

Very long-term stability of passive margin escarpment constrained by 40 Ar-39 Ar dating of K-Mn oxides

Anicet Beauvais, Nicolas J. Bonnet, Dominique Chardon, Nicolas Olivier

Arnaud, Mudlappa J Jayananda

▶ To cite this version:

Anicet Beauvais, Nicolas J. Bonnet, Dominique Chardon, Nicolas Olivier Arnaud, Mudlappa J Jayananda. Very long-term stability of passive margin escarpment constrained by 40 Ar-39 Ar dating of K-Mn oxides. Geology, 2016, 44 (4), pp.299-302. 10.1130/G37303.1. ird-01419633

HAL Id: ird-01419633 https://ird.hal.science/ird-01419633v1

Submitted on 19 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Very long-term stability of passive margin escarpment constrained by
2	⁴⁰ Ar- ³⁹ Ar dating of K-Mn oxides
3	
4	Anicet Beauvais ^{1*} , Nicolas J. Bonnet ¹ , Dominique Chardon ^{2, 3, 4} , Nicolas Arnaud ⁵ ,
5	Mudlappa Jayananda ⁶
6	
7	¹ Aix-Marseille Université (AMU), IRD, CNRS, CEREGE UM34, BP 80, 13545 Aix-
8	en-Provence, Cedex 4, France
9	² IRD, UR 234, GET, 14 Avenue Edouard Belin, 31400 Toulouse, France
10	³ Université de Toulouse, UPS (OMP), 31400 Toulouse, France
11	⁴ CNRS, GET, 31400 Toulouse, France
12	⁵ Université de Montpellier 2, Géosciences Montpellier, UMR CNRS 5243, 34095
13	Montpellier, France
14	⁶ Centre for Earth and Space Sciences, University of Hyderabad, P.O Central University
15	Gachibowli, Hyderabad 500 046, India
16	
17	
18	
19	
20	*Corresponding author: Anicet Beauvais (beauvais@cerege.fr)
21	
22	Submitted to Geology, August 27 th , 2015
23	
24	

25 ABSTRACT

26 The post-rift denudation history of high-elevation divergent continental margins is 27 central to decipher "source-to-sink" systems across such margins and to unravel the topographic evolution of their escarpment. We perform ⁴⁰Ar-³⁹Ar dating of supergene 28 29 cryptomelane (K-Mn oxide) from supergene manganese ore deposits to constrain the 30 age of in-situ formed laterites of the low-relief lowland and highland separated by the 31 Western Ghats Escarpment (WGE) of Peninsular India. Documentation of laterites as 32 old as 53 Ma on the highland and 47 Ma at the foot of the WGE shows that the 33 escarpment stabilized before 47 Ma (possibly 60 Ma ago). The geomorphic setting of 34 the dated weathering mantles further allows constraining post-Early Eocene denudation 35 of the lowland and the highland to maximums of 5 and 15 m/My, respectively. These 36 results allow refining apatite fission track thermochronology and cosmogenic 37 radionuclides studies that overestimate 4 to 20 times denudation rates, particularly after 38 escarpment stabilization.

39

40 **INTRODUCTION**

41 Constraining the denudation history of high elevation (i.e., escarpment bearing) 42 divergent continental margins documents their post-rift topographic evolution that has 43 implications to quantify their vertical motion, drainage pattern and sedimentary supply 44 over geological time scales. Current evolution models of high-elevation passive margin 45 topography predict contrasted denudation histories. Models based on apatite fission 46 track thermochronology (AFTT) predict a short period ($\leq 10-15$ Ma) of high denudation 47 focused on a coastal strip resulting in escarpment formation shortly after the onset of 48 rifting (Brown et al., 2002; Braun and van der Beek, 2004; see also Matmon et al.,

49	2002). An alternative model integrating AFTT, the elevation of paleosurfaces and
50	indirect geological constraints argues for successive burials, uplifts and topographic
51	rejuvenations after continental break-up implying that escarpments result from the last
52	uplift episode (Japsen et al., 2012). However, possible thermal instabilities in the
53	shallow crust (< 2 km, i.e., T° < 60°C) and the failure of AFTT models to quantify
54	erosion of crustal sections < 1 km (Brown and Summerfield, 1997) result in large
55	uncertainties in the timing and magnitude of denudation predicted by these models (see
56	also Kohn et al., 2005). Whether and how escarpments are rejuvenated after their
57	formation (e.g., Moore and Blenkinsop, 2006) is also debated because the mode and
58	velocity of their retreat have crucial implications on the evolution of the drainage
59	networks of continental margins and their sedimentary budgets (e.g., Tucker and
60	Slingerland, 1994). Studies based on cosmogenic radionuclides (CRN) predict slow
61	denudation and retreat of escarpments, i.e., 3 to 16 m/My (Bierman and Caffee, 2001),
62	but are only valid over millennial time scales.
63	Once slow denudation regimes (< 20 m/My) install on continental margins,
64	remnant landscapes may be commonly preserved as a result of limited to moderate
65	relief inversion (Beauvais and Chardon, 2013). In the tropical belt, such paleolandscape
66	remnants are mantled by laterites that may host K-Mn oxydes (cryptomelane) datable
67	by ⁴⁰ Ar/ ³⁹ Ar geochronology that already proved beneficial (e.g., Vasconcelos, 1999;
68	Vasconcelos and Conroy, 2003; Beauvais et al., 2008). If properly mapped and dated,

69 lateritic paleolandscape remnants are very useful to calibrate erosion over geological

70 time scales (Beauvais and Chardon, 2013). Here we combine geomorphology with the

71 dating of cryptomelane from in-situ formed lateritic Mn ore deposits preserved at the

72 foot and above the Western Ghats Escarpment (WGE) of Peninsular India as a test of

post break-up denudation scenarios deduced from AFTT and CRN studies (Gunnell et
al., 2003; Mandal et al., 2015). Our results lead to very low denudation rates (< 5-15
m/My) since stabilization of the escarpment at least 50 Ma ago and argue for a great
stability of both the topography and relief of the margin since then.

77

78 GEOMORPHOLOGICAL AND GEOCHRONOLOGICAL OUTLINES

79 The WGE is up to 1000 m high and was carved into the Deccan traps and their 80 Archean basement (Fig. 1a). The escarpment separates the coastal lowland from the 81 highland plateau and coincides with the continental divide along most of its trace (Fig. 82 1a). The lowland consists of a weakly dissected lateritic pediment (Figs. 1b and 1c) 83 making the seaward piedmont of the WGE (Widdowson and Gunnell, 1999), on which 84 laterites have been loosely dated to Mid- and Late Tertiary by paleomagnetism 85 (Schmidt et al., 1983). The poorly defined highland laterites would have Late 86 Cretaceous-Eocene paleomagnetic ages (Schmidt et al., 1983). Those laterites are 87 mostly bauxites and mantle a low-relief relict landscape best preserved as 1000-1100 m 88 high mesas near the WGE (e.g., Krishna Rao et al. 1989). Within the highland plateau, relicts of that paleolandscape are sparser (Fig. 1b). At Sandur, ⁴⁰Ar-³⁹Ar dating of 89 90 supergene cryptomelane formed in Mn ore deposits carried by such an highland relict 91 (Figs. 1a and 1b) documents a period of intense lateritic weathering at c. 36-26 Ma 92 (Bonnet et al., 2014), after the formation of Eocene bauxites (Krishna Rao et al., 1989) 93 and before Neogene landscape dissection (Radhakrishna, 1993). 94 Inversion of apatite fission track data predicts higher denudation in the lowland 95 (up to 120 m/My) than in the highland (< 20 m/My) between 80 and 50 Ma, and low (<96 20 m/My) denudation on either side of the escarpment after 40 Ma (Gunnell et al.,

2003). This suggests that the WGE formed at c. 50 Ma, after the extrusion of Deccan
traps (65 ± 2 Ma) and largely after rifting between India and Madagascar (88 ± 3 Ma).

//

100 FIELD RELATIONSHIPS, MATERIAL AND METHOD

101 The lowland pediment consists of a c. 40 km wide concave surface ranging in 102 elevation from 30 to 300 m, and incised by 25 to 100 m deep valleys (Figs. 1b-c). Field 103 observations indicate that the pediment has truncated a bauxitic profile before being in 104 turn weathered and cemented by a ferricrete, which caps a 25 to 60 m thick lateritic 105 weathering profile (Fig. 1c). The studied lowland Caurem and Naveli Mn ore deposits 106 are lentoid pockets within the pediment weathering profiles developed from Archean 107 manganiferous schists and phyllites. The two open cast pits are located at the foot of the 108 WGE at ~ 100 m and 140 m elevation, respectively (Fig. 1c), and four samples were 109 collected at altitudes of 68 m and 45 m in Caurem pit and 113 m and 85 m in Naveli pit 110 (see supplemental material). The highland Sandur Mn ore deposit formed upon Archean 111 manganiferous phyllites and is exposed on a relict lateritic paleosurface capped by a 112 ferricrete at 1012-1015 m elevation (Fig. 1b). Two samples were collected on benches 113 at altitudes of 890 to 975 m (see supplemental material). All samples are massive with 114 botryoidal or cavity filling structures enabling cryptomelane crystallization.

115 Thorough optical microscopy and X-ray micro-fluorescence analyses of 200-300 116 μ m thin sections allowed separation of eight cryptomelane grains from 300-500 μ m 117 symmetrical sections slabs using a binocular magnifier (see Bonnet et al., 2014). The 118 separated grains were characterized using X-ray diffraction, electron microprobe 119 analyses and scanning electron microscopy before irradiation. Cryptomelane (K_xMn^{IV}₈₋ 120 _xMn^{III}_xO₁₆) crystallizes into a monoclinic prismatic system with a typical tunnel-type

121 crystal lattice framed by a double chain of MnO_6 octahedra and K⁺ cations in the large 122 tunnel to insure the electronic neutrality of the lattice (Turner and Buseck, 1979). High 123 retentiveness of potassium (content up to 5.5 wt.% K) and radiogenic argon (⁴⁰Ar*) in 124 the intra-crystalline tunnels warranties the suitability of cryptomelane for ⁴⁰Ar-³⁹Ar 125 dating (see Vasconcelos, 1999).

Gas was extracted from the irradiated cryptomelane grains either from a step-wise heating procedure in a double staudacher-type furnace, or from step incremental heating of the grains with a CO₂ laser probe power. The gas fractions were then cleaned and analyzed using a VG3600 or Argus IV mass spectrometer. The 40 Ar/ 39 Ar ages are calculated from plateaus encompassing at least three consecutive 39 Ar release steps comprising up to 50% of total 39 Ar_K released, and from best-fit inverse isochrones in 36 Ar/ 40 Ar vs. 39 Ar/ 40 Ar correlation diagrams (see also supplemental material).

133

134 **RESULTS AND INTERPRETATIONS**

The ³⁹Ar release spectra of irradiated cryptomelane grains are stacked in the 135 136 Figures 2a and 2b. Each age spectrum allows calculation of a precise age from a plateau 137 encompassing heating steps overlapping at 2σ confidence level while degassing at least 138 5% of the total ³⁹Ar released from the highly retentive intra-crystalline sites of 139 cryptomelane structure. The calculated plateau ages also agree well with the isochron 140 ages (Table 1; see also data repositories DR1 to DR2 in supplemental material). The 141 ⁴⁰Ar-³⁹Ar ages from the highland Sandur deposit document a weathering period from c. 142 53 to c. 50 Ma (Fig. 2a and 2c). These ages complement those previously obtained in 143 the same deposit from c. 36 to c. 26 Ma by Bonnet et al. (2014), which are also shown 144 in figures 2a and 2c. The old ages (53-50 Ma) in the highland are interpreted to reflect

145	(bauxitic) weathering of the low-relief relict landscape, whereas the 36-26 Ma
146	weathering period (Bonnet et al., 2014) is interpreted as that having led to the
147	geochemical reworking of the bauxites documented by Krishna Rao et al. (1989).
148	Lateritic profiles of the lowland pediment record weathering periods at c. 47-45 Ma, c.
149	24-19 Ma, and an episode at c. 9 Ma (Fig. 2b and 2c). The 47-45 Ma ages date the early
150	(bauxitic) weathering of the lowland, whereas the ages between 24 and 19 Ma
151	document renewed weathering and formation of the pediment's capping ferricrete, the 9
152	Ma age reflecting a discrete weathering pulse.

