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Abstract1

In the French Mediterranean area where heavy precipitation events can yield devastating2

consequences, it is essential to obtain reliable estimates of the distribution of extreme precipita-3

tion at gauged and ungauged locations. Under mild assumptions, extremes defined as excesses4

over a high enough threshold can be modeled by the generalized Pareto (GP) distribution.5

The shape parameter of the GP which characterizes the behavior of extreme events is notori-6

ously difficult to estimate. In regional analysis, the sample variability of the shape parameter7

estimate can be reduced by increasing the sample size. This is achieved by assuming that8

sites in a so-called homogeneous region are identically distributed apart from a scaling factor9

and therefore share the same shape parameter. A major difficulty is the proper definition of10

homogeneous regions. We build upon a recently proposed approach, based on the probability11

weighted moment (PWM) for the GP distribution, that can be cast into a regional framework12

for a single homogeneous region. Our main contribution is to extend its applicability to com-13

plex regions by characterizing each site with the second PWM of the scaled excesses. We show14

on synthetic data that this new characterization is successful at identifying the homogeneous15

regions of the generative model and leads to accurate GP parameter estimates. The proposed16

framework is applied to 332 daily precipitation stations in the French Mediterranean area17

which are splitted into homogeneous regions with shape parameter estimates ranging from 018

to 0.3. The uncertainty of the estimators is evaluated with an easy-to-implement spatial block19

bootstrap.20

keywords : regional analysis, probability weighted moment, generalized Pareto distribution, spa-21

tial block bootstrap, extreme precipitation, French mediterranean area, clustering22
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1 Introduction1

Flash floods, a sudden rise of the water level (in a few hours or less) together with a significant peak2

discharge, are the main natural hazard in the French Mediterranean area. They can potentially3

cause fatalities and important material damage [Borga et al., 2011, Braud et al., 2014]. Flash4

floods might be triggered by intense rainfall events occurring mainly in the fall [Delrieu et al.,5

2005]. Therefore, to design infrastructure to mitigate the impacts of these natural hazards, a6

reliable estimation of the distribution of extreme precipitation events is crucial, both at gauged7

and ungauged locations.8

Extreme value theory [Coles, 2001] provides a sound asymptotic framework to model the distri-9

bution of extremes. In particular, the extremal-type theorem [Fisher and Tippett, 1928, Gnedenko,10

1943] states that if the distribution of properly re-scaled maxima converges to a nondegenerate dis-11

tribution, this distribution is the generalized Extreme Value (GEV) distribution. This gives rise12

to the block maxima approach which consists of fitting the GEV to the maxima extracted from13

sufficiently large blocks of observations, often taken as years. Moreover, provided that the maxima14

converge in distribution to the GEV, the distribution of the excesses above a threshold converges15

to the generalized Pareto (GP) distribution [Balkema and de Haan, 1974, Pickands, 1975]. The16

so-called peaks-over-threshold (PoT) approach proceeds by setting a sufficiently high threshold and17

estimating the GP parameters from the excesses above that threshold. The PoT approach is often18

preferred over the block maxima approach as more observations can be included in the analysis and19

this might reduce the estimator variance [Roth et al., 2012]. However, Ferreira and de Haan [2015]20

showed that the block maxima approach can be rather efficient. In both approaches, the shape21

parameter of the GEV or the GP characterizes the behavior of the upper tail of the distribution22

that governs the probability of extreme events.23

While the block maxima and the PoT approaches require rather long sample and may be24

employed solely at gauged sites, regional analysis developed a robust framework to estimate the25

distribution of extreme events at ungauged sites or sites with short record length. In order to26

increase the sample size at a given target site, extreme events at neighboring sites are assumed27

to have the same distribution apart from a scaling factor. Regions for which this assumption28

is valid are termed homogeneous. These regions can be either contiguous and form a partition,29

or overlapping, defined as neighborhoods around each target site as in the region of influence30

approach [Burn, 1990]. For a given target site, that could be ungauged or with short record length,31

regional analysis involves the following steps [Hosking and Wallis, 2005]. First, a homogeneous32

