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Abstract. 

In areas of seasonal malaria transmission, the incidence rate of malaria infection is presumed to be near zero at the 
end of the dry season. Asymptomatic individuals may constitute a major parasite reservoir during this time. We 
conducted a longitudinal analysis of the spatio-temporal distribution of clinical malaria and asymptomatic 
parasitemia over time in a Malian town to highlight these malaria transmission dynamics. For a cohort of 300 rural 
children followed over 2009–2014, periodicity and phase shift between malaria and rainfall were determined by 
spectral analysis. Spatial risk clusters of clinical episodes or carriage were identified. A nested-case-control study 
was conducted to assess the parasite carriage factors. Malaria infection persisted over the entire year with seasonal 
peaks. High transmission periods began 2–3 months after the rains began. A cluster with a low risk of clinical 
malaria in the town center persisted in high and low transmission periods. Throughout 2009–2014, cluster locations 
did not vary from year to year. Asymptomatic and gametocyte carriage were persistent, even during low 
transmission periods. For high transmission periods, the ratio of asymptomatic to clinical cases was approximately 
0.5, but was five times higher during low transmission periods. Clinical episodes at previous high transmission 
periods were a protective factor for asymptomatic carriage, but carrying parasites without symptoms at a previous 
high transmission period was a risk factor for asymptomatic carriage. Stable malaria transmission was associated 
with sustained asymptomatic carriage during dry seasons. Control strategies should target persistent low-level 
parasitemia clusters to interrupt transmission. 

INTRODUCTION 

In the Sahel, where malaria transmission is seasonal, control programs aim to interrupt 
transmission or at least decrease malaria burden, demonstrating efficacy in several regions.1–4 
These programs include deployment of rapid diagnosis tests (RDTs) and artemisinin-based 
combination therapy (ACT), the widespread distribution of insecticide-treated nets (ITNs), 
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indoor residual spraying, intermittent preventive treatment (IPT) of pregnant women, and 
seasonal malaria chemoprophylaxis (SMC). 

In Mali, malaria control strategies have included ACTs, widespread distribution of free long-
lasting ITNs, diagnosis with free RDTs, and free medical care of children up to 5 years of age 
with uncomplicated or severe malaria. In the town of Bandiagara, Mali, recent studies document 
stable malaria incidence despite implementation of these control strategies in 2007.5 

The high incidence of malaria in this rural area persists despite a 6-month dry season. 
Clinical cases of malaria occur only during the rainy season and the first half of the dry season, 
leaving a period of approximately3 months without clinical malaria episodes. In Sudan and 
Senegal, asymptomatic carriers of Plasmodium are present throughout the low transmission 
period.6,7 Long-term parasite carriage may be critical for parasite survival, and these infected 
individuals may constitute a major reservoir when environmental conditions are not favorable for 
mosquito development.8 Also, even in endemic areas, malaria transmission is not uniformly 
distributed; it can be patchy and dependent on factors, such as location of mosquito breeding 
sites and areas of clustered human habitations, which act as reservoirs of parasites.9,10 The 
persistence of malaria transmission in “hotspots,” such as a household or cluster of households 
may help the parasite to survive during the dry season.10–12 Strategies for detecting and targeting 
these hotspots, whether geographic or demographic, are important to reduce the local parasite 
reservoir and interrupting transmission.13 

We hypothesized that annual resurgence of malaria transmission in Bandiagara is due to 
asymptomatic carriage of P. falciparum gametocytes and trophozoites and/or the existence of 
permanent transmission areas, which were undetected in previous studies. We assessed inter- and 
intra-annual spatio-temporal dynamics of malaria cases from 2009 to 2014 in Bandiagara, 
identifying spatial clusters and their temporal evolution between low and high transmission 
periods. We also identified parasite reservoirs, asymptomatic carriage evolution through low 
transmission periods, and risk factors for further clinical episodes of malaria. 

MATERIALS AND METHODS 

This space-time dynamics of malaria distribution among children is part of a multiyear 
cohort study conducted by the malaria research and training center within the Bandiagara 
Malaria Project (BMP). 

Study setting. 

