first partial derivatives) of the objective function. If these gradients are

not provided, the routine computes them numerically using the objective function. If this one has
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few parameters (less than ten), both methods (with or without gradients) have similar computing

times; however, in the case of many parameters the gain in running times can be at least one order

of magnitude. The gradients of the penalised likelihood functions used in this paper and their

derivations are provided in Appendix A.

Another advantage of PORT is that bounds for parameter estimation can be set. This is used

for dates known within intervals which are thus considered as additional free parameters to be

estimated within these intervals. For the substitution rates, the lower and upper bounds are set to

ε and 100− ε where ε is by default set to 10−8 (this can be changed by the user). A convergence

diagnostic is output by PORT which makes possible to assess the quality of the solution. It is also

possible to control the number of iterations used during optimisation which appears useful here

because convergence may be very slow to achieve due to the high dimensionality of the problem;

so, the user may assess whether increasing the number of iterations could improve convergence.

Another control on the optimization process is the size of the steps around the current solution

to examine whether a better solution can be found. Setting the minimum and the maximum step

size correctly improves substantially the optimisation. In the present problem, there are two kinds

of parameters, the rates and the dates, which typically have distinct ranges of variation: 10−8–10−2

for the former, and 1–100 for the latter. Therefore, I have implemented an algorithm of alternate

optimizations which can be summarised as follows:

1. A first set of estimates is obtained by optimising the objective function over all parameters.

The step size is set to 1 (the default of PORT).

2. Optimise the objective function over the rates keeping the dates constant at the values of the

current solution. The step size is allowed to vary between 10−8 and 0.1.

3. Optimise the objective function over the dates keeping the rates constant at the values output

at step 2. The step size is allowed to vary between 10−3 and 0.5.

4. If the objective function value is improved, the solution found from the combination of steps

2 and 3 is taken as the new solution. These are repeated until convergence—or until a fixed

number of alternate optimisations has been performed.

Finally, the unknown dates are initially set using a random algorithm which, when repeated

several times, allows one to assess the importance of these initial values on the final results.
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The methods presented in this paper have been implemented in ape (Paradis et al., 2004). The

computing time of this new implementation was assessed with random trees of size 20, 50, 100,

or 200 tips, simulated using the three models described in the next section, and fitting to each of

them four different models: the “relaxed” model, the correlated model, the clock model (c = 1),

and a discrete model with c = 10. The number of calibration points were 1, 3, 5, or 10 as described

below. For each combination of these components, the simulation was replicated ten times result-

ing in 1920 recorded running times which were measured with the R function system.time on

a modern laptop (hardware: CPU duo-core 2.93 GHz; software: Ubuntu 12.04 64-bit, R 2.15.2,

ape 3.0-6). A regression analysis was performed to characterise the most important factors affect-

ing computing times. The best model can then be used to predict the computing times for larger

data sets. Note that this simulation protocol is almost similar to the one described below with the

difference that one additional model was fitted and fewer replications were used.

2.6. Simulation study

Ultrametric trees were simulated with random topologies generated with the rtree function in

ape (Paradis, 2012). In order to not bias branch lengths in a particular direction, the branching

times of these trees were drawn from a uniform distribution between 1 and 50. The number of tips

were equal to 20, 50, 100, or 200. This was replicated 100 times so that 400 initial ultrametric trees

were generated. From each of them, three trees were simulated with different models of variation

in the substitution rates: (i) the rates were generated from a Γ distribution with shape α = 0.5

and rate ρ = 1; (ii) the rates were simulated along the initial tree with a Brownian motion model

with variance σ2 = 0.01 and rescaled to have a similar range of variation than in the previous

model; (iii) a clock model by adding to each branch length a small noise generated from a normal

distribution with mean 0 and variance 0.5. In the first two models, the branch lengths of the initial

trees were multiplied by the simulated rates. Thus, 1200 such trees were generated.

