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Does natural selection explain the fine scale genetic structure at the nuclear exon Glu-5' in blue mussels

from Kerguelen ?

Introduction

In marine benthic organisms, a long planktonic larval stage generally allows gene flow between remote populations and consequently neutral genetic differentiation increases only slightly with geographical distance [START_REF] Launey | Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism[END_REF].

Physical isolation (e.g. large distances, oceanic fronts, gyres) enhances genetic differences among populations.

Differentiation may also arise locally through adaptation to localized environmental conditions [START_REF] Smith | Sympatric speciation[END_REF][START_REF] Barton | Analysis of hybrid zones[END_REF]. However, detecting adaptation through natural selection is difficult mainly because gene flow counters its effects at each generation [START_REF] Kawecki | Conceptual issues in local adaptation[END_REF][START_REF] Sanford | Local adaptation in marine invertebrates[END_REF]. Also large variance in reproductive success (see Hedgecock's sweepstake reproduction hypothesis [START_REF] Hedgecock | Temporal and spatial genetic structure of marine animal populations in the California Current[END_REF][START_REF] Hedgecock | Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary[END_REF] Pudovkin 2011) can generate transient chaotic patterns of genetic structure, known as "chaotic genetic patchiness" [START_REF] Johnson | Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet[END_REF]Black 1984, Broquet et al. 2013) ) that sometimes ressembles local adaptation. Differentiation between neighbouring populations may be initiated by localized spatial heterogeneity in the environment such as hydrological characteristics (currents, exposition to wave action, salinity, temperature) or a complex topography (coastal shape, depth). Under conditions of fine-grained environmental heterogeneity, genetic differentiation at a selected locus may be higher between populations that differ environmentally even over short distances, than at other loci [START_REF] Kawecki | Conceptual issues in local adaptation[END_REF][START_REF] Gagnaire | The genetic consequences of spatially varying selection in the panmictic American eel (Anguilla rostrata)[END_REF].

The present work takes place in the Kerguelen archipelago, isolated in the Southern Indian Ocean 4100 km southeast of South Africa and 4000 km west of Australia. The Kerguelen plateau is an obstacle to the eastward flow of the Antarctic Circumpolar Current and creates a large wake zone where water masses strongly mix (Park et al. 2008a;Park et al. 2008b). The cold Superficial Antarctic Waters reach the west coast of the archipelago and separate into two parts drifting along south-and northward [START_REF] Murail | Hydrologie du plateau continental des îles Kerguelen[END_REF][START_REF] Edgar | Dispersal of fauna and floral propagules associated with drifting Macrocystis pyrifera plants[END_REF][START_REF] Blain | A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean[END_REF]. The morphology of the Kerguelen Archipelago is the result of the volcanic activity combined with glacial erosion that led to a carved coast with protected bays and fjords, and a large enclosed bay with particular environmental conditions, the Gulf of Morbihan. In the very coastal perimeter, the salinity decreases drastically due to the important hydrographical network, and decreases even stronger in the shallow waters of the gulf, or deep inside the bays and fjords like at the Fjord des Portes Noires and the Fjord Henri Bossière (Figure 1) [START_REF] Arnaud | Contribution à la bionomie marine benthique des régions antarctiques et subantarctiques[END_REF][START_REF] Murail | Hydrologie du plateau continental des îles Kerguelen[END_REF]. This archipelago is also characterized by a high level of endemism [START_REF] Briggs | Oceanic islands, endemism and marine paleotemperatures[END_REF][START_REF] Mcdowall | Oceanic Islands and Endemism[END_REF][START_REF] Poulin | Pattern of spatial distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands[END_REF][START_REF] Hennion | Seed germination of endemic species from Kerguelen phytogeographic zone[END_REF][START_REF] Brandt | Biogeography of Crustacea and Mollusca of the Subantarctic and Antarctic regions[END_REF][START_REF] Frenot | Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet[END_REF][START_REF] Emerson | Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process[END_REF]. Given the discrete geographical nature [START_REF] Emerson | Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process[END_REF] and spatial heterogeneity of the environment, Kerguelen Islands seem particularly suited to investigate the association of the environment andthe population differentiation in a marine species with a long planktonic larval stage (thereby a putatively high dispersal potential), such as smooth-shelled Mytilus (L.) mussels.