153

154 **DISCUSSION**

155 The preservation of in-situ formed laterites as old as 53-50 Ma above and 47-45 156 Ma below the WGE indicates that the current topographic envelope of the SW Indian 157 margin corresponds to a bauxitic paleosurface dating from the Early Eocene, which 158 already included the WGE with its present amplitude (Fig. 3). The 47-45 Ma old 159 laterites at 55 m depth underneath the lowland pediment belong to a bauxitic profile that 160 did not exceed 120 m in thickness (e.g., Bardossy and Aleva, 1990). Even if the lowland 161 bauxitic profile had been totally eroded (i.e., 120 m of stripping), the maximum 162 denudation rate of the piedmont between early (bauxitic) weathering (47 Ma) and 163 abandonment of the pediment (19 Ma) would be lower than 5 m/My. Given that 164 incision of the pediment does not exceed 100 m, the incision rate of the WGE' 165 piedmont is less than 6 m/My over the last 19 Ma. Anyhow, the remarkable 166 preservation of the pediment surface argues for negligible net denudation of the 167 piedmont's envelope after c. 20 Ma (Fig. 1c).

Different ages recorded at a same depth in the lowland weathering profiles indicate that preserved old lateritic mantles of the escarpment piedmont have undergone several weathering episodes under a slow mechanical denudation regime. Preservation of 47 Ma old bauxitic weathering mantles at least 60 m thick thus attests that the current escarpment established at least 47 Ma ago, and did not retreat since then. Therefore, escarpment formation or retreat driven by Neogene rejuvenation of the lowland (e.g., Radhakrishna, 1993; Widdowson and Gunnell, 1999) is excluded.

175 Topographic inversion of the low-relief bauxitic paleolandscape throughout the 176 highland plateau rarely attains 450 m (e.g., Figs. 1b and 3). Therefore, the ages (53-50 177 Ma) obtained on laterites mantling this relict landscape imply a post-Early Eocene 178 incision rate of less that 9 m/My over the last 50 Ma. Given the very low preservation 179 rate of the old paleolandscape (Fig. 3), this incision rate approximates the denudation 180 rate (Beauvais and Chardon, 2013). Renewed weathering of the highland during the 181 Oligocene (i.e., 36-26 Ma; Bonnet et al., 2014) did not result in significant denudation 182 of the Eocene landscape (< 100 m at Sandur and Belgaum for instance; Fig. 1a; Krishna 183 Rao et al., 1989 and our own field observations). Therefore, erosion rates up to 15 184 m/My may be expected on the highland over the last 26 Ma. 185 Formation of 47 Ma-old lateritic bauxites at the foot of the WGE would be in 186 agreement with the last denudation pulse predicted at c. 50 Ma in the lowland (Fig. 2c) 187 from AFTT inversion model (Gunnell et al., 2003). But this also suggests that the 188 escarpment is even older as bauxitic profiles form slowly at 3 to 10 m/My in contexts of 189 tectonic quiescence and limited denudation (Boulangé et al., 1997). Therefore, if the 190 lowland bauxitic profile comprising 47 Ma-old laterite was 120 m thick, it would have

taken at least 12 My to develop under an escarpment that should have been stabilized atleast 60 Ma ago.

193 Our results imply denudation rates lower than 5 m/My in the lowland for the last 194 47 Ma, as opposed to 5-20 m/My (between 40 and 0 Ma) and even 20-70 m/My 195 (between 50 and 40 Ma) from the AFTT model (blue curve in Fig. 2c). Even erosion rates of c. 10⁻² to 10⁻¹ m/ky (10-100 m/My) derived from CRN studies in riverine 196 197 sediments (Mandal et al., 2015) are also questionable given the remarkable preservation 198 of thick weathering profiles as old as 47 Ma on the WGE' piedmont. Likewise, the 199 preservation of c. 100 m thick highland Eocene lateritic profiles formed upon the latest 200 basaltic flow (63 Ma) of the Deccan traps (Widdowson and Gunnell, 1999) would be 201 unlikely under such erosion rates or those (15-25 m/My) derived from AFTT between 202 53 and 45 Ma (red curve in Fig. 2c). Furthermore, AFTT fails to precisely measure or 203 detect less than 1 km of denudation, which corresponds to the height of most passive 204 margin escarpments. In other words, our results suggest that AFTT- or CRN derived 205 denudation rates are largely overestimated and not realistic once the escarpment there. 206 Given the early installation of very slow denudation regimes across high-elevation 207 margins such as that of Peninsular India, we suggest that the combination of radiometric dating (⁴⁰Ar/³⁹Ar of K-Mn oxides, or ⁴He/³He of Fe-oxides) of lateritic landscape 208 209 remnants with apatite (U-Th)/He thermochronological models be a powerful tool to 210 refine the denudation history of divergent margins of the tropical belt.

211

212 CONCLUSION

⁴⁰Ar-³⁹Ar geochronology of supergene cryptomelane formed in situ in supergene
 manganese ore deposits on either side of the Western Ghats escarpment indicate the

215	development and preservation of an Eocene weathering paleolandsurface mantling the
216	escarpment, attesting of its stability since at least 47-50 Ma, and possibly since 60 Ma.
217	The ages obtained also constrain slow denudation rates of the lowland (< 5 m/My) and
218	the highland (< 15 m/My) of the escarpment after its stabilization. Our results allow
219	refining erosion rates estimated from AFTT and show that absolute dating of lateritic
220	paleolandscape markers may accurately constrain post break-up denudation history of
221	passive margins, with important implications on their sediment delivery histories on
222	geological time scales.
223	
224	Acknowledgements- This work was funded by IFCPAR project 5007-1, the IRD (UR
225	161) and the CNRS (INSU 2011-CT2). The French Ministry of Research granted N.J.B.
226	with a three years PhD scholarship (ED251, AMU, OSU Pytheas). Two referees are
227	thanked for their comments on an earlier version of the manuscript.
228	
229	References
230	Beauvais, A., and Chardon, D., 2013, Modes, tempo, and spatial variability of Cenozoic
231	cratonic denudation: The West African example: Geochem. Geophys. Geosyst., v. 14, p.
232	1590-1608.
233	Beauvais, A., Ruffet, G., Hénocque, O., and Colin, F., 2008, Chemical and physical
234	erosion rhythms of the West African Cenozoic morphogenesis: The ³⁹ Ar- ⁴⁰ Ar dating
235	of supergene K-Mn oxides: J. Geophys. Res., v. 113, F04007.
236	Bierman, P. R. and Caffee, M., 2001, Slow rates of rock surface erosion and sediment
237	production across the Namib desert and escarpment, southern Africa: Am. J. Sci., v.
238	301, p. 326–358.

- 239 Bonnet, N.J., Beauvais, A., Arnaud, N., Chardon, D., and Jayananda, M., 2014, First
- ⁴⁰Ar/³⁹Ar dating of intense Late Palaeogene lateritic weathering in Peninsular India:

241 Earth Planet. Sci. Lett., v. 386, p. 126–137.

- 242 Boulangé, B., Ambrosi, J-P., and Nahon, D., 1997, Laterites and bauxites: In Soils &
- 243 Sediments: Mineralogy and Geochemistry, H. Paquet & N. Clauer, Eds., Springer
- 244 Berlin, Heidelberg, pp. 49-65.
- Braun, J., and van der Beek, P., 2004, Evolution of passive margin escarpments: what
 can we learn from low-temperature thermochronology?: J. Geophys. Res., v. 109,
- EVAN F04009.
- 248 Brown, R.W., Summerfield, M.A., 1997, Some uncertainties in the derivation of rates
- of denudation from thermochronological data: Earth Surf. Proc. Landf., v. 22, 239248.
- 251 Brown, R.W., Summerfield, M.A., and Gleadow, A.J.W., 2002, Denudational history
- along a transect across the Drakensberg escarpment of southern Africa derived from
- apatite fission track thermochronology: J. Geophys. Research, v. 107, B12, 2350.
- 254 Campanile, D., Nambiar, C. G., Bishop, P., Widdowson, M., and Brown, R., 2008,
- 255 Sedimentation record in the Konkan-Kerala basin: implications fro the evolution of
- the Western Ghats and the Western Indian passive margin: Basin research, v. 20, p.
 3-22.
- 258 Chaubey, A.K., Gopala Rao, D., Srinivas, K., Ramprasad, T., Ramana, M.V., and
- 259 Subrahmanyam, V., 2002, Analyses of multichannel seismic reflection, gravity and
- 260 magnetic data along a regional profile across the central-western continental margin
- 261 of India: Marine Geol., v. 182, p. 303-323.

- 262 Gunnell, Y., Gallagher, K., Carter, A., Widdowson, M., and Hurford, A.J., 2003,
- 263 Denudation history of the continental margin of western peninsular India since the
- 264 early Mesozoic Reconciling apatite fission-track data with geomorphology: Earth
- 265 Planet. Sci. Lett., v. 215, p. 187-201.
- 266 Japsen, P., Chalmers, J.A., Green, P.F., and Bonow, J.W., 2012, Elevated, passive
- 267 continental margins: Not rift shoulders, but expressions of episodic, post-rift burial
- and exhumation: Global Planet. Change, v. 90-91, p. 73-86.
- 269 Kohn, B.P., Gleadow, A.J.W., Brown, R.W., Gallagher, K., Lorencak, M., and Noble,
- 270 W.P., 2005, Visualizing thermotectonic and denudation histories using apatite fission
- track thermochronology: Rev. Miner. Geochem., v. 58, p. 527-565.
- 272 Krishna Rao, B., Satish, P.N., and Sethumadhav, M.S., 1989, Syngenetic and epigenetic
- features and genesis of the bauxite-bearing laterite of Boknur-Navge, Belgaum
- district, Karnataka: J. Geol. Soc. India, v. 34, p. 46-60.
- 275 Lee J-Y, Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H-S., Lee, J.B., and Kim,
- J.S., 2006, A redetermination of the isotopic abundances of atmospheric Ar:
- 277 Geochim. Cosmochim. Acta, v. 70, 4507–4512.
- 278 Mandal, S.K., Lupker, M., Burg, J-P., Valla, P.G., Haghipour, N., and Christl M., 2015,
- 279 Spatial variability of 10Be-derived erosion rates across the southern peninsular India
- escarpement: A key to landscape evolution across passive margins: Earth Planet. Sci.
- 281 Letters, v. 425, p. 154-167.
- 282 Matmon, A., Bierman, P., and Enzel, Y., 2002, Pattern and tempo of great escarpment
- 283 erosion: Geology, v. 30, p. 1135-1138.
- 284 Radhakrishna, B.P., 1993, Neogene uplift and geomorphic rejunevation of the Indian
- 285 Peninsula: Curr. Sci., v. 64, no. 11/12, p. 787-793.

