

Cenozoic lateritic weathering and erosion history of Peninsular India from 40 Ar/ 39 Ar dating of supergene K-Mn oxides

Nicolas J Bonnet, Anicet Beauvais, Nicolas Olivier Arnaud, Dominique Chardon, Mudlappa J Jayananda

► To cite this version:

Nicolas J Bonnet, Anicet Beauvais, Nicolas Olivier Arnaud, Dominique Chardon, Mudlappa J Jayananda. Cenozoic lateritic weathering and erosion history of Peninsular India from 40 Ar/ 39 Ar dating of supergene K-Mn oxides. Chemical Geology, 2016, Deciphering time-dependent processes in soil and weathering profile evolution, 446, pp.33-53. 10.1016/j.chemgeo.2016.04.018 . ird-01419899

HAL Id: ird-01419899 https://ird.hal.science/ird-01419899v1

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Cenozoic lateritic weathering and erosion history of Peninsular India
2	from ⁴⁰ Ar/ ³⁹ Ar dating of supergene K-Mn oxides
3	
4	Nicolas J. Bonnet ^{1*} , Anicet Beauvais ^{1*} , Nicolas Arnaud ² , Dominique Chardon
5	^{3,4,5} , Mudlappa Jayananda ⁶
6	
7	¹ Aix-Marseille Université (AMU), IRD (Institut de Recherche pour le
8	Développement), CNRS (Centre National de la Recherche Scientifique), CEREGE
9	(Centre Européen de Recherche et d'Enseignement des Géosciences de
10	l'Environnement) UM34, BP 80, 13545 Aix-en-Provence, Cedex 4, France
11	² Université de Montpellier 2, Géosciences Montpellier, UMR CNRS 5243,
12	34095 Montpellier, France
13	³ IRD, UMR 234, GET, 14 Avenue Edouard Belin, 31400 Toulouse, France
14	⁴ Université de Toulouse, UPS (Université Paul Sabatier) OMP (Observatoire
15	Midi-Pyrénées), 31400 Toulouse, France
16	⁵ CNRS, GET, 31400 Toulouse, France
17	⁶ Centre for Earth and Space Sciences, University of Hyderabad, P.O Central
18	University Gachibowli, Hyderabad 500 046, India
19	
20	Submitted to Chemical Geology, October 7th 2015
21	Revised, April 15, 2016
22	Accepted April 20, 2016
23	*Correspondings authors: <u>nicolas.bonnet.geo@gmail.com; beauvais@cerege.fr</u>
24	

25 Abstract

26 Since Deccan Traps extrusion ~ 65 Ma ago, thick weathering mantles have 27 developed over Peninsular India on both the western coastal lowland and adjacent 28 plateau separated by the Western Ghats Escarpment. Manganiferous lateritic profiles 29 formed by supergene weathering of Late Archean manganiferous protores are exposed 30 on paleolandsurface remnants on both sides of the escarpment. Petrological and 31 geochemical characterizations of samples from those Mn lateritic profiles allowed identifying cryptomelane (K-Mn oxide) dated by 40 Ar/ 39 Ar geochronology. The ages 32 33 obtained document major weathering periods, ca. 53-50 Ma, and ca. 37-23 Ma in the 34 highland, and ca. 47-45 Ma, ca. 24-19 Ma and discrete weathering pulses at ~ 9 Ma and 35 ~ 2.5 Ma in the lowland. Old ages of the highland (53-50 Ma) and the lowland (47-45 36 Ma) indicate synchronous lateritic weathering across the escarpment at a time the 37 peninsula started to drift across the equatorial belt. Intense weathering periods at ca. 53-38 45 and ca. 37-23 Ma are interpreted to reflect the Early Eocene climatic optimum and 39 the onset of Asian monsoon regimes, respectively. The ages further indicate that most of 40 the dissection of the highland must have taken place after ~ 23 Ma, whereas the lowland 41 was weakly incised essentially after ~ 19 Ma. Our results also document divergent 42 erosion and weathering histories of the lowland and the highland after the Eocene, 43 suggesting installation of a dual climatic regime across the Western Ghats escarpment. 44 Keywords: ⁴⁰Ar/³⁹Ar geochronology; Supergene Mn-oxides; Mn-ore deposits; Lateritic 45

47

46

weathering; Cenozoic; India

49 **1. Introduction**

50 Chemical rock weathering that results in the accumulation of metals such as Al, 51 Fe or Mn, and relative depletion of silica and base elements, produce lateritic regoliths 52 covering shields in the tropical belt. Weathering processes are intense under wet and 53 warm climate that characterizes most tropical forest's soil environments (Pedro, 1968; 54 Ollier, 1988; Nahon, 1991; Tardy, 1997). Metals are mostly retained in duricrusts 55 capping thick weathering profiles, which are, in turn, partly preserved from mechanical 56 erosion. Therefore, old lateritic weathering profiles several tens of meters thick may be 57 preserved on paleolandsurface remnants for several millions years (Bárdossy and Aleva, 58 1990; Thomas, 1994; Tardy and Roquin, 1998; Valeton, 1999; see also Beauvais and 59 Chardon, 2013).

60 Since Deccan Traps extrusion ~ 65 Ma ago, the surface of the Indian peninsula 61 was shaped by combined or alternating chemical weathering and mechanical erosion 62 processes that resulted in composite landscapes made of stepped lateritic paleolandsurfaces remnants of various generations occurring on either side of the 63 64 Western Ghats Escarpment (WGE) (e.g., Widdowson, 1997; Gunnell, 1998). This 65 escarpment was carved both into Deccan Traps and Precambrian basement rocks and 66 separates a western lowland from a dissected hinterland also known as the Mysore 67 plateau (Radhakrishna, 1993; Gunnell, 1998; Widdowson and Gunnell, 1999). 68 Time constraints on the formation of South Indian laterites are still poorly 69 documented (Schmidt et al., 1983; Krishna Rao et al., 1989a) although Late Paleogene ⁴⁰Ar/³⁹Ar ages of supergene K-Mn oxides have been recently obtained from the Sandur 70 71 Mn-ore deposit on the highland (Bonnet et al., 2014). Most south Indian Mn-ore 72 deposits result from supergene weathering of late Archean supracrustal rocks, either on

73	the highland in the Sandur and Shimoga areas (Krishna Rao et al., 1982; Mohapatra et
74	al., 1996), or in the lowland at the foot of the WGE (Dessai, 1985; Fig. 1). In both
75	contexts, Mn-ore deposits are hosted by lateritic weathering profiles underlying
76	remnants of several generations of paleosurfaces, which are preserved at variable
77	elevations (Fig. 2). All these Mn-ore deposits contain K-rich Mn oxides such as
78	cryptomelane [K _x Mn _{8-x} ^{IV} Mn _x ^{III} O ₁₆], which is datable by 40 Ar/ 39 Ar geochronology.
79	Absolute dating of K-Mn oxides generally documents periods of intense lateritic
80	weathering controlled by specific paleoclimatic conditions and as such may be used to
81	reconstruct and quantify the long-term morphoclimatic evolution of tropical shield
82	surfaces (Beauvais et al., 2008; Beauvais and Chardon, 2013; Vasconcelos, 1999b;
83	Vasconcelos and Conroy, 2003). Here we report on 40 Ar/ 39 Ar geochronological data
84	series obtained on Peninsular India that bracket three Cenozoic weathering periods and
85	constrain the tempo of long-term South Indian morphogenesis. Our results also
86	document divergent erosion and weathering histories across the WGE suggesting
87	installation of a dual climatic regime on either side of the escarpment after the Eocene
88	warming period.

90 **2. Material and methods**

91 2.1. Geological and geomorphological setting

South Indian laterites have been discriminated in two groups: highland laterites on
the plateau and lowland laterites in the western coastal plain (e.g., Widdowson and Cox,

94 1996). Remnants of three main lateritic paleolandsurfaces are reported on the highland

95 and the remnants of a lateritic pediment have been described in the lowland

96 (Widdowson, 1997; Gunnell, 1998; Widdowson and Gunnell, 1999). Our field

97 observations indicate that each highland relict paleolandsurface has a specific regolith 98 covers. The relicts of the first, highest and oldest landsurface are capped by a 99 weathering profile topped by an Al-Fe duricrust (Figs. 2). This duricrust is commonly 100 economic-grade bauxite such as those preserved on the Deccan Traps (Valeton, 1999). 101 The bauxites are also preserved on the highest topographic massifs of the southern part 102 of the Peninsula (e.g., Londa, Bababudan, Shevaroy, Nilgiris and Palni hills; Figs. 1 and 103 2). Remnants of a second younger landsurface are found downslope Al-Fe duricrust 104 relicts. They are capped by weathering profiles topped by a Fe duricrust or by a Fe-Mn 105 duricrust if an underlying Mn-protore is present (Fig. 2). The third and last lateritic 106 paleolandsurface on the highland is a pediment, which is capped by reworked debris of 107 lateritic duricrusts (Fig. 2). The debris may be cemented to form a ferricrete, or a Fe-Mn 108 duricrust, if Mn ore debris are also included in the pediment sedimentary cover above a 109 Mn-protore (see below). Following weathering and abandonment of the pediment, the 110 lateritic covers of the highland have been essentially stripped and incised by rivers, 111 leaving only sparse relicts of the three paleolandsurfaces (Radhakrishna, 1993). The 112 lowland pediment is underlain by a weathering profile that locally hosts bauxite and Mn 113 ore pockets and is capped by a ferricrete, which may be a Fe-Mn duricrust above Mn-114 protores (Beauvais et al., 2016).

Four Mn-ore deposits were visited and sampled on the highland and three in the
lowland (Fig. 1). Two actively operated Mn-ore deposits (Kappataswamy and
Channanghi KMK-E) were sampled in the highland Sandur massif (Figs. 1 and 2b; stars
1 and 2; Table 1). Lateritic Mn-ore deposits developed upon Late Archean protores
younger than 2651 ± 18 Ma, as constrained by SHRIMP U-Pb dating of their
stratigraphically underlying volcanics (Nutman et al., 1996). The protores include

phyllites, argillites, arenites and Fe-Mn stromatolitic carbonates that yielded a 2475 ±
65 Ma Pb-Pb isochron age (Chadwick et al., 1996; Russell et al., 1996). The open pits
are weathering profiles excavated into a remnant of the second paleolandsurface capped
by a Fe-Mn duricrust, at 1012-1015 m elevation (Figs. 2b; 3a and 3b). A remnant of the
first paleolandsurface dominates the deposit at ca. 1100 m elevation (Fig. 2b).

126 Highland samples were also collected closer to the WGE, in two abandoned mines 127 of the Shimoga area (Triveni and Kumsi Mn ore open pits; Figs. 1 and 2a, stars 3 and 4, 128 respectively, see also 3c-d and Table. 1). In these pits, the protore is a metavolcanic 129 rock belonging to the Shimoga greenstone belt (Rb-Sr isochron age of 2520 ± 62 Ma; 130 Bhaskar Rao et al., 1992). The protore also comprises Mn-phyllites, which weathered 131 during the Cenozoic as constrained by palynological analyses (Krishna Rao et al., 132 1982). The Triveni Mn ore samples (Fig. 2a) have been collected at altitudes between 133 850 and 875 m (Table 1) in the Fe-Mn duricrust-capped weathering profile of the 134 second paleolandsurface (Fig. 2a). The Kumsi pit exposes a 21 m thick lateritic profile 135 of a relict of the pediment forming the third highland paleolandsurface (~ 710 m 136 altitude; Figs. 2a and 3d). The sampled profile consists in a ~ 6 m thick dismantled 137 lateritic duricrust hosting a ~ 2 m thick sedimentary layer mixing decimetric

ferruginous, manganiferous clasts and infracentimetric oolites (Fig. 3d) upon ~ 15 m of
massive Mn-ore.

140 The weathering profile of the lowland pediment developed upon greenstones 141 similar to those of the Shimoga belt (Dessai, 1985; Fig. 1) and were constrained by 142 paleomagnetism as "late Paleogene to Neogene" in age by Schmidt et al. (1983). The 143 elevation of the pediment varies from 200 m at the foot of the WGE to 50 m close to the 144 coastline (Fig. 2c). We collected samples in four pits excavated in the pediment capping

145	ferricrete (Caurem, star 5, Naveli 1 and Naveli 2, star 6, and Cudnem, star 7; Figs. 1 and
146	2c; see also Table. 1). Caurem, Naveli 1&2 and Cudnem pits have been excavated
147	where the ferricrete lies at 100 m, 140 m and 50 m elevation, respectively. In those pits,
148	the weathering profile is 25 to 100 m thick and the ferricrete is made of cemented
149	reworked lateritic clasts (Figs. 3e-f-g; Babu, 1981; Bonnet, 2015).