The blue mussels from Kerguelen are mainly distributed in the intertidal zone from 0 to 2 m depth [START_REF] Arnaud | Les moulières à Mytilus et Aulacomya des îles Kerguelen (sud de l'Océan Indien). Les "moulières de seuil" et leur intérêt possible pour l'aquaculture des pélécypodes[END_REF][START_REF] Arnaud | Contribution à la bionomie marine benthique des régions antarctiques et subantarctiques[END_REF], where the environmental conditions are the most variable. Kerguelen blue mussels have been described as M. desolationis (Lamy, 1936). However, their current taxonomic status, determined from morphology, allozymes, and nuclear and mitochondrial DNA sequences is M. edulis platensis, the Southern-Hemisphere subspecies of M. edulis L. [START_REF] Mcdonald | Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres[END_REF][START_REF] Borsa | Genetics and taxonomy of Chilean smooth-shelled mussels, Mytilus spp. (Bivalvia: Mytilidae)[END_REF]. Genetic differentiation between smooth-shelled Mytilus spp. mussels (M. edulis L., M. galloprovincialis Lmk., M. trossulus Gould) and the phylogeography of these species has been studied extensively (e.g. [START_REF] Mcdonald | Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres[END_REF][START_REF] Sanjuan | Genetic differentiation in Mytilus galloprovincialis Lmk. troughout the world[END_REF][START_REF] Daguin | Phylogéographie des moules du complexe d'espèces Mytilus edulis[END_REF][START_REF] Daguin | Genetic relationships of Mytilus galloprovincialis Lamarck populations worldwide: evidence for nuclear DNA markers[END_REF][START_REF] Hilbish | Origin of the antitropical distribution pattern in the marine mussels (Mytilus spp.): routes and timing of transequatorial migration[END_REF][START_REF] Gérard | Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations[END_REF], with particular focus on areas of hybridization [START_REF] Skibinski | Genetic evidence for naturally occurring hybrids between Mytilus edulis and Mytilus galloprovincialis[END_REF][START_REF] Skibinski | Protein polymorphisms adaptive and taxonomic significance[END_REF][START_REF] Väinölä | Genetic divergence and a hybrid zone between Baltic and North Sea Mytilus populations[END_REF][START_REF] Viard | Evolution of the genetic structure of bivalve cohorts at hybridization sites of the Mytilus edulis-M. galloprovincialis complex[END_REF][START_REF] Gardner | The Mytilus edulis species complex in southwest England: Effects of hybridization and introgression upon interlocus associations and morphometric variation[END_REF]Bierne et al. 2002a;Bierne et al. 2002b;[START_REF] Bierne | Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis[END_REF]). The most famous example of genetic differentiation linked to the environment in blue mussels is the gradient at the lap locus correlated with salinity gradient along the eastern coast of North America [START_REF] Koehn | Biochemical aspects of genetic variation at the LAP locus in Mytilus edulis[END_REF]. The physiological and selective roles of the lap locus have been highlighted [START_REF] Hilbish | Effect of an allozyme polymorphism on regulation of cell volume[END_REF]Hilbish & Koehn 1985a, b) and further studied in blue mussels from Kerguelen [START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF]) and New Zealand [START_REF] Gardner | Biochemical genetic variation at a leucineaminopeptidase (LAP) locus in blue (Mytilus galloprovincialis) and greenshell (Perna canaliculus) mussel populations along a salinity gradient[END_REF][START_REF] Gardner | Size dependant, spatial and temporal genetic variation at a leucine aminopeptidase (LAP) locus among blue mussel (Mytilus galloprovincialis)[END_REF]. In Kerguelen blue mussels, genetic differences between populations were apparent at three (lap, pgm, pgd) allozyme loci [START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF], and the structure reported to be related to salinity, wave exposure and, to a lesser extent, to the maximum shell length (as a proxy of fitness).However, no statistical analyses were conducted to support this conclusion. Theoretically, genetic differentiation may be due to physical barriers to gene flow but also to local adaptation under selective constraints [START_REF] Williams | Adaptation and natural selection[END_REF][START_REF] Kawecki | Conceptual issues in local adaptation[END_REF][START_REF] Perrin | Effects of hydrographic barriers on population genetic structure of the sea star Coscinasterias muricata (Echinodermata, Asteroidea) in the New Zealand fjords[END_REF]. In cases of barriers to gene flow, the differentiation will affect a majority of loci, whereas in cases of local adaptation only a few loci are concerned.

To determine whether the genetic polymorphism of the blue mussel population of Kerguelen is driven by neutral and/or adaptive forces, we (i) investigated the influence of the water circulation around Kerguelen, first on the total genetic structure and second within differentiated groups and (ii) tested the influence of the habitat type at a smaller scale. To fill in these objectives, we used two nuclear markers polymorphic in Kerguelen blue mussels: Glu-5' [START_REF] Inoue | Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus[END_REF][START_REF] Rawson | Evidence for intragenic recombination within a novel genetic marker that distinguishes mussels in the Mytilus edulis species complex[END_REF] and mac-1 [START_REF] Ohresser | Intron-length polymorphism at the actin gene locus mac-1: a genetic marker for population studies in the marine mussels Mytilus galloprovincialis Lmk and M. edulis L[END_REF], and we also considered the sequence polymorphism at the mitochondrial DNA locus COI [START_REF] Gérard | Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations[END_REF]. We tested the polymorphism at EFbis (Bierne et al. 2002a) and EFprem's (this study), two introns of the elongation factor 1 alpha gene, which are physically linked. We collected blue mussel samples from all around the Kerguelen Archipelago, from contrasted habitats roughly described by five qualitative environmental variables. At a finer grid, a dense network of sites in the complex of islands of the Gulf of Morbihan, were sampled to explore the distribution of the allele frequencies, taking into account the environmental changes over short distances.

Material and methods

Sampling

Blue mussel samples were collected between 1999 and 2003 from 35 sites in the Kerguelen Archipelago (Fig. 1).

Sample size ranged from 27 to 130 individuals (Table 1). Five samples came from the north coast (PCh, PMt, PCx, I3B, AJ), two from the east coast (PMo, RdA), twenty-two from the Gulf of Morbihan (PAF, PR1, PR2, IH, IM, IGn, PF, BOCRD, BOCentre, BOCRG, BO100am,BO200am, BO100av, BO200av, BOCAB, BOFF, Ar1, Ar2, HdS, PJDA, PB, IS), six from the south coast (BdS, BM, FPN, BM) and one from the west coast (PCu). Pieces of mantle tissue were preserved in 95% ethanol. DNA was extracted using Chelex100 © chelating resin [START_REF] Walsh | Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material[END_REF].

Molecular markers

The locus Glu-5' [START_REF] Inoue | Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus[END_REF][START_REF] Rawson | Evidence for intragenic recombination within a novel genetic marker that distinguishes mussels in the Mytilus edulis species complex[END_REF]) is located at the 5' extremity of exon Glu coding for an adhesive foot protein [START_REF] Waite | The formation of mussel byssus: anatomy of a natural manufacturing process[END_REF]. This locus contains an insertion/deletion (indel) zone, whose amplification reveals three alleles: (T, E and G) that respectively distinguish M. trossulus, M. edulis and M. galloprovincialis in the Northern Hemisphere [START_REF] Borsa | Nuclear-DNA evidence that northeasten Atlantic Mytilus trossulus mussels carry M. edulis genes[END_REF]. The locus mac-1 is the first intron of the Mytilus actin protein [START_REF] Ohresser | Intron-length polymorphism at the actin gene locus mac-1: a genetic marker for population studies in the marine mussels Mytilus galloprovincialis Lmk and M. edulis L[END_REF]).

