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Abstract – Reconstructing the evolving geometry of large river catchments over 30	

geological timescales is crucial to constraining yields to sedimentary basins. In the case 31	

of Africa, it should further help deciphering the response of large cratonic sediment 32	

routing systems to Cenozoic growth of the basin-and-swell topography of the continent. 33	

Mapping of dated and regionally correlated lateritic paleolandscape remnants 34	

complemented by onshore sedimentological archives allows the reconstruction of two 35	

physiographic configurations of West Africa in the Paleogene. Those reconstructions 36	

show that the geometry of the drainage stabilized by the Late Early Oligocene (29 Ma) 37	

and probably by the end of the Eocene (34 Ma), allowing to effectively link the inland 38	

morphoclimatic record to offshore sedimentation since that time, particularly in the case 39	

of the Niger catchment – delta system. Mid-Eocene paleogeography reveals the 40	

antiquity of the Senegambia catchment back to at least 45 Ma and suggests that a 41	

marginal upwarp forming a continental divide preexisted Early Oligocene connection of 42	

the Niger and Volta catchments to the Equatorial Atlantic Ocean. Such a drainage 43	

rearrangement was primarily enhanced by the topographic growth of the Hoggar hot 44	

spot swell and caused a major stratigraphic turnover along the Equatorial margin of 45	

West Africa.  46	

 47	

1. Introduction 48	

 Reconstructing the evolving geometries of large drainage basins over geological 49	

time scales (106-107 yr) is key to linking the sediment routing system to the deformation 50	

and landform evolution processes of continents. It is also crucial to constrain clastic 51	

sedimentary fluxes towards sedimentary basins. Along passive continental margins, 52	

stratigraphic architectures and sedimentary records would indeed be primarily sensitive 53	

to inland catchment size and therefore to drainage rearrangement (e.g., Rouby et al., 54	
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2009). But conversely, the sedimentary record in itself may not be used as an 55	

unequivocal proxy of change in inland drainage given the multiplicity of factors 56	

controlling sedimentation and their interactions. The drainage of the African continent 57	

has evolved with the growth of a continental-scale basin-and-swell relief (Fig. 1), which 58	

results from the interplay of marginal upwarps sustained or rejuvenated since 59	

Gondwana continent break-up and intraplate Cenozoic hot spot swells (Burke, 1996; 60	

Summerfield, 1996). Within such an evolving topographic framework that is still poorly 61	

constrained, the age and acquisition mode of the main river courses remain 62	

controversial. Key questions are to know whether, when, and how short coastal rivers 63	

became connected to large inland drainage basins (Summerfield, 1996). Solving those 64	

questions is particularly relevant for interpreting the increase of clastic sediment fluxes 65	

around the African continent following Eocene peak greenhouse and its links with 66	

lithospheric deformation (Séranne, 1999; Burke et al., 2003).  67	

A large body of research exists on river network evolution of numerous drainage 68	

basins of the African continent. Inland deltas, elbows and steps (knickzones and knick 69	

points) along river courses have been considered as recording rapid headward erosion 70	

by coastal rivers having “recently” captured inland drainages via piracy (e.g., Goudie, 71	

2005). Such interpretations are solely based on the present day geometry of river 72	

networks and topography. At best, much ambiguity therefore remains on drainage 73	

reorganization scenarios given the paucity of evidence for past river courses and their 74	

age (Summerfield, 1996). The high steepness and stepped character of modern African 75	

rivers’ lower reaches may be interpreted as a consequence of the maintenance of rivers 76	

across continental margins during continental uplift (e.g., Bond, 1979; Burke, 1996). 77	

Alternatively, models of denudational isostatic uplift of the seaward slope of marginal 78	

upwarps suggest maintenance of dual (inland and seaward) drainage systems long after 79	
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rifting (Summerfield, 1985; Gilchrist and Summerfield, 1990). Such a configuration 80	

would lead steep aggressive costal rivers to eventually capture the interior drainage 81	

(Gilchrist et al., 1994; Summerfield, 1996). In order to test these interpretations, arguing 82	

either for antiquity or youthfulness of the drainage, geological markers documenting 83	

past drainage configurations are required. 84	

 Here we investigate the Cenozoic drainage development of West Africa (Fig. 2) 85	

by mapping dated and regionally correlated lateritic paleolandscape remnants that are 86	

widely and densely distributed over the sub region. This allows reconstructing two 87	

Paleogene stages of the West African paleogeography showing that the main river 88	

courses of the sub region stabilized since at least the Latest Early Oligocene (~29 Ma). 89	

This result opens new perspectives on linking the continental geomorphic record to the 90	

sedimentary evolution of the Equatorial margin of Africa. We also document the key 91	

role of the growth of the Hoggar hot spot swell in reorganizing the relief regionally and 92	

leading to the installation of the modern drainage. 93	

 94	

2. Regional context and earlier works 95	

 The drainage of West Africa is organized around three topographic massifs: the 96	

Guinean Rise forming the continental divide the closest to the coast and the Hoggar and 97	

Jos Plateau Cenozoic hot spots (Fig. 2). Rivers directly flowing to the Atlantic Ocean 98	

are increasingly longer to the east of the Guinean Rise, the continental divide being 99	

located ~1400 km from the coast at the northernmost headwaters of the Volta river 100	

system (Fig. 2). The Niger River catchment may be divided in three sub-drainage areas. 101	

The main area drains mostly the Hoggar swell and the Jos plateau. The High Niger 102	

catchment is NE-trending and comprises the drainage upstream the elbow in the river 103	

course. The Benue River catchment constitutes the third sub-drainage area (Fig. 2). The 104	
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Gambia and Senegal catchments fringe the northwestern watershed of the High Niger 105	

and flow towards the Central Atlantic Ocean (Fig. 2). The High Niger and Sourou 106	

inland deltas are large functional inland alluvial plains (Fig. 2).  107	

Since exploration by Chudeau (1909), the elbow between the High and Low 108	

Niger (Fig. 2) has been considered to result from a Quaternary capture of the inland 109	

delta, which would have been drained by river(s) flowing north- or northwestward into 110	

the Taoudeni basin or the Hodh depression until capture by the Low Niger (Chudeau, 111	

1919; Furon, 1929, 1932; Urvoy, 1942). But neither sediment accumulations nor paleo-112	

river courses exist that would support the existence of such rivers (Beaudet et al., 113	

1977a). The delta was interpreted to result from damming of the High Niger River by 114	

Late Quaternary sand dunes and Urvoy (1942) and Tricart (1959) favored “very recent” 115	

aggradation-driven overspill to explain its connection to the Low Niger. However, 116	

Beaudet et al. (1981a) argued that the delta has used a persistent spillway at the location 117	

of its current downstream sill. Other authors such as Voute (1962) inferred a recent 118	

Quaternary connection between the Lowermost Niger River and the rest of the Niger 119	

catchment upstream its confluence with the Benue (Figs. 1 and 2). According to Hubert 120	