Bandiagara is a semiurban area of approximately 19,000 inhabitants in 2014, situated in 
central Mali in West Africa and receives an annual rainfall of 600 mm. The rainy season extends 
from June to October and the dry season from November to May. Bandiagara’s small river Yamé 
stops flowing at the height of the dry and hot season (February–May) and transiently becomes a 
standing water body during the rainy season. Anopheles gambiae sensus stricto is the principal 
malaria vector. Malaria transmission is meso- to hyperendemic14 and highly seasonal. 

Compared with less than one infecting bite/person/month from February to May, the 
transmission period peaks from August to September, with up to 60 infected mosquito 
bites/person/month. Plasmodium falciparum represents more than 95% of malaria infections.15–17 
Children under 5 years of age receive free diagnostic testing and treatment of symptomatic 
malaria infection. Free bed nets have been distributed yearly since 2007. At each visit, 
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participants were broadly questioned if they use protective measure including bednets. Pregnant 
women receive IPT free of charge according to the national malaria control policy. 

Study sample and design. 

Three hundred children were recruited to be representative of the pediatric population aged 
0–6 years of age, with 100 children in each of three age groups: 0–2, 3–4, and 5–6 years. After 
obtaining community permission, the study was publicized by a local radio broadcast. Parents 
were invited to accompany the children to the BMP  research clinic to be screened for eligibility. 
Participants were enrolled on a first-come, first-served basis until the target number in each age 
strata was reached. Participants were followed from June 2009 to January 2015. During the study 
period, changes in participant households were not specifically investigated, but seemed to be 
rare. The loss to follow-up over 5 years was 23%, including four deaths. 

Inclusion and exclusion criteria. 

Children were eligible for study inclusion if they met all of the following criteria: residency 
in Bandiagara town, general good health based on clinical evaluation, 0–6 years of age inclusive 
at the time of screening, written informed consent obtained from the parent/guardian, and 
availability to participate in follow-up for the duration of study. Exclusion criteria were as 
follows: simultaneous participation in an interventional clinical trial and chronic use of a 
medication with known antimalarial activity, such as trimethoprim-sulfamethoxazole. 

Study procedures. 

Active surveillance consisted of scheduled monthly visits where participants were questioned 
for symptoms of malaria and examined. Finger prick blood was collected for malaria thick smear 
and hemoglobin level. Passive surveillance consisted of continuous availability of free, basic 
medical care at the BMP Research Clinic and Bandiagara District Hospital. If symptoms 
compatible with malaria were present, finger prick blood was collected for a diagnostic thick 
blood smear, which was read immediately. Uncomplicated malaria was treated with ACTs 
according to national guidelines. 

Clinical malaria was defined based on clinical symptoms consistent with malaria (fever or 
history of fever, headaches, joint pain, vomiting, diarrhea, or abdominal pain) and the presence 
of malaria parasites at any density. Asymptomatic parasite carriage was defined as the presence 
of trophozoites or gametocytes by microscopy without any symptom after clinical evaluation. 
Gametocyte carriage was defined as the presence of gametocytes by microscopy, regardless of 
symptoms. 

At enrollment, the household of each child was geo-referenced using a handheld global 
position system (Garmin® Personal Navigator; accuracy approximately within 10 m).5 Rainfall 
data were obtained from the local weather station. 

Temporal and spatial cluster analysis and case mapping. 

To assess time series (weekly incidence of symptomatic cases, weekly cumulated rainfall, 
monthly incidence of asymptomatic parasite carriage, and monthly incidence of gametocytes 
carriage), periodicity was first determined using multiscale spectral analyses (wavelet transform). 
The periodicity frequency test was based on a null hypothesis simulated by hidden Markov 
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chains.18,19 Relationship and lag between malaria episodes and rainfall was assessed by 
estimating phase shift after wavelet transform. Asymptomatic parasite and gametocyte carriages 
were similarly assessed. We defined a low malaria transmission period (LTP) as the occurrence 
of fewer than two malaria clinical cases within two consecutive weeks and a high malaria 
transmission period (HTP) as two or more clinical cases within at least two consecutive weeks. 

To assess the amount of rainfall associated with the total number of malaria symptomatic 
cases during the HTP, Spearman nonparametric correlation coefficients were estimated between 
different cumulative amounts of rainfall from the beginning of the rainy season and the total 
number of symptomatic malaria episodes. 