For each of the 400 initial trees, a set of ten calibration points was made by extracting the

branching times of the root node (which was always included in the subsequent analyses) and

nine randomly chosen nodes. The 1200 non-ultrametric trees were analysed by fitting three mod-

els: “relaxed”, correlated, and clock (with c = 1) using 1, 3, 5, or 10 calibration points (which

were considered as exactly known dates), so 4800 data sets were analysed (1200 trees × 4 sets
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of calibration points). In the end, 14,400 chronograms were estimated (4800 data sets × 3 mod-

els). All trees, chronograms, and sets of calibration points were saved for further analyses. For

each estimated chronogram, the mean of the difference between the real and the estimated branch

lengths and the mean of the difference between the real and the estimated substitution rates were

computed.

3. Results

The 1920 computing times varied between 0.017 and 325.777 seconds (mean = 20.71, median

= 2.42, SD = 45.28). Table 1 presents a summary of computing times for the considered tree

sizes. The longest computing time (5 min 26 sec) was obtained fitting a clock model to a tree with

n = 200 simulated with a correlated model using five calibration points. Remarkably, fitting the

same model to the same tree with 10 calibration points was much faster (< 2 sec). However, the

computing times had a very asymmetric distribution with a mean much higher than the median. A

relatively complex linear model was found to fit well:

ln T ∝ ln n+Ncal +Model +Sim+n : Model

with T the computing time, Ncal the number of calibration points, Model a categorical vari-

able specifying the fitted model, Sim a categorical variable specifying the simulated model, and

n : Model the first-order interaction term between these two variables. The effect of ln n was pos-

itive (estimated coefficient: 2.18, SE = 0.09) while the effect of Ncal was negative (−0.061, SE =

0.007). Interestingly, n was a better predictor than the number of estimated parameters (k which is

highly correlated with n). The explained variance was high (adjusted R2 = 0.79), and the residual

standard-deviation was σ̂ = 1.059 (as a comparison the standard-deviation of ln T was 2.32). An

examination of the residuals of this model showed a relatively homogeneous distribution suggest-

ing a satisfactory overall fit (see Supplementary Information). Giving values of n, Ncal, Model,

and Sim it is possible to predict the mean computing time, E(T ), taking the exponential of the

above linear model. Because of the logarithmic transformation of T , a 95% prediction interval has

to be computed with E(T )/e1.96σ̂ and E(T )×e1.96σ̂ instead of the usual±1.96σ̂. An easy-to-use R

program is provided in the Supplementary Information to perform these calculations. For instance,
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for n = 1000 and Ncal = 1, E(T ) = 7 min 38 sec for fitting a clock model on data following the

same model (95% prediction interval: [57 sec, 1 h 1 min]). On the other hand, for the same values

of n and Ncal, if the data come from a correlated model and one wishes to fit the same model, then

E(T ) = 34 h ([4 h 16 min, 271 h 6 min]).

Figure 1 shows one of the 400 sets of simulated trees. Among the 4800 simulated data sets,

174 could not be analysed completely because of lack of convergence of the model fitting proce-

dure. Overall, the ΦIC selected the correct model in 61% of the cases; however, this percentage

depended on the simulated model since when the simulated model was the “relaxed” one the cor-

rect model was selected in 82.7%, and the percentage reached 100% when the simulated model

was the clock one (Table 2).

Overall, and somehow surprisingly, the results were not affected by the size of the tree, so they

are presented below pooled over the different values of n. Figure 2 shows the distribution of the

error on branch length estimation with respect to whether the correct model was used for fitting

the chronogram and the number of calibration points. The eight boxes reveal no bias in these

estimations even when the wrong model was fitted. On the other hand, using the correct model

substantially decreased the dispersion of the estimates. Without surprise, increasing the number

of calibration points led to better estimates even with the wrong model.