Among the 49 size-alleles described in the entire range of Mytilus spp., 22 alleles occur in the Southern Hemisphere, 8 of which have not yet been sampled in the Northern Hemisphere [START_REF] Daguin | Genetic relationships of Mytilus galloprovincialis Lamarck populations worldwide: evidence for nuclear DNA markers[END_REF]. The four alleles encountered in the Kerguelen blue mussel population in Kerguelen are all shared with Northern-Hemisphere populations [START_REF] Daguin | Genetic relationships of Mytilus galloprovincialis Lamarck populations worldwide: evidence for nuclear DNA markers[END_REF][START_REF] Borsa | Genomic reticulation indicates mixed ancestry in Southern-Hemisphere Mytilus spp. mussels[END_REF]. The polymorphism at locus EFbis has been tested in one location in Kerguelen (Mayes Island in the Gulf of Morbihan) and was low, with two alleles detected (160: frequency 0.01; 161: 0.99) [START_REF] Daguin | Phylogéographie des moules du complexe d'espèces Mytilus edulis[END_REF]. We scored locus EFBis in other samples from around the archipelago. A new EPIC marker (EFprem's) in the second intron of EF1α was also scored. Both EFBis and EFprem's loci showed sample monomorphism (see Results). Table S1 summarizes primer names, sequences and annealing temperatures required for the amplification of the nuclear DNA loci. The genotypes at Glu-5' and mac-1 were determined from fragment-length variation on, respectively 2% and 3% agarose gels. The amplification of the Glu-5' exon by primers Me-15 and Me-17 produced 210-bp (allele E) and 160-bp (allele G) fragments, typical of, respectively M. edulis and M. galloprovincialis from the Northern Hemisphere (Fig. 2A). At locus mac-1, fragments of 400 and 370-bp were revealed. According to [START_REF] Daguin | Phylogéographie des moules du complexe d'espèces Mytilus edulis[END_REF] and [START_REF] Borsa | Genomic reticulation indicates mixed ancestry in Southern-Hemisphere Mytilus spp. mussels[END_REF], the 400-bp fragment at locus mac-1 corresponds to allele c4, whereas the 370-bp fragment corresponds to either allele a2 or a3, which differ from one another by one base pair and cannot be distinguished on agarose gels (Fig. 2B). Consequently, the 370-bp fragment is here noted 'a'. The denomination of COI haplotypes (KERF1 to KERF16) follows [START_REF] Gérard | Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations[END_REF].

Genetic analysis

Heterozygosity was estimated by [START_REF] Nei | Estimation of average heterozygosity and genetic distance from a small number of individuals[END_REF] non-biased heterozygosity index (H n.b ). F IS and F ST values were estimated according to [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF] using the FSTAT procedure in the program GENETIX 4.02 [START_REF] Belkhir | Genetix version 4.02, logiciel sous WindowsTM pour la génétique des populations[END_REF]. The significance of F IS (and respectively F ST ) values was assessed after 5000 permutations of alleles (resp. individuals) within (resp. between) samples, thus obtaining the distribution of F IS (resp. F ST ) pseudovalues under the null hypothesis of panmixia (resp. a non-structured population). The probability (P) values associated to F IS or F ST estimates was the proportion of pseudo-values generated by 5000 random permutations larger than, or equal to the observed value. Mantel tests were used to assess the correlation of pairwise F ST values and geographical distances (by coastal line) between samples computing the association statistics Z [START_REF] Mantel | The detection of disease clustering and a generalized regression approach[END_REF]. The P-value of Z was the proportion of pseudo-values generated by permutations under the null hypothesis of independence of genetic and geographical distances, larger than, or equal to the observed value of Z. Mantel tests and permutations were computed by the program GENETIX 4.02.

The False Discovery Rate correction for multiple comparisons was used to adjust levels of statistical significance [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF].

Analyses of molecular variance (AMOVA ; [START_REF] Excoffier | Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data[END_REF] were done on Glu-5' and mac-1 genotype data, as well as on COI sequences (conventional F ST based on frequencies) for comparative purposes using ARLEQUIN 3.0 [START_REF] Excoffier | Arlequin ver. 3.0: An integrated software package for population genetics data analysis[END_REF]. Following the results of pairwise F ST (see results), we defined and tested a geographical structure of three groups based on the origin of the samples (North + East, Gulf, South + West; Table 1). In the AMOVA grouping, the unique sample from the west coast (PCu) was lumped with the South group, from which it was not differentiated (see pairwise F ST results). The exact test of sample differentiation [START_REF] Raymond | An exact test for population differentiation[END_REF] was run (with 20,000 Markov chain, 1000 dememorization steps) using this same software based on mitochondrial haplotype frequency in the three groups. So-called "neutrality tests" (Fu's F and Tajima's D) were run to check whether the double hypothesis of demographic stability and selective neutrality of the COI marker could be rejected.

We reanalysed gene frequency data of nine allozyme loci published in [START_REF] Blot | Les populations de Mytilidae de Kerguelen (oceán austral): geńetique et adaptation à l'environnement de Mytilus desolationis[END_REF] and [START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF].

Genotypes were not available but we could compute F ST from gene frequency data using the relationship F ST = 1 -Ho / He, the exact tests of differentiation based on Jost's differentiations (see below and Table 2), and the contingency tables of the numbers of each allele in each population (Table S2).