151 2.2. Samples preparation, characterization and analysis

152 Potassium-rich end-member of coronadite group (i.e., cryptomelane) from the 153 hollandite supergroup (Biagioni et al., 2013), is a common supergene Mn-oxide of the 154 lateritic Mn-ore deposits of southern India (e.g., Krishna Rao et al., 1982; Mohapatra et al., 1996) which can be used for 40 Ar/ 39 Ar dating. The crystallographic system of this 155 156 mineral allows argon gas retentiveness in a tunnel-type crystal lattice, which is 157 characterized by a double chain of MnO₆ octahedra and K⁺ cations in the large tunnel 158 lacuna to insure the electronic neutrality of the lattice (Turner and Buseck, 1979; Post 159 and Burnham, 1986). Tunnel oxides retained efficiently Ar and K and remain close in 160 supergene environmental conditions (Vasconcelos, 1999b; Vasconcelos et al., 1994), 161 leading to meaningful crystallization age of the minerals. However K-rich Mn-oxides 162 are usually mixed with other oxides, such as others Mn-oxides (e.g., pyrolusite, 163 lithiophorite) and Fe-oxides (hematite, goethite). Therefore, careful observations and 164 extraction techniques are required to ensure meaningful dating. 165 The method implemented to characterize and separate the K-rich Mn-oxides 166 grains from field samples is summarized in figure 4. Field samples were cut with a 167 circular saw (1.5 mm breadth) to get a section allowing accurate observations. A 200-168 300 µm thick polished thin section and a symmetrical 500 µm thick slab were made

169	from each sawed fragment. Polished thin sections have been studied using reflected
170	light microscopy (Fig. 5a-g). We also used elemental cartography by X-ray micro-
171	fluorescence (μ -XRF) with a XGT7000 Horiba Jobin Yvon producing a high-intensity
172	beam with a 100 μm spot size, Rh X-ray tube, accelerating voltage of 30 kV and current
173	of 1mA. Micro-XRF elemental maps of Fe, K and Mn are stacked together on a single
174	image using ImageJ software by assigning a distinct color to each elemental map (Figs.
175	4 and 6). The resulting images are helpful to locate K-rich phases on the slab. Electron
176	Probe Micro-chemical Analysis (EPMA) of minerals using a CAMECA SX-100
177	electron microprobe equipped with five wavelength-dispersive X-ray spectrometers
178	(WDS) provided the precise micro chemical composition of K-Mn oxides.
179	Grains were then separated from the slabs using a micro-drill under a large
180	magnifier (Fig. 4). Some of them were observed with a scanning electron microscope
181	(SEM, Fig. 5h), other were crushed to produce a powder sieved at 64 μ m, which was
182	analyzed by XRD using a Panalytical X'Pert Pro MPD with a Co K α X-ray source (λ =
183	1.79 Å) operating at 40kV and 40 mA. The remaining grains were ultrasonically
184	cleaned in absolute ethanol, conditioned in aluminum foil packets and placed into a
185	irradiation vessel along with 40 Ar/ 39 Ar dating standard Taylor Creek Rhyolite sanidine 2
186	(TCRs-2) monitor, dated at 28.608 ± 0.033 Ma (Renne et al., 2011). Irradiation took
187	place in the TRIGA Mark-II reactor of Pavia University (Italy) during 50 hours. Prior
188	experiments have shown none or very little ³⁹ Ar recoil from those grains.
189	Isotopic analyses were then performed on irradiated K-rich Mn-oxide separates
190	using either step heating degassing under a CO ₂ laser probe coupled with an Argus VI
191	multicollection mass spectrometer (with 4 faradays for masses ⁴⁰ Ar- ³⁷ Ar and ion
192	counting on ³⁶ Ar) or a step-wise heating procedure in a double vacuum Staudacher-type

193 furnace coupled with a VG3600 mass spectrometer using peak jumping and

194 Faraday/Daly analyzer as described by Arnaud et al. (2003). Mass discrimination of

195 machines and blank levels are followed daily. Isotopic ratios were corrected for

196 irradiation interferences and air contamination using a mean air value of 298.56 ± 0.31

197 (Lee et al., 2006; Renne et al., 2009).

Ages were statistically analyzed in three ways: ³⁹Ar release spectra, inverse 198 199 isochrons (Table. 2) and age's frequency or probability plots. Age spectra detail the 200 homogeneity of argon released and age stability throughout the degassing process, with 201 the prior assumption of atmospheric correction for inherited argon. When apparent ages 202 are integrated over continuous steps overlapping at the 2σ level and releasing at least 70% 39 Ar_K, the derived plateau age is statistically robust and meaningful (e.g., Beauvais 203 et al., 2008). However, when plateau is derived from less than 70% of ${}^{39}Ar_{K}$ released 204 205 (e.g., Vasconcelos, 1999a; Li and Vasconcelos, 2002; Vasconcelos and Conroy, 2003; Colin et al., 2005), the critical value of 50% 39 Ar_K released is accepted to calculate a 206 207 "plateau age" (e.g., Li et al., 2007; Feng and Vasconcelos, 2007; Vasconcelos et al., 208 2013; Riffel et al., 2014; Bonnet et al., 2014; Deng et al., 2016) provided that it is 209 integrated over three or more continuous steps whose ages overlap at the 2σ level (Fleck 210 et al., 1977; Maluski, 1985; McDougall and Harrison, 1999). When more than two apparent steps overlaps at the 2 σ level but integrate only 40 to 50% of the ³⁹Ar_K 211 212 released, "pseudo plateau" are defined and considered as acceptable and meaningful 213 (Vasconcelos et al., 2013; Riffel et al., 2014). 214 When those criteria are not satisfied but barely missed (ages do not strictly 215 overlap at the 2 σ level) a "forced plateau" integrating more than two consecutive

216 reasonably flat steps is calculated with a weighed mean (weighed by the error and the

³⁹Ar released in each step) (see Feng and Vasconcelos, 2007; Vasconcelos et al., 2013; 217 Riffel et al., 2014). The 36 Ar/ 40 Ar vs. 39 Ar/ 40 Ar correlation diagrams (also called inverse 218 219 isochrons) are also used to derive the best-fitted inverse isochron (Roddick et al., 1980) 220 allowing to estimate a statistically robust age. The inverse isochron approach also is 221 particularly useful to detect different contamination from various excess or inherited 222 argon reservoirs, which may result from atmospheric argon incorporated in the less retentive site of the grain, or excess ⁴⁰Ar released from older K-bearing minerals. For 223 224 some authors (De Putter et al., 2015), best inverse isochrons exclude the first heating 225 steps, which are usually dominated by trapped atmospheric Ar in the less retentive 226 crystalline sites. These ages are derived from best-fitted inverse isochrons that should 227 have mean square weighted deviation (MSWD) as close as possible to 1 with regard to 228 the distribution of points and their absolute error, but this value is not a limitation to 229 derive an acceptable inverse isochron. Regressions are classically accepted as 230 significant when MSWD is less than 2.5 (Roddick et al., 1980), possibly around 1. 231 There is therefore a complicated trade-off between the number of points used, the MSWD, and the use of the most radiogenic 40 Ar* rich steps. 232

233

3. Results and interpretations

235 3.1. Petrological and geochemical characterization

Descriptions of samples and K-Mn oxide grains are compiled in the table 1. Two main petrographic forms of manganese ore can be distinguished. Float (very porous) or platty Mn-ores show the original banding of the siliceous phyllitic protore (Figs. 3a and 5a; Mishra, 1978; see also Bonnet et al., 2014). Mn-ore can also be massive podiform

and botryoidal filling micro porosities (Fig. 5b and Fig. 6a-b) and larger cavities, in

241 which geodes formed by successive overgrowth of colloidal microstructures (Fig. 5e-f

and Fig. 6a) becoming massive cryptocrystalline when cavities are totally filled (Fig.

243 5b-c). Colloidal overgrowth around nucleus (e.g. iron oxide, clasts) can also form

244 massive nodules where the initial protore structure is totally erased (Fig. 5d-e).

Cryptomelane EPMA data are plotted in a ternary diagram (Fig. 7; see also the
data repository DR1). Cryptomelane from Shimoga and Goa is enriched in aluminum

247 (Fig. 7). The differences in alumina result either from contrasted parent rocks

composition (e.g., carbonates without alumina vs. aluminous metavolcanic phyllites) or

249 possible intergrowth with lithiophorite (Fig. 5e-g and Fig. 6a) or even gibbsite (Fig. 5h).

250 These differences may also indicate a better maturation of Sandur's cryptomelane rich

251 ores (Fig. 6), which are devoid of aluminous impurities (e.g., Beauvais et al., 1987).

252

253 3.2. Deciphering the 40 Ar/ 39 Ar age spectra

254 The different types of ³⁹Ar release spectra are shown in figures 8 and 9. Many 255 samples yielded a regular flat age spectrum (Fig. 8a). As explained above, plateau ages 256 are validated when at least three consecutive steps comprising up to 50% of total ³⁹Ar_K 257 released overlap at the 2σ confidence level.

258 Degasing spectra may show evidence of negligible amount of ³⁹Ar, low % ⁴⁰Ar* 259 and large amount of atmospheric ⁴⁰Ar in the low energy degassing steps that generally 260 increases the 2σ error of the first apparent ages (Fig. 8a). Another issue is the 261 rejuvenated ages frequently observed at low temperature steps (Fig. 8b), which can be 262 the result of a loss of ⁴⁰Ar* from less retentive and poorly crystallized sites (see 263 (Vasconcelos, 1999b). But most of the time the apparent ages progressively reach a 264 constant value at higher temperature steps allowing definition of a plateau, which is also

265	well supported by an inverse isochron (see Fig. 8b). Sixteen samples show such a
266	degasing spectrum integrating up to 90% of the total extracted signal, and excluding
267	only the very first steps with ages lower than the plateau. These well-defined plateaus
268	are used to calculate the absolute ages of the K-Mn oxides. Generally, both the ages
269	estimated from spectra and inverse isochrons are equivalent (Fig. 8a-b, Table. 2).
270	Therefore, we choose to present our ages only with ³⁹ Ar release spectra that clearly
271	show a plateau, and with both spectra and inverse isochrons when no clear plateau is
272	identified. Plateau ages (70% 39 Ar _K released) and best-fitted inverse isochrons are
273	considered as first order ages and noted (A) in figures 10, 11 and 12.
274	Some age spectra do not allow calculating a standard age plateau according to the
275	definition of Fleck et al. (1977), but only a "forced-plateau" defined from ³⁹ Ar release
276	spectra encompassing four steps releasing ~ 70% (Fig. 8c). In other release spectra, a
277	probable authigenic component ages the last steps, which result in an older intermediate
278	step with several little pseudo plateaus (10 to 30 $\%$ ³⁹ Ar each) of similar ages (Fig. 8d).
279	In such cases, an estimated concordant pseudo-plateau age is often supported by a valid
280	inverse isochron age (Table. 2; see also Bonnet et al., 2014). This can be a valid
281	alternative when the total amount of integrated $\%^{39}Ar_k$ is higher than 40% of the total
282	signal. But such a concordant pseudo-plateau age should also be certified by a well-
283	defined plateau age in another sample from the same weathering profile. Plateau ages
284	integrating less than 70% 39 Ar _K released, "Forced plateau", "Pseudo plateau" and
285	"concordant pseudo plateau" ages are considered as second-order ages noted (B) in
286	figures 10, 11 and 12. Nevertheless, these ages are often validated by best-fitted inverse
287	isochrons (Table 2) and are meaningful of first order weathering events.