- 286 Schmidt, P.W., Prasad, V., and Ramam, P.K., 1983, Magnetic ages of some Indian
- 287 laterites: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 44, p. 185–202.
- 288 Tucker, G. E., and Slingerland, R. L., 1994, Erosional dynamics, flexural isostasy, and
- long-lived escarpments: A numerical modeling study: J. Geophys. Res. 99, B6,
- 290 12229-12243.
- 291 Turner, S., and Buseck, P.R., 1979, Manganese Oxide Tunnel Structures and Their
- 292 Intergrowths: Science, v. 203, p. 456–458.
- 293 Vasconcelos, P.M., 1999, K-Ar and ⁴⁰Ar/³⁹Ar geochronology of weathering processes:
- 294 Annu. Rev. Earth Planet. Sci., v. 27, p. 183-229.
- 295 Vasconcelos, P.M., and Conroy, M., 2003, Geochronology of weathering and landscape
- evolution, Dugald River valley, NW Queensland, Australia: Geochim. Cosmochim.
- 297 Acta, v. 67, no. 16, p. 2913-2930.
- 298 Widdowson, M., and Gunnell, Y., 1999, Tertiary palaeosurfaces and lateritization of the
- 299 coastal lowlands of western peninsula India: in Palaeoweathering, Palaeosurfaces
- 300 and Related Continental Deposits, Thiry, M., and Simon-Coinçon, R., Eds.,
- 301 International Association of Sedimentologists, Sp. Pub., v. 27, p. 245-274.
- 302 Whiting, B.M., Karner, G.D., and Driscoll, N.W., 1994, Flexural and stratigraphic
- 303 development of the West Indian continental margin: J. Geophys. Research, v. 99, p.
- 304 13791-13811.
- 305

306 **Table caption**

- 307
- **Table 1.** Plateau and isochrone ages obtained for the cryptomelane separated from
- 309 samples collected in highland Sandur and lowland Caurem (CAU) and Naveli (NAV)
- 310 Mn ore pits. Depth indicates the sampling level below the surface. MSWD = Mean

311	square weight deviation of isochron. (40 Ar/ 36 Ar _{atm} = 298.56 ± 0.31 from Lee et al.,
312	2006).
313 314 315	Figures caption
316	Figure 1. (a) Topo-bathymetric setting of the Southwestern Indian margin. (b)
317	Topographic cross-section from Sandur to the escarpment edge in the highland and Goa
318	in the lowland (section trace on Fig. 1a). (c) Synthetic Cross-section of the lowland
319	piedmont passing through the two dated Mn ore pits.
320 321	Figure 2 . Stacked 40 Ar- 39 Ar age spectra of cryptomelane from (a) the highland and (b)
322	the lowland Mn ore pits (located on Fig. 1). (c) Weathering periods derived from series
323	of ${}^{40}\text{Ar}$ - ${}^{39}\text{Ar}$ plateau ages including σ errors, with denudation rate curves derived from
324	inversion model of apatite fission track data (Gunnell et al., 2003), both for the highland
325	(HL) and lowland (LL). (The 36-26 Ma ages are from Bonnet et al., 2014).
326 327	Figure 3. Cross-section of the Southwestern Indian divergent margin from offshore
328	basin (A) to Goa, escarpment edge (B) and Sandur (C) (section trace on Fig. 1a). The
329	offshore section including sedimentary limits is adapted from Chaubey et al. (2002),
330	and proportions of clastics are derived from Campanile et al. (2008). Very low offshore
331	accumulation of clastic sediments and correlative Eocene to Mid-Miocene carbonate
332	production (Whiting et al., 1994; Chaubey et al., 2002; Campanile et al., 2008) agrees
333	with onshore weathering and very slow mechanical denudation in the lowland.

Sample	Depth	Plateau age	% ³⁹ Ar	Isochron age	⁴⁰ Ar/ ³⁹ Ar	MSWD
ID	±2 m	± 2σ (Ma)	released	± 2σ (Ma)	intercept ± 2σ	
Highland						
KMK-2	-37	49.60 ± 1.34	100	49.60 ± 1.41	302.0 ± 25	0.10
KPA-8	-125	53.21 ± 3.43	76	53.01 ± 3.45	296.4 ± 13	0.40
Lowland						
NAV-4	-27	20.84 ± 1.68	54	21.12 ± 0.45	288.0 ± 6	0.33
CAU-1c	-32	21.92 ± 0.23	56	22.07 ± 0.24	294.0 ± 1	2.28
CAU-1a	-32	23.67 ± 0.29	57	23.67 ± 0.29	294.9 ± 2	2.31
NAV-3f	-55	8.65 ± 0.16	84	8.57 ± 0.59	308.7 ± 94	0.55
CAU-3f	-55	19.35 ± 1.52	58	20.22 ± 0.35	283.9 ± 18	0.05
CAU-3a	-55	23.65 ± 0.21	54	23.71 ± 0.21	295.5 ± 2	1.85
NAV-3b	-55	45.08 ± 0.78	57	45.15 ± 0.74	293.7 ± 3	2.04
NAV-3c	-55	47.07 ± 0.54	60	47.11 ± 0.53	293.5 ± 3	1.25

TABLE 1

FIGURE 1

FIGURE. 2

Beauvais et al., 2015, Very long term stability of passive margin escarpment constrained by ⁴⁰Ar-³⁹Ar dating of K-Mn oxides

Supplementary material

Manganiferous ore samples have been sampled in upland Sandur ore deposits (KPA-8: 15° 0' 2.27"N/76° 32' 41.6"E; KMK-2: 14° 59' 48.34"N/76° 34' 40.34"E) and in lowland ore deposits, Naveli (NAV-3: 15° 07' 55.10"N/74° 09' 49.72''E; NAV-4: 15° 08' 07.12"N/74° 09' 32.26''E), and Caurem (CAU-1: 15° 07' 2.19"N/74° 08' 39.66"E; CAU-3: 15° 07' 3.47"N/74° 08' 38.97"E).

Cryptomelane grains were separated from 300-500 µm thick slabs by hand picking. The separated grains were ultrasonically cleaned in absolute ethanol and conditioned in aluminium foil packets, to be irradiated for 50 hours in the TRIGA Mark-II reactor of Pavia University (Italia). The Factor J was determined from the analysis of the standard Taylor Creek Rhyolite sanidine-2 (TCRs-2) monitor, with an age of 28 ± 0.08 Ma (Baksi et al., 1996). The standard was analyzed after every ten unknown samples. After a two-month "cooling" period, the irradiated cryptomelane grains were loaded in a double vacuum Staudacher-type furnace for step heating Ar isotopes measurements. The furnace temperature was calibrated by means of a classical thermocouple, and the gas purification was accomplished using a cold trap with liquid air and Al-Zr AP10 getters (one hot, one cold) for 8 minutes before the introduction into the VG3600 mass spectrometer. One minute was allowed for equilibration before analysis. ⁴⁰Ar and ³⁹Ar were measured on a Faraday cup with a resistor of 10¹¹ ohm, while ³⁹Ar, ³⁸Ar, ³⁷Ar, and ³⁶Ar were analyzed using a scintillator and photomultiplier after interaction on a Daly plate. The analytical data are reported in data repositories (Figures DR1 and Table DR2), and the errors are quoted at the 1σ level. Plateau ages are calculated from at least three consecutive ³⁹Ar release steps comprising up to 50% of total ³⁹Ar_K released and overlapping at the 2σ confidence level (Fleck et al., 1977). Isochrone

ages are accepted when mean square weighted deviation (MSWD) is less than 2.5 and the 40 Ar/ 36 Ar intercept within 2 σ from the (40 Ar/ 36 Ar)_{atm} value of 298.56 ± 0.31 (Lee et al., 2006 ; Renne et al., 2009).

References cited

- Baksi, A.K., Archibald, D.A., and Farrar, E., 1996, Intercalibration of ⁴⁰Ar³⁹Ar dating standards: Chem. Geol., v. 129, p. 307-324.
- Fleck, R.J., Sutter, J.F., and Elliot, D.H., 1977, Interpretation of discordant ⁴⁰Ar/³⁹Ar agespectra of mesozoic tholeiites from Antarctica: Geochim. Cosmochim. Acta, v. 41, p. 15-32.
- Lee J-Y, Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.S., Lee, J.B., and Kim, J.S., 2006, A redetermination of the isotopic abundances of atmospheric Ar: Geochim. Cosmochim. Acta, v. 70, p. 4507–4512.
- Renne, P.R., Cassata, W.S., and Morgan, L.E., 2009, The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: time for a change: Quat. Geochron., v. 4, p. 288-298.

Figure. DR1. ³⁹Ar releasing spectra showing well defined plateau ages with K/Ca (grey) and Ar* (black) step curves (left) and inverse isochrone diagrams (right) of cryptomelane grains from the open pits samples of (**A**) Sandur (**B**) Naveli and (**C**) Caurem Mn ore deposits (MSWD = mean square weighted deviation).

Tables. DR2-DR3. Analytical results obtained for highland and lowland cryptomelane grains, either from Laser energy (spectrometer Argus IV) or double vacuum Staudacher-type furnace temperature, T °C, (spectrometer VG 3600) for each irradiated crypromelane grain. The

concentrations of ³⁶Ar, ³⁷Ar, ³⁸Ar, ³⁹Ar and ⁴⁰Ar with their respective 1 σ error are provided for each step heating. The amount of ⁴⁰Ar* (%), of ³⁹Ar released (%³⁹Ar) and the K/Ca ratio (derived from ³⁹Ar/³⁷Ar) are also given. Finally, this table show ratios ⁴⁰Ar*/³⁹Ar_k used to determine the corresponding apparent ages, which are presented in the last column with their associated 2 σ error. The different J-Factor values are also provided for each irradiated grains.