Figure 3 displays the same results broken down with respect to the nine combinations of

simulated–fitted models. Overall, the clock model gave good estimates of branch lengths even

if the trees were simulated with other models. When the data were simulated with a clock model,

the fit with this model yielded almost unbiased branch length estimates with a very small variance

(rightmost panel).

Like for the branch lengths, the mean error rate on the estimation of substitution rates was

not affected by tree size. No bias was observed in these estimates; however, their dispersion was

reduced when fitting the correct model and/or when the number of calibration points increased

(Fig. 4). Figure 5 shows how this error varied with respect to the simulated and fitted models. In

most cases, no bias was observed. The estimates from the “relaxed” model were slightly positively

biased (i.e., overestimated) when the trees were simulated with another model (first box in second

and third panels). Whatever the simulated model, a surprising result appears: the correlated model

seems to estimate substitution rates better than the two other models, and it performed almost as
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well as the clock model when the data were clock-like. The dispersion of these errors were much

larger when fitting a “relaxed” model compared to the two others though this was much reduced

with the data simulated from this model in spite of a number of outliers with positive errors.

4. Discussion

Molecular dating is a fundamental step in evolutionary analysis. It is used to assess the tempo

of phenotypic evolution (Garland, 1992), the rates of lineage diversification (Nee et al., 1992),

or to date the colonization of new areas or habitats (Warren et al., 2003). Currently, two classes

of methods are widely used: Bayesian methods, which are by far the most widespread with the

computer programs Multidivtime (Thorne and Kishino, 2002), BEAST (Drummond and Rambaut,

2007), and PAML (Yang, 2007), and the penalised likelihood method as implemented in the pro-

gram r8s (Sanderson, 2003). Other methods have been proposed: mean path length (Britton et al.,

2002), likelihood methods (e.g., Yang, 2004), or least squares using distances as input data (Xia

and Yang, 2011).

In spite of this diversity of methods, there is apparently a confusion among practitioners about

the relative merits of each method. Probably one reason for this is the scarcity of assessment of the

statistical performance of these methods. Brown and Yang (2011) compared the performance of

strict and relaxed clock methods by simulating phylogenies with n = 5, 10, or 20 species. To my

knowledge, the present paper is the first extensive study of the statistical properties of a molecular

dating method in realistic conditions of data analysis.

Computing time is clearly an issue in data analysis. In a recent paper, dos Reis and Yang (2011)

stated “a typical Bayesian analysis for a phylogeny of <50 species might take several days.” Such

long calculations are at the expense of the time spent in the interpretation and understanding of the

results. The computing times recorded in the present study were always less than six minutes, but

this masks a great heterogeneity since 50% of these, regardless of the tree size, were less than or

equal to 2.42 seconds. Furthermore, the linear regression analysis, characterising almost 80% of

the variation among the recorded computing times, showed that they are affected by a number of

factors including some interactions among them. The possibility to fit several models in reasonable

times is clearly a strength for the present likelihood and penalised likelihood methods. Besides,
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short computing times make easier the assessment of statistical properties with simulations as done

here.

Several results emerge from the present simulation study. First, using the correct model (i.e.,

the one used to simulate the data) gives better estimates of branch lengths. Second, using more

calibration points results also in better estimation. Third, and this is more surprising, using the

strict clock model gives good estimates of branch lengths whatever the model used to simulate

the data. A possible explanation for this result may come from the way substitution rates were

simulated. These rates were generated with stable distributions, so that in the estimation process

replacing those rates by their mean value could result in easier estimation, especially considering

that the clock model has less parameters to estimate than the two penalised models.

The fact that the number of tips n in the tree did not affect estimation may seem surprising

at first because bigger trees have more observations (the xi’s in Eq. 2). However, the number of

parameters to estimate for all the models considered here is proportional to n, so increasing the

size of the tree does not actually increase the quantity of information available for estimation.