288 When the age spectra present an obviously convex hump shape (Fig. 9a) the 289 youngest and oldest apparent ages may result from a mixing between gases released 290 from two phases (e.g., Ruffet et al., 1996; Hautmann and Lippolt, 2000; Vasconcelos 291 and Conroy, 2003; Beauvais et al., 2008; De Putter et al., 2015). Possible argon loss 292 from less retentive intercrystalline site could also affect these degasing patterns (Fig. 293 9a). The statistical analysis of both the age spectrum and the inverse isochron may help 294 to estimate minimum and maximum ages of mixed phases (e.g., Bonnet et al., 2014). In 295 the case of sample TRI-3a the only possible inverse isochron yields a maximum 296 estimate of the youngest phase at ~ 11 Ma (Fig. 9a). However, this age is not validated 297 by a well-defined plateau age from another sample of the same deposit (Fig. 11), and 298 therefore noted (C). Most spectra with a hump-shape also show a plateau integrating at least 50% of 39 Ar_K in the intermediate energy levels but the derived age is a minimum 299 300 estimate of the oldest phase (e.g., KUM-400, Fig. 11; see also NAV-3c and NAV-3b 301 Fig. 12). The plateaus included in these hump-shape spectra should be considered more 302 carefully and derived ages are noted (B), but acceptable inverse isochrons are derived 303 (Fig. 12, Table 2). Other hump shape spectra exhibit young apparent ages forming 304 "pseudo plateaus" in low and high energy levels with concordant ages, which bracket an 305 older plateau age in the intermediate energy level (e.g., CAU-1a, CAU-1c, CAU-3a, 306 CAU-2, Fig. 12, Fig. 12). The correlation diagrams for these samples point to possible 307 inverse isochrons estimating maximum and minimum age of the youngest and oldest 308 mixed-phases respectively (Fig. 12, Table 2). For example, the oldest phases with 309 minimum ages ~ 22 to ~ 24 Ma (Fig. 12) are probably contaminated by youngest phases 310 with maximum age ~ 19 to 20 Ma. These ages are noted as (B) and meaningful when derived from best-fitted inverse isochrons and/or plateau integrating at least 50% 39 Ar_K. 311

312 On another hand, the age difference between the youngest and oldest phases is larger 313 (e.g., KPA-2.5, Fig. 10; see also CAU-1b, Fig. 12), ages estimations are too speculative 314 and only the minimum age of the oldest phase can be estimated and noted with a (C) in 315 figures 10, 11 and 12 (see also Table 2). These ages are not meaningful. Other samples show "saddle shape" spectra (Figs. 9b-c) with a progressive 316 317 decrease of the apparent ages in the intermediate energy steps and a very large increase 318 of the ages at highest energy steps. This complex type of spectra may result from significant ³⁹Ar loss by recoil and/or contamination (Turner and Cadogan, 1974; 319 320 Vasconcelos, 1999b; Vasconcelos and Conroy, 2003). The high energy steps suggest a 321 hypogene contaminant (Vasconcelos et al., 1994; Ruffet et al., 1996; Li and 322 Vasconcelos, 2002; Bonnet et al., 2014), which can also age the other steps (e.g., Fig. 323 9c). Most of these spectra display overestimated ages, which are not reliable 324 (Vasconcelos and Conroy, 2003). Noted that no inverse isochron is derivable, the 325 correlation diagram showing at best a mixing of inherited contaminant and supergene 326 phase (Fig. 9c). 327 The Table 2 synthetize the results and shows 24 well defined plateaus ages (> 328 70% 39 Ar_K) with one best-fitted inverse isochron age noted (A). In addition 18 ages noted (B) are also derived either from "plateaus" and "forced plateaus" (at least 50% 329 39 Ar_K) or from "concordant pseudo plateaus" ages and best-fitted inverse isochrons. All 330 331 these ages are reliable and geologically significant and have been plotted against 332 altitude, and combined with individual age probability diagram (Fig. 13a) that enhances 333 most probable weathering age peaks (Vasconcelos, 1999b). 334

335 3.3. ⁴⁰Ar/³⁹Ar geochronology of lateritic weathering in South India

336	Here we present 29 newly analyzed K-Mn oxide grains that are interpreted
337	together with grains studied by Bonnet et al. (2014) and Beauvais et al. (2016) (Table 2
338	and Fig. 13a). The total analysis of 46 Mn-oxide grains provides 40 age spectra with
339	significant geological meaning as "plateaus", "forced-plateaus", "pseudo plateau"
340	"concordant pseudo-plateaus" or "hump shape". We present our results in three figures
341	grouping age spectra obtained from K-Mn oxide grains of the Sandur (Fig. 10),
342	Shimoga (Fig. 11) and Goa deposits (Fig. 12). All the ages are also presented in Table 2
343	including the best inverse isochron age estimates (See also data repository tables DR2
344	and DR3).
345	
346	3.3.1. ⁴⁰ Ar/ ³⁹ Ar ages from highland Sandur Mn ore deposit
347	Among all the samples dated in the Sandur Mn ore deposit, 18 samples show
348	plateau ages noted (A). The ages range from ~ 26 Ma (KMK-3) to ~ 53 Ma (KPA-8)
349	(Fig. 10 and Table 2). Two age groups are distinguished: ~ 53 - 50 Ma and ~ 37 - 26 Ma
350	(Fig. 10). Two spectra have a "hump shape" resulting from mixed supergene phases
351	(Bonnet et al., 2014; Hautmann and Lippolt, 2000; Ruffet et al., 1996; Vasconcelos et
352	al., 1995). The spectrum of sample KPA-2.5 shows a maximum apparent age ~ 46 Ma
353	old, which is a minimum estimate of the oldest phase in the mixing. In sample KPA-
354	12a minimum age of ~ 34 Ma noted (C) for the oldest phase is coherent with plateau
355	ages (A) between ~ 37 Ma (KMK-3b) and ~ 32 Ma (KPA-11) (Fig. 10), which are
356	attributed to the second weathering period. Nine grains display plateau-ages between \sim
357	26 and ~ 30 Ma. The high frequency of these ages is linked to the analysis of several
358	aliquots of samples KPA-10 (4 grains) and KPA-12a (6 grains), which yielded
359	reproducible plateaus, and also allowed quantifying the growth rate for these

360	cryptocrystalline colloidal structures. Grains KPA-12a1 and KPA-12a5 are separated by
361	12.2 ± 0.1 mm (Figs. 6 and 10) and the estimated growth rate of the massive
362	cryptocrystalline colloidal structure is 5.7 ± 3 mm. Ma ⁻¹ . A mean rate of 5.0 ± 4 mm.
363	Ma ⁻¹ in botryoidal overgrowth microstructure was also estimated for sample KPA-10
364	between grains KPA-10a and KPA-10c (Figs. 6 and 10). These rates are comparable
365	with earlier growth rate estimates of 6.4 ± 1.2 mm. Ma ⁻¹ (Vasconcelos et al., 1992) or 1
366	to 5 mm. Ma ⁻¹ (Hénocque et al., 1998).
367	
368	3.3.2. ⁴⁰ Ar/ ³⁹ Ar ages from highland Shimoga Mn ore deposits
369	The obtained ages are mostly comprised between ~ 30 and 24 Ma (Fig. 11).
370	However, one grain (KUM-400) displays a spectrum with a singular hump shape, which
371	results from a mixing of two phases (Figs. 11a-b). The "forced plateau" age at ~ 39 Ma
372	including 58% of the total amount of ³⁹ Ar released is the minimum estimate of the
373	oldest phase and noted (B), which is also supported by the sole possible inverse
374	isochron with a MSWD value less than 2.5 (Fig. 11b). The correlation diagram does not
375	allow estimating an acceptable age for the youngest phase in this mixed grain (Table 2).
376	The considered grain was picked up from a lateritic clast reworked in the lateritic
377	pediment topping the Kumsi Mn-ore deposit (site 4 on Fig. 2a). The detrital nature of
378	this sample and its high porosity are attested by reflected light microscopy (Fig. 5d).
379	This suggests provenance from a lateritic Mn-duricrust previously exposed on a higher
380	landsurface, which was dissected and eroded allowing lateritic clasts transport and
381	deposition at lower elevations on the pediment in which the Kumsi pit is excavated.
382	Therefore, the Kumsi pediment must be younger than 39 Ma (minimum age of the
383	oldest phase in KUM-400) but older than 26 Ma (most common age of the youngest

phase in the same profile, Fig. 11a and Table 2). Sample TRI-3b (Fig. 11) shows a

middle spectrum portion with ages ranging from ~ 43 to ~ 48 Ma accounting for 70% of the total 39 Ar released. An inherited phase seems to release gas especially at high energy step heating, but when this phase started to degas at lower energy, the apparent ages at intermediate heating steps are artificially aged that increases the apparent age up to ~ 48 Ma. The best age estimation of the supergene phase in this grain is most probably ~ 43 Ma but must be considered only as a maximum age estimate.

391 The release spectrum of samples KUM-3f and KUM-2 show weakly aged steps at

the beginning of the analysis, which possibly resulted from minor ³⁹Ar recoil (Turner

and Cadogan, 1974). However, the disturbance is very low and meaningful age at ~ 30

394 Ma (KUM-3f) and ~ 23 Ma (KUM-2) both by a pseudo plateau (Fig. 11a) and well-

395 constrained inverse isochrons (Fig. 11b; Table. 2). Several aliquots of samples TRI-3

and KUM-3a (Fig. 11) yield consistent plateau ages of 25.5 Ma and ~ 26-27.5 Ma,

397 respectively.

398

399 3.3.3. 4^{40} Ar/ 3^{39} Ar ages from lowland Goa Mn ore deposits

400 The cryptomelane ages from samples of the lowland Mn-ore deposits are 401 distributed in two main age groups. The first group comprises two-ages at ~ 47 and 45 402 Ma, obtained for two aliquots of sample NAV-3, which are probably minimum estimates. The spectrum of NAV-3c allows integrating 60% of the total amount of ³⁹Ar 403 404 released overlapping at the 2σ error (Fleck et al., 1977) that yields a plateau age (A) of 405 47.0 ± 0.6 Ma, which is supported by the inverse isochron age (Table 2 and Fig. 12b). 406 Further evidence of early weathering around ~ 45 Ma (minimum age of NAV-3b) in the 407 lowland is supported by the spectrum and a possible inverse isochron (Fig. 12). The

spectrum of sample CAU-1b (Fig. 12) also shows a maximal apparent age at ~ 45 Ma,
which is a minimum age and should be noted (C). The old ages are systematically
obtained from samples collected in the deepest part of the weathering profile. Younger
ages between ~ 19 Ma and ~ 24 Ma (group 2) and discrete ages at ~ 8.7 Ma and 2.5 Ma
are also identified (Fig. 12). All these ages are supported by inverse isochron ages (see
Table. 2).

414 Sample CAU-2 shows a "hump shape" explained by the probable mixing of two 415 phases, with a minimum age of ~ 24.5 Ma for the oldest and a maximum estimate of ~ 416 19 Ma for the youngest. The oldest estimate cannot be validated by inverse isochrons 417 (Fig. 12b, and Table 2). In three similar cases, secondary pseudo-plateaus at ~ 20 Ma 418 can be detected on either side of a plateau or a "forced plateau" (e.g., CAU-2). For 419 example, sample CAU-3a (Fig. 12) shows a plateau at ~ 24 Ma, which is a minimum 420 estimate flanked by small concordant pseudo-plateaus at ~ 19-20 Ma in low- and highenergy steps accounting together for 32% ³⁹Ar degassed. Sample aliquots CAU-1a and 421 422 CAU-1c (Fig. 12) also show similar "hump shape" type spectra with a plateau age 423 flanked by concordant pseudo-plateau ages suggesting mixing of two phases of different 424 ages (Vasconcelos et al., 1995; Ruffet et al., 1996; Hautmann and Lippolt, 2000) but 425 close enough to be grouped in the same weathering period ca. 19 to ca. 24 Ma. 426 However, for these last three samples the difference between the oldest and the 427 youngest phase (20 Ma) is small enough to allow deriving three minimum plateaus ages 428 noted (B) at ~ 24 Ma associated with three concordant (B) maximum ages at ~ 20 Ma 429 (Fig. 12). The youngest ages ~ 20 Ma are rather well supported by reliable inverse 430 isochron ages (Table. 2, Fig. 12b).

431

432 3.3.4. Interpretation of the 40 Ar/ 39 Ar ages

The first- and second order (A and B) ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages allow defining three main 433 434 lateritic weathering periods (W1, W2a and W2b) in South India (Fig. 13a). The first 435 weathering period W1 (ca. 53 to ca. 45 Ma) corresponds to intense chemical rock 436 weathering upon both the highland and the lowland. Intense (bauxitic) weathering of the 437 first paleolandsurface is interpreted as correlative to this weathering period (Bonnet et 438 al., 2014; Krishna Rao et al., 1989b). The second weathering period W2 from ca. 37 to 439 ca. 19 Ma may be divided in two stages, W2a (ca. 37-26 Ma) mostly in the highland 440 (Sandur, ca. 37-26 Ma and Shimoga, ca. 30-26 Ma) and W2b (ca. 26-19 Ma) only in the 441 western highland (Shimoga, ca. 26-23 Ma) and in the lowland (Goa, ca. 24-19 Ma). The 442 early stage (W2a) characterizes late Eocene to late Oligocene lateritic weathering of the 443 second highland paleolandsurface, as best recorded in the eastern part (Sandur), and 444 more discretely in Shimoga (e.g., ca. 30 Ma from KUM-3f, Fig. 11b). This weathering 445 period also led to maturation of the previously formed bauxitic weathering profiles (e.g., 446 Krishna Rao et al., 1989b). After 26 Ma, the Sandur remnants of the two oldest 447 paleolandsurfaces do not seem to be longer subject to weathering, while the western 448 highland landscape (Shimoga) still weathered until ca. 23 Ma at the time the lowland 449 weathered too. Two later minor Late Neogene weathering pulses are also recorded in 450 the lowland (9 and 2.5 Ma). 451 The weathering periods would sign installation of wet and warm climate leading

to thick soil development under rainforest conditions over the peninsula, whereas the
time intervals between these weathering periods may be interpreted as episodes of
subdued chemical weathering and correlative higher mechanical erosion and landscape
dissections (e.g., Beauvais and Chardon, 2013). Such climate driven erosion processes

456 changes have resulted in the installation and preservation of the successive lateritic 457 paleolandsurfaces over South India. The first, bauxitic paleolandsurface, was essentially 458 shaped until a maximum age of ca. 45 Ma by intense weathering and only slightly 459 reworked and dissected after that time during the shaping, and later weathering of the 460 second landsurface between ca. 37 and ca. 26-23 Ma. Finally, abandonment / dissection 461 of the highland pediment after ca. 23 Ma indicates that the thick lateritic covers of 462 South India formed in the Eocene and Oligocene and that stripping of that material and 463 intense dissection of the peninsula essentially took place in the Neogene (i.e., after 23 464 Ma).