Figure. DR1-A

FIGURE. DR1-B

FIGURE. DR1-C

KMK-2		J = 0.00402	950 ± 0.00000363														
Relative Abundanc	:88		36Ar [V]	%lσ	37Ar [V]	%lσ	38Ar [V]	%1σ	39Ar [V]	%1σ	40Ar [V]	%1σ	$40(r)/39(k)~\pm 2\sigma$	Age ±2σ (Ma)	40Ar(r) (%)	39Ar(k) (%)	K/Ca $\pm 2\sigma$
18 KMK-2	4.00	4	1 1830652	0.511	231 8581	72 426	0 3215167	6 386	4 95915	888.0	371 0028	0 252	8 52/52 + 6 07881	61 07 + 42 82	11.01	1.46	0.0089 + 0.0129
40_KMK-2	4.0	4	0.5680986	0.601	13/ 0113	172 430	0.2570770	9.837	6 5 2 9 1 0	0.550	201 6829	0.468	7 03545 + 6 10151	50 55 + 43 87	22.43	1 95	0.0205 ± 0.0707
51 KMK-2	5 °C	4	0.2762320	1 1/9	265 9626	60.978	0.2666950	9.407	13 01527	0.628	1/8 0358	0.400	7.00618 + 2.17753	50 34 + 15 43	60.32	3.80	0.0203 ± 0.0707
52 KMK-2	5 °C	4	0.0984086	3 023	303 8510	62 665	0.2356036	8 707	15 12151	0.301	107 7680	0.866	7.00710 + 2.19/61	50 35 + 15 55	96.89	4.53	0.0207 ± 0.0200
53 KMK-2	5°C	4	0.0963079	3 187	216 0023	93 560	0.2716634	7 769	14 61645	0.193	114 3836	0.819	7 05201 + 2 34370	50.67 + 16.61	91.08	4.00	0.0288 + 0.0539
55 KMK-2	6.0	4	0.0000070	2 979	20 7181	649 669	0.2/10004	8 840	14.53052	0.185	121 8/10	0.766	6 52232 + 2 27418	46.91 + 16.15	77 72	4.45	0.2101 + 2.7204
56 KMK-2	6°C	4	0.1380666	2 228	-169.60	90.823	0.6075632	4 609	44 83913	0.130	369 8846	0.260	6.83980 ± 0.57628	49.16 ± 4.09	84.95	13.95	-0 1140 + 0 2071
57 KMK-2	6°C	4	0 1912850	1.639	143 1068	85 817	1 3379733	1 752	100 95234	0.115	758 6071	0.123	6 92242 ± 0 20665	49 75 + 1 46	94.03	31.30	0.3030 + 0.5201
4 KMK-2	7°C	4	0.0770691	11 247	294 5770	98 924	0 4479906	5 973	33 31179	0.128	219 7423	1 161	6 55654 ± 1 48708	47 15 ± 10 56	100.90	10.27	0.0483 + 0.0956
5 KMK-2	7 °C	4	0.0584562	14.822	403.3393	72,429	0.2896831	11.745	21.71829	0.152	117,2863	2.176	6.26068 + 2.35533	45.05 + 16.74	114.37	6.51	0.0228 + 0.0331
6 KMK-2	8°C	4	0.0724425	12.081	617.6113	48.098	0.3092851	10.266	22,86000	0.140	114,7255	2.224	6.49998 + 2.29767	46.75 + 16.31	126.97	6.81	0.0156 ± 0.0150
8 KMK-2	10 °C	4	0.0912916	9.525	704.0786	40.752	0.3388404	7.878	21.13750	0.219	103.3896	2.469	6.60114 + 2.41926	47.47 + 17.17	131.69	6.27	0.0126 + 0.0103
9 KMK-2	12 °C	4	0.0525406	16.497	573, 1992	66.571	0.2170933	14.152	14.13494	0.357	76.3872	3.342	7.98376 ± 4.79143	57.26 ± 33.83	143.38	4.17	0.0103 ± 0.0137
		Σ	3.0041547	0.734	3748.6166	23.075	5.1447248	1.833	327,73499	0.060	2825.6367	0.223					
KPA-8		J = 0.00394	38 ± 0.00000355														
KPA-8 Relative		J = 0.00394	138 ± 0.00000355 36Ar	%lg	37Ar	%la	38Ar	%lg	39Ar	%lg	40Ar	%lg	$40(r)/39(k) + 2\sigma$	Age ±2σ	40Ar(r)	39Ar(k)	К/Ca + 2 л
KPA-8 Relative Abundanc	:86	J = 0.00394	138 ± 0.00000355 36Ar [V]	%1σ	37Ar [V]	%1σ	38Ar [V]	%1σ	39Ar [V]	%lσ	40Ar [V]	%Ισ	$40(r)/39(k)~\pm 2\sigma$	Age ±2σ (Ma)	40Ar(r) (%)	39Ar(k) (%)	K/Ca ±2σ
KPA-8 Relative Abundanc	3°C	J = 0.00394	138 ± 0.00000355 36Ar [V] 2 8089159	%lσ	37Ar [V] 234 32	%lσ 130 296	38Ar [V] 0.6593686	%lσ	39Ar [V] 3 20068	%lσ 0.820	40Ar [V] 843.8298	%lσ	40(r)/39(k) ± 2σ	Age ±2σ (Ma) 77 69 + 120 21	40Ar(r) (%)	39Ar(k) (%)	K/Ca ± 2σ
KPA-8 Relative Abundant 31_KPA-8I 32_KPA-8I	3°C 4°C	J = 0.00394	138 ± 0.00000355 36Ar [V] 2.8089159 2.6898971	%1σ 0.536 0.550	37Ar [V] 234.32 195.28	%1σ 130.296 150 750	38Ar [V] 0.6593686 0.6711098	%lσ 3.542 4.116	39Ar [V] 3.20068 7.48457	%lσ 0.820 0.411	40Ar [V] 843.8298 829 3414	%1σ 0.072 0.068	40(r)/39(k) ± 2σ 11.13103 ± 17.59558 7 10266 ± 7 13672	Age ±2σ (Ma) 77.69 ± 120.21 49.96 ± 49.51	40Ar(r) (%) 4.00 6.15	39Ar(k) (%) 1.52 3.61	K/Ca ± 2σ 0.0056 ± 0.0145 0.0162 ± 0.0488
KPA-8 Relative Abundanc 31_KPA-8I 32_KPA-8I 33_KPA-8I	3°C 4°C 4°C	J = 0.00394	38 ± 0.00000355 36Ar [V] 2.8089159 2.6898971 1.7738239	%1σ 0.536 0.550 0.533	37Ar [V] 234.32 195.28 261.41	%1σ 130.296 150.750 118.841	38Ar [V] 0.6593686 0.6711098 0.5120498	%1σ 3.542 4.116 5.930	39Ar [V] 3.20068 7.48457 10.48252	%1σ 0.820 0.411 0.495	40Ar [V] 843.8298 829.3414 574.4086	%1σ 0.072 0.068 0.096	40(r)/39(k) ± 2σ 11.13103 ± 17.59558 7.10266 ± 7.13672 7.18749 ± 5.30643	Age ±2σ (Ma) 77.69 ±120.21 49.96 ±49.51 50.55 ±36.80	40Ar(r) (%) 4.00 6.15 12.60	39Ar(k) (%) 1.52 3.61 5.06	K/Ca ± 2σ 0.0056 ± 0.0145 0.0162 ± 0.0488 0.0169 ± 0.0402
KPA-8 Relative Abundanc 31_KPA-8I 32_KPA-8I 33_KPA-8I 35_KPA-8I	3°C 4°C 4°C 5°C	J = 0.00394	138 ± 0.00000355 36Ar [V] 2.8089159 2.6898971 1.7738239 0.4962284	%1σ 0.536 0.550 0.533 0.761	37Ar [V] 234.32 195.28 261.41 97.74	%1σ 130.296 150.750 118.841 380.046	38Ar [V] 0.6593686 0.6711098 0.5120498 0.2574942	%1σ 3.542 4.116 5.930 9.157	39Ar [V] 3.20068 7.48457 10.48252 13.08041	%1σ 0.820 0.411 0.495 0.307	40Ar [V] 843.8298 829.3414 574.4086 212.9395	%1σ 0.072 0.068 0.096 0.259	40(r)/39(k) ± 2σ 11.13103 ± 17.59558 7.10266 ± 7.13672 7.18749 ± 5.30643 5.55090 ± 4.07662	Age ±2σ (Ma) 77.69 ±120.21 49.96 ±49.51 50.55 ±36.80 41.25 ±34.69	40Ar(r) (%) 4.00 6.15 12.60 34.98	39Ar(k) (%) 1.52 3.61 5.06 6.40	K/Ca ± 2σ 0.0056 ± 0.0145 0.0162 ± 0.0488 0.0169 ± 0.0402 0.0572 ± 0.4350
KPA-8 Relative Abundanc 31_KPA-8I 32_KPA-8I 33_KPA-8I 35_KPA-8I 36_KPA-8I	3°C 4°C 4°C 5°C 5°C	J = 0.00394	138 ± 0.00000355 36Ar [V] 2.8089159 2.6898971 1.7738239 0.4962284 0.2897844	%1σ 0.536 0.550 0.533 0.761 0.903	37Ar [V] 234.32 195.28 261.41 97.74 213.48	%1σ 130.296 150.750 118.841 380.046 232.238	38Ar [V] 0.6593686 0.6711098 0.5120498 0.2574942 0.2457546	%1σ 3.542 4.116 5.930 9.157 6.535	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11 22189	%1σ 0.820 0.411 0.495 0.307 0.282	40Ar [V] 843.8298 829.3414 574.4086 212.9395 142.6239	%1σ 0.072 0.068 0.096 0.259 0.386	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma\\ 11.13103 \pm 17.59558\\ 7.10266 \pm 7.13672\\ 7.18749 \pm 5.30643\\ 5.85080 \pm 4.97662\\ 6.78396 \pm 7.64231\end{array}$	Age ± 2σ (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 36.80 41.25 ± 34.69 47.74 ± 55.08	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56	$\begin{array}{c} \text{K/Ca} \pm 2\sigma \\ 0.0056 \pm 0.0145 \\ 0.0162 \pm 0.0488 \\ 0.0169 \pm 0.0402 \\ 0.0572 \pm 0.4350 \\ 0.0273 \pm 0.1350 \end{array}$
KPA-8 Relative Abundanc 31_KPA-8i 32_KPA-8i 35_KPA-8i 36_KPA-8i 36_KPA-8i 37_KPA-8i	3°C 4°C 4°C 5°C 5°C 5°C	J = 0.00394	38 ± 0.00000355 36Ar [V] 2.8089159 2.6898971 1.7738239 0.4962284 0.2897844 0.315243	%1σ 0.536 0.550 0.533 0.761 0.903 0.847	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12	%1σ 130.296 150.750 118.841 380.046 232.238 250.994	38Ar [V] 0.6593686 0.6711098 0.5120498 0.2574942 0.2457546 0.2640977	%1σ 3.542 4.116 5.930 9.157 6.535 12.342	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831	%10 0.820 0.411 0.495 0.307 0.282 0.238	40Ar [V] 843.8298 829.3414 574.4086 212.9395 142.6239 162.4586	%1σ 0.072 0.068 0.096 0.259 0.386 0.337	$\frac{40(r)/39(k) \pm 2\sigma}{11.13103 \pm 17.59558}$ 7.10266 ± 7.13672 7.18749 ± 5.30643 5.85080 ± 4.97662 6.78306 ± 7.64231 6.60376 ± 4.51244	Age ± 2σ (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 66.80 41.25 ± 34.69 47.74 ± 53.08 46.49 + 31.41	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56 6.20	$\begin{array}{c} \text{K/Ca} \pm 2\sigma \\ 0.0056 \pm 0.0145 \\ 0.0162 \pm 0.0488 \\ 0.0169 \pm 0.0402 \\ 0.0572 \pm 0.4350 \\ 0.0223 \pm 0.1035 \\ 0.0428 \pm 0.2046 \end{array}$
KPA-8 Relative Abundanc 31_KPA-8I 32_KPA-8I 33_KPA-8I 35_KPA-8I 36_KPA-8I 37_KPA-8I 37_KPA-8I	3 °C 4 °C 4 °C 5 °C 5 °C 5 °C 5 °C	J = 0.00394	38 ± 0.00000355 [V] 2.8089159 2.6898971 1.7738239 0.4962284 0.2897844 0.3112543 0.186886	%1σ 0.536 0.550 0.533 0.761 0.903 0.847 1.810	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12 23.81	%1σ 130.296 150.750 118.841 380.046 232.238 250.994 913.916	38Ar [V] 0.6593686 0.6711098 0.5120498 0.2574942 0.2457546 0.2640977 0.9692660	%1σ 3.542 4.116 5.930 9.157 6.535 12.342 2.109	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831 71 99564	%1σ 0.820 0.411 0.495 0.307 0.282 0.238 0.134	40Ar [V] 843.8298 829.3414 574.4086 212.9395 142.6239 162.4586 593.5181	%1σ 0.072 0.068 0.096 0.259 0.386 0.337 0.148	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma\\ 11.13103 \pm 17.59558\\ 7.10266 \pm 7.13672\\ 7.18749 \pm 5.30643\\ 5.85080 \pm 4.87662\\ 6.78306 \pm 7.64231\\ 6.60376 \pm 4.51844\\ 7.49733 \pm 0.51726\end{array}$	Age ± 2a (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 36.80 41.25 ± 34.69 47.74 ± 53.08 46.49 ± 31.41 55.69 ± 35.88	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14 90.92	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56 6.20 3617	$\begin{array}{c} \text{K/Ca} \pm 2\sigma \\ \hline 0.0056 \pm 0.0145 \\ 0.0162 \pm 0.0488 \\ 0.0169 \pm 0.0402 \\ 0.0572 \pm 0.4350 \\ 0.0223 \pm 0.1035 \\ 0.0408 \pm 0.2046 \\ 1 2909 \pm 23 7605 \end{array}$
KPA-8 Relative Abundance 31_KPA-8I 32_KPA-8I 33_KPA-8I 36_KPA-8I 37_KPA-8I 39_KPA-8I 39_KPA-8I	3 °C 4 °C 4 °C 5 °C 5 °C 5 °C 5 °C 6 °C	J = 0.00394	38 ± 0.00000355 36Ar [V] 2.8089159 2.8698971 1.7738239 0.4962284 0.2897844 0.3112543 0.1868086 0.0683805	%1σ 0.536 0.550 0.533 0.761 0.903 0.847 1.810 3.439	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12 23.81 -745.35	%10 130.296 150.750 118.841 380.046 232.238 250.994 913.916 46.385	38Ar [V] 0.6593686 0.6711098 0.5120498 0.2574942 0.2457546 0.2640977 0.9692660 0.3885421	%1σ 3.542 4.116 5.930 9.157 6.535 12.342 2.109 7.195	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831 71.99564 32.44277	%1σ 0.820 0.411 0.495 0.307 0.282 0.238 0.134 0.200	40Ar [V] 843.8298 829.3414 574.4086 212.9395 142.6239 162.4586 593.5181 364.3965	%10 0.072 0.068 0.096 0.259 0.386 0.337 0.148 0.454	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma \\ \\ 11.13103 \pm 17.59558 \\ 7.10266 \pm 7.13672 \\ 7.18749 \pm 5.30643 \\ 5.85080 \pm 4.97662 \\ 6.78306 \pm 7.84231 \\ 6.60376 \pm 4.51844 \\ 7.49733 \pm 0.51736 \\ 8.66685 \pm 1.84452 \end{array}$	Age ± 2σ (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 36.80 41.25 ± 34.69 47.74 ± 53.08 46.49 ± 31.41 52.69 ± 3.58 60.91 ± 12.72	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14 90.92 76.96	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56 6.20 36.17 16.22	$\frac{\text{KVCa} \pm 2\sigma}{0.0056} \pm 0.0145} \\ 0.0162 \pm 0.0482 \\ 0.0169 \pm 0.0402 \\ 0.0572 \pm 0.4350 \\ 0.0223 \pm 0.1035 \\ 0.2408 \pm 0.2046 \\ 1.2999 \pm 23.7605 \\ -0.0190 + 0.0177 \\ 0.0190 +$