(1912) and Palausi (1959), the Sourou delta (also known as the Gondo plain, Fig. 2) was 121	

formed by the Sourou River that flowed northeastward into the Low Niger before its 122	

connection to the Volta drainage in the Latest Quaternary.  123	

The prevailing view on the West African river network, and particularly the 124	

Niger, is therefore that of a youthful drainage resulting from Quaternary 125	

rearrangement(s). This view is still deeply entrenched in the literature (Goudie, 2005) 126	

although it remains largely conjectural due to the lack of geological markers of past 127	

river courses and in absence of age constraints on such markers. Recent advances made 128	

by dating (Beauvais et al., 2008) and mapping remnants of a unique sequence of 129	
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spatially correlated Cenozoic lateritic incision markers at the scale of West Africa 130	

(Beauvais and Chardon, 2013; Grimaud et al., 2014) offer an opportunity to test the age 131	

of the drainage and its potential evolution on the Cenozoic timescale.  132	

 133	

3. Lateritic paleolandscape markers and field investigations 134	

The present day topography of West Africa results from the dissection of the 135	

African Surface, a landscape being the product of a protracted period of lateritic 136	

weathering that culminated and ended during Eocene peak greenhouse (Boulangé and 137	

Millot, 1988; Beauvais and Chardon, 2013). Remnants of this landscape bear thick (> 138	

80 m) bauxite-capped weathering profiles, which are preserved throughout West Africa 139	

as mesas (Fig. 3) defining the topographic envelope of the sub region. Lateritic bauxites 140	

developed on all pre-Cenozoic rocks exposed in West Africa during the Paleocene and 141	

Eocene. Stratigraphic and sedimentologic investigations have established the 142	

synchronicity and link between inland bauxite production and Early to Mid-Eocene 143	

marine chemical sedimentation in the basins of the sub region. This allowed 144	

constraining a stratigraphic age for the bauxites (Millot, 1970) and correlating the 145	

African surface with Paleogene marine series now buried in those basins (Fig. 4).  146	

In the literature, the term “African Surface” generally has a genetic implication. 147	

The African Surface was originally defined by L.C. King as a flat planation surface of 148	

continental extent that had been leveled down to sea level until the Early Tertiary (King, 149	

1948; 1967). In King’s paradigm, escarpment retreat from the coasts towards deep 150	

continental interiors as a result of pedimentation was the shaping agent of a flat African 151	

continent. Later work showed that the African Surface could have a significant original 152	

topography and relief and even comprised the Great Escarpment of Southern Africa 153	

(e.g., Partridge and Maud, 1987). For Burke and Gunnell (2008), the topography and 154	
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the main escarpments of the continent result from the uplift and incision of the African 155	

Surface as a consequence of the growth of the plate-scale basin-and-swell relief (Fig. 1). 156	

Such a model implies a low-lying and flat continent and therefore a low-lying and flat 157	

African Surface before 30 Ma i.e., at the time mantle dynamics is inferred to have 158	

started imprinting the continent’s topography.  159	

In this work, we argue that West African bauxitic remnant landscapes do not 160	

define a planation surface as defined by King. Instead of pedimentation, weathering 161	

enhanced by efficient drainage of the lateritic regolith that was maintained by slow river 162	

incision to produce a hilly bauxite-capped landscape of moderate local relief (<100 m) 163	

and wavelength (5-20 km) (Chardon et al., 2006; Fig 3). As a smooth but differentiated 164	

landscape efficiently drained by a river network (Grandin, 1976; Chardon et al., 2006), 165	

the African Surface had a significant long-wavelength (≥100 km) topography, relief and 166	

slopes and could not have been flat at sea level elevation except along coasts. This is 167	

further documented by the present study (see below) and shows that the African surface 168	

cannot be used as a simple flat elevation datum for measuring surface uplift. 169	

Outside the Cenozoic sedimentary basins, stepwise dissection of the African 170	

Surface produced mosaic landscapes made of successive remnants of lateritic landforms 171	

with specific geomorphic, sedimentological and petrological characteristics (Michel, 172	

1959, 1973; Boulet, 1970; Eschenbrenner and Grandin, 1970; Boulangé et al., 1973; 173	

Grandin, 1976; Gunnell, 2003; Burke and Gunnell, 2008; recent reviews by Beauvais 174	

and Chardon, 2013; Grimaud et al., 2014, 2015). The Intermediate Surface designates a 175	

landscape whose remnants are preserved below bauxitic relicts of the African Surface 176	

and above younger lateritic pediments (Fig. 3). Relicts of the Intermediate Surface bear 177	

≥ 40 m-thick weathering profiles topped by a ferricrete that is easily distinguishable 178	

from the bauxites of the African surface or the pediments. Outside Cenozoic 179	
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sedimentary basins, Intermediate Surface relicts typically delineate wide river valleys 180	

between bauxitic relief remnants forming interfluves (Fig. 3). The Intermediate Surface 181	

therefore comprises residual reliefs inherited from the Bauxitic African Surface; it has a 182	

differentiated topography and local relief and - like the African Surface - may not be 183	

considered as an originally flat regional topographic marker.  184	

The end of bauxitic weathering coincides with the onset of the dissection of the 185	

African Surface. Similarly, the weathering and ultimate development of the 186	

Intermediate ferricrete ended with incision of the Intermediate Surface (Beauvais and 187	

Chardon, 2013). These paleolandscape abandonment ages are constrained by Ar-Ar age 188	

groups of K-Mn oxides sampled in the weathering profile of each relict surface at the 189	

Tambao type locality in Burkina Faso (Beauvais et al., 2008; Fig. 2). A 55-45 Ma age 190	

group confirms the Early- to Mid-Eocene age of the late bauxitic landscape and its 191	

abandonment around 45 Ma, whereas a 29-24 Ma age group constrains the Latest 192	

Oligocene abandonment age of the Intermediate landscape (Beauvais and Chardon, 193	

2013).  194	

Given their type geomorphology and regolith and the wide distribution of their 195	

relicts over the sub region (Beauvais and Chardon, 2013; Grimaud et al., 2014), the 196	

African Surface (referred to as S1) and the Intermediate Surface (S2) are decisive 197	

paleolandscape datum that are used here to investigate the regional relief and drainage 198	

configuration before their respective abandonments. Our study primarily relies on field 199	

surveys allowing assessing the spatial relationships between S1 and S2 remnants, 200	

Cenozoic sediments and the modern drainage network and alluviums over key areas of 201	

the sub region (Figs. 4 to 6). Given the dense spatial distribution of S1 and S2 landscape 202	

remnants, we also constructed the geometry of S1 and S2 surfaces at the scale of the sub 203	

region in order to extract their large-scale drainage networks. 204	
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 205	