Two approaches were used to compare differentiation levels among markers or data sets with contrasted samples sizes and polymorphism levels. (1) Jost's differentiation D parameters and confidence intervals were computed using the program SPADE [START_REF] Jost | GST and its relatives do not measure differentiation[END_REF]Chao & Chen 2010). This was done for the common subset of seven populations which were analysed in the present study (for Glu-5' and mac-1), in [START_REF] Blot | Les populations de Mytilidae de Kerguelen (oceán austral): geńetique et adaptation à l'environnement de Mytilus desolationis[END_REF] and [START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF] for nine allozyme markers. The interest in this approach is that Jost's D is much less affected by polymorphism level than F ST and provides confidence intervals. (2) The Powsim application [START_REF] Ryman | POWSIM: a computer program for assessing statistical power when testing for genetic differentiation[END_REF] was used to compare results among markers which did not display similar sample sizes and allele frequency distributions. This application uses simulated data sets corresponding to a model of diverging populations (no migration): a given F ST level is chosen by the user, by selecting an appropriate pair of values for effective size and divergence time (in number of generations). We thus checked whether the small sample sizes or the reduced polymorphism for the COI and mac-1 data sets respectively, relative to those of Glu-5' may affect our results in the finding of significant differentiation among regions. The simulations were run at the differentiation level found with the Glu-5' genotypic data (we used a value similar to both the overall F ST among all populations and the global F CT among regions), using the global frequency distributions of COI haplotypes and mac-1 alleles and their respective sample sizes in the three groups of populations (North + East, Gulf, South + West). The output of the program provides the proportion of cases in which significant differentiation is found.

A median-joining parsimony network [START_REF] Bandelt | Median-Joining networks for inferring intraspecific phylogenies[END_REF] of COI haplotypes was built using NETWORK 4.1.0.7 (available at www.fluxus-technology.com/).

Environmental factors

The habitat at each sampling site was described by five qualitative variables: (1) Substrate (rock, blocks, gravels, sand);

(2) Wave Exposure (sheltered, exposed); (3) Slope (flat, steep, hangover); (4) Salinity (oceanic, influenced by freshwater); ( 5) Macrocystis (presence, absence). The Region (North, South, Gulf, and West) was also considered as a factor in the following statistical analyses. Correlation among environmental factors and frequency of allele G was assessed by pairwise Spearman's ρ values [START_REF] Spearman | The proof and measurement of association between two things[END_REF].

We also used AMOVAs on Glu-5' and mac-1 genotypic data and COI haplotype data, within each geographical region. For each environmental factor, we grouped samples according to the modality of the factor in order to test the effects of environment within regions (F CT , Va), within groups independently of the effects of population differentiation between regions. The AMOVA, although it is restricted to investigate nested factors, has two important advantages over parametric analyses (ANCOVAs were performed using the proportion of the G allele at Glu-5' as the variable to explain, but not shown) : (i) it does not rely upon statistical conditions on the distribution of the data, since the P-value is assessed via permutations [START_REF] Excoffier | Arlequin ver. 3.0: An integrated software package for population genetics data analysis[END_REF], and (ii) it takes into account the statistically important information of the number of individuals in each population.

Results

Polymorphism

The number of individuals characterized was 2248, 1511 and 83 for Glu-5', mac-1, and COI (Table 3), respectively, and 20 for each EFbis and EFprem's.

We detected no polymorphism at loci EFbis and EFprem's scored on agarose gels. At locus Glu-5',G and E allelic frequencies were of 41.6% and 58.4% in the total sample. In the Gulf of Morbihan, the G allele occurred in higher frequencies, sometimes over 50% (samples PR1, IGn, Ar1, Ar2, BoCRD, Bo100am, Bo200am, BoCentre; Table 3, Fig. 3). At mac-1, the allele a had a frequency of 91.9% in the total sample. Allele c4 had the lowest frequency in all samples (from 4% to 19.7%; Table 3, Fig. 3). Average H n.b. values were of 0.453 and 0.152 respectively for Glu-5' and mac-1. F IS values at the two nuclear loci were generally non-significantly from 0 (Table 3), except for for the sample IH (northern part of the Gulf) which shows a heterozygote excess (F IS = -0. 186; P = 0.0362) but this significance level did not pass, by far, the correction for multiple tests. At locus COI, 16 haplotypes were found, haplotype diversity was about H n.b. = 0.86 within region (it was not computed within population due to a small sample sizes). Neutrality tests (Tajima's D and Fu's Fs) within each region were non-significant and the haplotype network appeared balanced (Fig. 4).

Differentiation among populations

Overall F ST values at both nuclear DNA loci were significant (Glu-5': F ST = 0.0627 ± 0.0176, P ≤ 0.0001; mac-1: F ST = 0.00945 ± 0.00592; P ≤ 0.004) establishing the presence of significant genetic structure for these loci in Kerguelen. By contrast, the exact test of global differentiation at the COI locus did not appear significant (P = 0.59856 ± 0.08481), and the single non-negative estimate of F ST value among regions (pooling individuals from different populations) was 0.007 (NS).

At Glu-5', pairwise F ST values revealed a differentiation between samples depending on the region to which they belong. Three groups of genetically differentiated samples may be identified (Table 1 and3): (1) the northern group presented the highest frequencies of the E allele, (2) the Gulf group presented the highest frequencies of the G allele;

(3) the southern group was intermediate. The unique sample from the west coast (PCu) was less differentiated from the southern group than from the northern group and the Gulf. At locus Glu-5' after the FDR correction, only Pvalues lower than 0.021 subsisted, mainly those concerning pairwise F ST between samples from the North coast and the Gulf of Morbihan. At locus mac-1, fewer pairwise F ST values were significant (Table 4). However, the samples RdA (East Coast) and PR2 (Gulf) are significantly differentiated from the majority of the other samples, due to the high frequency of allele c4 (17 and 19.4%, respectively). Only PR2 remained differentiated from the remaining samples after FDR correction.

AMOVAs among regions

The differentiation between the three groups of samples (1: North + East coasts, 2: Gulf, 3: South + West coasts) was significant at Glu-5' (F CT : 0.0773; P < 0.000001), but neither at locus mac-1 (F CT : -0.0003; P = 0.394), nor at COI. (F CT : -0.01244, P = 0.67).