Participant households were mapped according to their geographic coordinates. After 
aggregating data at the house block level, the number of malaria episodes per child was 
estimated for each block for each time-period (HTP and LTP) over the 5-year follow-up. The 
spatial distribution of clinical malaria incidence per time-period, as well as asymptomatic 
parasite and gametocyte carriages, were mapped by choropleth mapping at the house block level. 

For each period, low and high-risk clusters were assessed using Kulldorff’s scanning 
approach (elliptic window, spatial Poisson model).5,20 

Parasite reservoir assessment. 

To identify potential parasite reservoirs for low and high transmission periods, we assessed 
risk factors associated with clinical malaria and asymptomatic and gametocyte carriage. Controls 
were individuals within the same time period with negative malaria smears. 

After a nested case–control design,21 each case was matched by year, transmission period, 
bed-net use, and neighborhood to four controls. Multivariate conditional logistic regression 
analyses were performed to evaluate potential risk factors associated with clinical malaria and 
asymptomatic and gametocyte carriage and to estimate the corresponding adjusted odds ratios 
(ORa). The effect of past parasite carriage was assessed by estimating ORa associated with past 
clinical episodes and with past asymptomatic and past gametocyte carriages at previous low or 
high transmission periods (LTPs or HTPs). 

Analyses were adjusted for sex, level of hemoglobin at visit, hemoglobin type, G6PD 
deficiency, and age at visit. Variable selection was provided by a stepwise approach. 

Laboratory assays. 

Malaria thick smears were Giemsa-stained, and parasites were counted against 300 

leukocytes to give parasite counts/mm3, assuming a leukocyte count of 7,500/mm3. Standard 

operating procedures were developed to ensure uniform and high-quality malaria smears, 

including training and qualifying malaria microscopists. Haemoglobin type was determined by 

high-performance liquid chromatography (D-10 instrument; Bio-Rad). Restriction fragment 

length polymorphism analysis was used to identify the (A) allele of the G6PD deficiency, as 
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previously described.15 Haemoglobin determinations were made using Hemocue haemoglobin 

analyzers (Hemocue Inc., Cypress, CA). 

Ethical compliance. 

The study was conducted in compliance with the International Conference on Harmonization 
Good Clinical Practices, the Declaration of Helsinki, and regulatory requirements of Mali. 
Details on the consent and the protocol approval process have been described elsewhere.17 

Statistical consideration. 

Multiscale spectral analyses were performed using MATLAB R2013a software (©The 
MathWorks Inc, Natick, MA) with the Wavelet_EETS tool 
(http://www.biologie.ens.fr/~cazelles/bernard/Research.html). Maps have been provided by 
Philcarto 6.72 software (©P Waniez, CNRS and Université de Bordeaux, France).22 Hotspots 
were analyzed using the SaTScan 8.2.1 software (©M Kulldorff, Harvard Medical School, 
Boston and Information Management Services Inc, Calverton, MA). All other statistics were 
performed using R version 3.1.3 (©The R Foundation for Statistical Computing, Vienna, 
Austria). Figures were formatted using Gimp 2.8.14 software (©S Kimball, P Mattis and The 
Gimp Team). 

RESULTS 

Malaria case incidence. 

Time-series analysis showed a persistence of malaria across all years of the study period 
(Figure 1A), as well as similar malaria incidence across all years without any decreasing trend. 
High transmission periods (HTPs) began weeks after rainy season onset and ceased 2–3 months 
after the rains stopped. Assessment of periodicity and lag between malaria case incidence and 
rainfall by spectral analysis confirmed a significant annual periodicity of both malaria incidence 
and rainfall (Figure 2A and B), with very few clinical cases diagnosed during the second half of 
each dry season and the first weeks of each rainy season. The phase analysis (Figure 2C) showed 
a phase shift of 3 months between rainfall and clinical cases (/2). Cumulative rain within the 
first 5 weeks was the rain amount most closely correlated with the total amount of clinical cases 
during the following high transmission season (r = 0.89, P = 0.03). This also explains the highest 
peak of malaria incidence, in 2012, where the rainfall was lower than previous years, but most of 
the rain occurred within the first week. 