4. Regional topographies and drainages reconstruction protocol 206	

4. 1. Construction of S1 and S2 present-day geometry 207	

To reconstruct S1 and S2 surfaces geometries, we built an irregular triangulated 208	

mesh using the DSI method designed for full 3D representation of complex geological 209	

objects (Mallet, 1992; Figs. 7a and 7d). Spatially varying resolution is a motivation for 210	

using triangulated surfaces as compared to 2D grids, because they allow low surface 211	

nodes densities (larger triangles) in smoothly varying areas and higher densities (smaller 212	

triangles) in high curvature areas. Additionally, a range of constraints is used to ensure 213	

geometrical consistency of the surfaces (e.g., no self-intersections), as well as 214	

consistency between surfaces (e.g., no intersection). In practice, DSI solves for the 215	

optimal location of the surface nodes to minimize a weighted sum of the surface 216	

roughness and constrain misfit (Mallet, 1997, 2002; Caumon et al., 2009). Strict 217	

constraints restrict the degree of freedom of surface nodes: a node ascribed to a surface 218	

remnant data point is frozen to a given location in space. In addition to this data-points 219	

compliance, soft constraints are honored in a least-squares sense: nodes are forced to lie 220	

above the present day topography as well as above or below the other triangulated 221	

surface (S1 above S2 above topography). This procedure allows ensuring the 222	

hydrological consistency of the surfaces and accounting for the composite nature of the 223	

S2 Intermediate landscape that comprises residual S1 reliefs (see Supporting 224	

Information). Finally, the progressive increase in triangulated surface resolution during 225	

construction, from an initial state based solely on S1 and S2 remnant data-points, allows 226	

for both the data compliance and geometrical consistencies to be preserved in domains 227	

where nodes are created (triangles are subdivided) beyond the initial resolution of the 228	

surface remnant data sets. We verified the robustness and sensitivity of our workflow 229	
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using a synthetic case calibrated to the dimensions of typical West African surfaces’ 230	

topography and relief (see Supporting Information). 231	

 232	

4. 2. Denudation of S1 and S2 233	

Reconstructed S1 and S2 surface geometries represent the present-day geometry 234	

of past regional topographies that have potentially undergone lithospheric deformation 235	

after their abandonment (Figs. 7a and 7d). Among the sources of deformation, the 236	

easiest one to account for is the flexural response of the lithosphere to erosion and 237	

sedimentation since their abandonment. We therefore corrected S1 and S2 triangulated 238	

surfaces from the flexural isostatic deformation of the lithosphere due to denudation and 239	

sediment deposition that distorted their geometry since their abandonment (see West et 240	

al., 2013 for a comparable approach).  241	

At the locations of paleolandscape remnants, by definition, no denudation 242	

occurred since their abandonment. Those paleolandscape remnants constitute densely 243	

distributed summits of the region whose envelope, compared to the present day 244	

topography, constrains the amount of incision since surfaces abandonments (e.g., Fig. 3). 245	

Flexural isostasy wavelength of the old (~2 Ga) and cold West African lithosphere is 246	

expected to be much longer (several hundreds of km) than the typical horizontal 247	

distance between paleolandscape remnants (i.e., a few tens of km; Figs. 7a and 7d). The 248	

characteristic wavelength of incision of S1 and S2 is thus small enough to assume that 249	

the local relief, and therefore the denudation produced by incision, is not affected by 250	

flexural isostatic deformation. Hence, we computed denudation maps of S1 and S2 by 251	

subtracting the present-day topography from their surface geometries (Figs. 8a and 8c).  252	

 253	

4. 3. Flexural isostatic correction of surfaces geometries 254	
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We computed the change in crustal thickness due to post-S1 and post-S2 erosion 255	

and sedimentation and the resulting flexural isostatic response (Figs. 8b and 8d). To do 256	

this, we used the formulation of Braun et al. (2013) that calculates the deflection of a 257	

thin elastic plate assuming the effective elastic thickness (EET) is linked at depth to a 258	

given isotherm. We used a 128x128 grid, 2600x1900 km in size. We assumed a 36 km 259	

thick crust with a density of 2800 kg.m-3, a 150 km thick lithosphere with a mantle 260	

density of 3300 kg.m-3 and a basal temperature of 1300°C. We have tested effective 261	

elastic thicknesses ranging from 30 to 50 km (isotherms 250° to 450°). For a 50 km 262	

EET, isostatic uplift ranges from 0 to 600 m for S2 and -200 to 800 m for S1 (Figs. 8b 263	

and 8d). For lower values of EET, uplift amplitudes are higher (up to 650 m for S2, -264	

300 to 1000 m for S1) with identical map patterns. A simple Airy isostatic 265	

compensation calculation using the same grid leads to the same regional uplift pattern as 266	

that produced with a 50 km EET, but with a noise at the cell scale that is not realistic 267	

with regard to a flexural isostasy wavelength. We therefore chose to use the 50 km EET 268	

for correcting S1 and S2 surfaces geometries from denudational flexural isostasy (Figs. 269	

8b and 8d). 270	

Maps of Figures 8b and 8d represent rock uplift i.e., the displacement of rocks 271	

with respect to the geoid (England and Molnar, 1990), whereas it is surface uplift - 272	

defined as the denudation subtracted from rock uplift - that should be used for 273	

correcting S1 and S2 surface geometries. But those surface geometries are constrained 274	

by S1 and S2 paleolandscape remnants, which have undergone no denudation since 275	

their abandonment. Accordingly, rock uplift was used directly for correcting S1 and S2 276	

(Figs. 7b and 7e). Corrections generally tend to reduce the large-scale topographic 277	

amplitude of surface geometries without modifying their first-order relief map pattern 278	

(Figs. 7a and 7b; 7d and 7e). Drainages were then extracted from the corrected surface 279	
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geometries (Figs. 7c and 7f; see Supporting Information). These drainages (Figs. 7c and 280	

7f) are consistent with higher-resolution field investigations made over key areas (Figs. 281	

4 to 6), validating the construction and isostatic correction procedures. The resulting 282	

Late Oligocene (S2) and Mid-Eocene (S1) regional physiographic stages are then 283	

interpreted from paleogeographic maps (Fig. 9), which combine the extracted drainages 284	

and the onshore paleoenvironmental sedimentary record compiled from various sources 285	

(Faure, 1966; Greigert, 1966; Greigert and Pougnet, 1967; Monciardini, 1966; Charpy 286	

and Nahon, 1978; Lang et al., 1986; Conrad and Lappartient, 1987; Reijers, 2011 and 287	

the present work).  288	

 289	

5. Geomorphic configuration along key portions of the drainage 290	

5. 1. Iullemmeden basin 291	

Differential elevation of S1 and S2 tends to decrease from the exposed West 292	

African Paleoproterozoic basement towards the southern margin of the Iullemmeden 293	

basin (Colin et al., 2005; Beauvais et al., 2008; Figs. 2 and 4). There, fluvial sediments 294	

of the Continental Terminal overly S1 bauxitic weathering profiles developed upon Pre-295	