465

466 **4. Morphoclimatic implications of** ⁴⁰Ar/³⁹Ar dating

467 Periods of intense weathering have affected the highland landscapes during the 468 early Eocene, and from late Eocene to late Oligocene. By contrast, the lowland 469 weathered mostly during the early Eocene and the early Miocene (Fig. 13a). The 470 successive Eocene to early Miocene weathering periods documented by the present 471 study coincided with the northward migration of India across the humid equatorial belt 472 (Fig. 13b). Early Eocene bauxitic weathering also coincided with the Eocene climatic 473 optimum (Fig. 13c), at a time of relatively high atmospheric CO_2 (Pearson and Palmer, 474 2000), North Atlantic rifting (62 to 55 Ma) and the subduction of Tethysian carbonates 475 (Van der Voo et al., 1999).

476

477 4.1. Early Eocene lateritic weathering (ca. 53-45 Ma; W1)

478 The 40 Ar/ 39 Ar ages indicate that lateritic weathering started at least ~ 50 Ma ago 479 over the highland and ~ 47 Ma in the lowland (Figs. 10, 12 and 13a). Preserved laterites

480 as old as 47 Ma under the lowland pediment argue for Early Eocene installation and 481 stabilization of the Western Ghats Escarpment with a lateritic pediment on its piedmont 482 (Beauvais et al., 2016). The old ages (ca. 53 to ca. 45 Ma) also document synchronous 483 lateritic weathering in the lowland and the highland (Beauvais et al., 2016), when India 484 drifting slowed down at the onset of the collision with Asia ~ 50 Ma ago (e.g., Zhu et 485 al., 2005; Rowley and Currie, 2006). In the meantime, India also entered a latitudinal 486 range where water precipitation was higher than evaporation (Fig. 13b) propitious to the 487 development of equatorial and/or tropical warm and humid forest (Kent and Muttoni, 488 2008; see also Patriat and Achache, 1984; Manabe and Bryan, 1985; Tardy and Roquin, 489 1998; Chatterjee et al., 2013) that further enhanced lateritic weathering. At the time of 490 India-Asia collision, CO₂ degassing of pelagic carbonate into the atmosphere ceased 491 with the end of the North Tethys subduction (Caldeira, 1992) concomitantly with 492 intense continental (bauxitic) lateritic weathering worldwide (Prasad, 1983; Valeton, 493 1999; Retallack, 2010) and correlative offshore carbonate production (e.g., Chaubey et 494 al., 2002 for the West Indian margin). Bauxitic weathering was effectively documented by ⁴⁰Ar/³⁹Ar cryptomelane ages throughout the tropical belt during the Eocene e.g., 495 496 from 56 to 51 Ma in South America (Ruffet et al., 1996; Vasconcelos, 1999b; 497 Vasconcelos et al., 1994) and from 59 to 45 Ma in West Africa (Hénocque et al., 1998; 498 Colin et al., 2005; Beauvais et al., 2008). Combined together, all these concomitant 499 phenomena consumed high quantities of atmospheric CO_2 (Dessert et al., 2003) that 500 progressively cooled the climate once past the Eocene Climatic Optimum (Kent and 501 Muttoni, 2008, 2012; see also Zachos et al., 2001, 2008). In turn, progressive climate 502 cooling from Mid-Eocene onward (Fig. 13c) has favoured the dissection of early 503 Eocene bauxitic landscapes.

505 4.2. Late Eocene-late Oligocene weathering (ca. 37-26 Ma; W2a)

506 This first weathering stage of period W2 is marked mostly in the highland, 507 particularly by two prominent peaks at ~ 28 Ma and ~ 26 Ma in the Sandur massif and 508 the Shimoga area, respectively (Fig. 13a), and more speculatively in the lowland if we 509 consider that 24 Ma is a minimum age. This episode (37-26 Ma) is interpreted to reflect 510 the continental weathering response to the late Oligocene warming (Fig. 13c) at a time 511 of a marine transgression propitious to offshore carbonate production (Biswas, 1987). 512 Thickening of the proto-Himalaya since ~ 40 Ma (Aikman et al., 2008) resulted in the 513 installation of an orographic barrier (Molnar et al., 1993; Ramstein et al., 2005), which 514 redistributed the humid air masses southward (Dupont-Nivet et al., 2008). A monsoonal 515 regime installed at that time in Southern Asia (Licht et al., 2014) that could intensify 516 weathering processes on the Indian peninsula. Under such climatic conditions, the 517 lateritic weathering profiles underlying remnants of the first two paleolandsurfaces 518 became less well drained as a result of river incision, but did not become totally 519 inactive, as attested by younger dates in Sandur, e.g., ca. 37 to ca. 26 Ma (Figs. 10 and 520 13a). During this period, the early Eocene bauxites have still evolved on the highland 521 (Krishna Rao et al., 1989b; see also Bonnet et al., 2014) at least until global cooling by 522 ~ 34 Ma (Fig. 13c; Molnar and England, 1990; Zachos et al., 2001). 523 Early Oligocene cooling also coincided with a sea level fall (Chaubey et al., 524 2002), and the installation of dryer climatic conditions (see Fig. 13c), which may have 525 resulted in the attenuation of the weathering intensity observed between 32 and 29 Ma 526 in the highland (Fig. 13a). The highland pediment may possibly have been formed in 527 this time interval, and subsequently weathered between 29 and 23 Ma. At that time, the

528 lowland landscape was also possibly rejuvenated, but previously formed lateritic 529 weathering mantles as old as ca. 47-45 Ma were preserved (Figs. 12 and 13a), attesting 530 to a very slow denudation regime of the pediment below the WGE (Beauvais et al., 531 2016). The contrasted weathering record of the highland and the lowland after the Mid-532 Eocene (Fig. 13a) suggests a spatial contrast in rainfall distribution on either side of the 533 WGE. This contrast was mostly controlled by dominant South-East moisture fluxes 534 during the late Eocene and the early Oligocene (Licht et al., 2014; Chen and Li, 2014) 535 before installation of modern monsoon regimes in the early Miocene (Clift et al., 2008), 536 which reactivated weathering preferentially in the lowland. 537 538 4.3. Late Oligocene-Early Miocene weathering (ca. 26-19 Ma; W2b) 539 This second stage of weathering period W2 is mostly marked in the western 540 highland and the lowland. Weathering in eastern highland lateritic profiles of the Sandur 541 massif definitively ceased at ca. 26 Ma (Bonnet et al., 2014), while the western part of 542 the highland adjacent to the WGE (Shimoga) possibly weathered until ca. 23 Ma (Fig. 543 13a). Therefore, the highland lateritic pediment carrying those profiles has been incised 544 essentially after 23 Ma at a rate < 5 m/m.y. (Figs. 2a-b). During highland incision, 545 lateritic weathering was reactivated on the lowland pediment with a peak activity at ~ 546 19-21 Ma (Fig. 13a). Central Asia aridification started ~ 24 Ma ago (Sun et al., 2010). 547 Highland weathering mitigation after ~ 23 Ma may be due to such a change in climatic 548 regime, which increased the east-west wetness gradient over peninsular India and 549 signed the onset of modern-like monsoonal regimes (Clift et al., 2008; see also 550 Chatterjee et al., 2013).

551	The lack of reliable ages between ~ 19 Ma and 9 Ma (Fig. 13a) suggests that
552	weathering is not recorded or preserved in peninsular India during Mid-Miocene. After
553	the early Miocene (i.e., after ca. 16 Ma), a significant change has been however
554	observed in the clay content of sediments from the neighbouring Arabian Sea, wherein
555	illite became dominant compared to kaolinite and smectite (Phillips et al., 2014). This,
556	together with our results, indicates an attenuation of continental weathering and
557	suggests dominant landscape dissection of the highland. By contrast, the lowland
558	lateritic pediment was only slightly dissected after ~ 19 Ma (Beauvais et al., 2016). The
559	weathering pulses at ~ 9 Ma and ~ 2.5 Ma (Figs. 12 and 13a) may be linked to Late
560	Neogene intensification of the Asian monsoon in the sub region (Zhisheng et al., 2001),
561	which may have been driven by uplift of the Tibetan plateau (Molnar et al., 1993; see
562	also Clift et al., 2008).

564 **5. Conclusion**

The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ dating of supergene cryptomelane formed *in situ* in lateritic 565 566 weathering profiles of Peninsular India sheds light on the Cenozoic weathering and 567 erosion history of the subcontinent's surface. Cryptomelane ages document three major 568 periods of weathering, i.e., early Eocene (W1) both on the highland and the lowland, ~ 569 late Eocene – late Oligocene (W2a), only in the highland, and early Miocene (W2b), mostly in lowland. The ⁴⁰Ar/³⁹Ar age series suggest subdued relief production and 570 571 dominant weathering of the highland before ~ 23 Ma and its dissection and stripping 572 after that time, while the lowland weathered in the Early Eocene and Miocene before being slightly incised after ~ 19 Ma. The oldest ages (53-45 Ma) indicate widespread 573 574 Eocene lateritic weathering in South India at the time of global Eocene climatic

575	optimum, when the peninsula crossed the equatorial belt. Our results also document the
576	installation of a dual climatic regime across the Western Ghats escarpment after the
577	Eocene climatic optimum, leading to divergent weathering and erosion patterns on both
578	sides of this topographic barrier. Hence, K-Mn oxides ⁴⁰ Ar/ ³⁹ Ar age series document the
579	tempo of South Indian morphogenesis, and as such may be viewed as a proxy for
580	erosion and climatically driven weathering over geological time scales.
581	
582	Acknowledgements- This work was funded by Indo-French Centre for the Promotion
583	of Advanced Research (IFCPAR) project 5007-1, the IRD (UR 161) and the CNRS
584	(INSU 2011-CT2). The French Ministry for the Scientific Research and Education
585	granted N.J. Bonnet a Ph.D. scholarship (ED251, Aix Marseille Université,
586	Observatoire des Sciences de l'Univers Pytheas). N.J. Bonnet was also supported by a
587	fellowship from IFCPAR. We thank L. Giosan and an anonymous referee for their
588	comments and suggestions, and editorial handling from F. Chabaux and Michael E.
589	Böttcher.
590	
591	References
592	Aikman, A.B., Harrison, T.M., Lin, D., 2008. Evidence for Early (> 44 Ma) Himalayan
593	Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet. Sci.
594	Lett. 274, 14–23. doi:10.1016/j.epsl.2008.06.038
595	Arnaud, N., Tapponier, P., Roger, F., Brunel, M., Scharer, U., Wen, C., Xu, Z., 2003.
596	Evidence for Mesozoic shear along the western Kunlun and Altyn-Tagh fault,

597 northern Tibet (China). J. Geophys. Res. 108, 2053. doi:10.1029/2001JB000904

598	Babu, P.V.L.P., 1981. Laterite as an unconformity plane in the evolution of the South
599	Indian peninsula – a synthesis. In: International Seminar on Lateritisation
600	Processes (Trivandrum, India 11-14 December, 1979). Balkema, Rotterdam,
601	Netherlands pp. 302–307.
602	Bárdossy, G., Aleva, G.J.J., 1990. Lateritic bauxites. In: Developments in Economic
603	Geology (27). Elsevier, Amsterdam, Netherlands, pp. 624.
604	Beauvais, A., Bonnet, N.J., Chardon, D., Arnaud, N.O., Jayananda, M., 2016. Very
605	long-term stability of passive margin escarpment constrained by ${}^{40}\text{Ar}/{}^{39}\text{Ar}$
606	dating of K-Mn oxides. Geology 44, 299-302. doi:10.1130/G37303.1
607	Beauvais, A., Chardon, D., 2013. Modes, tempo, and spatial variability of Cenozoic
608	cratonic denudation: The West African example. Geochem. Geophys.
609	Geosystems 14, 1590–1608.
610	Beauvais, A., Melfi, A., Nahon, D., Trescases, J.J., 1987. Pétrologie du gisement
611	latéritique manganésifère d'Azul (Brésil). Min. Deposita 22, 124–134.
612	doi:10.1007/BF00204689
613	Beauvais, A., Ruffet, G., Hénocque, O., Colin, F., 2008. Chemical and physical erosion
614	rhythms of the West African Cenozoic morphogenesis: The ³⁹ Ar- ⁴⁰ Ar dating of
615	supergene K-Mn oxides. J. Geophys. Res. Earth Surf. 113, F04007.
616	doi:10.1029/2008jf000996
617	Bhaskar Rao, Y., Sivaraman, T., Pantulu, G., Gopalan, K., Naqvi, S., 1992. Rb-Sr ages
618	of late Archean metavolcanics and granites, Dharwar craton, South India and
619	evidence for Early Proterozoic thermotectonic event (s). Precambrian Res. 59,
620	145–170. doi:10.1016/0301-9268(92)90055-S