KPA-8 Relative Abundanx 31_KPA-8i 32_KPA-8i 35_KPA-8i 35_KPA-8i 36_KPA-8i 39_KPA-8i 40_KPA-8i 40_KPA-8i	3 °C 4 °C 5 °C 5 °C 5 °C 5 °C 6 °C 6 °C	J = 0.00394	38 ± 0.0000355 36Ar [V] 2.8089159 2.6898971 1.7738239 0.4962284 0.2897844 0.3112543 0.1868086 0.0683805 0.0430701	%1σ 0.536 0.550 0.533 0.761 0.903 0.847 1.810 3.439 2.523	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12 23.81 -745.35 -813.85	%1σ 130.296 150.750 118.841 380.046 232.238 250.994 913.916 46.385 69.654	38Ar [V] 0.6593686 0.6711098 0.5120498 0.2574942 0.2457546 0.2640977 0.9692660 0.3885421 0.1578973	%1σ 3.542 4.116 5.930 9.157 6.535 12.342 2.109 7.195 15.361	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831 71.99564 32.44277 12.94441	%10 0.820 0.411 0.495 0.307 0.282 0.238 0.134 0.200 0.371	40Ar [V] 843.8298 829.3414 574.4086 212.9395 142.6239 162.4586 593.5181 364.3965 248.4135	%1σ 0.072 0.068 0.096 0.259 0.386 0.337 0.148 0.454 0.063	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma\\ \hline\\ 11.13103 \pm 17.59558\\ 7.10266 \pm 7.13672\\ 7.18749 \pm 5.30643\\ 5.85080 \pm 4.97662\\ 6.78306 \pm 7.64231\\ 6.60376 \pm 4.51844\\ 7.49733 \pm 0.51736\\ 8.68685 \pm 1.84452\\ 12.55212 \pm 7.34728\end{array}$	Age $\pm 2\sigma$ (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 36.80 41.25 ± 34.69 47.74 ± 53.08 46.49 ± 31.41 52.69 ± 3.58 60.91 ± 12.72 87.37 ± 49.93 149.53	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14 90.92 76.96 66.94	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56 6.20 36.17 16.22 6.66	K/Ca ± 2σ 0.056 ± 0.0145 0.0162 ± 0.0482 0.0159 ± 0.0402 0.0223 ± 0.1035 0.0408 ± 0.2046 1.2999 ± 23.7605 -0.0190 ± 0.0177 -0.0190 ± 0.0170
KPA-8 Relative Abundanc 31_KPA-8I 32_KPA-8I 35_KPA-8I 35_KPA-8I 37_KPA-8I 40_KPA-8I 40_KPA-8I 41_KPA-8I 43_KPA-8I	3°C 4°C 5°C 5°C 5°C 5°C 6°C 6°C	J = 0.00394 4 4 4 4 4 4	38 ± 0.00000355 36Ar [V] 2.8089159 2.6898971 1.7738239 0.4962284 0.2897844 0.3112543 0.1868086 0.063305 0.4962698	%1σ 0.536 0.550 0.533 0.761 0.903 0.847 1.810 3.439 2.523 2.407	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12 23.81 -745.35 -813.85 -572.74	%1σ 130.296 150.750 118.841 380.046 232.238 250.994 913.916 46.385 69.654 96.309	38Ar [V] 0.6593686 0.6711098 0.2574942 0.2457546 0.2640977 0.9692660 0.3885421 0.1578973 0.1136482	%1σ 3.542 4.116 5.930 9.157 6.535 12.342 2.109 7.195 15.361 26.458	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831 71.99564 32.44277 12.94441 8.10058	%1σ 0.820 0.411 0.495 0.307 0.282 0.238 0.134 0.200 0.371 0.637	40Ar [V] 843,8298 829,3414 574,4086 212,9395 142,6239 162,4586 593,5181 364,3965 248,4135 181 (0269	%1σ 0.072 0.068 0.096 0.259 0.386 0.337 0.148 0.454 0.063 0.085	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma\\ 11.13103 \pm 17.59558\\ 7.10266 \pm 7.13672\\ 7.18749 \pm 5.30643\\ 5.85080 \pm 4.97662\\ 6.78306 \pm 7.64231\\ 6.60376 \pm 4.51844\\ 7.49733 \pm 0.51736\\ 8.86865 \pm 1.84452\\ 12.55212 \pm 7.34728\\ 14.35041 \pm 11.36444 \end{array}$	Age ± 2α (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 36.80 41.25 ± 34.69 47.74 ± 53.08 46.49 ± 31.41 52.69 ± 3.58 60.91 ± 12.72 87.37 ± 49.93 99 55 ± 76 71	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14 90.92 76.96 66.94 66.08	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56 6.20 36.17 16.22 6.66 4.19	K/Ca ± 2σ 0.0056 ± 0.0145 0.0162 ± 0.0482 0.0572 ± 0.488 0.023 ± 0.1035 0.0408 ± 0.2046 1.2999 ± 23.7605 -0.0190 ± 0.0177 -0.0072 ± 0.0107
KPA-8 Relative Abundanc 31_KPA-8i 32_KPA-8i 33_KPA-8i 35_KPA-8i 36_KPA-8i 37_KPA-8i 39_KPA-8i 40_KPA-8i 41_KPA-8i 43_KPA-8i	3 °C 4 °C 5 °C 5 °C 5 °C 5 °C 6 °C 6 °C 6 °C 7 °C	J = 0.00394 4 4 4 4 4 4 4	38 ± 0.00000355 36År [V] 2.8089159 2.6898971 1.7738239 0.4962284 0.312543 0.1866086 0.683805 0.437011 0.425688	%10 0.536 0.550 0.533 0.761 0.903 0.847 1.810 3.439 2.523 2.407 1.242	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12 23.81 -745.35 -813.85 -572.74 -483.32	%1σ 130.296 150.750 118.841 380.046 232.238 250.994 913.916 46.385 69.654 96.309 65.192	38Ar [V] 0.6593686 0.6711098 0.2574942 0.2457546 0.2640977 0.9692660 0.3885421 0.1578973 0.1136482 0.1757371	%1σ 3.542 4.116 5.930 9.157 6.535 12.342 2.109 7.195 15.361 26.458 11.013	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831 71.99564 32.44277 12.94441 8.10058 9.27267	%1σ 0.820 0.411 0.495 0.307 0.282 0.238 0.134 0.200 0.371 0.637 0.519	40Ar [V] 843 8298 829 3414 574 4086 212 9395 142 6239 162 4586 593 5181 364 3965 248 4135 181 0269 174 7342	%1σ 0.072 0.068 0.096 0.259 0.386 0.337 0.148 0.454 0.063 0.085 0.091	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma\\ \hline\\ 11.13103 \pm 17.59558\\ 7.10266 \pm 7.13672\\ 7.18749 \pm 5.30643\\ 5.85080 \pm 4.87662\\ 6.78306 \pm 7.64231\\ 6.60376 \pm 4.81844\\ 7.49733 \pm 0.51736\\ 8.68685 \pm 1.84452\\ 12.55212 \pm 7.34728\\ 14.35041 \pm 11.36444\\ 12.14450 \pm 5.62442\end{array}$	Age $\pm 2\sigma$ (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 36.80 41.25 ± 34.69 47.74 ± 53.08 46.49 ± 31.41 52.69 ± 31.58 60.91 ± 12.72 87.37 ± 49.93 99.55 ± 76.71 84.60 ± 38.28	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14 90.92 76.96 66.94 66.89	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56 6.20 36.17 16.22 6.66 4.19 4.84	K/Ca ± 2σ 0.0056 ± 0.0145 0.0162 ± 0.0488 0.0169 ± 0.0428 0.0223 ± 0.1035 0.0408 ± 0.2046 1.2999 ± 23.7605 -0.0190 ± 0.0177 -0.072 ± 0.0100 -0.0064 ± 0.0123
KPA-8 Relative Abundanc 31, KPA-81 33, KPA-81 35, KPA-81 36, KPA-81 36, KPA-81 37, KPA-81 40, KPA-81 41, KPA-81 41, KPA-81 41, KPA-81 43, KPA-81 44, KPA-81 45, KPA-81 45, KPA-81 45, KPA-81 45, KPA-81 46, KPA-81 46, KPA-81 47,	3 °C 4 °C 5 °C 5 °C 5 °C 6 °C 6 °C 7 °C 8 °C	J = 0.00394 4 4 4 4 4 4 4	38 ± 0.00000355 36Ar [V] 2 8089159 2 6898971 1.7738239 0.4962284 0.2897844 0.3112543 0.468286 0.468086 0.6683805 0.430701 0.425698 0.0562862 0.0662082 0.061309	%1σ 0.536 0.550 0.533 0.761 0.903 0.847 1.810 3.439 2.523 2.407 1.242 1.322	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12 23.81 -745.35 -813.85 -572.74 -483.32 -240.19	%1σ 130.296 150.750 118.841 380.046 232.238 250.994 913.916 46.385 69.654 96.309 65.192 109.146	38Ar [M] 0.6593686 0.6711098 0.5120498 0.2574942 0.2457546 0.2640977 0.9692660 0.3885421 0.1578973 0.1136482 0.1757371 0.1056815	%1σ 3.542 4.116 5.930 9.157 6.535 12.342 2.109 7.195 15.361 26.458 11.013 20.501	39Ar [V] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831 71.99564 32.44277 12.94441 8.10058 9.27267 7.09495	%1σ 0.820 0.411 0.495 0.307 0.282 0.238 0.134 0.200 0.371 0.637 0.519 0.579	40Ar [V] 843,8298 829,3414 574,4086 212,9395 142,6239 162,4586 593,5181 364,3965 248,4135 181,0269 174,7342 172,0936	%1σ 0.072 0.068 0.096 0.259 0.386 0.337 0.148 0.454 0.063 0.085 0.091 0.089	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma\\ \\ 11.13103 \pm 17.59558\\ 7.10266 \pm 7.13672\\ 7.18749 \pm 5.30643\\ 5.85080 \pm 4.97662\\ 6.78306 \pm 7.64231\\ 6.60376 \pm 4.51844\\ 7.49733 \pm 0.51736\\ 8.86865 \pm 1.84452\\ 12.55212 \pm 7.34728\\ 14.35041 \pm 11.36444\\ 12.14450 \pm 5.62442\\ 18.80735 \pm 6.36101 \end{array}$	Age ± 2a (Ma) 77.69 ± 120.21 49.96 ± 49.51 50.55 ± 56.80 41.25 ± 34.69 47.74 ± 53.08 46.49 ± 31.41 52.69 ± 3.58 60.91 ± 12.72 87.37 ± 49.93 99.55 ± 76.71 84.60 ± 38.28 129.39 ± 42.23	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14 90.92 76.96 66.94 66.08 66.89 66.89 77.76	39Ar(k) (%) 1.52 3.61 5.06 6.40 5.56 6.20 36.17 16.22 6.66 4.19 4.84 3.58	
KPA-8 Relative Abundance 31_KPA-8I 32_KPA-8I 33_KPA-8I 35_KPA-8I 36_KPA-8I 36_KPA-8I 37_KPA-8I 39_KPA-8I 40_KPA-8I 40_KPA-8I 43_KPA-8I 44_KPA-8I 44_KPA-8I 45_KPA-8I	3 °C 4 °C 5 °C 5 °C 5 °C 6 °C 6 °C 6 °C 7 °C 8 °C	J = 0.00394 4 4 4 4 4 4 4	38 ± 0.00000355 36Ar [V] 2.8089159 2.6898971 1.7738239 0.4962284 0.2897844 0.3112543 0.1868086 0.6683805 0.4425698 0.0562862 0.0661309	%1σ 0.536 0.550 0.533 0.761 0.903 0.847 1.810 3.439 2.523 2.407 1.242 1.322	37Ar [V] 234.32 195.28 261.41 97.74 213.48 130.12 23.81 -745.35 -813.85 -572.74 -483.32 -240.19	%1σ 130.296 150.750 118.841 380.046 232.238 260.994 913.916 46.385 69.654 96.509 65.192 109.146	38Ar [V] 0.6593686 0.6711098 0.5120498 0.2574942 0.2457546 0.2640977 0.9692660 0.3885421 0.1578973 0.1136482 0.1757371 0.1056815	%1σ 3.542 4.116 5.930 9.157 6.535 12.342 2.109 7.195 15.361 26.458 11.013 20.501	39Ar [M] 3.20068 7.48457 10.48252 13.08041 11.22189 12.42831 71.99564 32.44277 12.94441 8.10058 9.27267 7.09495	%1σ 0.820 0.411 0.495 0.307 0.282 0.238 0.134 0.200 0.371 0.637 0.519 0.579	40Ar [V] 843 8298 829 3414 574 4086 212 9395 142 4586 593 5181 364 3965 248 4135 181 0269 174 7342 172 0936	%1σ 0.072 0.068 0.259 0.336 0.337 0.148 0.454 0.663 0.095 0.095	$\begin{array}{c} 40(r)/39(k) \pm 2\sigma\\ \hline\\ 11.13103 \pm 17.59558\\ 7.10266 \pm 7.13672\\ 7.18749 \pm 5.30643\\ 5.85080 \pm 4.97662\\ 6.78306 \pm 7.64231\\ 6.00376 \pm 4.81844\\ 7.49733 \pm 0.51736\\ 8.68685 \pm 1.84452\\ 12.55212 \pm 7.34728\\ 14.35041 \pm 11.36444\\ 12.14450 \pm 5.62442\\ 18.80735 \pm 6.36101 \end{array}$	$\begin{array}{c} Age \pm 2\sigma \\ (Ma) \\ \hline 77.69 \pm 120.21 \\ 49.96 \pm 49.51 \\ 50.55 \pm 36.80 \\ 41.25 \pm 34.69 \\ 47.74 \pm 53.08 \\ 46.49 \pm 31.41 \\ 52.69 \pm 3.58 \\ 60.91 \pm 12.72 \\ 87.37 \pm 49.93 \\ 99.55 \pm 76.71 \\ 84.60 \pm 38.28 \\ 129.39 \pm 42.23 \end{array}$	40Ar(r) (%) 4.00 6.15 12.60 34.98 52.63 50.14 90.92 76.96 66.94 66.08 66.08 97.76	39Ar(k) (%) 1.52 3.61 5.56 6.20 36.17 16.22 6.66 4.19 4.84 3.58	K/Ca ± 2σ 0.0056 ± 0.0145 0.0162 ± 0.0488 0.0159 ± 0.0422 0.0572 ± 0.4350 0.0408 ± 0.2046 1.2939 ± 2.37605 -0.0190 ± 0.0177 -0.0054 ± 0.0123 -0.0056 ± 0.0112 -0.0056 ± 0.0112 -0.0056 ± 0.0112