Cenozoic bedrocks (Greigert, 1966; Gavaud, 1977, Beaudet et al., 1977b; our own field 296	

observations). The Continental Terminal also tops Mid-Eocene marine series in the rest 297	

of the basin and a temporal and spatial correlation is established between the S1 surface 298	

and those series (Fig. 4). Instead of dipping under the basin infill, S2 is preserved as 299	

conspicuous mesas capping the Continental Terminal and its adjoining basement 300	

(Dresch and Rougerie, 1960; Faure, 1966; Greigert, 1966; Gavaud, 1977; Beaudet et al., 301	

1977b; Kogbe, 1978; our own field observations; Fig. 4). Chronostratigraphic 302	

constraints on the Continental Terminal are Oligocene mammals, fishes and woods 303	

(Radier, 1953, 1959) as well as Mid-Eocene to Oligocene pollens (Lang et al., 1990). 304	
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Weathering and duricrusting of S2 at 29-24 Ma as constrained by Ar-Ar geochronology 305	

of K-Mn oxides in Tambao (Beauvais et al., 2008; Fig. 4) are consistent with 306	

biostratigraphy and allow restraining the age of the Continental Terminal from Lutetian 307	

to Rupelian (49-29 Ma).   308	

S2 plateaus define a very smooth regional surface (Fig. 4), which has been 309	

dissected by the Niger River and its tributaries (Fig. 5a). Incision of S2 led to the 310	

exposure of its weathering profile developed on sandstones and argillites of the 311	

Continental Terminal (Réformatsky, 1935; Gavaud, 1977; our own field observations; 312	

Fig. 5a). The dense spatial distribution and large size (up to tens of km) of S2 plateaus 313	

as well as their clear-cut photointerpretation signature validated by field control 314	

prompted us to reconstruct the geometry of S2, which displays two main features (Fig. 315	

5b). The most prominent one is a ca. 200 km wide, NW trending asymmetrical trough 316	

with a short southwestern flank steeper than its northeastern flank and a hinge line 317	

roughly coinciding with the present day course of the Niger River. The second feature is 318	

a N-S trending valley roughly coinciding with the trace of the Dallol Bosso that widens 319	

towards its junction with the NW trending trough (Fig. 5b). We interpret this 320	

topographic pattern to reflect the main drainage axes of the region before abandonment 321	

of the S2 landscape in the Late Oligocene. The map shows that those drainage axes 322	

were already the Niger and the Dallol Bosso at their current location at the time. This 323	

interpretation is reinforced by the fact that the S2 ferricrete cements alluvial gravels or 324	

sand blankets (even where atop weathered argillites) on plateaus adjoining those 325	

modern rivers, forming the alluvial terraces along those paleo-river courses (see also 326	

Greigert, 1966; Beaudet et al., 1977b). The map also suggests that the present-day 327	

Sokoto and Zamtara Rivers were already tributaries of the Niger River in the Late 328	

Oligocene (Fig. 5b). 329	
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 330	

5. 2. High Niger valley and inland delta 331	

 In the northernmost High Niger catchment (Fig. 2), S1-S2 differential elevation 332	

may attain 400 m and decreases towards the internal delta where S1 and S2 tend to 333	

merge (Beauvais and Chardon, 2013; Grimaud et al., 2014). This is confirmed by field 334	

observations at the northern margin of the delta, where S1 and S2 duricrusts cap a 335	

laterally continuous weathering profile developed on Neoproterozoic sandstones (Fig. 336	

6a). Around Ségou, both duricrusts are seen to mantle low (< 30 m-high) residual hills 337	

dominating a pediplain (Fig. 6b). Comparable hills emerge from the inland delta 338	

alluviums further to the northeast (data points in Fig. 6a). Given the low (< 40 m) relief 339	

of the composite S1/S2 landscape, both types of duricrust may not only occupy hills but 340	

are also seen in man-made pits in the pediplain (Figs. 6c and 6d). In the Niger River 341	

course itself, a bauxitic weathering profile capping the Neoproterozoic sandstones even 342	

crops under alluviums (Fig. 6e). Mapping of S1 and S2 duricrust remnants on the slopes 343	

of the Niger valley around the delta (Fig. 6a) indicates that the composite S1-S2 344	

weathering profile carpets the entire valley (Fig. 6f). Therefore, the valley likely had its 345	

current cross-profile by the end of bauxitic weathering and has undergone very limited 346	

relief evolution since then (Fig. 6f). In other words, the High Niger drainage axis 347	

already existed by the Mid-Eocene (i.e., ~45 Ma). The stability of the valley is probably 348	

structurally controlled for it occupies a syneclise in the Neoproterozoic sandstones 349	

(Urvoy, 1942; Fig. 6f). The Late Oligocene S2 weathering profile capping the 350	

Neoproterozoic sandstones is directly overlain by the Quaternary inland delta (Figs. 6e 351	

and 6f). This precludes preservation of Pre-Quaternary Cenozoic fluvial sediments in 352	

the High Niger valley as inferred by Urvoy (1942) and Erhart (1943), who mistook the 353	

S1 / S2 weathering profile developed on the Precambrian sandstones for the Continental 354	
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Terminal (e.g., Bassot et al., 1980). The High Niger valley has therefore remained a 355	

sediment bypass zone since at least the Mid-Eocene.  356	

 357	

5. 3. Niger River elbow region 358	

The Niger River elbow region in between the inland delta and the Iullemmeden 359	

basin (Fig. 2) has been surveyed by Beaudet et al. (1977a, 1977b, 1981a) and Michel 360	

(1977). Those authors have shown that the S2 ferricrete capping the mesas of the region 361	

(i.e., the relicts of the “fundamental topography” of Beaudet et al., 1977a) 362	

systematically dips towards the modern river and cement alluvial gravels in the vicinity 363	

of its course, arguing for its antiquity. Fieldwork also led Beaudet et al. (1981a) to the 364	

same conclusion for the Tilemsi River, a tributary of the Niger draining the western 365	

flank of the Adrar des Ifoghas massif (Fig. 2). Those observations are consistent with 366	

our investigation upstream and downstream the elbow region (Figs. 5 and 6). The 29-24 367	

Ma minimum age of S2 argues for the stability of the Niger drainage since the Late 368	

Oligocene. 369	

 370	

5. 4. Sourou valley 371	

Our field surveys reveal that the Sourou delta (Fig. 2) emplaced in a shallow 372	

trough carpeted with a weathering profile developed on Neoproterozoic sandstones and 373	

topped by bauxites and Intermediate ferricretes. S1 and S2 duricrusts cap hills emerging 374	

from the delta alluviums and occur along the margins of the plain. S1 and S2 relicts see 375	

their elevation and differential elevation increase eastward from the Sourou valley 376	

(Boulet, 1970; Beauvais and Chardon, 2013), the valley being bounded to the west by 377	

the Bandiagara plateau (See Figs. 2 and 6f). Our observations and interpretation are 378	

consistent with the bauxite occurrences map of Petit (1994) and well logs in the delta 379	
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(Koussoubé, 2010). But the Cenozoic sediments inferred by Urvoy (1942) to underlie 380	

the delta (the “Continental Terminal” of the later authors) is precluded because the 381	