The simulation study reported here considered that the input phylogenetic trees are correctly

estimated. In reality this may not be always the case, but the goal here was to focus on some

issues that have not been studied in-depth until now. Moreover, the simulation approach used here

is similar to the one used in other studies (e.g., Brown and Yang, 2011). Another assumption of

the present simulations is that the calibration points are known exactly and without error. This also

is not likely to be true in real situations. This point has been extensively discussed in the litera-

ture. For instance, Yang and Rannala (2006) have shown that, in the case of Bayesian estimation,

incorrectly assumed “hard bounds” (exactly known ages) will lead to wrong results whatever the

quantity of sequence data.

A point that will need future attention is how the present models behave in the presence of more

complex variation in substitution rates. Some studies have suggested that these rates may vary in a

non-equilibrium fashion (e.g., Magallón, 2010), and others suggest a relationship with life-history

traits (Lartillot and Poujol, 2011; Mayrose and Otto, 2011). Since the penalised models estimate

a different substitution rate for each branch, they seem appropriate to handle more complex cases

than considered here. This clearly requires further investigation.

The present study clealy calls for a wider assessment of the statistical properties of the methods
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developed here in comparison with other methods. This will require a much larger simulation

survey (e.g., Wertheim et al., 2010). An issue that also needs more attention is the characterisation

of the relative merits of different methods. For instance, the mean path lengths method (Britton

et al., 2002) provides a test of the molecular clock for each node of the tree. Whether this is

a valuable tool for preliminary explorative analyses before running more complex model fitting,

with likelihood or Bayesian models, is not yet clear.

A point of the present study that will require further study is how to select the best model in

a penalised likelihood framework. The proposed information criterion, ΦIC, gave some equivocal

results. The criterion correctly selected the “relaxed” model in the majority of cases which appears

as a positive result. On the other hand, when the data were simulated with the correlated model,

the ΦIC selected the clock model in most cases. This may be understood easily because fitting the

correlated model tends to minimise the difference in substitution rates among contiguous branches,

thus tending to a clock model. In other words, if the rate of autocorrelation is strong, the variation

among branches will be low so the observed variation will tend to a clock model. On the other

hand, if the autocorrelation is weak, then the rates will not be serially correlated among branches

and they will tend to vary in a “relaxed” way. This may explain why the correlated model is likely

to not be selected by the proposed criterion. A possible solution to this problem would be to use

the ΦIC criterion only to compare the “relaxed” and the clock models. A related issue, which

was left aside for the present study, is that the amount of smoothing is actually controlled by a

parameter, denoted as λ by Sanderson (2002), which was fixed to one in all the results reported

here. This clearly needs further study. Furthermore, Kim and Sanderson (2008) showed some

difficulties in finding the best value of λ by cross-validation and called for the development of a

better scheme to this end.

The present study aimed to investigate how Sanderson’s penalised likelihood approach could

be improved by extending it to other models of substitution rate variation. Some computational

improvements have also been done, and a new information criterion for model selection has been

developed. These improvements provide a framework for molecular dating of phylogenies which

seems an attractive alternative to Bayesian methods, particularly considering the possibility to

analyse large trees (n = 200) in short times (a few minutes). Four perspectives may be drawn

from this work. First, the interplay between the clock and correlated models may lead to improved
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estimation. Since the clock model provided the best estimates of branch lengths, and the correlated

model provided the best estimates of substitution rates, both models could be combined. Second,

the derivation of standard-errors of the estimates was left aside for the present study. As done

elsewhere (Xia and Yang, 2011), bootstrap or other resampling methods can be used. Another

approach might be to use profile likelihood-based methods to infer uncertainty of the parameter

estimates. Because of the penalty term, this does not seem straightforward and is currently under

study. Third, it will be necessary to study the issue of the smoothing parameter λ and its role

in parameter estimation. Finally, the statistical properties and scope of the proposed information

criterion ΦIC will need to be further investigated.
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Appendix A. Derivation of gradients and Hessian

Gradients

The objective function is made of the difference of two functions, so the derivatives can be decom-

posed in two parts (with θi being any free parameter of the model):

∂Ψ
∂θi

=
∂ lnL
∂θi
− ∂Φ

∂θi
.