Within-region differentiation

Genetic structure was also evidenced within the three groups of samples genetically differentiated at Glu-5' (North, Gulf, South). In the northern group, sample AJ was significantly differentiated to all other northern samples (due to its higher frequency of allele G at Glu-5'). In this group, the sample RdA was also differentiated from all northern samples (except I3B) and had the highest frequency of allele E of the whole data set. In the Gulf group, the sample Ar1 was differentiated from all samples of the Gulf except BoCentre, Bo100am and IGn. Consequently, a significant differentiation was highlighted between samples separated by no more than 500 m: Ar1 and Ar2. At locus mac-1, similarly, samples PR1 and PR2 appeared differentiated but only before FDR correction (Fig. 1,Table 4).

At the scale of the archipelago, no correlation was detected between genetic differentiation and genetic distance, at any locus. Except along the north coast, at locus Glu-5', samples PCh to RdA (from north-west to east) (P ≤ 0.04).

Confidence intervals of differentiations and power analyses

Jost's D values were computed for a set of seven populations from the North, Gulf and the South regions, for Glu-5', mac-1 and nine allozymes. The maximum value (D = 0.049) was obtained at Glu-5', and its confidence interval only overlapped that of the enzyme PGD (D = 0.032) which also appeared particularly differentiated (Table 2). F ST values were all lower than those at Glu-5'. Additionally whereas Jost's D confidence intervals of all loci except Glu-5' and PGD included 0.000, the P-values of the exact tests of overall differentiation were generally significant or highly significant (Table S2).

For mac-1 and COI, we used Powsim to simulate three populations with sample sizes and global allele frequencies corresponding to the three regions for these markers with an F ST of 0.07 because Glu-5' displayed an overall F ST of 0.067 in Kerguelen, and a F CT of 0.077 in the AMOVA with regional groups. This value of F ST was obtained by simulating a fission of three populations of Ne = 1000 each, that occurred 145 generations ago, parameters which allowed maintaining the observed polymorphism after 145 generations. Sample sizes corresponded to samples sizes for mac-1 and COI in each region: 181, 725, 195 and 27, 19, 37, respectively. The allele frequencies used were 0.919 and 0.081 for mac-1, and 0.012, 0.012, 0.012, 0.012, 0.012, 0.012, 0.012, 0.012, 0.012, 0.012, 0.100, 0.144, 0.170, 0.060, 0.130, and 0.276, for COI simulations.

Powsim simulations indicated that an overall F ST of 0.07 would generate significant differences in more than 99.5 % of the cases for the COI data set and in more than 92.9 % of the cases for the mac-1 data set. When there is polymorphism within populations the maximum value of fixation indices such as F ST does not reach one even when no allele is shared among populations [START_REF] Jost | GST and its relatives do not measure differentiation[END_REF][START_REF] Meirmans | Assessing population structure: F ST and related measures[END_REF]. Glu-5' and mac-1 both have only two alleles, thus when comparing only two populations, F ST values can in theory reach one and the level of intrapopulation diversity should not affect the range of possible F ST values. For COI however, the maximum possible value of F ST was higher than at Glu-5', thus a given F ST value corresponds to less differentiation in Glu-5' than in COI [START_REF] Jost | GST and its relatives do not measure differentiation[END_REF][START_REF] Meirmans | Assessing population structure: F ST and related measures[END_REF]. Thus, the value of 99.5 % of significant F ST given by Powsim for COI is an overestimate.

Statistical analyses with environmental variables.

For each environmental variable, the genetic differentiation between samples grouped by category was assessed by pairwise F ST for each nuclear marker (Table 5). None was significant at mac-1 but many were significant at Glu-5'. For the variable "Substrate", samples collected on rocks, blocks, gravels or sand were not significantly differentiated between each other. Regarding "Slope", only samples collected on flat shores and hangovers were differentiated (P ≤ 0.0001) but steep shore samples appeared significantly differentiated neither from flat nor from hangover locations.

For the three remaining factors "Macrocystis", "Wave exposure" and "Salinity" the samples grouped by category were highly differentiated (P ≤ 0.0001). Concerning the variable "Region", the single western sample was differentiated from northern samples only (P ≤ 0.004).

At Glu-5', AMOVAs realized at the scale of the archipelago for each environmental variable, grouping the 35 samples by categories (Table 5) revealed a significant differentiation between the presence and absence of Macrocystis (F CT : 0.0239, P = 0.00684). The groupings were not significantly differentiated, neither for theother factors (at Glu-5'), nor at mac-1 and COI loci. Since we tested five environmental variables, the P-values should be corrected taking into account multiple tests. The effect of "Macrocystis" presence remains significant after correction for multiple tests.

Environmental variables "Substrate", "Wave exposure", "Slope", Salinity" and "Macrocystis" were significantly correlated to one another, except the pair "Substrate/Macrocystis". The frequency of allele G was correlated to "Macrocystis" and "Region" only, whereas the variable "Region" was correlated to none of the other variables (Table 6).

AMOVAs by environmental variables, restricted to the 22 Gulf samples revealed a significant effect of "Wave Exposure" (accounting for 1.23% of the molecular variance between groups; P=0.0088) and also of the presence of "Macrocystis" (F CT =0.0125, P = 0.0489), but they did not overcome the FDR correction for 5 tests. The presence of Macrocystis in a population was correlated with wave exposure in the Gulf, since most populations where Macrocystis occur, are exposed to waves (except PR2 which is sheltered). The effect of slope was nearly significant (P = 0.058 ± 0.007). At locus mac-1, samples from the Gulf were differentiated (F CT = 0.0168, P = 0.0289) only when grouped by "Substrate" category but this significance level did not pass the FDR correction. In the regions North (8 samples) and South (4 samples), the environmental groupings did not reveal any significant differentiation at Glu-5' or mac-1. At locus COI, none of the environmental grouping of samples was significant.