621	Biagioni, C., Capalbo, C., Pasero, M., 2013. Nomenclature tunings in the hollandite
622	supergroup. Eur. J. Mineral. 25, 85–90. doi:10.1127/0935-1221/2013/0025-2255
623	Biswas, S.K., 1987. Regional tectonic framework, structure and evolution of the
624	western marginal basins of India. Tectonophysics 135, 307–327.
625	doi:10.1016/0040-1951(87)90115-6
626	Bonnet, N.J., 2015. Dynamique long-terme d'une marge continentale divergente (Les
627	Ghâts Occidentaux de l'Inde péninsulaire) : Contraintes géochronologiques
628	⁴⁰ Ar- ³⁹ Ar des paléosurfaces latéritiques. PhD thesis, Aix Marseille Université,
629	France, pp. 286
630	Bonnet, N.J., Beauvais, A., Arnaud, N., Chardon, D., Jayananda, M., 2014. First
631	⁴⁰ Ar/ ³⁹ Ar dating of intense Late Palaeogene lateritic weathering in Peninsular
632	India. Earth Planet. Sci. Lett. 386, 126–137. doi:10.1016/j.epsl.2013.11.002
633	Caldeira, K., 1992. Enhanced Cenozoic chemical weathering and the subduction of
634	pelagic carbonate. Nature 357, 578–581. doi:10.1038/357578a0
635	Chadwick, B., Vasudev, V., Ahmed, N., 1996. The Sandur schist belt and its adjacent
636	plutonic rocks implications for Late Archaean crustal evolution in Karnataka. J.
637	Geol. Soc. India 47, 635–639.
638	Chardon, D., Jayananda, M., Chetty, T.R., Peucat, JJ., 2008. Precambrian continental
639	strain and shear zone patterns: South Indian case. J. Geophys. Res. 113, B08402.
640	doi:10.1029/2007JB005299
641	Chatterjee, S., Goswami, A., Scotese, C.R., 2013. The longest voyage: Tectonic,
642	magmatic, and paleoclimatic evolution of the Indian plate during its northward
643	flight from Gondwana to Asia. Gondwana Res. 23, 238–267.
644	doi:10.1016/j.gr.2012.07.001

645	Chaubey, A.K., Gopala Rao, D., Srinivas, K., Ramprasad, T., Ramana, M.,
646	Subrahmanyam, V., 2002. Analyses of multichannel seismic reflection, gravity
647	and magnetic data along a regional profile across the central-western continental
648	margin of India. Mar. Geol. 182, 303–323. doi:10.1016/S0025-3227(01)00241-9
649	Chen, L., Li, J., 2014. ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages and stable isotopes of supergene jarosite from the
650	Baiyin VHMS ore field, NE Tibetan Plateau with paleoclimatic implications.
651	Chin. Sci. Bull. 59, 2999–3009. doi:10.1007/s11434-014-0276-8
652	Clift, P.D., Hodges, K.V., Heslop, D., Hannigan, R., Van Long, H., Calves, G., 2008.
653	Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat.
654	Geosci. 1, 875-880. doi:10.1038/ngeo351
655	Colin, F., Beauvais, A., Ruffet, G., Hénocque, O., 2005. First ⁴⁰ Ar/ ³⁹ Ar geochronology
656	of lateritic manganiferous pisolites: Implications for the Palaeogene history of a
657	West African landscape. Earth Planet. Sci. Lett. 238, 172–188.
658	doi:10.1016/j.epsl.2005.06.052
659	Deng, XD., Li, JW., Vasconcelos, P.M., 2016. ⁴⁰ Ar/ ³⁹ Ar dating of supergene Mn-
660	oxides from the Zunyi Mn deposit, Guizhou Plateau, SW China: implications for
661	chemical weathering and paleoclimatic evolution since the late Miocene. Chem.
662	Geol. in press doi:10.1016/j.chemgeo.2016.02.009
663	De Putter, T., Ruffet, G., Yans, J., Mees, F., 2015. The age of supergene manganese
664	deposits in Katanga and its implications for the Neogene evolution of the
665	African Great Lakes Region. Ore Geol. Rev. 71, 350–362.
666	doi:10.1016/j.oregeorev.2015.06.015
667	Dessai, A., 1985. An appraisal of the manganese ore deposits of Goa, India. Proc.
668	Indian Natl. Sci. Acad. Part Phys. Sci. 51, 1021–1032.

669	Dessert, C., Dupré, B., Gaillardet, J., François, L.M., Allègre, C.J., 2003. Basalt
670	weathering laws and the impact of basalt weathering on the global carbon cycle.
671	Chem. Geol. 202, 257–273. doi:10.1016/j.chemgeo.2002.10.001
672	Dupont-Nivet, G., Hoorn, C., Konert, M., 2008. Tibetan uplift prior to the Eocene-
673	Oligocene climate transition: Evidence from pollen analysis of the Xining Basin.
674	Geology 36, 987. doi:10.1130/G25063A.1
675	Feng, YX., Vasconcelos, P.M., 2007. Chronology of Pleistocene weathering
676	processes, southeast Queensland, Australia. Earth Planet. Sci. Lett. 263, 275-
677	287. doi:10.1016/j.epsl.2007.08.036
678	Fleck, R.J., Sutter, J.F., Elliot, D.H., 1977. Interpretation of discordant ⁴⁰ Ar/ ³⁹ Ar age-
679	spectra of mesozoic tholeiites from antarctica. Geochim. Cosmochim. Acta 41,
680	15-32. doi:10.1016/0016-7037(77)90184-3
681	Grandin, G., 1976. Aplanissements cuirassés et enrichissement des gisements de
682	manganèse dans quelques régions d'Afrique de l'Ouest. Mém. ORSTOM (82),
683	Université de Strasbourg, Paris, France, pp. 276
684	Gunnell, Y., 1998. The interaction between geological structure and global tectonics in
685	multistoreyed landscape development: a denudation chronology of the South
686	Indian shield. Basin Res. 10, 281–310. doi:10.1046/j.1365-2117.1998.00072.x
687	Hautmann, S., Lippolt, H.J., 2000. ⁴⁰ Ar/ ³⁹ Ar dating of central European K–Mn oxides
688	— a chronological framework of supergene alteration processes during the
689	Neogene. Chem. Geol. 170, 37-80. doi:10.1016/S0009-2541(99)00241-7
690	Hénocque, O., Ruffet, G., Colin, F., Féraud, G., 1998. ⁴⁰ Ar/ ³⁹ Ar dating of West African
691	lateritic cryptomelanes. Geochim. Cosmochim. Acta 62, 2739–2756.
692	doi:10.1016/S0016-7037(98)00185-9

- 693 Kent, D.V., Muttoni, G., 2012. Modulation of Late Cretaceous and Cenozoic climate by
- 694 variable drawdown of atmospheric pCO2 from weathering of basaltic provinces
- on continents drifting through the equatorial humid belt. Clim. Past Discuss. 8,
- 696 4513–4564. doi:10.5194/cpd-8-4513-2012
- 697 Kent, D.V., Muttoni, G., 2008. Equatorial convergence of India and early Cenozoic
- 698 climate trends. Proc. Natl. Acad. Sci. 105, 16065–16070.
- 699 doi:10.1073/pnas.0805382105
- Krishna Rao, B., Muzamil Ahmed, M., Janardhana, M.R., 1989a. Age of manganiferous
 laterite of Uttara Kanada district, Karnataka. J. Geol. Soc. India 34, 413–420.
- 702 Krishna Rao, B., Satish, P.N., Sethumadhav, M.S., 1989b. Syngenetic and Epigenetic
- features and genesis of the beauxite-bearing laterite of Boknur-Navge, Belgaum
 district, Karnataka. J. Geol. Soc. India 34, 46–60.
- 705 Krishna Rao, B., Srinivasan, R., Ramachandra, B.L., Sreenivas, B.L., 1982. Mode of
- 706 occurrence and origin of manganese ores of Shimoga district, Karnataka. J.
 707 Geol. Soc. India 23, 226–235.
- 708 Lee, J.-Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.-S., Lee, J.B., Kim,
- 709 J.S., 2006. A redetermination of the isotopic abundances of atmospheric Ar.
- 710 Geochim. Cosmochim. Acta 70, 4507–4512.
- 711 Licht, A., van Cappelle, M., Abels, H.A., Ladant, J.-B., Trabucho-Alexandre, J.,
- 712 France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lécuyer,
- 713 C., Terry, D., Adriaens, R., Boura, A., Guo, Z., Soe, A.N., Quade, J., Dupont-
- 714 Nivet, G., Jaeger, J.-J., 2014. Asian monsoons in a late Eocene greenhouse
- 715 world. Nature 513, 501. doi:10.1038/nature13704

- Li, J.-W., Vasconcelos, P., 2002. Cenozoic continental weathering and its implications
 for the palaeoclimate: evidence from ⁴⁰Ar/³⁹Ar geochronology of supergene K–
- for the palaeoclimate: evidence from ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ geochronology of supergene K-
- 718 Mn oxides in Mt Tabor, central Queensland, Australia. Earth Planet. Sci. Lett.

719 200, 223–239. doi:10.1016/S0012-821X(02)00594-0

- 720 Li, J.-W., Vasconcelos, P., Duzgoren-Aydin, N., Yan, D.-R., Zhang, W., Deng, X.-D.,
- Zhao, X.-F., Zeng, Z.-P., Hu, M.-A., 2007. Neogene weathering and supergene
 manganese enrichment in subtropical South China: An ⁴⁰Ar/³⁹Ar approach and
 paleoclimatic significance. Earth Planet. Sci. Lett. 256, 389–402.
- 724 doi:10.1016/j.epsl.2007.01.021
- 725 Maluski, H., 1985. Méthode Argon 39 Argon 40 : Principe et applications aux
- minéraux des roches terrestres In: Méthodes de Datation Par Les Phénomènes
 Nucléaires Naturels Applications. Masson, Paris, France, pp. 341–372.
- Manabe, S., Bryan, K., 1985. CO₂-induced change in a coupled ocean-atmosphere
 model and its paleoclimatic implications. J. Geophys. Res. 90, 689 707.
- McDougall, I., Harrison, T.M., 1999. Geochronology and thermochronology by the
 ⁴⁰Ar/³⁹Ar method, 2nd ed., Oxford University Press, New York, USA, pp. 271.
- Mishra, R.N., 1978. Exploration planing for Sandur manganese ores. J. Geol. Soc. India
 19, 446–453.
- Mohapatra, B.K., Rao, D.S., Nayak, B.D., Sahoo, R.K., 1996. Mineralogical and
- 735 chemical characteristics of ferromanganese ores from Sandur, Karnataka, India.
- 736 J. Mineral. Petrol. Econ. Geol. 91, 46–61. doi:10.2465/ganko.91.48
- Molnar, P., England, P., 1990. Late Cenozoic uplift of mountain ranges and global
 climate change: chicken or egg? Nature 346, 29–34. doi:10.1038/346029a0

739	Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan
740	Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357.
741	doi:10.1029/93RG02030
742	Nahon, D., 1991. Introduction to the petrology of soils and chemical weathering. Wiley-
743	Interscience, New-York, USA, pp. 313.
744	Nutman, A.P., Chadwick, B., Krishna Rao, B., Vasudev, V.N., 1996. SHRIMP U/Pb
745	zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups, and
746	granites adjacent to the Sandur Schist Belt, Karnataka. J. Geol. Soc. India 47,
747	153–164.
748	Ollier, C.D., 1988. Deep Weathering, Groundwater and Climate. Geogr. Ann. Ser. Phys.
749	Geogr. 70, 285–290. doi:10.2307/521260
750	Patriat, P., Achache, J., 1984. India-Eurasia collision chronology has implications for
751	crustal shortening and driving mechanism of plates. Nature 311, 615-621.
752	doi:10.1038/311615a0
753	Pearson, P.N., Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the
754	past 60 million years. Nature 406, 695–699.
755	Pedro, G., 1968. Distribution des principaux types d'altération chimiques à la surface de
756	globe. Rev. Géographie Phys. Dyn. 5, 457–470.
757	Phillips, S.C., Johnson, J.E., Underwood, M.B., Guo, J., Giosan, L., Rose, K., 2014.
758	Long-timescale variation in bulk and clay mineral composition of Indian
759	continental margin sediments in the Bay of Bengal, Arabian Sea, and Andaman
760	Sea. Mar. Pet. Geol. 58, 117–138. doi:10.1016/j.marpetgeo.2014.06.018
761	Post, J.E., Burnham, C.W., 1986. Modeling tunnel-cation displacements in hollandites
762	using structure-energy calculations. Am. Mineral. 71, 1178–1185.