So we consider first the log-likelihood part:

lnL = ∑
i

xi lnζi−ζi− lnxi!,

where the index i is for all branches of the tree. Since ζi = riti, this has to be written as:

lnL = ∑
i

xi lnri + xi ln ti− riti− lnxi!.
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We note that ti, the length of branch i, is not a parameter and is given by ti = dai − dbi where the

d’s are dates (measured from present back to the past) and ai is the node ancestor of node bi along

branch i. The dates are parameters unless they are fixed calibration points.

We can now derive the first partial derivatives of lnL which is simple for the rates:

∂ lnL
∂ri

=
xi

ri
− ti,

and slightly more complicated for the dates. We first rewrite the log-likelihood as:

lnL = ∑
i

xi lnri + xi ln(dai−dbi)− ri(dai−dbi)− lnxi!,

which makes clearer how we obtain the derivates with respect to the unknown dates (this uses

ln(u)′ = u′/u):

∂ lnL
∂dk

= ∑
i

(
xi

ti
− ri

)
A(k, i)−

(
xi

ti
− ri

)
D(k, i),

where the index k is for all unknown dates, A(k, i) is an indicator function taking the value 1 if

k is a node ancestor (basal) of branch i or 0 otherwise, and similarly for D(k, i) if k is a node

descendant (terminal). The advantage of this formulation, from a computational point of view, is

that A and D can be built once as incidence matrices and the above equation is then calculated

with two matrix products after calculating the terms within parentheses for all branches.

We now consider the penalty term Φ which differs depending on the model. Only the rates are

concerned here since the dates are not involved in the calculation of Φ.

For the auto-correlated model, we rewrite Φ as:

Φ = ∑
k, j

r2
k −2rkr j + r2

j +var(rbasal),

reminding that (k, j) is for all pairs of contiguous branches. So for branch i we have (ignoring the

variance term for the moment):

∂Φ
∂ri

= ∑
i, j
(2ri−2r j)+∑

k,i
(−2rk +2ri).
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The first sum is for all pairs (i, j) where i is an ancestral branch connected to branch j, and the

second sum has only one term for the pair (k, i) with k being the ancestral branch of i. So, this can

be simplified as:

∂Φ
∂ri

= 2

(
ηiri−

ηi

∑
j

r j

)
,

where ηi is the number of branches connected to branch i (ηi = 1 for the terminal branches),

and the sum is now over all branches connected to i (ancestral or not, but not sister-ones). Like

discussed above, this can be computed in a straightforward way since the ηi’s can be built once,

and also an incidence matrix indicating whether two branches are connected.

For the basal branches (i.e., connected to the root), a term related to the variance of their rates

must be added to the above, that is for branch i:

2

ri

(
1− 1

nbasal

)
− 1

nbasal

nbasal

∑
j 6=i

r j

nbasal−1
,

where i and j is for the basal branches and nbasal is their number. This simplifies to ri− r j if

nbasal = 2.

For the “relaxed” model, we use the fact that by definition the derivative of the empirical cu-

mulative distribution function, which is a step function, is zero, and the derivative of the theoretical

cumulative distribution function F(x) is, also by definition, the density function f (x). So, using

(u2)′ = 2u′u:

∂Φ
∂ri

=−2 f (ri)
[
F̃ (ri)−F(ri)

]

Hessian

The matrix of second partial derivatives is obtained by deriving the first partial derivatives with

respect to all parameters:

∂2Ψ
∂θi∂θ j

.
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The Hessian is a square matrix with its diagonal elements being ∂2Ψ/∂θ2
i . As above, me way

decompose for the two components of Ψ, so:

∂2 lnL
∂r2

i
=− xi

r2
i

∂2 lnL
∂ri∂r j

= 0 i 6= j.