S1/S2 weathering profile was again mistaken for pre-delta sediments. Therefore, the 382	

morphosedimentary structure of the Sourou valley is indicative of a drainage axis 383	

existing since at least the Mid-Eocene (i.e., minimum age of the bauxites), which 384	

remained a sediment bypass until installation of the delta in the Quaternary. 385	

The Sourou River extends via a wind gap into a river flowing eastward to the Low 386	

Niger (Fig. 2). As opposed to the uppermost north-flowing High Volta, a south-flowing 387	

Sourou could not have generated the delta considering the very limited size and relief of 388	

its catchment. The delta is indeed fringed to the northeast by the Niger watershed (Fig. 389	

2), which would have remained stationary since the Late Oligocene (section 4.1; Fig 5b). 390	

Furthermore, the Sourou River still receives one-sixth of the High Volta waters and still 391	

flows northward up to 50 km north of their confluence (Palausi, 1959). We therefore 392	

interpret the connection of the Sourou to the Volta as resulting from overspill of the 393	

delta formed by the Sourou River that used to flow into the Niger. Delta formation and 394	

ultimate drainage reversal of the river must have resulted from surface uplift in the area 395	

of the current wind gap, which is also attested by efficient erosion of the S1 and S2 396	

landscape remnants in between the Sourou and the Niger elbow (e.g., Beaudet al., 397	

1981b).  398	

 399	

6. Reconstitution of two Paleogene relief and drainage stages 400	

6. 1. Late Oligocene stage (S2) 401	

Corrected S2 surface geometry strikingly mimics today’s topography, with the 402	

High Niger, Low Niger and Sourou valleys being clearly delineated and a drainage 403	

divide similar to the current one (Figs. 2, 7b and 7c). The drainage extraction procedure 404	
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imposed oceanic outlets to all drains. Some water gaps have thus been forced, such as 405	

that linking the High Niger to the Senegal catchment north of Bamako (Fig. 7b). A 406	

divide was also generated NW of Gao between the Low and High Niger (Fig. 7b). As 407	

field evidence attests to the existence of a continuous Niger River course by the end of 408	

S2 landscape stage in that area (section 4.3), a “Gao divide” may be reasonably 409	

considered as irrelevant given the resolution of the method. As a way of consequence, 410	

the water gap connecting the High Niger to the Senegal drainage is precluded because 411	

the Niger could not overspill into the Senegal drainage and, at the same time, flow 412	

across the Gao sill to form a major river valley across the Iullemmeden basin (Fig. 5b). 413	

Extracted drainage displays a Sourou River flowing south into a Volta drain (Fig. 414	

7b). However, this connection occurred only in the Quaternary (section 4.4). Therefore, 415	

the divide generated between the Sourou and the Niger valleys near Gao (Fig. 7b) may 416	

be ignored in the interpretation (Fig. 7c). Nonetheless, this divide must somehow reflect 417	

uplift-driven formation of the current wind gap isolating the Sourou River from the 418	

Niger (Fig. 2) and later drainage reversal of the Sourou River (see below). One must 419	

therefore consider a Sourou River already flowing northeastward into the Low Niger in 420	

the Late Oligocene (Fig. 7c). 421	

 422	

6. 2. Mid-Eocene stage (S1) 423	

Corrected S1 surface geometry displays a marginal upwarp forming the 424	

continental divide with a steep seaward slope and a gentle northward slope, which 425	

includes large valleys plunging NE i.e., the High Niger, the Sourou, and a Paleo-Volta 426	

(Figs. 7e and 7f). A modern-like Senegambia catchment comparable to that of the Late 427	

Oligocene stage (Fig. 7c) is also marked (Fig. 7f), as attested by extensive mapping of 428	

S1 and S2 by Michel (1959, 1973). A divide isolates the Sourou from the Niger valley 429	
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and a water gap connects the Sourou valley to an upper drain of the Paleo-Volta 430	

drainage (Fig. 7e). This configuration is comparable to the drainage extracted from S2 431	

geometry (Fig. 7b). Both this divide and water gap may therefore be precluded for the 432	

same reasons as those invoked in the S2 case, especially considering the fact that the 433	

southern coastline of the Tethys was located SW of Gao in the Mid-Eocene (i.e., at the 434	

time S1 was being ultimately weathered and duricrusted; Fig. 7f). Hence, the Sourou 435	

River must have flown directly to the sea near Gao by the Mid-Eocene (Fig. 7f). The 436	

water gap allowing the lower High Niger to flow into the Senegal drainage would imply 437	

a loop in the river very near to the seashore, allowing back flow across the marginal 438	

upwarp. Such a configuration is unlikely given the very low relief and slope of S1 and 439	

the lack of evidence for paleo-river course remnants in that area (Beaudet et al., 1977a). 440	

One must therefore consider that a Mid-Eocene High Niger used to flow northeastward 441	

to the sea (Fig. 7f). 442	

 443	

7. Interpretation 444	

7. 1. Oligocene paleogeography: antiquity of the West African drainage  445	

The modern Niger drainage was established by the Late Oligocene and already 446	

comprised the High Niger and its tributaries draining the Hoggar swell (Fig. 9a). The 447	

uppermost High Niger watershed was probably located at the southernmost limit of its 448	

uncertainty domain shown in Fig. 7c given the reconstituted S2 longitudinal profiles of 449	

the High Niger and short coastal River drains, all pointing to a continental divide near 450	

its current location (Grimaud et al., 2014). The Senegambia catchment had also already 451	

acquired its current shape and its main drains (Fig. 7c). The fact that S2 paleolandscape 452	

remnants systematically dip towards the main present day river courses of the region 453	

(Grimaud et al., 2014) and the similarity between the drainage extracted from S2 454	
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corrected geometry and that of the current drainage (Figs. 9a and 9b) further attest to the 455	

stability of the main drains since the Late Oligocene. Connection of the Sourou River to 456	

the Volta and limited headward migration of the uppermost Niger watershed would be 457	

the only adjustments of the drainage since the Late Oligocene (Figs. 9a and 9b).  458	

 459	

7. 2. Mid-Eocene paleogeography 460	

 In the Mid-Eocene, the drainage of West Africa was organized on both slopes of 461	

a marginal upwarp isolating a marine intracratonic basin connected to the Tethys 462	

(Guiraud et al., 2005) from the Central and Equatorial Atlantic Ocean (Figs. 9c). Short 463	

rivers drained the seaward slope of the marginal upwarp, whereas longer drains, such as 464	

the High Niger, the Sourou and a Paleo-Volta flowed northward (Fig. 9c). The alluvial 465	

facies of the nascent Niger delta suggests that a (short) seaward-flowing Benue drain 466	

fed the delta (Fig. 9c). As both slopes of the marginal upwarp are carved by major 467	

valleys at a high angle to its trend, any river crossing its crest would inevitably connect 468	

both seas, forming seaways that are not substantiated by the geological record. This, 469	

together with the fact that S1 bauxites and marine Paleogene sediments are mutually 470	

exclusive (Millot, 1970), argues for a continental divide coinciding with the crestal 471	

region of the marginal upwarp in the Mid-Eocene (Figs. 9c). The uncertainty on that 472	

divide for the uppermost High Niger (Figs. 7f and 9c) may be reasonably restrained 473	

towards its southwestern limit as suggested by the geometry of S1 along paleo-long 474	

profiles of both the High Niger and short coastal rivers (Grimaud et al., 2014). 475	