Discussion

Polymorphism at the three loci and possible departures from neutral expectations

The locus Glu-5' has traditionally been considered as diagnostic between smooth-shell Mytilus species in the Northern Hemisphere [START_REF] Inoue | Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus[END_REF][START_REF] Rawson | Evidence for intragenic recombination within a novel genetic marker that distinguishes mussels in the Mytilus edulis species complex[END_REF][START_REF] Borsa | Nuclear-DNA evidence that northeasten Atlantic Mytilus trossulus mussels carry M. edulis genes[END_REF][START_REF] Daguin | Genetic relationships of Mytilus galloprovincialis Lamarck populations worldwide: evidence for nuclear DNA markers[END_REF][START_REF] Daguin | The zone of sympatry and hybridization of Mytilus edulis and M. galloprovincialis, as described by intron length polymorphism at locus mac-1[END_REF][START_REF] Luttikhuizen | Mytilus galloprovincialis-type foot-protein-1 alleles occur at low frequency among mussels in the Dutch Wadden Sea[END_REF]Gilg & Hilbish 2003a;Gilg & Hilbish 2003b;[START_REF] Hilbish | Estuarine habitats protect hybrids mussels from selection[END_REF], although low frequencies of hetero-specific alleles have been reported [START_REF] Hamer | Nuclear marker Me 15-16 analyses of Mytilus galloprovincialis populations along the eastern Adriatic coast[END_REF]. At Kerguelen, Glu-5' is polymorphic for hetero-specific alleles and at Hardy-Weinberg equilibrium, which was unexpected in a genetic context other than the M. edulis/M. galloprovincialis hybrid zone in the Northern Hemisphere [START_REF] Borsa | Genomic reticulation indicates mixed ancestry in Southern-Hemisphere Mytilus spp. mussels[END_REF]. Mitochondria of Kerguelen blue mussels belong to the S1 clade which is endemic to the Southern Ocean [START_REF] Gérard | Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations[END_REF]. The Kerguelen archipelago thus shelters the only wild and stable population (i.e. outside a hybrid zone) of Mytilus known so far, whose polymorphism at Glu-5' is not in linkage disequilibrium with any of the typical genomes of northern M. edulis, M. galloprovincialis, or M.

trossulus.

Unexpected genetic structure was here revealed at Glu-5' not only at the scale of the archipelago, butalso at a much smaller geographic scale, down to a few hundred meters. There was a clear break in allelic frequency at Glu-5' between samples from the Gulf and the north coast. The highest frequencies of the allele G occurred in the western part of the Gulf, far from the influence of outer marine waters, and reached 60% near Mayes Island (Fig. 1) [START_REF] Daguin | Phylogéographie des moules du complexe d'espèces Mytilus edulis[END_REF][START_REF] Borsa | Genomic reticulation indicates mixed ancestry in Southern-Hemisphere Mytilus spp. mussels[END_REF]. Some of COI haplotypes in Kerguelen blue mussels also occur in southern South-America [START_REF] Gérard | Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations[END_REF].

Here, we confirm the homogeneity of COI haplotype frequencies across the four regions of the archipelago. The shape of the haplotype network is compatible with a stable effective size of Kerguelen blue mussel population and with selective neutrality at this locus.

To summarize, in Kerguelen the polymorphism at Glu-5' is higher than everywhere else, whereas the polymorphism at all other nuclear loci tested (mac-1, EFbis and EFprem's) is lower (Bierne et al. 2002b; this study). The haplotype diversity at the mitochondrial locus COI is also lower in Kerguelen than in Patagonia [START_REF] Gérard | Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations[END_REF] and allozyme loci are also less polymorphic in Kerguelen than in Northern-Hemisphere populations of M. edulis [START_REF] Blot | Genetic relationships among population of Mytilus desolationis from Kerguelen, M. edulis from the North Atlantic and M. galloprovincialis from the Mediterranean[END_REF]. The smaller size of the Kerguelen metapopulation, compared to other less isolated populations worldwide, may explain its lower polymorphism (except at locus Glu-5'). Local adaptation appears as a plausible cause for the maintenance of alleles at balanced frequencies at Glu-5' in the heterogeneous environment of the Kerguelen archipelago.

The three markers revealed distinct patterns of differentiation between samples.

The level of differentiation are much higher at Glu-5' than at mac-1, COI and eight allozyme loci out of nine. One can hypothesize that allele differences at locus mac-1 may have escaped detection because of the low resolution of agarose gels and that the power to detect possible differences at locus CO1 may have been hampered by insufficient sample sizes. However, these hypotheses were ruled out by analyses of Jost's differentiation D and their confidence intervals, as well as the Powsim analyses suggesting that Glu-5' was subjected to different constraints. Thus, Glu-5' actually reveals highly significant genetic differentiation at all levels, among and within region, and between environments. Three possible explanations arise: (i) the power analyses might be unreliable, because Powsim uses a model of fission which may not well represent the actual situation (but Jost's differentiation and confidence intervals are not subject to such doubts); (ii) larvae may preferentially settle (by habitat choice) in certain environments according to their genotype at Glu-5' or other physically linked loci; (iii) mortality or fecundity may vary among locations according to genotype at Glu-5' or physically linked genes (i.e. differential selection). Marine species may be subjected to high variance of reproductive success (Hedgecock's sweepstake reproduction hypothesis) which together with collective dispersal of related individuals can generate complex patterns of genetic structure known as chaotic genetic patchiness [START_REF] Broquet | Genetic drift and collective dispersal can result in chaotic genetic patchiness[END_REF]. A skewed offspring distribution also generates departure from the standard Kingman's coalescent and an increased heterogeneity in differentiation levels [START_REF] Eldon | Coalescence times and F ST under a skewed offspring distribution among individuals in a population[END_REF]. Glu-5' therefore seems to be an outlier displaying particularly high genetic differentiation among Kerguelen populations.