763	Prasad, G., 1983. A review of the early Tertiary bauxite event in South America, Africa
764	and India. J. Afr. Earth Sci. 1983 1, 305-313. doi:10.1016/S0731-
765	7247(83)80015-9
766	Radhakrishna, B.P., 1993. Neogene uplift and geomorphic rejunevation of the Indian
767	Peninsula. Curr. Sci. 64.
768	Ramstein, G., Khodri, M., Donnadieu, Y., Fluteau, F., Goddéris, Y., 2005. Impact of the
769	hydrological cycle on past climate changes: three illustrations at different time
770	scales. Comptes Rendus Geosci. 337, 125-137. doi:10.1016/j.crte.2004.10.016
771	Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., Min, K., 2011. Response to the
772	comment by W.H. Schwarz et al. on "Joint determination of ⁴⁰ K decay constants
773	and ${}^{40}\text{Ar}^{*/40}\text{K}$ for the Fish Canyon sanidine standard, and improved accuracy for
774	⁴⁰ Ar/ ³⁹ Ar geochronology" by P.R. Renne et al. (2010). Geochim. Cosmochim.
775	Acta 75, 5097–5100. doi:10.1016/j.gca.2011.06.021
776	Renne, P.R., Cassata, W.S., Morgan, L.E., 2009. The isotopic composition of
777	atmospheric argon and 40 Ar/ 39 Ar geochronology: Time for a change? Quat.
778	Geochronol. 4, 288–298. doi:10.1016/j.quageo.2009.02.015
779	Retallack, G.J., 2010. Lateritization and Bauxitization Events. Econ. Geol. 105, 655-
780	667. doi:10.2113/gsecongeo.105.3.655
781	Riffel, S.B., Vasconcelos, P.M., Carmo, I.O., Farley, K.A., 2015. Combined ⁴⁰ Ar/ ³⁹ Ar
782	and (U-Th)/He geochronological constraints on long-term landscape evolution
783	of the Second Paraná Plateau and its ruiniform surface features, Paraná, Brazil.
784	Geomorphology 233, 52-63. doi:10.1016/j.geomorph.2014.10.041

785	Roddick, J.C., Cliff, R.A., Rex, D.C., 1980. The evolution of excess argon in alpine
786	biotites — A ⁴⁰ Ar- ³⁹ Ar analysis. Earth Planet. Sci. Lett. 48, 185–208.
787	doi:10.1016/0012-821X(80)90181-8
788	Rowley, D.B., Currie, B.S., 2006. Palaeo-altimetry of the late Eocene to Miocene
789	Lunpola basin, central Tibet. Nature 439, 677–681. doi:10.1038/nature04506
790	Ruffet, G., Innocent, C., Michard, A., Féraud, G., Beauvais, A., Nahon, D., Hamelin,
791	B., 1996. A geochronological ⁴⁰ Ar ³⁹ Ar and ⁸⁷ Rb ⁸¹ Sr study of K-Mn oxides from
792	the weathering sequence of Azul, Brazil. Geochim. Cosmochim. Acta 60, 2219-
793	2232. doi:10.1016/0016-7037(96)00080-4
794	Russell, J., Chadwick, B., Rao, B.K., Vasudev, V.N., 1996. Whole-rock Pb/Pb isotopic
795	ages of Late Archaean limestones, Karnataka, India. Precambrian Res. 78, 261-
796	272. doi:10.1016/0301-9268(95)00082-8
797	Schmidt, P.W., Prasad, V., Ramam, P.K., 1983. Magnetic ages of some Indian laterites.
798	Palaeogeogr. Palaeoclimatol. Palaeoecol. 44, 185–202. doi:10.1016/0031-
799	0182(83)90102-5
800	Sun, J., Ye, J., Wu, W., Ni, X., Bi, S., Zhang, Z., Liu, W., Meng, J., 2010. Late
801	Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian
802	interior. Geology 38, 515-518. doi:10.1130/G30776.1
803	Tardy, Y., 1997. Petrology of laterites and tropical soils. Balkema, Rotterdam,
804	Netherlands, pp. 408.
805	Tardy, Y., Roquin, C., 1998. Dérive des continents paleoclimats et altérations
806	tropicales. BRGM, Orléan, France, pp. 484.

Thomas, M.F., 1994. Geomorphology in the tropics: a study of weathering and
denudation in low latitudes. John Wiley & Sons, Chichester, UK, pp. 482.

809	Turner, G., Cadogan, P.H., 1974. Possible effects of ³⁹ Ar recoil in ⁴⁰ Ar- ³⁹ Ar dating.
810	Proc. Fifth Lunar Sci. Conf. 2, 1601 – 1615.
811	Turner, S., Buseck, P.R., 1979. Manganese Oxide Tunnel Structures and Their
812	Intergrowths. Science 203, 456-458. doi:10.1126/science.203.4379.456
813	Valeton, I., 1999. Saprolite-bauxite facies of ferralitic duricrust on paleosurfaces off
814	former Pangaea. Spec. Publ. Int. Assoc. Sedimentol. 153-158.
815	Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan subducted slabs under
816	India. Earth Planet. Sci. Lett. 171, 7–20. doi:10.1016/S0012-821X(99)00131-4
817	Vasconcelos, P.M., 1999a. ⁴⁰ Ar/ ³⁹ Ar Geochronology of Supergene Processes in Ore
818	Deposits. In: Lambert, David D. and Ruiz, Joaquin (Eds.), Application of
819	Radiogenic Isotopes to Ore Deposit Research and Exploration. Reviews in
820	Economic Geology. Society of Economic Geologists, Boulder, CO, USA, pp.
821	73-113.
822	Vasconcelos, P.M., 1999b. K-Ar and ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ geochronology of weathering processes.
823	Annu. Rev. Earth Planet. Sci. 27, 183–229. doi:10.1146/annurev.earth.27.1.183
824	Vasconcelos, P.M., Becker, T.A., Renne, P.R., Brimhall, G.H., 1992. Age and duration
825	of weathering by ⁴⁰ K- ⁴⁰ Ar and ⁴⁰ Ar- ³⁹ Ar analysis of supergene potassium-
826	manganese oxides. Science 258, 451–455. doi:10.1126/science.258.5081.451
827	Vasconcelos, P.M., Conroy, M., 2003. Geochronology of weathering and landscape
828	evolution, Dugald River valley, NW Queensland, Australia. Geochim.
829	Cosmochim. Acta 67, 2913–2930. doi:10.1016/S0016-7037(02)01372-8
830	Vasconcelos, P.M., Heim, J.A., Farley, K.A., Monteiro, H., Waltenberg, K., 2013.
831	40 Ar/ 39 Ar and (U-Th)/He - 4 He/ 3 He geochronology of landscape evolution and

832	channel iron deposit genesis at Lynn Peak, Western Australia. Geochim.
833	Cosmochim. Acta 117, 283-312. doi:10.1016/j.gca.2013.03.037
834	Vasconcelos, P.M., Renne, P.R., Becker, T.A., Wenk, HR., 1995. Mechanisms and
835	kinetics of atmospheric, radiogenic, and nucleogenic argon release from
836	cryptomelane during ⁴⁰ Ar ³⁹ Ar analysis. Geochim. Cosmochim. Acta 59, 2057–
837	2070. doi:10.1016/0016-7037(95)00126-3
838	Vasconcelos, P.M., Renne, P.R., Brimhall, G.H., Becker, T.A., 1994. Direct dating of
839	weathering phenomena by 40 Ar/ 39 Ar and K-Ar analysis of supergene K-Mn
840	oxides. Geochim. Cosmochim. Acta 58, 1635-1665. doi:10.1016/0016-
841	7037(94)90565-7
842	Widdowson, M., 1997. Tertiary paleosurfaces of the SW Deccan, Western India:
843	implication for passive margin uplift. In: Widdowson, M. (Ed.), Palaeosurfaces:
844	Recognition, Reconstruction and Palaeoenvironmental Interpretation. Geological
845	Society Special Publication, London, UK, pp. 221–248.
846	Widdowson, M., Cox, K.G., 1996. Uplift and erosional history of the Deccan Traps,
847	India: Evidence from laterites and drainage patterns of the Western Ghats and
848	Konkan Coast. Earth Planet. Sci. Lett. 137, 57-69. doi:10.1016/0012-
849	821X(95)00211-T
850	Widdowson, M., Gunnell, Y., 1999. Tertiary palaeosurfaces and lateritization of the
851	coastal lowlands of western peninsula India. In: Thiry, M., Simon-Coinçon, R.
852	(Eds.), Palaeoweathering, Palaeosurfaces and Related Continental Deposits.
853	International Association of Sedimentologists, Special Publication, Blackwell
854	Science, Oxford, UK, pp. 245–274.

855	Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on
856	greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283.
857	doi:10.1038/nature06588
858	Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, Rhythms,
859	and Aberrations in Global Climate 65 Ma to Present. Science 292, 686–693.
860	doi:10.1126/science.1059412
861	Zhisheng, A., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian
862	monsoons and phased uplift of the Himalaya–Tibetan plateau since Late
863	Miocene times. Nature 411, 62 – 66. doi:10.1038/35075035
864	Zhu, B., Kidd, W.S.F., Rowley, D.B., Currie, B.S., Shafique, N., 2005. Age of Initiation
865	of the India-Asia Collision in the East-Central Himalaya. J. Geol. 113, 265 –
866	285. doi:10.1086/428805
867	
868	
869	Figures and table caption
870	Figure 1. Simplified geological map (adapted from Chardon et al., 2008) superimposed
871	to Gtopo 30 m showing the location of the Mn ore deposit pits (stars). Kappataswamy
872	pit (Star 1); Channanghi KMK-East pit (star 2); Triveni pit (star 3); Kumsi pit (star 4);
873	Caurem pit (star 5); Naveli 1 & 2 pits (star 6); Cudnem pit (star 7). Offshore bathymetry
874	is from ETOPO1 (1.8 km).
875	
876	Figure 2. Synthetic topographic sections with major lateritic weathering surface relics.
877	(a) (b) sections located located in the figure 1. (c) Detailed section across the lowland

878 pediment. The stars and numbers are the sampled open pits located in the figure 1.

880	Figure 3. Sampled lateritic weathering profiles. (a) Kappataswamy, (b) Channanghi
881	KMK-E, (c) Triveni, (d) Kumsi, (e) Cudnem, (f) Caurem and (g) Naveli 1. White
882	crosses show the sampling spots. (See table 1 for GPS locations and ore sample types)
883	
884	Figure 4. Synthetic sketch of the different steps of preparation, observation, sub-
885	sampling and characterization of cryptomelane grains before the isotopic dating.
886	
887	Figure 5. Reflected-light photomicrographs of polished thin sections from samples
888	collected in Sandur (a-b) Shimoga (c-d) and Goa pits (e-f-g), showing cryptomelane
889	(C), pyrolusite (P), the protore matrix (Pr), iron oxides (Fe), lithiophorite (L) and pores
890	(V). h) SEM image showing gibbsite crystals over cryptomelane needles. See the table 1
891	for samples description.
892	
893	Figure 6. Procedure to separate cryptomelane grain aliquots from two sample slabs (a-
894	b) of the Sandur profile using from left to right the thin section, μ -XRF mapping
895	(yellow rectangle on section) and reflected-light photomicrography (pink rectangle on
896	section). The μ -XRF map yields the composite colored image with Mn in blue, Fe in
897	red and K in green. $C = Cryptomelane; P = Pyrolusite; G = Goethite; H = Hematite. See$
898	the table 1 for samples description
899	
900	Figure 7. Electron probe microanalyses of cryptomelane on polished thin sections. The
901	three poles of the ternary diagram are initially Mn, 10 K and 10 Al. The black, grey and

white diamonds are samples from Sandur, Shimoga and Goa, respectively. See also thedata repository table DR1.