Within high transmission periods, spatial cluster analysis revealed a cluster at low risk for 
clinical malaria cases (Figure 1B) with a relative risk of RR = 0.61 (P = 0.001), located in the 
town center and including 78 households. Three significant high-risk clusters were also 
identified, located in the west (RR = 1.77, P = 0.001, seven locations), the east (RR = 1.41, P = 
0.001, eight locations), and the southeast (RR = 3.98, P = 0.002, one location). Within low 
transmission periods (Figure 1C), a large low-risk cluster was identified in the town center (RR = 
0.23, P = 0.001, 101 locations), as well as a high-risk cluster in the west (RR = 10.37, P = 0.001, 
six locations). Furthermore, throughout the study, locations of clusters did not greatly change 
from 1 year to another. 
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Malaria reservoir assessment. 

Time series showed persistence of both asymptomatic (Figure 3A) and gametocyte (Figure 
4A) carriage, even during low transmission periods. Both asymptomatic and gametocyte carriage 
resurged and plummeted with a clear annual periodicity (Supplemental Figures 1 and 2), but 
without time lags before each clinical case time series. Furthermore, for each high transmission 
period, the ratio of asymptomatic carriers to clinical cases (Figure 3D) was approximately 0.5 
(median ratio = 0.511, range [0.406, 0.677]). By contrast, this ratio was inverted during all low 
transmission periods, where the number of asymptomatic carriers was approximately five times 
the number of clinical cases (median ratio = 4.491, range [2.615, 10.571]). Regardless of time 
period, gametocyte carriers were outnumbered by clinical cases (high transmission period: 
median ratio = 0.092, range [0.057, 0.155]; low transmission period: median ratio = 0.923, range 
[0.238, 1.357]), but the ratio was higher within low versus high transmission periods (Figure 
4D). 

Throughout high transmission periods (Figures 3B and 4), both asymptomatic and 
gametocyte carriage had one low-risk cluster each (respectively RR = 0.54, 124 locations, P = 
0.001; RR = 0.29, 101 locations, P = 0.001) located around the same area at the center and the 
south, and one high-risk cluster each (respectively RR = 1.9, 68 locations, P = 0.001; RR = 3.34, 
16 locations, P = 0.001), located at the west and north for asymptomatic carriers, and at the 
center and north for gametocyte carriers. Asymptomatic and gametocyte risk clusters differed for 
the low transmission periods. Two low-risk clusters for asymptomatic carriers (Figure 3C) were 
identified at the south-central and at the east ( RR = 0.09, 15 locations, P = 0.007; RR = 0.46, 85 
locations, P = 0.001, respectively). Two high-risk clusters for asymptomatic carriers included a 
large one (RR = 2.13, P = 0.001) accounting for 68 locations and located similar to the HTP 
high-risk cluster (west and north) and a small one with a single location at the town center (RR = 
5.31, P = 0.001). Gametocyte carrier risk included, throughout low transmission periods, two 
small clusters: a low-risk one (RR = 0, P = 0.001) located at the town center near a high-risk 
cluster (RR = 17.04, P = 0.001) centered on a single location (Figure 4C). 

Risk factors associated with malaria. 

Multivariate nested case-control analyses (Table 1), matched by time-period, bed net, and 
neighborhood, confirmed that age was a protective factor for clinical episodes during high and 
low transmission periods (respectively ORa = 0.02.103 CI 95% [0.01.103, 0.1.103]; ORa = 
0.002 [0.03.103, 0.09]). The number of clinical episodes at the previous high transmission 
period was also a protective factor for clinical episodes during the following high transmission 
one (ORa = 0.61 [0.38, 0.96]). 

The risk of parasite carriage (either asymptomatically or as gametocytes) was also 
significantly reduced by age throughout high and low transmission periods (see Table 2). 
Adjusted by age, and according to time-period, bed-net and neighborhood, the number of clinical 
episodes at previous high transmission periods was a protective factor for asymptomatic carriage 
during the subsequent low transmission period (ORa = 0.26 [0.07, 0.93]), but carrying parasites 
without symptoms at a previous high transmission period was a risk factor for asymptomatic 
carriage during a high transmission period (ORa = 2.67 [1.52, 4.69]; Table 2). 
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DISCUSSION 

By analyzing the spatio-temporal dynamics of clinical and asymptomatic malaria in 
Bandiagara, this study explored reasons for P. falciparum persistence through the dry season. 
The 3-month phase shift between rain and clinical case onset along with the slow decrease in 
transmission until the middle of the dry season indicates that rainy season and high transmission 
season are not completely coincident, nor are the dry season and low transmission season. 
Despite no clinical episodes or gametocyte carriage during some weeks, asymptomatic carriage 
persisted in the community, with a ratio to clinical episodes from high to low transmission 
periods of about 0.5 to 5, respectively. Throughout the entire dry season, malaria transmission 
was low, and asymptomatic carriers were the only reservoir of parasites during this time. Mass 
drug administration during low transmission periods to reduce parasitic reservoirs could reduce 
the number of cases during the following high transmission season. 