However, this observation alone is not sufficient to support hypotheses of natural selection. We will thus use an additional prediction that is not well explained by purely neutral processes which is an association between genetic differentiation-and environmental distance [START_REF] Coop | Using environmental correlations to identify loci underlying local adaptation[END_REF].

Geographic pattern of genetic differentiation associated to ocean circulation

Patterns of genetic differentiation among Kerguelen blue mussels from different groups (North + East, South + West, and Gulf of Morbihan) similar to those here observed revealed at locus Glu-5' have been previously reported at allozyme loci [START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF]).

After the FDR correction for multiple tests, the most significant differentiations were observed between the North coast and the Gulf. Indeed, the frontier between these regions displays the strongest break of allelic frequencies at Glu-5', located between samples RdA and PAF. This sample RdA is also differentiated from all others at mac-1, suggesting restricted gene flow towards the most eastern point of Kerguelen. As did [START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF], we relate the restricted gene flow to the hydrology and water masses circulation around the archipelago [START_REF] Murail | Hydrologie du plateau continental des îles Kerguelen[END_REF]. All samples are located in the 'Coastal Hydrological Region' which has the most changing physical parameters even at fine scale and globally a lower salinity compared to offshore oceanic waters. However, at wider scale, the south coast and northern point of the archipelago receive the same water mass coming from the west (the ACC), but they remain isolated, thus driving to a genetic differentiation among samples from these two regions. The water masses flowing along the North and South coasts only mix far offshore in the north-eastern wake zone of the archipelago [START_REF] Murail | Hydrologie du plateau continental des îles Kerguelen[END_REF]. The presence of eddies retaining larvae on the shelf and then dragging them from a site to another on relatively short distance may explain the pattern of isolation by distance observed along the north coast at Glu-5'. [START_REF] Koubbi | Role of bay, fjord and seamount on the early life history of Lepidonotothen squamifrons from the Kerguelen Islands[END_REF] have suggested that Lepidonothoten squamifrons larvae are retained by a costal gyre in the Golfe des Baleiniers (the open area off Port Couvreux (PCx), North coast), and also noted the lability of this gyre and the consequent mixing of coastal and oceanic waters during the winter period when winds are the strongest [START_REF] Razouls | Spatio-temporal distribution of mesozooplankton in a sub-antarctic coastal basin of the Kerguelen archipelago (Southern Indian Ocean)[END_REF][START_REF] Koubbi | Role of bay, fjord and seamount on the early life history of Lepidonotothen squamifrons from the Kerguelen Islands[END_REF]. Thus, at the inter-regional scale, hydrological characteristics are able to account for the main genetic differentiation observed, by their effect on migration (i.e. without necessity to invoke selection).

Very fine scale differentiation does not support selective neutrality

In the Gulf, a particular enclosure, genetic differentiations at very fine scale were observed: between samples from the Armor locality, Ar1 and Ar2, which are separated by very short distances (500 m) considering the dispersal potential attributed to the Mytilus mussels. No such differentiation is observed at the locus mac-1. In Armor (Ar), a marked difference in habitat occurs between samples (1 and 2). Ar1 is located near an important freshwater source, where Macrocystis are lacking, and has higher frequency in allele G than its neighbour Ar2. Out of the Gulf, in FPN a comparable habitat (Fjord with freshwater source), we also observed the same trend: a higher frequency of allele G compared to other south-coast samples (see Table 3). This trend suggests the influence of these protected, lowsalinity, sandy habitat on the blue mussels that is expressed by a higher frequency of allele G. However, a sample with comparable habitat shows the opposite trend: RdA has the lowest frequency of allele G of the whole dataset (9%; see Table 3).

Genetic differentiation caused by selective pressure from environment?

At Glu-5', at the scale of the archipelago, the differentiation between groups and between categories of samples with and without Macrocystis, were significant. Typical habitats of protected areas with flat sandy bottoms and low-salinity waters, which are more frequent in the Gulf of Morbihan lack Macrocystis kelp beds. Conversely, the open coasts are mostly exposed rocky shores, bordered by Macrocystis beds. Consequently, searching for differentiation between samples from the Gulf and those from the South and North coasts, leads to searching the differentiation between samples located in habitats, respectively without and with Macrocystis kelp beds. Finally, the genetic differentiation among the three main geographic regions may mask the environmental effect (or the reciprocal) on the genetic data.

Then, analysing environmental effect within group would avoid the 'regions' effect. At the within-group scale, the results were distinct, mainly due to the contrasting samplings. More precisely, the absence of significant effect of all environmental factors on Glu-5' data in the North and South Coasts may be due to the low number of samples (8 and 5, respectively) and/or a lower power of Glu-5' in these regions compared to the Gulf. In the Gulf, the H n.b. is the highest and both alleles have similar frequencies, thus allowing better detection of small differences. Indeed, within the Gulf, the substantial effect of presence/absence of Macrocystis beds on the sample differentiation was recovered, and the effect of the wave exposure was also revealed (see AMOVAs results). A significant result after the FDR correction cannot be considered an artefact of the number of AMOVAs that were done. The environmental effects found by the AMOVAs (even within the Gulf ofMorbihan) do not necessarily reflect habitat choice or differential selection linked to Glu-5' genotypes: geographically close populations tend to share environmental characteristics even within region (for instance, the numerous samples from the Henri Bossière Fjord are all similar) thus if there is fine scale structure due to any other factor, by indirect correlation, a statistical effect of environment may arise even in the absence of causal relationship.

To conclude, three independent lines of evidence suggest that Glu-5' is affected by selection (or habitat choice):

(i) the high polymorphism at this locus in Kerguelen, (ii) highest and more significant F ST and F CT at Glu-5' compared to other loci, (iii) the significant effects of environmental factors on AMOVAs even within region. However, none is a sufficient proof of selection by itself.