904

Figure 8. 40 Ar / 39 Ar age spectra of cryptomelane grains showing regular ages, with 905 906 K/Ca (black) and Ar* (grey) step curves (left), and inverse isochron diagrams (right). 907 (a) Plateau age for Sandur's cryptomelane grain; (b) plateau age for Shimoga's 908 cryptomelane grain with small characteristic ⁴⁰Ar* losses from less retentive and poorly 909 crystalline sites at the first step heating; (c) Forced-plateau age for Shimoga's sample 910 grain including four apparent ages forming a reasonably flat segment; (d) Concordant 911 pseudoplateaus ages for Sandur's cryptomelane grain included in the 2σ interval. 912 MSWD = mean square weighted deviation of the inverse isochron. See the table 1 for 913 sample description and the data repository DR2 and DR3. 914

Figure 9. Disturbed 40 Ar / 39 Ar age spectra of cryptomelane grains from Shimoga Mn 915 916 ore deposits with K/Ca (black) and Ar* (grey) step curves (left), and inverse isochron 917 diagrams (right). (a) Hump shape spectrum that only allows estimation of maximum 918 and minimum ages of the mixed youngest and oldest phases, respectively. (b) Saddle 919 shape spectrum resulting from mixing between several phases (supergene or hypogene) that lead to incorporation of excess 40 Ar*. (c) Case with an inherited hypogene 920 921 contaminant. In the first steps, only the supergene phase (~ 18 Ma) releases gas, the inverse isochron diagram clearly showing the contamination with a hypogene phase 922 enriched in ⁴⁰Ar*. See the table 1 for sample description and the data repository tables 923 924 DR2 and DR3.

Figure 10. ⁴⁰Ar /³⁹Ar age spectra of cryptomelane grains from Sandur Mn ore samples.
Sample ID with (F) when analyzed using a double vacuum Staudacher-type furnace
coupled with VG3600 mass spectrometer. Age quality is noted (A) for best quality first
order age, (B) for acceptable quality second order age, and (C) for lesser quality third
order age. See the table 1 for sample description, and the data repository table DR2.

Figure 11. (a) ⁴⁰Ar /³⁹Ar age spectra and (b) inverse isochron diagrams for
cryptomelane grains from Shimoga Mn ore samples. See the figure 10 for the analytical
system used, age quality explanation and the table 1 for sample description. See also the
data repository tables DR2 and DR3.

936

Figure 12. (a) ⁴⁰Ar /³⁹Ar age spectra and (b) inverse isochron diagrams for
cryptomelane grains from Goa Mn ore samples. See the figure 10 for the analytical
system used, age quality explanation and the table 1 for sample description. See also the
data repository tables DR2 and DR3.

941

Figure 13. Synthesis of the 40 Ar/ 39 Ar ages results accounting for two-confidence order 942 943 (A) and (B) (see text and figure 9 for explanations). (a) Age probability curves 944 accounting for 1/3 of the total signal from all the validated ages weighted for the three 945 distinct areas (N_{Sandur}=19, N_{Shimoga}=10 and N_{Goa}=10) enhancing the major weathering 946 peaks that document the major weathering periods W1, W2a, and W2b (vertical colored 947 bands). The ages are also plotted against the altitude. (b) Paleo-latitudinal variation of 948 the southern boundary of the Deccan Traps across climatic zones defined by 949 evaporation (E) and precipitation (P) after Kent and Muttoni (2008). Note the main

950	weathering periods derived from the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages in (a) also correspond to the period
951	when peninsular India drift across the humid equatorial belt where $P > E$. (c) Global
952	benthic δ^{18} O curve from Zachos et al. (2008) and associated global deep ocean
953	temperature relative to actual T°C. PETM = Paleocene-Eocene Thermal Maximum;
954	EECO = Early Eocene Climatic Optimum; MECM = Mid-Eocene Climatic Maximum;
955	EOC = Early Oligocene Cooling; LOW = Late Oligocene Warming; MMCM = Mid-
956	Miocene Climatic Maximum.
957	
958	Table 1. Field characteristics of samples from Sandur, Shimoga and Goa Mn ore
959	deposits (Peninsular India) and description of cryptomelane grains extracted from these
960	samples. Other mineral species were also identified by reflected-light microscopy, XRD
961	and SEM.
962	
	40 20

Table 2. Synthesis of the ⁴⁰Ar/³⁹Ar ages presenting the plateau ages, the inverse
isochrons ages with their properties, and the integrated ages. The results in bold are
considered as the preferred ages. See the figure 10 for more information about the
analytical system used.

Figure 1 Click here to download high resolution image

FIG. 1 (2 columns)

FIG.2 (2 columns)

Figure 4 Click here to download high resolution image

FIG. 4 (1 column)

FIG. 5 (1.5 columns)

Figure 6 Click here to download high resolution image

FIG. 6 (2 columns)

Figure 7 Click here to download high resolution image

FIG. 7 (1 column)

FIG. 8 (1.5 columns)

FIG. 9 (1.5 columns)

FIG. 10 (2 columns)

FIG. 11 (2 columns)

FIG. 12 (2 columns)

FIG. 13 (1.5 columns)

Location and mine	Sample ID	Depth ± 2m	Latitude N	Longitude E	Ore type	Mineral species observed	Grains ID	Cryptomelane crystallization type
Sandur	dur							
Kappataswa	my							
	KPA-2 -140 14° 59' 59" 76° 32' 42" Ma		Massive Mn-ore with cavities ≤ 1cm	Cryptomelane, Goethite, Nsutite, Pyrolusite	KPA-2.1 KPA-2.5	Internal band from colloidal overgrowth microstructure External band from colloidal overgrowth microstructure		
	KPA-8	-125	15° 0' 2"	76° 32' 42"	Platy Mn-ore developed from siliceous protore	Cryptomelane, Pyrolusite, Lithiophorite	KPA-8	Botryoidal
	KPA-9	-123	15° 0' 1'	76° 32' 38''	Platy Mn-ore developed from siliceous protore	Cryptomelane, Quartz, Pyrolusite,	KPA-9 KPA-10a	Massive cryptocrystalline domain
	KPA-10	-111	15° 0' 1"	76° 32' 38''	Massive Mn-ore with cavities > 1cm	Cryptomelane, Pyrolusite, Goethite, Hematite	KPA-10b KPA-10 KPA-10c	1st intermediate band from geodic overgrowth microstructure 2nd intermediate band from geodic overgrowth microstructure External band from geodic overgrowth microstructure
	KPA-11	-103	15° 0' 1''	76° 32' 38"	Platy Mn-ore developed from siliceous protore	Cryptomelane, Pyrolusite, Goethite,	KPA-11	Cryptocrystalline plasma filling a microfracture
	KPA-12a	-102	15° 0' 1"	76° 32' 38''	Platy Mn-ore with pods	Cryptomelane, Goethite, Hematite	KPA-12a KPA-12a1 KPA-12a2 KPA-12a3 KPA-12a4 KPA-12a5	Cryptocrystalline domain filling a microfracture Massive cryptocrystalline domain Massive cryptocrystalline domain Massive cryptocrystalline domain Massive cryptocrystalline domain Massive cryptocrystalline domain
	KPA-12b	-102	15° 0' 1"	76° 32' 38"	Platy Mn-ore with pods	Cryptomelane Pyrolusite	KPA-12b	Massive cryptocrystalline domain
	KDA 12	06	15 0 1	768 001 07"	Distu Ma are developed from alliagous protors	Or attendence, Pirocesite, Uppertite	KPA-12b2	Massive cryptocrystalline domain
Channanghi	KPA-13	-96	15-011	16-32-31	Platy Mn-ore developed from siliceous protore	Cryptomelane, Birnessite, Hematite	KPA-13	Veins of cryptocrystalline plasma
Ghannanghi	KMK-2	-37	14° 59' 48"	76° 34' 37"	Massive Mn-ore with cavities > 1cm	Cryptomelane, Pyrolusite, Lithiophorite	KMK-2	Colloidal overgrowth microstructure
	KMK-3	-60	14° 59' 46"	76° 34' 38"	Massive Mn-ore with cavities > 1cm	Cryptomelane, Nsutite, Lithiophorite	KMK-3	External band from colloidal overgrowth microstructure
							KMK-3b	Internal band from colloidal overgrowth microstructure
Shimoga Triveni	a							
	TRI-3	-18	13° 53' 50" 75° 24' 46"		Massive developed from Banded Hematite Quartzite	Cryptomelane, Goethite, Birnessite	TRI-3a TRI-3b TRI-3c TRI-3d	Massive cryptocrystalline domain Massive cryptocrystalline domain Massive cryptocrystalline domain Massive cryptocrystalline domain
	TRI-4	-8	13° 53' 46"	75° 24' 43"	Massive developed from Banded Hematite Quartzite	Cryptomelane, Pyrolusite, Lithiophorite	TRI-4b TRI-4f	Massive cryptocrystalline domain Massive cryptocrystalline domain
Kumsi								
	KUM-2	-15	14° 6' 11"	75° 24' 15"	Massive developed from Banded Hematite Quartzite	Cryptomelane, Goethite, hematite	KUM-2 KUM-3a1 KUM-3a2	Massive cryptocrystalline domain Massive cryptocrystalline domain Massive cryptocrystalline domain
	KUM-3	-18	14° 6' 11"	75° 24' 14"	Massive developed from Banded Hematite Quartzite	Cryptomelane, Pyrolusite, Hematite	KUM-3a3 KUM-3a4	Massive cryptocrystalline domain Massive cryptocrystalline domain Massive cryptocrystalline domain
	KUM-4	-20	14° 6' 10"	75° 24' 15"	Brecchia with manganiferous clasts and ferruginous oolithes	Cryptomelane, Hollandite, Hematite	KUM-400	Clast initially from massive cryptocrystalline domain
	KUM-5	-21	14° 6' 11"	75° 23' 55"	Massive developed from Banded Hematite Quartzite	Cryptomelane, Lithiophorite, Goethite, Kaolinite	KUM-5	Veins of cryptocrystalline plasma
0								
Goa								
Caurem			15° 7' 2"	74° 8' 40"			CALI-12	Colloidal overgrowth microstructure
	CAU-1	-32	13 7 2	74 0 40	Clastic with ferruginous and manganiferous clasts	Cryptomelane, Pyrolusite, Goethite, Lithiophorite, Hematite	CAU-1b CAU-1c	Colloidal overgrowth microstructure
	CAU-2	-39	15° 7' 3"	74° 8' 40"	Fe-oxides with Mn-rich veins filled by percolation	Cryptomelane, Hematite, Lithiophorite, Kaolinite	CAU-2	Porous domains with visible needles
	CAU-3	-55	15° 7' 3"	74° 8' 39"	Clastic with ferruginous and manganiferous clasts	Cryptomelane, Hollandite, Goethite, Gibbsite	CAU-3a CAU-3f	Internal band from colloidal overgrowth microstructure External band from colloidal overgrowth microstructure
Naveli								
	NAV-3	-56	15° 7' 55"	74° 9' 50"	Manganiferous lens included in saprolite	Cryptomelane, Nsutite	NAV-3b NAV-3c NAV-3f	Massive cryptocrystalline domain Massive cryptocrystalline domain Cryptocrystalline plasma filling a microfracture
	NAV-4	-27	15° 8' 7"	74° 9' 32"	Accumulation of manganese in plurimetric lenses	Cryptomelane, Goethite	NAV4	Massive cryptocrystalline domain
Cudnem					• · ·			
	CUD-3	-74	15° 32' 35"	74° 2' 3"	Brecchia with manganiferous clasts and ferruginous oolithes	Cryptomelane, Hollandite, Hematite	CUD-3	Massive cryptocrystalline domain