region, to which the target site belongs, must be defined. Second, observations at each gauged site33

in the homogeneous region are normalized, i.e. divided by the site-specific scaling factor. Then,34

the regional distribution is fitted to the normalized observations from all the gauged sites in the35

region. Next, the scaling factor is interpolated (or estimated locally if enough observations are36

available) at the target site. Return levels are obtained as the product of the return levels of the37

regional distribution and the scaling factor of the target site.38

Combining an extreme-value approach with regional analysis allows to interpolate at ungauged39

locations and to decrease the uncertainty of the estimation of the shape parameter which is central40

in assessing the risk of extreme precipitation events. Indeed, to satisfy the homogeneity assump-41

tion, the shape parameter has to be constant across the region and the normalized observations42

from all the sites contribute to the estimation. For instance, Kyselỳ et al. [2011] and Carreau et al.43

[2013] employed the GEV in a regional analysis of annual maxima of precipitation while Madsen44
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and Rosbjerg [1997] and Roth et al. [2012] used the GP for threshold excesses. The latter combi-1

nation leads to the potentially largest increase in sample size. Besides regional analysis, other ways2

to exploit information of gauged sites that are similar in distribution in order to interpolate or to3

strengthen the distribution of extreme events have been proposed. For instance, a direct interpo-4

lation of the site parameter estimates or a regression model for the GEV of GP parameters either5

in a frequentist [Blanchet and Lehning, 2010, Ceresetti et al., 2012] or bayesian approach [Cooley6

et al., 2007, Renard, 2011] have been considered.7

As noted in Renard [2011], the identification of homogeneous regions can be seen as a limita-8

tion of the regional approach. Indeed, it generally involves several steps some of which call for9

subjective decisions, see Burn and Goel [2000], Kyselỳ et al. [2007, 2011] for instance. The rec-10

ommended approach, described in Hosking and Wallis [2005], advocates the use of physiographic11

variables such as geographical and climatological characteristics to identify the regions. After the12

initial identification, the regions are tested for homogeneity by resorting to L-Moment ratios. Het-13

eregeneous regions are re-defined until they pass the homogeneity test. An alternative approach14

to identify homogeneous regions, see for example Durocher et al. [2016] and the references therein,15

seeks to model the relationship between physiographic variables, available at all sites, and hydrolog-16

ical variables, available only at gauged sites. Additional shortcomings of regional analysis concern17

(i) the potential invalidity of the scale invariance assumption of the regional distribution which18

implies that the normalized observations from a given homogeneous region have a constant scale19

parameter, (ii) the lack of physical reason behind the definition of the scaling factor and (iii) the20

difficulty to evaluate the uncertainty of the estimators partly as a result of the spatial dependence21

of the observations [Gupta et al., 1994, Renard, 2011, Van de Vyver, 2012].22

In this work, we build on the approach recently proposed in Naveau et al. [2014] to address23

some of the shortcomings of the regional approach. The Naveau et al. [2014] approach, which24

rely on probability weighted moments for the GP distribution [Diebolt et al., 2007], can easily25

be cast into the regional framework with a single homogeneous region. As is the case with L-26

Moments, probability weighted moments estimates are fast to compute and may serve as starting27

values to estimation procedures that require an optimization scheme (such as maximum-likelihood28

or Bayesian estimators). Moreover, the Naveau et al. [2014] approach does not need to enforce the29

scale invariance assumption of the normalized observations since it is automatically fulfilled thanks30

to the choice of scaling factor. The main contribution of this paper is to propose a characterization31

of each site based on probability weighted moments that stems straightforwardly from the Naveau32

et al. [2014] approach and extends its applicability to complex area with several homogeneous33

regions. Sites that are characterized with similar values belong to the same homogeneous region.34