 476	

7. 3. Establishment of the modern drainage 477	

Connection of the Niger catchment to the Equatorial Atlantic Ocean is at least 478	

29 Ma old i.e., the age of the oldest preserved weathering of the S2 landscape that 479	



	 20

fossilizes the current river courses (e.g., Fig. 5). Actually, acquisition of the modern 480	

drainage configuration most probably dates back to 34 Ma assuming it triggered 481	

building of the coastal Niger delta at the Eocene - Oligocene boundary (biostratigraphic 482	

age in Doust and Omatsola, 1990). The Niger catchment has indeed remained the 483	

delta’s most prominent supplier. Despite episodic overspill into the Benue’s catchment 484	

during the recent Quaternary, the Chad basin (Figs. 1 and 2) remained an active sag 485	

basin trapping sediments throughout the Cenozoic (Burke, 1976; Talbot, 1980). 486	

Furthermore, the Benue drainage appears to have remained isolated from the Congo 487	

basin (Fig. 1) by the Cameroon volcanic Line (e.g., Ségalen, 1967; Fritsch, 1978; Fig. 488	

2) since the Eocene. Therefore, the Benue River catchment must have kept its current 489	

limited size throughout the Cenozoic and could not contribute significantly to the Niger 490	

delta compared to the Niger River.  491	

Modification of the regional physiography between the Mid-Eocene (~45 Ma) 492	

and the Late Early Oligocene (~29 Ma) resulted in a major inland shift of the 493	

continental divide, east of the Guinean Rise, of up to 1000 km and required 494	

entrenchment of the marginal upwarp to allow opening of at least two major drainage 495	

basins (Niger and Volta) on the Equatorial Atlantic Ocean (Figs. 9a, 9c and 10). 496	

Emplacement of alluvial systems of the Continental Terminal followed post-Ypresian 497	

(~48 Ma) sea retreat (Figs. 10a and 10b). The absence of evaporites in the 498	

Iullemmenden fan (excluding the hypothesis of a playa-bearing closed depression), 499	

paleo-current directions in the fan (our own field data), and map configuration in Fig. 500	

5b suggest that the course of the Niger River was established during building of the fan. 501	

Aggradation-driven overspill of the Iullemmeden Fan is therefore a plausible 502	

mechanism for connecting the Niger to a Benue drain. Nevertheless, a capture by 503	

headward erosion of a Benue tributary may not be ruled out, but would have had to 504	
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occur before Iullemmeden fan installation. Rearrangement of the Volta drainage 505	

involved establishment of a water gap across the marginal upwarp as well as drainage 506	

reversal, implying seaward tilt of the catchment (Figs. 9 and 10). Several lines of 507	

evidence reported below suggest that such a tilt may have resulted in the formation of 508	

an internal delta against the ancient divide before connection of the Volta into the 509	

seaward drainage. This sill coincides with one of the highest knickzones in West Africa 510	

(KZ; Fig. 2) that exists since at least 11 Ma (Grimaud et al., 2014). This knickzone also 511	

currently acts as the spillway for the vast plain occupying the Paleozoic Volta basin (Fig. 512	

2) and where airborne magnetic data allowed imaging a major meandering paleochannel 513	

transecting the main current drains (Jessell et al., 2015). Such a paleochannel suggests 514	

the existence of a transient flood plain formed at the time of drainage reversal before 515	

overspill into the Atlantic drainage.  516	

Late Oligocene paleogeographic reconstruction (~29-24 Ma; Fig. 9a) post-dates 517	

the emplacement of large alluvial systems of the Continental Terminal (i.e., megafans), 518	

which had undergone deformation and erosion after settling of the S2 ferricrete (Figs. 519	

10a and 10b). In the eastern part of the study area, this deformation is documented by (i) 520	

the occurrence of Oligocene fluvial sediments equivalent to the Continental Terminal at 521	

the top of the Atakor range in the Hoggar swell above 2500 m elevation (Rognon et al., 522	

1983; Figs. 2 and 11), (ii) erosion of the Continental Terminal at the northern margin of 523	

the Iullemmeden basin and (iii) the geometry of the basin indicative of warping and 524	

southward migration of depocenter on the propagating piedmont of the swell (Fig. 11). 525	

Such deformation and denudation patterns sign the amplification and propagation of an 526	

epeirogenic wave (Faure, 1971), which is still active as attested by anomalies in river 527	

profiles showing southwestward growth of the swell (Grimaud et al., 2014; Fig. 9b). 528	

Swell growth is interpreted to have produced reversal of the Volta drainage and later 529	
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slope decrease of the High Niger and Sourou rivers that triggered the formation of their 530	

internal deltas (Grimaud et al., 2014) (Fig. 10). The short Sourou River could not keep 531	

pace with this deformation and underwent flow reversal and overspill into the Volta, 532	

whereas the High Niger had a higher stream power thanks to a larger catchment 533	

draining highlands under intense precipitations and was able to maintain its course. 534	

Practically, epeirogenic wave propagation due to the growth of the Hoggar swell 535	

explains the artificial “Gao divides” and “captures” of the High Niger by the Senegal 536	

and the Sourou by the Volta on S1 and S2 corrected geometries (Figs. 7b and 7e) that 537	

have recorded this deformation.  538	

To summarize, sea retreat from Northwestern Africa starting in the Mid-Eocene, 539	

Continental Terminal fan emplacement and their warping and incision, drainage 540	

reversal of the Volta valley and the development of internal deltas are successive 541	

consequences of the Hoggar hot spot swell growth (Fig. 10). 542	

 543	

8. Discussion 544	

 The present work shows that the drainage map pattern of West Africa remained 545	

essentially stationary since the Late Early Oligocene (29 Ma) and most probably the 546	

Earliest Oligocene (~ 34 Ma). Antiquity of the drainage argues against the view that 547	

typically stepped longitudinal profiles and elbow map patterns of African rivers are 548	

Quaternary features of aggressive coastal drains having captured intracratonic basins by 549	

headward erosion (Goudie, 2005). Very long term drainage stability also questions earth 550	

surface process models arguing for dynamically and therefore “permanently” 551	

reorganizing drainage networks in cratonic and passive margin settings (Willett et al., 552	