Rewriting the above first derivative as ∂ lnL/∂ri = xi/ri− (dai−dbi), we easily find:

∂2 lnL
∂ri∂dk

=−A(k, i)+D(k, i).

We now turn to the first partial derivatives with respect to d and derive them a second time

with respect to r:

∂2 lnL
∂dk∂ri

=−A(k, i)+D(k, i).

The second partial derivatives with respect to d are more complicated to derive (this uses (1/u)′ =

−u′/u2):

∂2 lnL
∂d2

k
= ∑

i

xi

t2
i

A(k, i)+
xi

t2
i

D(k, i),

∂2 lnL
∂dk∂dl

= ∑
i
−xi

t2
i

A(k, i)D(l, i)− xi

t2
i

A(l, i)D(k, i) k 6= l.

However, this last equation is simpler, since this is equivalent to consider only the branch i defined

by nodes k and l and thus simplifies to −xi/t2
i . This is because, either A(k, i)D(l, i) is equal to 1

only if k is the ancestor of l along i, or A(l, i)D(k, i) is equal to 1 only if l is the ancestor of k along

i.

We now consider Φ. For the auto-correlated model, we have:

∂2Φ
∂r2

i
= 2ηi

∂2Φ
∂ri∂r j

=−2,

where j are the branches connected to i (see above). Clearly, these depend only on the ηi’s and so
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do not need to be updated during optimisation.

For the “relaxed” model, the generic form may be written as:

∂2Φ
∂r2

i
= −2

∂ f
∂ri

F̃ (ri)+2
∂ f
∂ri

F(ri)+2 f (ri)
2,

= −2
∂ f
∂ri

[
F̃ (ri)−F(ri)

]
.

Because of the difficulty in deriving the density function f , this is not considered further.
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Table 1: Mean, median, standard-deviation (SD), minimum, and maximum from a sample of 1920 computing times (in
seconds). n: number of taxa.

n Mean Median SD Min Max

20 0.67 0.14 2.04 0.02 16.04
50 3.71 1.10 8.06 0.10 69.84

100 15.65 5.41 22.73 0.35 170.13
200 62.84 26.49 71.65 1.39 325.78
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Table 2: Number of times when the fitted model was selected with ΦIC with respect to the simulated model.

Simulated model Selected model
“Relaxed” Correlated Clock

“Relaxed” 1276 3 263
Correlated 292 0 1250
Clock 0 0 1542
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Fig. 1. (a) One of the 400 random ultrametic trees (n = 100). The diamonds indicate the selected

calibration points. The other trees were generated from this one as explained in the text: (b) under

the “relaxed” model with rates following a Γ distribution, (c) under the correlated model, and (d)

under the clock model.

Fig. 2. Distribution of the mean error on branch length estimation with respect to whether the

correct model was used for fitting the chronogram (x-axis) and the number of calibration points

(panels). The mean error was calculated as the difference of the estimated and the true values of

the parameters averaged over the whole tree. The box limits give the first and third quartiles and

the whiskers extend to 1.5 times the box limits. The extreme values going beyond the whiskers

are shown with open circles. The filled circle indicates the median.

Fig. 3. Distribution of the mean error on branch length estimation with respect to the fitted model

of the chronogram (x-axis) and the model used to simulate the data (panels). See Fig. 2 for details.

Fig. 4. Distribution of the mean error on substitution rate estimation with respect to whether the

correct model was used for fitting the chronogram (x-axis) and the number of calibration points

(panels). See Fig. 2 for details.

Fig. 5. Distribution of the mean error on substitution rate estimation with respect to the fitted

model of the chronogram (x-axis) and the model used to simulate the data (panels). See Fig. 2 for

details.
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Nb of calibration points: 5
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Nb of calibration points: 10
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Nb of calibration points: 1
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Nb of calibration points: 3
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Nb of calibration points: 5
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Nb of calibration points: 10
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