Based on this notion of similarity, homogeneous regions can be identified either as contiguous35

regions by employing a clustering algorithm or as overlapping regions resulting from neighborhoods36

around target sites. We focus on the former option and rely on the K-Means algorithm to partition37

the sites into homogeneous regions. The k-nearest neighbor rule is used to assign ungauged sites38

to a homogeneous region (see Ripley [1996] for a detailed presentation of both K-means and the39

k-nearest neighbor rule). Partitions of homogeneous regions associated to risk levels linked to40

the shape parameters of the regional GP distribution may be useful for operational early warning41

system such as http://vigilance.meteofrance.com/. Lastly, the sampling distribution of the42

GP parameter estimates of the proposed regional framework, from which uncertainty estimates43

can be deduced, is obtained with an easy-to-implement spatial block bootstrap.44

The article is organised as follows. The precipitation data which motivates this work is presented45
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in Section 2. We then describe the basic framework, in Section 3, to set up the methodology which1

is the basis of the regional framework presented in Section 4. The latter contains a simulation2

study, Section 4.4, and both the basic and the regional framework are applied to the precipitation3

data, Section 3.4 and 4.5 respectively. In Section 5, results are discussed and some conclusions are4

drawn.5

2 Daily precipitation data6

The French Mediterranean area is subject to intense rainfall events which may trigger floods and7

landslide with dramatic human and material consequences [Delrieu et al., 2005, Braud et al.,8

2014]. The occurrence of these intense rainfall events and their high spatial variability are due to9

the combination of the Mediterranean climate with the complex orography of the region.10

Daily precipitation at 332 stations over the period 01/01/1958 to 31/12/2014 (57 years) were11

collected by Météo-France, the French weather service. Stations are located in the French Mediter-12

ranean area whose orography can be seen from the digital elevation map in Fig. 1a. The 33213

stations are depicted in Fig. 1b. The size of the plotting symbol is proportional to the length of the14

observation period available (from 10 to 57 years). The color indicates the percentage of missing15

values over the observation period (from 0% in light orange to 10 % in dark red). The following16

landmarks are depicted (and will be in the subsequent figures related to the precipitation data) :17

two contour level curves, 400 m and 800 m, of the digital elevation map in dark and light shades18

of gray respectively and two cities (Valence and Montpellier).19

(a) Digital elevation map (b) 332 rain gauge stations

Figure 1: Region of the French Mediterranean area : orography (left) and rain gauge sta-
tions (right). In the latter figure, the size of the symbol is proportional to the length of the
observation period (10 to 57 years) and the color shade (light orange to dark red) indicates
the percentage of missing values (0-10%).

3 Basic framework20

We introduce the following notation. Let the M gauged sites in the region of interest be indexed21

by i. In addition, let x be a vector of covariates which is available at any site in the region, gauged22
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or ungauged.1

3.1 Kernel regression2

In all the approaches developed subsequently, whenever a quantity has to be interpolated, we use3

kernel regression which is a non-parametric approach [Nadaraya, 1964, Watson, 1964]. The kernel4

function Kh(·) can be thought of as a symmetric density function for which the so-called bandwidth5

h acts as a scale parameter. The bandwidth controls the amount of smoothing in the interpolation.6

More precisely, to interpolate a given quantity q(·) with respects to covariates x, we proceed in7

two steps. First, for each site i, q(xi) is estimated locally, i.e. based on the observations at site i.8

Second, the following weighted average corresponds to the interpolated value for the covariates x :9

q̃(x) =
1∑

iKh(x− xi)

M∑
i=1

q̂(xi)Kh(x− xi) (1)

where q̂(xi) is a local estimate at site i.10

We rely on the implementation in the np package of R [Hayfield and Racine, 2008]. It imple-11

ments kernel regression with various types of kernels and several automated bandwidth selection12

methods. We employed the Epanechnikov kernel which is optimal in the sense that it minimizes13

the asymptotic mean integrated square error [Epanechnikov, 1969, Abadir and Lawford, 2004].14