The absence of a lag between the clinical case and asymptomatic time series suggests that 
asymptomatic carriage may provide the reservoir leading to rainy season malaria cases and each 
annual malaria epidemic. During the high transmission period, the number of asymptomatic 
carriers is relatively low, and clinical cases may be the main parasite reservoir. These results 
support adoption of SMC strategies,23 specifically starting 2–3 months after the rain begins, not 
concomitantly with it. 

For each transmission period, clinical case clusters and parasite carriage clusters (high or low 
risk) differed, but remained stable across seasons. Clusters at high risk for symptomatic malaria 
were distributed in the western and the eastern parts of town not far from the Yamé River. 
Residence in the town center was protective against symptomatic malaria, probably due to the 
previously described barrier effect of households.24 The marked spatial heterogeneity of malaria 
incidence across the study period may be due to the location of mosquito breeding sites.5 Parasite 
carriage clusters (asymptomatic or gametocytes) were mostly located in the central and western 
parts of town and remained stable across the 5 years of the study. Locations where parasites 
persisted during low transmission periods should be targeted with strategies focused on 
eliminating parasite reservoirs. 

In an adjusted analysis, experiencing clinical episodes was protective against future clinical 
episodes and asymptomatic carriage. This may be explained by several hypotheses: first, 
appropriate treatment of clinical episodes with ACTs would reduce parasite carriage in the 
following months. ACT combinations are not only effective against parasite asexual stages, but 
can also have an impact on the sexual stages transmitted to mosquitoes,25 reducing malaria 
transmission. Second, a clinical episode in a child could lead to an improved parental adherence 
to prevention strategies, such as bed-net use (“social immunization”). Third, experiencing a 
clinical episode could also act as individual “premunition”, reducing the risk of malaria for the 
next transmission period. 

Age was a significant protective factor against parasite carriage, as has been shown 
previously,26 likely because of the acquisition of immunity with age (premunition). Previous 
work has shown that parasite carriage is protective against new clinical episodes.27 The immunity 
level of an individual against infection depends on age and history of exposure.28 Asymptomatic 
carriage thus has a potential benefit for both the host and the parasite: the host can maintain 
immunity while the parasite persists through adverse environmental condition periods. 
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Diagnosing asymptomatic malaria is not straightforward because of the absence of clinical 
signs. Microscopic detection has low sensitivity compared with Polymerase chain reaction, and 
we may have underestimated the prevalence of asymptomatic carriage.25,29 Scaling up efforts to 
improve the characterization of asymptomatic malaria in endemic regions and establishing a 
standard case definition should be a priority.30 

Parasite carriage allows for undetected circulation during interepidemic periods, when 
environmental local conditions are less favorable to mosquitoes. In this context, the beginning of 
the rainy season initiates or boosts malaria transmission in conjunction with mosquito breeding 
site proliferation. This may explain malaria persistence through interepidemic periods and the 
periodical revival of symptomatic disease when environmental conditions favor mosquito 
development. 

At each visit, participants were routinely asked if they used protective measures, which 
included bednets. They reported the use of long-lasting, insecticide-treated bed nets (LLINs). 

LLINs are provided for free to children and pregnant woman by Mali’s National Malaria 
Control Program. This did not change during the study period. Furthermore, the use of LLINs 
was taken into account (as a matching factor) in the nested case control study. 

A limitation of this study was the lack of precise assessment of the parasite reservoir, both 
within the entire population, including adult carriers, and within the vector population, lacking 
entomological assessments. Indeed, estimations of the parasitological “biomass”, location, and 
circulation need to be addressed for effective new elimination strategies. 