TABLE DR2

CAU-1a J=0	0.00395580±	0.0000047! Spe	ctro : ARG	IUS IV													
Relative Abundance	s	:	36Ar [fA]	%1s	37Ar [fA]	%1s	38Ar [fA]	%1s	39Ar [fA]	%1s	40Ar [fA]	%1s	40*/39(k) ±2s	Age ±2s (Ma)	40Ar* (%)	39Ar(k) (%)	K/Ca ±2s
18 CAU1A	3.0 %	4.	516016	0.477	43.54992	5.860	1.365495	1.126	5.61404	0.644	1360.5627	0.255	2.85746 + 2.99338	20.28 + 21.12	1.17	0.60	0.06 + 0.01
20 CAU1A	3.5 %	2.	272683	0.432	36.60379	12.817	0.890510	1.677	15.25865	0.155	717.1486	0.072	2.73215 ± 0.47587	19.39 ± 3.36	5.80	1.65	0.18 ± 0.05
21 CAU1A	4.0 %	2.	050184	0.393	34.64924	13.773	0.883057	1.870	22,40054	0.164	673.5708	0.076	2.87059 ± 0.27648	20.37 ± 1.95	9.54	2.42	0.28 ± 0.08
22 CAU1A	4.5 %	0.	763622	0.466	18.26025	24.101	0.678404	3.097	26.48788	0.128	41967.0000	0.170	2.80282 ± 0.10697	19.89 ± 0.76	24.66	2.87	0.62 ± 0.30
24_CAU1A	5.0 %	0.	235595	1.038	18.60246	23.769	0.653277	2.811	39.92276	0.101	181.5618	0.275	2.81728 ± 0.04966	19.99 ± 0.35	61.93	4.32	0.92 ± 0.44
25_CAU1A_	5.3 %	0.	191578	1.253	17.25970	27.923	0.768086	2.162	51.32276	0.097	201.9357	0.263	2.84008 ± 0.03928	20.16 ± 0.28	72.16	5.56	1.28 ± 0.72
26_CAU1A_	5.6 %	0.	210138	3.758	14.00596	25.408	1.143705	1.627	83.77487	0.099	320.1243	1.220	3.07741 ± 0.10942	21.83 ± 0.77	80.52	9.07	2.57 ± 1.32
28_CAU1A_	5.9 %	0.	214924	8.727	4.18793	83.477	2.219469	2.132	164.39158	0.101	610.8941	0.773	3.31832 ± 0.08947	23.53 ± 0.63	89.29	17.81	16.88 ± 28.21
29_CAU1A_	6.2 %	0.	200666	9.468	23.74601	29.916	3.053111	1.986	232.17280	0.095	842.4791	0.263	3.36998 ± 0.05313	23.89 ± 0.37	92.86	25.15	4.20 ± 2.54
30_CAU1A_	6.5 %	0.	085851	12.755	-3.16533	90.190	1.692738	1.080	128.77458	0.096	448.2447	1.051	3.26994 ± 0.08935	23.19 ± 0.63	93.94	13.95	-17.49 ± 31.59
32_CAU1A_	6.8 %	0.	058090	13.479	-1.21155	291.762	0.891483	3.860	68.16303	0.103	226.8244	1.264	3.06198 ± 0.10910	21.72 ± 0.77	92.02	7.38	-24.19 ± 141.18
33_CAU1A_	7.1 %	0.	062935	13.683	0.72994	342.136	0.629049	3.290	45.41806	0.111	146.5107	1.637	2.80384 ± 0.15528	19.90 ± 1.10	86.92	4.92	26.75 ± 183.09
34_CAU1A_	7.5 %	0.	049687	17.355	0.84383	320.119	0.413439	5.188	29.82742	0.126	99.5771	2.409	2.83390 ± 0.23659	20.11 ± 1.67	84.89	3.23	15.20 ± 97.32
36_CAU1A_	8.0 %	0.	030373	1.549	-1.78502	106.081	0.205951	5.066	9.72380	0.186	40.2830	0.133	3.18423 ± 0.04745	22.58 ± 0.33	76.87	1.05	-2.34 ± 4.97
		S 10.	942342	0.383	206.27712	7.297	15.487774	0.664	923.25278	0.037	6170.5939	0.160					
CAU-1c J=0	0.00395580±	0.0000047! Spe	ctro : ARG	IUS IV													
Relative		;	36Ar	%1s	37Ar	%1s	38Ar	%1s	39Ar	%1s	40Ar	%1s	40(r)/39(k) ±2s	Age ±2s	40Ar(r)	39Ar(k)	K/Ca ±2s
Abundance	S		ĮIAJ		ĮIAJ		ĮIAJ		ĮIAJ		ĮIAJ			(Ma)	(%)	(%)	
06 CAU1C	3.0 %	2.	955930	0.415	36.55443	4.950	1,188579	1.545	7.49918	0.219	879.1289	0.049	-0.04320 + 1.21342	-0.31 + 8.66	-0.04	0.88	0.09 ± 0.01
08 CAU1C	3.5 %	3.	301567	0.406	31.94784	3.601	1.261587	1.337	9.28493	0.281	995,9706	0.048	1.39414 ± 1.07867	9.92 ± 7.66	1.30	1.09	0.12 ± 0.01
09 CAU1C	4.0 %	4.	366770	0.407	37.89264	3.444	1.446225	1.452	15,46007	0.135	1336.8954	0.036	2.34966 ± 0.85575	16.69 ± 6.05	2.71	1.81	0.18 ± 0.02
010 CAU10	4.5 %	2.	905542	0.406	29.32351	4.520	1.096971	1.101	21.11387	0.134	922.4625	0.050	2.71663 ± 0.41727	19.28 ± 2.95	6.21	2.48	0.31 ± 0.04
012 CAU10	5.0 %	2.	808190	0.412	21.32195	6.432	1.081115	1.994	24.04572	0.140	900.7403	0.047	2.66030 ± 0.35754	18.89 ± 2.53	7.10	2.83	0.48 ± 0.07
013_CAU10	5.3 %	0.	682495	0.508	7.84246	28.831	0.438070	4.678	18.96641	0.189	257.9112	0.158	2.88154 ± 0.13577	20.45 ± 0.96	21.18	2.23	1.04 ± 0.61
014_CAU10	5.6 %	0.	233447	0.730	11.09798	11.352	0.336339	6.030	20.62905	0.159	129.0176	0.331	2.91325 ± 0.06890	20.67 ± 0.49	46.56	2.43	0.80 ± 0.19
4_CAU1C_	5.9 %	0.	285420	2.334	4.93811	52.818	0.611927	5.553	37.44759	0.124	197.2739	0.741	2.99436 ± 0.13332	21.24 ± 0.94	56.84	4.40	3.26 ± 3.45
5_CAU1C_	6.2 %	0.	427052	1.686	5.19248	70.435	0.909102	4.496	54.41640	0.102	297.7087	0.237	3.12662 ± 0.08535	22.18 ± 0.60	57.15	6.40	4.51 ± 6.36
6_CAU1C_	6.5 %	0.	683213	1.694	17.30755	11.221	1.187802	3.433	66.87030	0.104	415.6859	1.341	3.17908 ± 0.19716	22.55 ± 1.39	51.13	7.86	1.66 ± 0.40
8_CAU1C_	6.8 %	0.	207712	5.554	5.09086	41.333	2.817174	1.039	189.33288	0.102	650.6676	0.141	3.10177 ± 0.03826	22.00 ± 0.27	90.25	22.27	15.99 ± 13.28
9_CAU1C_	7.1 %	0.	114870	19.203	13.93231	29.290	1.743316	2.087	126.98796	0.106	411.8709	0.669	2.97330 ± 0.11276	21.10 ± 0.80	91.67	14.93	3.92 ± 2.32
10_CAU1C	7.4 %	0.	102980	3.803	0.35399	621.535	1.155650	3.393	87.29553	0.114	280.5889	0.325	2.85271 ± 0.03494	20.24 ± 0.25	88.75	10.27	106.04 ± 1318.18
12_CAU1C	7.7 %	0.	090989	2.165	-1.95185	133.733	0.698318	2.792	48.22579	0.107	161.5814	0.338	2.77397 ± 0.03523	19.69 ± 0.25	82.79	5.67	-10.62 ± 28.43
13_CAU1C	8.0 %	0.	081707	2.296	0.47047	666.908	0.499815	5.382	32.40767	0.108	114.4076	0.478	2.76912 ± 0.05165	19.65 ± 0.36	78.44	3.81	29.62 ± 395.08
14_CAU1C	9.0 %	0.	141869	1.402	-0.53409	444.453	0.695800	2.822	45.50024	0.106	166.9138	0.328	2.72679 ± 0.03747	19.36 ± 0.26	74.33	5.35	-36.63 ± 325.65
16_CAU1C_	12.0 %	0.	191802	1.179	-6.29791	38.434	0.747016	2.177	45.00317	0.108	177.7849	0.307	2.65605 ± 0.04085	18.86 ± 0.29	67.24	5.29	-3.07 ± 2.37
		S 19.	581555	0.218	214.48272	4.536	17.914806	0.623	850.48676	0.035	8296.6101	0.081					
CAU-3a J=0	0.00395580±	0.0000047! Spe	ctro : ARG	IUS IV													
Relative		:	36Ar	%1s	37Ar	%1s	38Ar	%1s	39Ar	%1s	40Ar	%1s	40*/39(k) ± 2s	Age ±2s	40Ar*	39Ar(k)	K/Ca ±2s
Abundance	S		[fA]		[fA]		[fA]		[fA]		[fA]			(Ma)	(%)	(%)	
18_CAU3A	3.5 %	2.2	527018	0.466	17.64813	36.203	0.714955	2.749	7.1070	0.289	695.7188	0.189	3.46778 ± 1.12519	24.58 ± 7.92	3.54	0.70	0.17 ± 0.13
20_CAU3A	4.0 %	2.1	473180	0.427	15.14025	28.344	0.854097	3.415	14.0449	0.161	677.8913	0.163	2.70444 ± 0.50482	19.20 ± 3.56	5.60	1.38	0.40 ± 0.23
21_CAU3A	4.5 %	2.2	260178	0.389	22.16793	18.988	0.862905	2.126	20.0461	0.110	719.9477	0.153	2.84873 ± 0.34578	20.22 ± 2.44	7.93	1.97	0.39 ± 0.15
22_CAU3A	5.0 %	1.1	741790	0.560	3.07897	190.743	0.616350	3.261	21.0334	0.122	408.6987	0.286	2.76716 ± 0.24398	19.64 ± 1.72	14.24	2.07	2.94 ± 11.21
24_CAU3A	5.3 %	0.3	310181	1.105	14.55382	29.578	0.406194	5.047	20.9485	0.142	156.9493	0.196	2.82593 ± 0.11763	20.06 ± 0.83	37.70	2.06	0.62 ± 0.37
25_CAU3A_	5.6 %	0.1	839528	1.726	11.83707	39.537	0.427402	5.587	24.8448	0.136	125.2538	0.253	2.86316 ± 0.08810	20.32 ± 0.62	56.77	2.45	0.90 ± 0.72
26_CAU3A_	5.9 %	0.1	562779	2.069	-6.68326	67.802	0.428279	4.903	30.3017	0.121	133.8858	0.225	2.84952 ± 0.07246	20.22 ± 0.51	64.50	2.99	-1.95 ± 2.65
28_CAU3A_	6.2 %	0.1	465956	2.680	4.39217	88.759	0.555135	3.871	36.4632	0.111	151.0139	0.473	2.94214 ± 0.07815	20.88 ± 0.55	71.03	3.59	3.57 ± 6.34
29_CAU3A_	6.5 %	0.1	582600	2.540	9.51032	43.392	0.537045	2.946	35.6433	0.105	153.2633	0.456	2.98811 ± 0.08107	21.20 ± 0.57	69.48	3.51	1.61 ± 1.40
30_CAU3A_	6.8 %	0.1	910077	1.264	12.70945	23.217	0.664209	2.160	46.0625	0.106	200.5556	1.876	3.13061 ± 0.16705	22.20 ± 1.18	71.89	4.54	1.56 ± 0.73
20 041124	700/	0.0	200500	0.070	0.00000	00 757	0 000000	4 C 4 4	05 4050	0 4 5 0	000 0700	0 574	0.00045 0.00704	00.04 .0.00	75.00	C 40	0.00 . 4.00