2014). Finally, the West African example shows that classically invoked features such 553	
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as abrupt elbows and/or knick points in river courses may not necessarily be diagnostic 554	

of drainage capture by river piracy due to headward erosion (Bishop, 1995). 555	

 Mid-Eocene (~ 45 Ma) paleogeography of West Africa suggests that the 556	

installation and stabilization of the current drainage between 34 and 24 Ma followed 557	

regional-scale drainage rearrangement. The mechanism(s) responsible for this 558	

rearrangement may not all be unequivocally identified. Nonetheless, long-wavelength 559	

lithospheric deformation related to the growth of the Hoggar swell has been 560	

instrumental in enhancing modification in regional slope(s) that contributed to that 561	

rearrangement. Therefore, river piracy via headward erosion may not be required to 562	

achieve the documented drainage rearrangement. The present work attests to the 563	

permanency of long portions of river valleys since the Early Paleogene (High Niger, 564	

Sourou, Volta) although some may have undergone flow reversal. Such longevity is 565	

explained by the fact that these valleys are structurally controlled, as early pointed out 566	

by Urvoy (1942) and Palausi (1959). 567	

The stability of West African drainage map patterns warrants investigation of 568	

river long profiles evolution over geological time scales (Grimaud et al., 2014). But 569	

uplift histories retrieved from river profiles inversion (Paul et al., 2014) would not be 570	

valid as extrapolated back in time beyond the Late or Early Oligocene (30-34 Ma), 571	

which corresponds to the time of regional drainage rearrangement. Besides, river 572	

inversion procedures are based on stream power law incision models that explicitly rely 573	

on headward migration of knickzones, which have been shown to be stationary along 574	

West African rivers during the Neogene (Grimaud et al., 2014). Moreover, the growth 575	

of several hot-spot swells over Northern and Eastern Africa from the Mid-Eocene 576	

onward (Burke, 1996) is likely to have triggered drainage reorganizations comparable to 577	

that documented here around the Hoggar. Therefore, the main rivers draining those 578	
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swells must have composite profiles whose inversion in terms of uplift may be 579	

challenged. 580	

Drainage stabilization since the Early Oligocene sets a new framework for 581	

understanding the West African craton-margin source-to-sink system. Indeed, large 582	

catchments such as the Niger, the Volta and Senegambia have kept a constant geometry 583	

since 29-34 Ma. The Niger catchment has been the Niger delta’s most prominent 584	

supplier since that time. Therefore, increasing Neogene clastic sedimentary flux to the 585	

delta that has attained a peak in the Pliocene (Robin et al., 2011) has responded to the 586	

growth of the Hoggar swell and potentially to climatically driven change in erosion 587	

efficiency, but not to drainage reorganization. Accordingly, the Latest Pliocene drop in 588	

clastic fluxes to the delta (Jermannaud et al., 2010; Robin et al., 2011) may solely be 589	

due to aridification that dried out the Niger’s tributaries draining the Hoggar swell (e.g., 590	

Fig. 2). Finally, stability of the Senegambia catchment offers the opportunity to 591	

investigate relationships between the sedimentary record of the Senegal basin and the 592	

denudation history of the catchment since the Mid-Eocene (i.e., age of the S1 bauxites; 593	

Fig. 10). By contrast, a major change in the sedimentary record of the Equatorial margin 594	

of Africa is expected consecutively to the connection of its two most prominent 595	

catchments (Niger and Volta) to the Equatorial Atlantic Ocean after an Early Paleogene 596	

(pre ~34 Ma) period of subdued clastic inputs by short rivers. The main cause for this 597	

stratigraphic turnover is the initiation and amplification of the Hoggar hot-spot swell.  598	

 Long-wavelength lithospheric deformation due to hot spot swell growth may 599	

trigger large-scale drainage rearrangement as exemplified here by West Africa since the 600	

Mid-Eocene (~48-40 Ma). But the West African example also shows that once the new 601	

drainage configuration is set, ongoing swell growth may not necessarily lead to further 602	

significant river network rearrangement. Maintenance of the drainage his allowed by a 603	
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very gentle (~0.3 ‰) regional slope from the Atakor’s piedmont to the coast, which 604	

may be sustained by very-long wavelength swell growth (Fig. 11). On the upper 605	

southern slope of the swell where the S2 topography has been eroded the most (~1.5 606	

km; Fig. 11), more than 600 m of denudational isostatic uplift is expected since the 607	

Latest Oligocene (~24 Ma) (Fig. 8b). This suggests that erosion of the growing swell 608	

contributed to at least one-third of the maximum finite uplift due to hot spot swell 609	

growth (~2 km; Fig. 11), the remaining two-third of the uplift being produced by 610	

dynamic asthenospheric support, isostatic compensation of magmatic underplating and 611	

potential plume thermal effect. 612	

Our work argues for the stability of rivers crossing the West African marginal 613	

upwarp since the Early Oligocene but also shows that the upwarp earlier formed a 614	

continental divide. Periods of dual (northward and southward) drainage may therefore 615	

alternate with periods of through-going rivers tapping sediments from the continental 616	

interior and would plead for renewed margin upwarping even long after (~90 Ma) 617	

continental breakup. Still, our study shows that at least 1500 km wavelength, hot-spot 618	

related lithospheric deformation (Fig. 10) may be efficient in triggering seaward tilt of 619	

the continental surfaces leading to the connection of internal drainage to coastal rivers 620	

across low-elevation passive margins. 621	

 622	

9. Conclusion 623	

 The main current pattern of the West African drainage such as the Niger and 624	

Volta river systems stabilized in the Late Early Oligocene (>29 Ma) and probably at the 625	

Eocene-Oligocene boundary (34 Ma). Antiquity of the drainage opens new perspective 626	

on linking offshore stratigraphic records to landform evolution of large catchments of 627	

known stationary geometry over the last ~34-29 Ma and even since ~45 Ma for the 628	
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Senegambia drainage. This result calls for caution in interpreting elbows and stepped 629	

longitudinal profiles of cratonic rivers as diagnostic of Quaternary drainage 630	

rearrangements due to aggressive headward erosion, and suggests that river piracy may 631	

be much less common than inferred in shield contexts. Reconstituted Mid-Eocene (~45 632	

Ma) geography suggests that the drainage reorganized and stabilized after a period of 633	

dual drainage on both slopes of a marginal upwarp acting as a continental divide. Very 634	

long wavelength growth of the Hoggar hot spot swell since the Late Eocene caused 635	

regional drainage rearrangement that led to the modern physiography of West Africa. 636	

Importantly, a major regional stratigraphic turnover is expected along the Equatorial 637	

margin of Africa consecutive to the opening of at least two major catchments (Niger 638	

and Volta) on the Atlantic Ocean following a period of subdued clastic sedimentary 639	

fluxes provided by short rivers. 640	
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Figure captions 868	

Figure 1. Topography, “basin-and-swell” relief, and main river systems of Africa. 869	

Cross-hatched patterns are divides delineating basins’ septa. Dashed rivers are dried out. 870	

T – Taoudeni basin; Iu – Iullemmeden basin; Ch – Chad basin; Co – Congo basin. 871	