	Comula								laura				1.4		_	
	Sample	A 14 ()	³⁹ Ar	release s	pectru	m	A M.	40.4 -/00.4 -	Inve	rse isocnron		0	Integrated	Ма	۲ میلید	reterred age
Location		Alt. (M)	Age, Ma	Step(S)	%"Ar	Urder	Age, Ma	40Ar/36Ar	WISVUD	Steps	%"Ar	Order	Age, Ma	Wid	Urder	Comments
SANDU	R															
2	KMK-2 ²	996	49,6 ± 1,4	1-13	100	Α	49,8±2,8	285±201	0,11	4-10	69	В	49,1 ± 3,3	49,6±1,3	Α	Plateau > 70% ³⁹ Ar _K
2	KMK-3b	952	36,8 ± 0,8	1-15	100	Α	36,8±1,2	425±643	0,62	3, 6-11	72	В	36,6 ± 1,3	36,8±0,8	Α	Plateau > 70% ³⁹ Ar _k
2	KMK-3 (F) ¹	952	26,3 ± 1,3	3-7	55	в	25,9 ±0,8	305±29	0,17	3-7	55	В	27,5 ± 0,5	26,3±1,3	в	Plateau > 50% ³⁹ Ar _K
1	KPA-13	919	28,8 ± 6,2	2-7	84	Α	27,6±6,7	314 ± 293	1,19	2, 4-7	77	В	32,0 ± 5,7	28,8±6,2	Α	Plateau > 70% ³⁹ Ar _κ
1	KPA-12b (F) ¹	913	33,5 ± 0,5	3-8	77	Α	$33,6 \pm 0,4$	292±4	0,94	3-8, 10	78	С	32,4 ± 0,5	33,5±0,5	Α	Plateau > 70% ³⁹ Ar _K
1	KPA-12b1	913	32,3 ± 0,7	2-11	99	Α	32,1±0,8	343 ± 64	1,12	3-10	94	А	33,5 ± 1,2	32,3±0,7	Α	Plateau > 70% ³⁹ Ar _k
1	KPA-12a (F) ¹	913	$34,3 \pm 0,3$	8	14	С	287+06	336 + 24	0.86	5-7 10 13	47	C	307+04	$34,3\pm0,3$	С	Min. of oldest
	N A-120 (1)	515	$28,6 \pm 0,9$	5	6	С	20,7 ± 0,0	000 I 24	0,00	0-1, 10, 10	47	0	00,7 ± 0,4	28,6±0,9	С	Max. of youngest
1	KPA-12a1	913	27,9 ± 0,3	4-15	98	Α	27,9±0,3	297±14	1,05	4-15	98	Α	27,9 ± 0,4	27,9±0,3	Α	Plateau > 70% ³⁹ Ar _K
1	KPA-12a2	913	28,0 ± 0,4	3-15	99	Α	28,1 ±0,4	299±8	0,70	3-6, 9, 11-13	70	А	27,8 ± 0,5	$28,0\pm0,4$	Α	Plateau > 70% ³⁹ Ar _κ
1	KPA-12a3	913	28,5 ± 0,5	1-10	100	Α	28,6±0,5	292±17	0,99	2-9	92	А	28,0 ± 0,8	$28,5 \pm 0,5$	Α	Plateau > 70% ³⁹ Ar _K
1	KPA-12a4	913	28,9 ± 0,6	3-18	99	Α	28,9±0,7	312±57	1,02	5-18	94	А	29,5 ± 0,8	28,9±0,6	Α	Plateau > 70% ³⁹ Ar _K
1	KPA-12a5	913	29,4 ± 0,5	1-14	100	Α	29,3±1,6	322 ± 194	0,49	9-14	78	А	28,9 ± 0,7	29,4±0,5	Α	Plateau > 70% 39Ark
1	KPA-11v	912	31.9 ± 3.9	6-11	71	Α	31.3±5.3	380±94	0,33	3, 5-9	75	в	40,5 ± 4,4	31,9±3,9	Α	Plateau > 70% ³⁹ Ar _k
1	KPA-10a	904	27.5 ± 0.8	3-14	97	Α	27.6+1.1	296+855	0,43	4, 6-8, 10-11, 13	67	в	27,2 ± 0,9	27,5±0,8	Α	Plateau > 70% ³⁹ Ar
1	KPA-10b	904	27.6 ± 0.7	1-12	100	A	27.6±0.8	299±370	0,06	5-12	87	В	27,8 ± 1,4	27,6±0.5	A	Plateau > 70% 39Ar
1	KPA-10 (F)1	904	28.6 + 0.5	8-12	70	A	28.8+0.6	301+38	0.83	8-9.11.13-14	54	A	26.3 ± 0.4	28,6±0.5	Δ	Plateau > 70% ³⁹ Δr.
1	KPA-10c	904	289+07	1-22	100	4	289+11	294 + 262	0.96	5 10 13-14 17 19 21-22	49	A	28.9 + 0.9	28.9±07	4	Plateau > 70% ³⁹ Ar
1	KPA-9 (F)1	892	360+09	4-9	61	B	36.2 + 0.5	203+23	0.37	4 6 8-9 14	43	B	34.3 + 0.6	36.0±0.9	B	Plateau > 50% 39Ar
1	KPA-82	887	520 + 24	4-3	01		50,2±0,0	200 + 122	0.89	4, 0, 0-9, 14	43	^	60.5 ± 7.9	52 9 + 3 4	•	
	NIA-V	007	52,9 ± 3,4	7	01	A .	52,114,9	339 ± 133	0,00	4-9		A	00,0 ± 1,0	02,0 20,4	~	Fidledu > 70% AIK
1	KPA-2.5 (F) ¹	875	40,0 ± 1,1 21,2 ± 0,4	, 11	6	NGS	35,1±0,7	299 ± 12	2,29	1-3, 5, 9	32	NGS	35,4 ± 0,6	46,0 ±1,1	С	Min. of oldest
1	KPA-2.1 (F) ¹	875	35,9 ± 1,1 39,1 ± 0,3	4-5, 7-8 6	52 16	B C	35,9±0,4	304±18	0,46	4-5, 7-8, 14	52	в	35,8 ± 0,7	35,9±1,1	в	Best fitted inverse isochrone
SHIMOO	3A															
3	TRI-4b	867	23.9 ± 0.2	4-7	70	в	23.8±0.2	291±2	0,41	1, 4, 6-7	60	С	23,7 ± 0,2	23,9±0,2	в	Forced-plateau
			17,8 ± 0,2	8	36	С								17,8±0,2	С	Min. of oldest
3	TRI-3a	857	10.4 ± 1.0	11-12	5	С	11,0±1,5	306 ±36	0,93	3, 5-6, 10-15	26	С	14,2 ± 0,7	10.4 ± 1.0	С	Max. of youngest
3	TRI-3b	857	426+03	5-7	33	C	426±20	297+232	0.36	5-7	33	NGS	60.5 ± 2.8	426+03	C	Max, age
3	TRI-3c	857	255+02	7-14	89	Δ	25 5 + 0 5	353 + 100	1.01	7-10 14	57	Δ	25.2 ± 0.3	25.5±0.2	Δ	Plateau > 70% ³⁹ Ar.
3	TRI-3d	857	257+02	12,20	87	Â	25,5 + 0.4	281+89	1.86	11-12 15-20	70	B	249 + 02	257+02	Â	Plateau > 70% ³⁹ Ar
4	KUM-2 (F)	675	233 ± 0.5	6.8.10	66	6	233+03	307+16	0.65	4 6-8 10	67	B	22.9 ± 0.3	23 2 + 0 3	B	Best fitted inverse isochrone
4	KUM-3a1	672	20,0 ± 0,0	e 20	74	•	25,0 20,0	206 + 17	0.92	6 14 22	20	-	25.6 ± 0.2	26 1 + 0 2	_	
4	KUM-3a2	672	20,1 ± 0,2	5 47	05	A	20,2 ± 0,7	290117	1 02	7 16	20	D	26.0 ± 0.2	264+02	~	Plateau > 70% Al _K
4	KUM 3a3	672	20,4 ± 0,2	5-17	95	~	20,4 ± 0,3	303120	1 11	7-10	93	A	26.4 ± 0.4	26,9±0,4	~	Plateau > 70% AI _K
4	KUM-Jaj	072	26,8 ± 0,4	4-19	96	A	26,9±0,5	294±18	0.04	3-19	97	A	20,4 ± 0,4	20,5 ± 0,4	A	Plateau > 70% Ar _K
4	KUW-3d4	672	27,6 ± 0,3	4-11	91	A	27,7 ±0,5	293±30	1.22	5-9	78	A	27,1 ± 0,3	27,6±0,3	A	Plateau > 70% Ar _K
4	KUWI-3T (F)	672	30,4 ± 0,4	5-7	47	NGS	29,9±0,4	321±20	1,23	3, 5-8	69	NGS	29,4 ± 0,3	None		*°Ar* recoil
4	KUM-400	670	39,2 ± 0,9	9-12	58	В	40,1 ± 4,4	284±79	1,56	10-12	43	В	32,0 ± 1,2	39,2±0,9	в	Forced-plateau
			24,0 ± 3,0	1-7	24	C	26,6±5,3	293±6	1,37	4-7	16	U				
GOA		110							<u>.</u>				040.00		_	20
6	NAV-4 (F) ²	113	20,8 ± 1,7	6-8	54	в	20,7 ±0,9	296±25	0,41	4, 6-8, 13	56	в	24,6 ± 0,6	20,8±1,7	В	Plateau > 50% ³⁹ Ar _K
6	NAV-3b ²	88	45,0 ± 0,7	7-11	57	в	44,9±1,2	293±26	0,77	7-9, 11	45	в	41,4 ± 0,7	44,9±1,2	В	Plateau > 50% ^{3®} Ar _K
6	NAV-3c ²	88	47,0 ± 0,6	6-13	60	В	47,0±0,5	294±6	0,75	3, 6-11, 13	53	A	43,7 ± 0,6	47,0±0,5	Α	Best fitted inverse isochrone
6	NAV-3f (F) ²	88	8,6 ± 0,2	4-9	84	Α	8,6±0,6	309 ± 94	0,55	4-9	84	В	$10,5 \pm 0,6$	8,6±0,2	Α	Plateau > 70% ³⁹ Ar _k
5	CAU-1a ²	68	23,7 ± 0,3	8-10	57	в	23,7 ±0,3	293 ± 3	1,99	3, 8-10	59	С	224 + 03	23,7±0,3	в	Plateau > 50% ³⁹ Ar _K
0	0/10/14	00	20,1 ± 0,2	1-6, 12-13	26	в	20,3 ± 0,8	293 ± 25	0,45	5-6, 12	15	в	22,1 2 0,0	20,3±0,8	в	Concordant pseudo-plateaus
5	CALL 1h	69	$44,7 \pm 0,2$	10	15	С	35.2 ± 0.8	204 + 42	0.81	3.6.15	13	NGS	30.0 ± 0.2	$44,7\pm0,2$	С	Min. of oldest
5	040-10	00	31,2 ± 0,4	19	15	С	00,2 ± 0,0	204 142	0,01	0-0, 10	10	1100	00,0 ± 0,2	$31,2 \pm 0,4$	С	Max. of youngest
5	CALL 102	69	21,9 ± 0,2	8-12	57	в	22,0 ± 0,3	299 ± 11	1,77	8-11	41	В	205 + 0.2	21,9±0,2	в	Plateau > 50% ³⁹ Ar _k
э	CAU-1C*	00	19,7 ± 0,2	3-7, 14-16	27	в	19,6±0,2	298 ± 1	1,02	3-5, 14-16	22	в	20,5 ± 0,3	19,3±0,2	в	Concordant pseudo-plateaus
-			24,5 ± 0,1	9-11	55	в	24,0±0.2	294 ± 3	0,92	4, 9, 11	29	NGS		24,5±0,1	в	Forced-plateau
5	CAU-2	41	19,2 ± 0,2	13	4	С	21,6 ± 0,1	297 ±2	2,56	3, 5-7, 12	21	С	22,8 ± 0,3	20,2 ± 0,3	С	Max. of youngest
			23,7 ± 0.2	10-14	54	в	23,7 ±0.2	292 ± 2	1,82	3-4, 11-14	49	С		23,7±0,2	в	Plateau > 50% 39Ar
5	CAU-3a ²	25	20,4 ± 0.2	1-8, 17-18	29	в	20,4 ±0.2	297 ± 7	1.31	5-7, 17-18	19	в	$22,4 \pm 0,2$	20,4±0.2	в	Concordant pseudo-plateaus
5	CAU-3f (F)2	25	19.4 + 1 5	4-6	58	A	20.2 + 0.4	284+18	0.05	4-6	58	С	21,9 ± 0.6	19,4±1.5	Δ	Plateau > 50% 39 Ar.
7	CUD-3	-24	2.5±04	3-20	95	A	2.1±0.6	305+11	0.18	3-20	95	В	2.9 ± 0.6	2.5±0.4	A	Plateau > 70% 39Ar

(*) recalculated after Bonnet et al., 2014; (*) recalculated after Beauvais et al, 2016 Locations: 1 = Kappataswamy pit; 2 = Channanghi KMK-East pit; 3 Triveni Pit; 4 = Kumsi pit; 5 = Caurem pit; 6 = Naveli pits; 7 Cudnem pit (See also Fig. 1) Refer to Fig. 1 for locatilies numbers A = 1st order age; B = 2nd order age; C = 3nd order age; NGS = No Geological Significance

Data Repository 1 EPMA Click here to download Background dataset for online publication only: Revised_DR1.xlsx Data Repository 2 ArArCalc Click here to download Background dataset for online publication only: R2_DR2.xlsx Data Repository 3 Argon Integral Click here to download Background dataset for online publication only: R2_DR3.xlsx Data Repository Main Text Click here to download Background dataset for online publication only: Revised_Data repositories-Main text_CHEMGE9048.doc