		S	9.9519632	0.306	135.66289	12.797	16.556718	0.744	1014.9604	0.030	6177.1947	0.099					
41 CAU3A	12.0 %		0.1531753	1.703	10.99301	31.140	1.058174	3.460	68.2344	0.102	242.1234	0.171	2.88269 ± 0.02816	20.46 ± 0.20	81.23	6.72	2.67 ± 1.68
40_CAU3A_	10.0 %		0.0718457	3.673	4.55087	53.924	0.792799	3.688	49.2345	0.126	161.2931	0.255	2.83879 ± 0.03787	20.15 ± 0.27	86.65	4.85	4.65 ± 5.03
38_CAU3A_	9.0 %		0.0655049	4.850	0.42226	1074.174	0.934827	2.873	66.3406	0.088	228.2513	0.256	3.13667 ± 0.03605	22.25 ± 0.25	91.17	6.54	67.56 ± 1451.36
37_CAU3A_	9.0 %		0.0590189	15.080	-2.56009	130.499	0.978539	4.451	72.3497	0.139	252.4294	0.179	3.23266 ± 0.07548	22.92 ± 0.53	92.65	7.13	-12.15 ± 31.73
36_CAU3A_	8.5 %		0.0639352	13.956	2.48021	130.478	1.305095	3.360	99.4785	0.121	352.4664	0.129	3.34377 ± 0.05523	23.71 ± 0.39	94.37	9.80	17.25 ± 45.03
34_CAU3A_	7.8 %		0.1520246	2.920	2.24741	171.304	2.226168	0.771	169.8242	0.073	616.4084	0.579	3.35390 ± 0.04533	23.78 ± 0.32	92.40	16.73	32.49 ± 111.35
33_CAU3A_	7.5 %		0.1868738	8.660	3.36755	68.413	2.260665	1.948	167.8381	0.088	617.6648	0.075	3.33978 ± 0.05822	23.68 ± 0.41	90.75	16.54	21.43 ± 29.37
32_CAU3A_	7.2 %		0.2322562	3.873	9.80682	28.757	0.933880	4.641	65.1650	0.152	283.3798	0.571	3.28815 ± 0.09724	23.31 ± 0.69	75.60	6.42	2.86 ± 1.66
30_CAU3A_	6.8 %		0.1910077	1.264	12.70945	23.217	0.664209	2.160	46.0625	0.106	200.5556	1.876	3.13061 ± 0.16705	22.20 ± 1.18	71.89	4.54	1.56 ± 0.73
29_CAU3A_	6.5 %		0.1582600	2.540	9.51032	43.392	0.537045	2.946	35.6433	0.105	153.2633	0.456	2.98811 ± 0.08107	21.20 ± 0.57	69.48	3.51	1.61 ± 1.40

16.556718 0.744 1 TABLE DR3

4 0.050

NAV-3b J	J=0.00402	950±0.00000: Spectro	: ARGUS IV													
Relative Abundar	nces	36Ai [V]	%1s	37Ar [V]	%1s	38Ar [V]	%1s	39Ar [V]	%1s	40Ar [V]	%1s	40*/39(k) ±2s	Age ± 2s (Ma)	40Ar* (%)	39Ar(k) (%)	K/Ca ±2s
9 NAV-3B	4.0%	24 071	850 0.57	974 8500	3 800	6 452027	0.489	20 2382	0.264	7120 081	0.048	3 40467 + 3 35053	25 29 + 24 14	1.40	1 07	0.013 ± 0.001
10 NAV-3	5.0%	11.580	366 0.57	648.5615	5.972	3.480601	0.789	32,7046	0.237	3580.652	0.040	6.62952 ± 1.45997	47.67 ± 10.36	5.97	2.23	0.013 ± 0.001 0.021 ± 0.003
12_NAV-3	5.5%	3.903	645 0.61	440.0984	9.459	1.590267	1.424	37.1487	0.213	1332.082	0.227	5.85733 ± 0.52065	42.18 ± 3.71	16.19	2.55	0.036 ± 0.007
13_NAV-3	6.0%	1.468	0.76	261.4635	33.774	0.998112	1.998	41.1356	0.212	651.098	0.458	5.84172 ± 0.43820	42.07 ± 3.12	36.74	2.83	0.067 ± 0.045
14_NAV-3	6.3%	0.626	130 1.39	225.9253	12.936	0.901243	2.375	45.2578	0.204	420.622	0.721	5.64217 ± 0.21635	40.65 ± 1.54	60.49	3.12	0.086 ± 0.022
16_NAV-3	6.6%	0.450	185 1.79	5 79.9672	112.109	0.649674	3.459	35.6219	0.236	327.276	0.914	5.64410 ± 0.48233	40.67 ± 3.44	61.33	2.46	0.191 ± 0.429
17_NAV-3	6.9%	0.391	032 2.03	142.1313	56.491	0.620744	3.355	33.6207	0.222	311.508	0.958	6.19825 ± 0.47011	44.61 ± 3.34	66.69	2.32	0.101 ± 0.115
18_NAV-3	7.2%	0.383	583 2.10	36.5946	75.686	0.679554	3.692	38.3892	0.211	344.616	0.885	6.10043 ± 0.23878	43.91 ± 1.70	67.91	2.65	0.451 ± 0.682
20_NAV-3	7.5%	0.617	538 1.36	-31.8060	80.778	1.253744	1.678	78.9865	0.162	680.972	0.443	6.26551 ± 0.11657	45.09 ± 0.83	72.70	5.46	-1.068 ± 1.726
21_NAV-3	7.8%	0.8453	306 5.63	17.6699	160.546	2.497727	1.983	170.3464	0.155	1357.707	0.693	6.50367 ± 0.20211	46.78 ± 1.44	81.59	11.77	4.145 ± 13.310
22_NAV-3	8.1%	1.375	291 5.03	30.9040	95.668	6.908670	1.099	507.1068	0.144	3567.849	0.541	6.23009 ± 0.11296	44.84 ± 0.80	88.55	35.05	7.056 ± 13.500
24_NAV-3	8.4%	0.427	332 1.74	123.3786	33.397	1.980591	1.118	144.0581	0.143	941.179	0.185	5.72255 ± 0.06529	41.22 ± 0.47	87.54	9.95	0.502 ± 0.335
25_NAV-3	8.7%	0.347	291 2.17	49.9188	77.368	1.043066	2.383	69.6635	0.161	458.658	0.478	5.16493 ± 0.13201	37.25 ± 0.94	78.41	4.81	0.600 ± 0.928
26_NAV-3	9.0%	0.273	315 2.70	2.3805	946.327	0.670710	3.440	47.3429	0.189	301.250	0.728	4.64885 ± 0.15548	33.56 ± 1.11	73.06	3.27	8.551 ± 161.850
28_NAV-3	10.0%	0.4243	388 1.79	43.4034	57.291	0.923435	2.180	61.7075	0.173	406.348	0.539	4.60544 ± 0.12494	33.25 ± 0.89	69.90	4.26	0.611 ± 0.700
29_NAV-3	12.0%	0.597	971 1.36	-2.0230	1208.846	1.190922	2.100	76.8151	0.165	517.295	0.424	4.42211 ± 0.10297	31.94 ± 0.74	65.67	5.31	-16.328 ± 394.761