The current suite of interventions has proven insufficient to eliminate malaria from many 
areas in sub-Saharan Africa. For malaria elimination, we need additional strategies.28 Rapid 
treatment, the screening and treatment of asymptomatic carriage, the treatment of gametocyte 
carriage, the detection and management of habitats favoring the persistence of Anopheles 
mosquitoes, and mass or focused screening and treatment should be considered. The precise 
dynamic of parasite persistence through low transmission periods needs additional scrutiny, as 
well as the dynamic of malaria resurgence after rainfall. The analytic approach that we have used 
here has the potential to provide considerable insight into these dynamics, as well as effective 
malaria control strategies. 
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FIGURE 1. Spatial and temporal pattern of malaria cases. (A) represents the weekly time series of clinical case 
incidence per 100 children (red). Weekly rainfall is presented in blue. Low and high transmission period are 
presented, respectively, in grey and white. Choropleth maps of clinical case incidences, (B and C), are presented at 
the neighborhood level, respectively, for high and low transmission periods (through 2009–2014). Green ellipses 
represent low risk cluster (according to Kulldorff’s definition) and black ones, high risk clusters. Estimated relative 
risks of each cluster are presented (as well as the number of neighborhood within each cluster, between brackets). 
This figure appears in color at www.ajtmh.org. 

FIGURE 2. Spatial and temporal pattern of asymptomatic carriage. (A) represents the weekly time series of 
asymptomatic carriage incidence per 100 children (orange). Weekly rainfall is presented in blue. Low and high 
transmission periods are presented, respectively, in grey and white. Choropleth maps of asymptomatic incidences, 
(B and C), are presented at the neighborhood level, respectively, for high and low transmission periods (through 
2009–2014). Green ellipses represent low risk clusters (according to Kulldorff’s definition) and black ones, high risk 
clusters. Estimated relative risks of each cluster are presented (as well as the number of neighborhoods within each 
cluster, between brackets). (D) represents the asymptomatic carriage ratios by clinical cases for each high and low 
transmission period (red and blue, respectively). Each square is proportional to each period length. The diamonds 
represent the ratios for the high and low transmission periods (red and blue, respectively). This figure appears in 
color at www.ajtmh.org. 

FIGURE 3. Spatial and temporal pattern of gametocytemia. (A) represents the weekly time series of gametocytemia 
incidence per 100 children (purple). Weekly rainfall is presented in blue. Low and high transmission period are 
presented, respectively, in gray and white. Choropleth maps of gametocytemia incidences, (B and C), are presented 
at the neighborhood level, respectively, for high and low transmission periods (through 2009–2014). Green ellipses 
represent low risk clusters (according to Kulldorff’s definition) and black ones, high risk clusters. Estimated relative 
risks of each cluster are presented (as well as the number of neighborhoods within each cluster, between brackets). 
(D) represents the positive gametocytemia ratios by clinical cases for each high and low transmission period (red 
and blue, respectively). Each square is proportional to each period length. The diamonds represent the ratios for the 
high and low transmission periods (red and blue, respectively). This figure appears in color at www.ajtmh.org. 

FIGURE 4. Wavelet analysis of weekly clinical malaria incidence and weekly rainfall. The different panels comprise 
each time series analysis. The left panels (A1 and B1) are the wavelet power spectrum of the square root 
transformed and normalized series (2009–2014). The color code for power values ranges from dark blue (low 
values) to dark red (high values). The dotted black lines show the statistically significant area (threshold of 95% CI). 
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The white lines represent the maxima of the wavelet power spectrum, and the black curves indicate the cone of 
influence that delimits the region not influenced by edge effects. The right panels (A2 and B2) correspond to the 
mean spectrum (black solid line) with its threshold value of 95% CI (dotted black line) for the aggregate time series. 
The third raw panel (C) represents the phase evolution of the two time series, using wavelet analysis. The black 
dotted line represents the phase differences (lag) between the two series. This figure appears in color at 
www.ajtmh.org. 