Table 1. Sample location of Kerguelen blue mussels. mb: mussel bed Site Table 2. Kerguelen blue mussels. Jost's D differentiation estimates and its confidence interval (CI) calculated using a set seven populations common to the allozyme study of [START_REF] Blot | Les populations de Mytilidae de Kerguelen (oceán austral): geńetique et adaptation à l'environnement de Mytilus desolationis[END_REF] and [START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF] and present study. Populations were PMt and PCx from the North region, PAF, IS, HdS, and BOS from the Gulf of Morbihan (all samples within the Bossière Fjord were pooled), and BT (Glu-5' and mac-1) or "Larose" (allozymes) from the South region. Bold values have confidence intervals that do not include zero [START_REF] Borsa | Genomic reticulation indicates mixed ancestry in Southern-Hemisphere Mytilus spp. mussels[END_REF]. 

Figure 2 .

 2 Figure 2. Kerguelen blue mussels. Individual phenotypes scored on agarose gels at nuclear loci. The left lane is a 100 pb DNA ladder.

Figure 3 .

 3 Figure 3. Kerguelen blue mussels. Geographic distribution of allele frequencies at the nuclear loci Glu-5' and mac-1. Insets: samples from the fjords and islands in the western part of the Gulf of Morbihan.

Figure 4 .

 4 Figure 4. Median-joining parsimony network of COI haplotypes sampled in Kerguelen blue mussels. Scale bar represents one mutational step.

  

  

  

Table 3 .

 3 Allelic frequencies at loci Glu-5', mac-1 and haplotype composition at locus COI for each sample. N: sample size; H n.b .: non-biased estimate of genetic diversity; f:[START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF] estimate of Wright's F IS ; *: significant values at the 5% level; ns: non-significant. Substrate: rock (R), blocks (B), gravels (G), sand (S). Slope: flat (F), steep (St), hangover (H). Wave exposure: sheltered (Sh), exposed (E). Salinity: oceanic water (OW), low-salinity water (LSW). Macrocystis: presence (P) / absence (A)

	Region	Sample	Locus

Table 4 .

 4 Kerguelen blue mussels. Pairwise F ST[START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF] values at Glu-5' (above diagonal) and mac-1 (below diagonal) loci. *: P ≤ 0.05; **: P ≤ 0.01. In bold: significant values after FDR correction for multiple tests[START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Bold values without asterisk have P ≤ 0.001

	Sample	North
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 4 (continued) 

	Sample	Gulf											
		IM	PJDA	HdS	PB	IGn	Ar1	Ar2	CRD	Centre	100av	200av	100am
	PCh	0.053	0.082	0.084	0.072** 0.193	0.338	0.136** 0.149	0.198	0.077** 0.08*	0.167**
	AJ	0	0.006	0.005	0.003	0.066	0.172	0.024	0.035** 0.066	0.001	0	0.0461**
	PMt	0.071	0.103** 0.106** 0.092	0.220	0.369	0.163** 0.175	0.226	0.099** 0.103*	0.194
	PCx	0.114	0.152	0.158	0.138	0.283	0.432	0.229	0.238	0.293	0.153	0.162	0.26
	I3B	0.135	0.173	0.181	0.159	0.306	0.463	0.26	0.264	0.319	0.178	0.197	0.285
	AS	0.095	0.123	0.135	0.118	0.254	0.406	0.201	0.21	0.263	0.129	0.139**	0.23
	PMo	0.071	0.103	0.106	0.092	0.221	0.369	0.164	0.176	0.227	0.1**	0.105**	0.195
	RdA	0.228	0.269	0.289	0.253	0.415	0.579	0.403	0.386	0.441	0.3	0.354	0.407
	PAF	0	0	0	0	0.034* 0.13**	0	0.01	0.033	0	0	0.017
	PR1	0.006	0	0	0	0.003	0.072** 0	0	0.002	0	0	0
	PR2	0	0	0	0	0.035* 0.131	0.001	0.011	0.034*	0	0	0.018
	IH	0	0	0	0	0.044	0.14	0.01	0.02*	0.044** 0	0	0.027*
	IM	-	0	0	0	0.045	0.141	0.008	0.02	0.045** 0	0	0.028*
	PJDA	0	-	0	0	0.022* 0.104	0	0.003	0.021	0	0	0.009
	HdS	0	0	-	0	0.021	0.105	0	0.002	0.020*	0	0	0.007
	PB	0	0	0.005	-	0.023* 0.115	0	0.008	0.029*	0	0	0.014
	IGn	0	0	0	0	-	0.024*	0	0	0	0.024	0.014	0
	Ar1	0	0	0	0	0	-	0.06**	0.05*	0.022	0.113	0.109** 0.038

Table 4

 4 (continued) Sampling sites of Kerguelen blue mussels. Sampling details in Table 1; (A) Main map. (B) Detail of locations for samples PR1 and PR2. (C) Enlarged map of Henri Bossière Fjord with locations of samples AR and BO. Mayes is the location of the sample 'KER' in
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Table S2. Kerguelen blue mussels. Average HS: within population average expected heterozygosity; HT: totalexpected heterozygosity as estimated from electromorph frequency data at 9 allozyme loci [START_REF] Blot | Les populations de Mytilidae de Kerguelen (oceán austral): geńetique et adaptation à l'environnement de Mytilus desolationis[END_REF][START_REF] Blot | Genetic differences and environments of mussel populations in Kerguelen Islands[END_REF]). Nine population samples (54-80 individuals, all but one 'locus x population combination' having more than 71 individuals genotyped) were genotyped from a similar regional sampling as ours. NA: allele numbers; F ST : computed F ST based on allele frequency data using F ST = 1-(Average H S / H T ); P: P-values obtained from an exact test based on contingency tables of allele numbers per population and testing the null hypothesis that allele frequencies are similar among populations, using the nine population sample; P (North): same as P among the three North populations; P (South): same as P among the four Gulf populations