 872	

Figure 2. Topography and drainage of West Africa showing selected geological 873	

elements. Rivers are shown in white (dashed where dried out since the Early 874	

Quaternary). A – Aïr; AI – Adrar des Ifoghas; KZ – Knickzone of the Lower Volta. 875	

 876	

Figure 3. Stacked topographic cross-sections of the granite-greenstone terrains of the 877	

Yamoussoukro – Dimborko area (Central Ivory Coast; Fig. 2) showing the disposition 878	

of relicts of the bauxitic Surface (S1) and the ferricrete relicts of the Intermediate (S2) 879	

Surface (adapted from Grandin, 1976). The Bauxitic landscape has a low relief (< 70 m) 880	

compared to that of the Intermediate landscape (up to 350 m) that includes bauxite 881	

relicts. The sections trend mostly NW and encompass a total area ca. 100 x 70 km. 882	

Greenstone belts form the topographic massifs. 883	

 884	

Figure 4. Regional cross section of the Cenozoic Iullemmeden basin and its basement 885	

illustrating the relationships between the S1 bauxitic and S2 Intermediate paleosurfaces 886	

and alluvial sediments of the Continental Terminal (line of section is located on Fig. 2). 887	

The section shows the spatial and temporal continuity established between the S1 888	

bauxitic erosional surface and the Early to Mid-Paleogene marine sediments. Basin 889	

geometry is modified after Greigert (1966). 890	

 891	
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Figure 5. Relationships between the S2 Intermediate Surface and its weathering profile, 892	

fluvial sediments of the Continental Terminal, and the Niger drainage in the southern 893	

Iullemmeden basin (see Fig. 2 for location). (a) Illustration of a S2 Intermediate 894	

landscape remnant and its underlying weathering profile developed from argillites (near 895	

Filingué, Fig. 5b). The 35-m high cliff exposes, from bottom to top, a fine-grained 896	

saprolite (yellowish), a mottled zone (brown), a carapace (reddish) and a ferricrete (slab 897	

pavement). Top of whitish coarse saprolite locally crops out at the base of the cliff. Note 898	

large S2 remnant in the background. (b) Contour map of the Intermediate landsurface 899	

(S2) ferricrete processed from stations comparable to that shown in (a). Data were 900	

automatically contoured and manually extrapolated in areas of low data density near the 901	

northwestern and southeastern edges of the map. Note the Tambao locality where 902	

weathering and abandonment ages of the S2 surface were constrained by Ar-Ar dating 903	

(Beauvais et al., 2008). 904	

 905	

Figure 6. Remnants of the Bauxitic Surface (S1) and ferricretes of the Intermediate 906	

Surface (S2) in the Niger inland delta region. (a) Map view. Squares are our own field 907	

observations and circles are from the literature (Michel, 1977; Bassot et al., 1980; 908	

Beaudet et al., 1981b) and GoogleEarth surveys. (b) S1 Bauxite-capped hill with slopes 909	

draped by the S2 Intermediate ferricrete (near Sansanding, 5 km east of the River; Fig. 910	

6a). Hilltop (314 m) dominates the pediplain by less than 30 m (width of the view is ca. 911	

3 km). (c) Pisolithic bauxite from a pit in the pediplain (same area, 3 km from the River, 912	

284 m). (d) Contact between the Intermediate ferricrete and its underlying carapace 913	

(quarry located 10 km upstream of Ségou, 292 m). (e) Cross-section in Sansanding (Fig. 914	

6a) based on a series of boreholes (modified after Furon, 1931) showing the S1 bauxitic 915	

weathering profile underlying the Niger alluviums. (f) Cross-section of the High Niger 916	
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River valley (dashed line in Fig. 6a). S1 bauxites (in red) and S2 ferricretes (in blue) 917	

having undergone relief inversion are shown. S1/S2 weathering profile’s thickness takes 918	

into account the local relief and regional observations. 919	

 920	

Figure 7. (a) Interpolated geometry of the Intermediate (S2) Surface. Data points are 921	

shown in black. (b) Drainage extraction from S2 geometry corrected for erosional 922	

isostasy. (c) Corresponding drainage interpretation. Divides are drawn in red with their 923	

uncertainty in grey. (d-f) Same maps as (a-c) for the Bauxitic (S1) Surface. Areas of 924	

marine flooding are shown in blue (after the paleogeographic synthesis of Fig. 9). Water 925	

gaps shown by red circles and wind gaps / divides shown by white circles in (b) and (e) 926	

were rejected in the interpretation in (c) and (f) on the basis of field observations or 927	

other considerations (see text for further explanation). Uncertainties on divides also take 928	

into account the density of data points used to construct the surfaces geometries. 929	

 930	

Figure 8. Sources for the isostatic correction of the Intermediate Surface (S2) and the 931	

Bauxitic Surface (S1) from denudation and sediment accumulation since their 932	

abandonments ca. 24 and 45 Ma ago, respectively. (a) Denudation map computed from 933	

the subtraction of S2 topography to the present day topography. (b) Computed flexural 934	

rock uplift in response to that denudation considering a thin sheet model of lithosphere 935	

with an elastic thickness of 50 km. (c-d) Same maps as (a-b) for the S1 Surface. The 936	

grid represents the ~60 km-size cells used for inverting denudation into flexural uplift. 937	

The main features revealed by the denudation and uplift maps are (i) a marginal upwarp 938	

whose main present-day remnant is the Guinean rise, (ii) the Hoggar swell and, in the 939	

case of S1, (iii) the Iullemmeden basin in which the S1 surface is buried (compare with 940	

Figure 2 for locations). 941	
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 942	

Figure 9. Cenozoic paleogeographic / drainage configurations of West Africa. (a) 943	

Oligocene – Miocene boundary (~24 Ma). (b) Present day. (c) Mid-Eocene (~45 Ma). 944	

Area of active propagating uplift is drawn after Grimaud et al. (2014). 945	

 946	

Figure 10. Sketch view of three stages in the relief / drainage evolution of West Africa 947	

and its continental margin. (a) Mid-Eocene (~45 Ma) period of maximum flooding. A 948	

continuous marginal upwarp marks the continental divide. (b) Early Oligocene (~34-29 949	

Ma). Feeding of Continental Terminal fans on the Hoggar’s piedmont; establishment of 950	

the modern Niger River Course; reversal of the Paleo-Volta drainage with development 951	

of an internal delta (inferred) and eventual connection to the Equatorial Atlantic Ocean. 952	

(c) Modern period (Quaternary). Further hot-spot swell propagation leads to warping 953	

and incision of the alluvial fans as well as slope decrease of the High Niger and Sourou 954	

rivers leading to the formation of inland deltas and eventual overspill of the Sourou into 955	

the Volta drainage.  956	

 957	

Figure 11. Synthetic cross-section of West Africa from the Hoggar to the Ivory Coast 958	

margin (see Fig. 10 for location). Offshore part of the section is adapted from Helm 959	

(2009). Onshore erosional surfaces are prolonged in the sedimentary basins as sequence 960	

boundaries, which are considered as their time equivalent. 961	

  962	
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