TABLE 1 

Risk factors associated with clinical malaria episodes 
Risk factors associated with clinical malaria episodes in the high transmission period (HTP) 

Variables Case (N = 
1,507) 

Control (N = 
7,535) 

OR1 CI 95% [ ] P ORa2 CI 95% [ ] P 

 Age visit mean 
(SD) 

5.9 (2.17) 7.75 (1.93) 0.03.103 

[0.01.103; 

0.1.103] 

< 
0.001 

0.02.103 [0.01.103; 

0.1.103]3 

< 
0.001 

 CE_HTP mean 
(SD) 

1.45 
(1.36) 

1.38 (1.3) 1.06 [1.01; 1.11] 0.025 0.61 [0.38; 0.96]3 0.03 

 Gam_LTP mean 
(SD) 

0.04 
(0.23) 

0.09 (0.32) 0.5 [0.39; 0.65] < 
0.001 

– – 

 Gam_HTP mean 
(SD) 

0.12 
(0.42) 

0.19 (0.54) 0.7 [0.61; 0.81] < 
0.001 

– – 

 ASPara_LTP 
mean (SD) 

0.24 
(0.76) 

0.56 (1.21) 0.68 [0.63; 0.73] < 
0.001 

– – 

 ASPara_HTP 
mean (SD) 

0.54 
(0.98) 

1.03 (1.49) 0.69 [0.65; 0.73] < 
0.001 

– – 

Risk factors associated with clinical malaria episodes in the low transmission period (LTP) 
Variables Case (N = 

39) 
Control (N = 

195) 
OR1 CI 95% [ ] P ORa2 CI 95% [ ] P 

 Age visit mean 
(SD) 

5.94 
(2.06) 

7.84 (1.93) 0.003 [0.1.103; 

0.11] 

0.001 0.002 [0.03.103; 0.09]3 0.002 

 CE_LTP mean 
(SD) 

0.26 
(0.55) 

0.11 (0.35) 2.83 [1.15; 7.0] 0.024 – – 

 CE_HTP mean 
(SD) 

2.05 
(1.41) 

1.21 (1.26) 1.92 [1.35; 2.74] < 
0.001 

– – 

 Gam_LTP mean 
(SD) 

0 0.16 (0.44) – – – – 

 ASPara_LTP 
mean (SD) 

0.39 
(0.82) 

0.94 (1.44) 0.59 [0.39; 0.88] 0.009 – – 

 ASPara_HTP 
mean (SD) 

1.49 
(1.86) 

2.66 (1.98) 0.62 [0.48; 0.8] < 
0.001 

2.12 [0.082; 54.83]3 0.65 

Age visit = age at visit; ASPara_HTP = number of asymptomatic parasite carriage cases on previous HTP; 
ASPara_LTP = number of asymptomatic parasite carriage cases on previous Asy.LTP; CE_HTP = number of 
clinical malaria episodes in previous Clin.HTP; CE_LTP = number of clinical malaria episodes on previous LTP; 
Gam_HTP = number of positive gametocyte cases on previous HTP; Gam_LTP = number of positive gametocyte 
cases on previous LTP Gam.HTP; OR1 = odds ratio from conditional logistic regression (matching to the three 
designated variables); ORa2 = adjusted odds ratio from conditional logistic regression (matching to the three 
designated variables) and result of multivariate step by step analysis. 
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TABLE 2 

Risk factors associated with asymptomatic parasite or gametocyte carriage 
Risk factors associated with asymptomatic parasite carriage in the HTP 

Variables Case (N = 
680) 

Control (N = 
3,400) 

OR1 CI 95% [ ] P ORa2 CI 95% [ ] P 

 PCRg6pd 133 498 1.45 [1.16; 1.80] < 
0.001 

– – 

 Age visit mean 
(SD) 

6.2 (2.15) 7.76 (1.88) 0.001 [0.001; 

0.003] 

< 
0.001 

0.002 [0.001; 

0.003]2 

< 
0.001 

 Gam_HTP mean 
(SD) 

0.27 (0.67) 0.2 (0.57) 1.22 [1.07; 1.39] 0.003 – – 

 ASPara _HTP 
mean (SD) 

1.25 (1.63) 1.09 (1.58) 1.08 [1.02; 1.14] 0.007 2.67 [1.52; 4.69]2 < 
0.001 

Risk factors associated with asymptomatic parasite carriage in the LTP 
Variables Case (N = 

132) 
Control (N = 

660) 
OR1 CI 95% [ ] P ORa2 CI 95% [ ] P 

 Age visit mean 
(SD) 

5.39 (2.39) 7.55 (2.14) 0.1.103 [0.1.105; 