S 47.784230 0.373 3043.4182 6.214 31.841089 0.397 1449.1435 0.060 22329.092 0.107

NAV-3C J=0	1.00402950 ± 0.0000	JU: Spectro : AR	GUSIV													
Relative Abundance	S	36Ar [V]	%1s	37Ar [V]	%1s	38Ar [V]	%1s	39Ar [V]	%1s	40Ar [V]	%1s	$40(r)/39(k) \pm 2s$	Age ± 2s (Ma)	40Ar(r) (%)	39Ar(k) (%)	K/Ca ±2s
30 NAV-3	4.0%	8.752647	0.596	426.7565	8.165	2.514326	1.690	13.5829	0.722	2603.852	0.128	4.05000 ± 2.78278	29.27 ± 19.95	2.06	1.15	0.013 ± 0.002
33_NAV-3	5.0%	11.214253	0.583	585.3519	5.546	3.508387	1.328	33.1208	0.329	3477.948	0.095	6.53924 ± 1.40857	47.03 ± 10.00	6.15	2.83	0.024 ± 0.003
34 NAV-3	5.5%	2.908345	0.749	363.0345	9.858	1.302245	2.816	25.2080	0.399	989.550	0.338	6.44893 ± 0.68821	46.39 ± 4.89	16.26	2.16	0.030 ± 0.006
35_NAV-3 6	6.0%	1.394728	1.125	296.6431	15.241	0.865514	4.489	26.5601	0.387	549.448	0.614	6.16229 ± 0.54708	44.35 ± 3.89	29.55	2.28	0.038 ± 0.012
37_NAV-3 6	6.3%	0.530153	2.671	210.5173	22.268	0.707024	4.914	31.4310	0.456	319.566	1.060	5.77253 ± 0.43768	41.58 ± 3.12	56.50	2.71	0.064 ± 0.028
38_NAV-3 6	6.6%	0.335936	4.083	277.1481	24.569	0.528844	6.699	26.4947	0.450	241.116	1.412	6.28306 ± 0.60876	45.21 ± 4.33	68.52	2.28	0.041 ± 0.020
39_NAV-3	6.9%	0.241142	5.628	141.6432	27.439	0.412575	9.544	21.1454	1.127	190.018	1.741	6.20784 ± 0.60618	44.68 ± 4.31	68.74	1.82	0.064 ± 0.035
41_NAV-3	7.2%	0.242656	5.559	143.1868	33.818	0.448551	8.689	26.2855	0.391	224.302	1.491	6.28464 ± 0.51255	45.22 ± 3.64	73.36	2.27	0.079 ± 0.053
42_NAV-3	7.5%	0.329281	4.115	92.9742	36.342	0.553563	6.936	27.9930	0.392	269.873	1.226	6.45414 ± 0.43010	46.43 ± 3.05	66.78	2.42	0.129 ± 0.094
43_NAV-3	7.8%	0.479685	2.867	19.0977	187.128	0.831439	4.518	46.1147	0.251	435.650	0.758	6.40131 ± 0.26571	46.05 ± 1.89	67.74	4.00	1.038 ± 3.885
45_NAV-3 8	8.1%	0.382928	3.562	27.6454	116.220	0.714079	5.614	44.3478	0.257	406.026	0.814	6.65059 ± 0.26851	47.82 ± 1.91	72.61	3.84	0.689 ± 1.603
46_NAV-3 8	8.3%	0.441581	7.202	-103.9544	75.409	1.527758	2.373	108.2819	0.178	879.165	0.975	6.81805 ± 0.26662	49.01 ± 1.89	84.03	9.39	-0.448 ± 0.676
47_NAV-3 8	8.6%	0.825150	3.863	17.7697	164.163	5.198367	0.801	390.9425	0.145	2804.071	0.284	6.54328 ± 0.06727	47.06 ± 0.48	91.22	33.89	9.460 ± 31.059
4_NAV-3C 9	9.0%	0.296675	10.789	66.4975	76.241	1.840361	1.671	134.9982	0.165	909.669	0.845	6.12346 ± 0.19278	44.08 ± 1.37	90.84	11.70	0.873 ± 1.331
5_NAV-3C 9	9.5%	0.274793	9.852	105.6833	37.942	1.096781	2.486	79.8466	0.224	497.948	1.437	5.32747 ± 0.28379	38.41 ± 2.02	85.34	6.91	0.325 ± 0.246
6_NAV-3C 1	10.0%	0.265903	10.089	38.1470	42.728	0.770335	2.495	53.8095	0.283	325.930	2.196	4.65000 ± 0.40155	33.57 ± 2.87	76.73	4.66	0.606 ± 0.518
8_NAV-3C 1	12.0%	0.370818	7.520	48.8411	48.762	1.023809	2.959	65.5177	0.249	401.063	1.788	4.50543 ± 0.34034	32.53 ± 2.44	73.56	5.68	0.577 ± 0.562

S 29.286675 0.408 2756.9828 6.462 23.843957 0.634 1155.6803 0.071 15525.196 0.140

NAV-3f J=0.002	72700±0.0000	06 Spectro : VG	3600													
Relative Abundances		36Ar [V]	%1s	37Ar [V]	%1s	38Ar [V]	%1s	39Ar [V]	%1s	40Ar [V]	%1s	$40(r)/39(k) \pm 2s$	Age ± 2s (Ma)	40Ar(r) (%)	39Ar(k) (%)	K/Ca ±2s
33260_AR 600 ° 33261_AR 650 ° 33262_AR 700 ° 33263_AR 750 ° 33264_AR 800 ° 33265_AR 850 ° 33266_AR 900 ° 33266_AR 950 ° 33266_AR 900 °	000000000000000000000000000000000000000	0.0000303 0.0000194 0.0000745 0.0003261 0.0001342 0.000968 0.0002073 0.0001615 0.0000944 0.0001905	53.662 75.313 19.418 15.991 38.761 53.933 10.139 4.771 9.413 27.384	0.0003365 0.0004149 0.0000597 0.0000765 -0.0001787 0.0001908 0.0007232 -0.0005931 0.0002402 0.0005923	92.443 74.920 521.472 589.195 252.192 236.068 42.946 35.101 87.036 76.000	0.0000662 0.0001216 0.0001942 0.0003058 0.0004710 0.0010055 0.0023209 0.0012941 0.0008270 0.0010664	26.204 13.749 8.529 8.150 5.334 3.966 1.764 1.698 2.667 2.254	0.0008544 0.0038414 0.0083573 0.0156988 0.0288385 0.0689251 0.1894340 0.1271947 0.0582583 0.0809093	5.743 0.692 0.612 0.216 0.219 0.184 0.207 0.164 0.180 0.187	0.0137850 0.0686538 0.0925542 0.1257348 0.0990994 0.1679506 0.3999653 0.2720278 0.1295069 0.2736496	2.924 0.572 0.431 0.765 0.956 0.563 0.176 0.281 0.491 0.432	$\begin{array}{l} 5.68804 \pm 11.30657\\ 16.37933 \pm 2.27331\\ 8.43301 \pm 1.03260\\ 1.86222 \pm 1.96744\\ 2.05119 \pm 1.06820\\ 2.01224 \pm 0.44874\\ 1.77859 \pm 0.06645\\ 1.75335 \pm 0.03830\\ 1.73497 \pm 0.09302\\ 2.67738 \pm 0.38234\\ \end{array}$	$\begin{array}{c} 27.83 \pm 54.90 \\ 79.02 \pm 10.73 \\ 41.11 \pm 4.98 \\ 9.16 \pm 9.65 \\ 10.09 \pm 5.24 \\ 9.90 \pm 2.20 \\ 8.75 \pm 0.33 \\ 8.63 \pm 0.19 \\ 8.54 \pm 0.46 \\ 13.15 \pm 1.87 \end{array}$	35.25 91.64 76.15 23.25 59.69 82.58 84.24 81.98 78.05 79.16	0.15 0.66 1.44 2.70 4.95 11.84 32.53 21.84 10.00 13.89	$1 \pm 2 \\ 4 \pm 6 \\ 60 \pm 628 \\ 88 \pm 1040 \\ -69 \pm 350 \\ 155 \pm 733 \\ 113 \pm 97 \\ -92 \pm 65 \\ 104 \pm 182 \\ 59 \pm 89$
	S	0.0013351	8.254	0.0018623	60.878	0.0076728	1.084	0.5823119	0.087	1.6429275	0.150	TABLE DR3 (continu	ed)			

Step	Temperatur	40Ar/39Ar	38Ar/39Ar	37Ar/39Ar	36Ar/39Ar	39Ar	%39Ar	%40Ar*	40Ar*/39K	Age	± s.d.
NAV-4f	°C				(E-3)	(E-14)	released			N	19
Spectro : VG 3600 moles									IV	ia	
J= 0.002727											
1	350	233329.16	1.04	66.39745	1039.77	0	0	99.87	0	0	± 0
2	450	477.918	0.409	0.01935	1647.584	0.015	3.91	-1.88	-8.96	0	± 0
3	550	8.185	0.118	0.0005	22.722	0.016	8.2	17.72	1.45	7.121	± 3.503
4	600	1644181.3	1.04	66.39745	5898367.2	0	8.2	-6.01	-103237.8	0	± 0
5	650	8.153	0	0.00269	77.269	0.003	9.01	-180.3	-14.7	0	± 0
6	700	6.563	0.021	0.00012	7.719	0.067	26.42	64.94	4.26	20.848	± 0.988
7	750	6.456	0.008	0.00016	7.304	0.052	40.09	66.26	4.28	20.923	± 1.073
8	800	10.924	0.015	0.00011	22.598	0.073	59.13	38.69	4.23	20.676	± 1.731
9	850	6.353	0.014	0.00011	0.002	0.075	78.77	99.68	6.33	30.89	± 0.089
10	900	8.322	0.012	0.00021	0.003	0.039	89.07	99.75	8.3	40.385	± 0.211
11	950	26.545	0.032	0.00157	24.211	0.005	90.45	72.97	19.37	92.865	± 18.47
12	1000	31.473	0	0.00246	18.469	0.003	91.33	82.6	26	123.561	± 8.969
13	1200	6.321	0.002	0.00038	8.767	0.022	97.05	58.7	3.71	18.162	± 2.383
14	1450	8.936	0	0.00073	25.99	0.011	100	13.83	1.24	6.07	± 6.384
Step	Temperatur	40Ar/39Ar	38Ar/39Ar	37Ar/39Ar	36Ar/39Ar	39Ar	%39Ar	%40Ar*	40Ar*/39K	Age	± s.d.
CAU-3f	°C				(E-3)	(E-14)					
Spectro :	VG 3600	3600 moles		released			ма				
]= 0.002727											
1	550	5.946	0.211	0.00042	27.703	0.019	4.68	-38	-2.26	0	± 0
2	600	4.964	0.071	0.00056	0.009	0.014	8.2	99.54	4.94	24.146	± 0.216
3	650	6.494	0.026	0.00027	3.348	0.029	15.57	84.46	5.49	26.786	± 1.404
4	700	6.145	0.021	0.00017	6.785	0.047	27.41	67.05	4.12	20.159	± 2.29
5	750	5.065	0.02	0.00008	3.36	0.097	52.01	80	4.05	19.826	± 1.234
6	800	9.738	0.021	0.00009	19.76	0.088	74.3	39.84	3.88	18.985	± 0.934
7	850	5.171	0.02	0.00013	2.684	0.061	89.72	84.27	4.36	21.315	± 0.494
8	950	11.343	0.048	0.00039	9.709	0.02	94.84	74.53	8.45	41.119	± 1.734
9	1000	28.501	0	0.00398	61.908	0.002	95.34	35.75	10.19	49.439	± 11.841
10	1200	13.136	0.009	0.53894	10.137	0.015	99.15	77.29	10.16	49.29	± 1.805
11	1450	52,209	0	30714.419	59.822	0.003	100	99.96	-99.93	0	± 0

TABLE DR3 (continued)