0.002] 

< 
0.001 

0.03.103 

[0.1.105; 0.001]3 

< 
0.001 

 CE_HTP mean 
(SD) 

1.25 (1.29) 1.03 (1.04) 1.23 [1.03; 1.46] 0.021 0.26 [0.07; 0.93]3 0.038 

 ASPara_LTP 
mean (SD) 

0.5 (1.15) 1.02 (1.57) 0.65 [0.54; 0.79] < 
0.001 

– – 

 ASPara_HTP 
mean (SD) 

1.29 (1.51) 2.61 (2.01) 0.56 [0.48; 0.866] < 
0.001 

– – 

Risk factors associated with gametocyte carriage in the HTP 
Variables Case (N = 

173) 
Control (N = 

865) 
OR1 CI 95% [ ] P ORa2 CI 95% [ ] P 

 Clinical signs 54 522 0.28 [0.19; 0.41] < 
0.001 

0.16 [0.09; 0.31]  

 Age visit mean 
(SD) 

6.06 (2.08) 7.56 (1.77) 0.005 [0.002; 0.02] < 
0.001 

0.002 [0.001; 

0.01]3 

< 
0.001 

Risk factors associated with gametocyte carriage in the LTP 
Variables Case (N = 

53) 
Control (N = 

159) 
OR1 CI 95% [ ] P ORa2 CI 95% [ ] P 

 Age visit mean 
(SD) 

5.86 (2.24) 7.54 (1.93) 0.002 [0.1.103; 

0.05] 

< 
0.001 

0.002 [0.1.103; 

0.04]3 

< 
0.001 

 CE_HTP mean 
(SD) 

1.21 (1.06) 0.91 (1.02) 1.55 [1.05; 2.29] 0.028 0.35 [0.03; 3.54]3 0.372 

Age visit = age at visit; ASPara_HTP = number of asymptomatic parasite carriage cases on previous HTP; 
ASPara_LTP = number of asymptomatic parasite carriage cases on previous LTP à changer en Asy.LTP; CE_HTP = 
number of clinical malaria episodes in previous HTP; CE_LTP = number of clinical malaria episodes on previous 
LTP; Gam_HTP = number of positive gametocyte cases on previous HTP; Gam_LTP = number of positive 
gametocyte cases on previous LTP Gam.HTP; OR1 = odds ratio from conditional logistic regression (matching to 
the three designated variables); ORa2 = adjusted odds ratio from conditional logistic regression (matching to the 
three designated variables) and result of multivariate step by step analysis. 

Page 13 of 20 



SUPPLEMENTAL FIGURE 1. Wavelet analysis of weekly clinical malaria incidence and asymptomatic carriage. The 
different panels comprise each time series analysis. The left panels (A1 and B1) are the wavelet power spectrum of 
the square root transformed and normalized series (2009–2014). The color code for power values ranges from dark 
blue (low values) to dark red (high values). The dotted black lines show the statistically significant area (threshold of 
95% CI). The white lines represent the maxima of the wavelet power spectrum, and the black curves indicate the 
cone of influence that delimits the region not influenced by edge effects. The right panels (A2 and B2) correspond to 
the mean spectrum (black solid line) with its threshold value of 95% CI (dotted black line) for the aggregate time 
series. The third raw panel (C) represents the phase evolution of the two time series, using wavelet analysis. The 
black dotted line represents the phase differences (lag) between the two series. 

SUPPLEMENTAL FIGURE 2. Wavelet analysis of weekly clinical malaria incidence and gametocytemia. The different 
panels comprise each time series analysis. The left panels (A1 and B1) are the wavelet power spectrum of the square 
root transformed and normalized series (2009–2014). The color code for power values ranges from dark blue (low 
values) to dark red (high values). The dotted black lines show the statistically significant area (threshold of 95% CI). 
The white lines represent the maxima of the wavelet power spectrum, and the black curves indicate the cone of 
influence that delimits the region not influenced by edge effects. The right panels (A2 and B2) correspond to the 
mean spectrum (black solid line) with its threshold value of 95% CI (dotted black line) for the aggregate time series. 
The third raw panel (C) represents the phase evolution of the two time series, using wavelet analysis. The black 
dotted line represents the phase differences (lag) between the two series. 
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