Bandwidth selection is peformed before each spatial interpolation (see Li and Racine [2004] and15

the documentation in the np package [Hayfield and Racine, 2008]).16

3.2 Generalized Pareto tail approximation17

Under mild assumptions, the generalized Pareto (GP) distribution can be used as an approximation18

to the upper tail of the distribution of most random variables [Pickands, 1975]. In other words,19

given a high enough threshold u suitably chosen, the GP distribution approximates the distribution20

of the excesses over u. Let Y ∼ G(σ, ξ) be a random variable representing the excesses that follows21

a GP distribution with scale parameter σ > 0 and shape parameter ξ ∈ R. The survival function22

of Y is provided in Eq. (2) and obey the following domain restrictions : y ≥ 0 when ξ ≥ 023

and y ∈ [0,−σ/ξ) when ξ < 0. The shape parameter describes the upper tail behavior : heavy24

(Pareto-type) when ξ > 0, light (exponential) when ξ = 0 or with a finite upper bound for ξ < 0.25

P(Y > y) = G(y;σ, ξ) = 1−G(y;σ, ξ) =


(
1 + ξ yσ

)−1/ξ
if ξ 6= 0

exp
(
− y
σ

)
if ξ = 0.

(2)

High quantiles associated to long return periods such as 100 years are often used by practioners26

for risk assessment. Let l(T ) be the quantile, also termed return level, with a return period of27

T years, i.e. the level that is exceeded on average once every T years. Thanks to the GP tail28

approximation, l(T ) can be estimated as a quantile of the GP distribution as follows :29

l(T ) =

u+ σ
ξ ((T Nexc)

ξ − 1) if ξ 6= 0

u+ σ log(T Nexc) if ξ = 0
(3)

provided that l(T ) is greater than the threshold u and where Nexc = 365.25 ζu is the average30

number of excesses per year with ζu the probability of exceeding the threshold u.31
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3.3 Probability weighted moment estimators1

We develop expressions to estimate the parameters of the GP distribution based on the probability2

weighted moments. The introduction of a normalized variable Z enables a straightforward extension3

to the framework of regional analysis.4

For r ≥ 0, the probability weighted moments for the GP distribution are given by [Diebolt5

et al., 2007] :6

E[Y G(Y ;σ, ξ)r] = σ
1

(1 + r)(1 + r − ξ)
. (4)

Sample estimates can be computed using U-statistics, see Furrer and Naveau [2007]. In particular,7

if ξ < 1, the first probability weighted moment, obtained with r = 0 in Eq. (4), is the expectation8

of Y and can be written as :9

µ = E[Y ] =
σ

1− ξ
. (5)

We consider µ as the scaling factor. In other words, let Z = Y/µ be the normalized variable.10

Since P(Z > z) = P(Y > µ z) = P(Y > (σz)/(1−ξ)), where the last equality follows by making use11

of Eq. (5), we have, by replacing y with (σz)/(1−ξ) in Eq. (2), that Z ∼ G(1− ξ, ξ). Therefore, the12

normalized variable Z only depends on the shape parameter ξ.13

Let ν be the second probability weighted moment of Z obtained by plugging σ = 1 − ξ and14

r = 1 in Eq. (4) :15

ν =
1− ξ
4− 2ξ

. (6)

To estimate the shape parameter of the GP distribution, we then replace ν by its estimator and16

solve for ξ :17

ξ̂ =
1− 4ν̂

1− 2ν̂
. (7)

The scale parameter is estimated by solving Eq. (5) for σ and replacing µ and ξ by their sample18

estimates µ̂ and ξ̂ respectively :19

σ̂ = µ̂(1− ξ̂). (8)

Eq. (7) and (8) are used to estimate the shape and scale parameters in the basic and the regional20

framework developed in Section 4. In the former, the sample with which the shape parameter is21

estimated is formed only from the normalized observations from the target site. In the latter, the22

sample can include normalized observations from all the sites in the homogeneous neighborhood23

of the target site.24

3.4 Preliminary analysis of the daily precipitation data25

We apply the basic framework to the French Mediterranean precipitation data described in Sec-26

tion 2. We set up a regular grid (approximately 500 m) covering the region where the stations lie27

on which the interpolation is carried out. For this application, M = 332, the number of gauged28

sites, and x is taken as the x and y coordinates (extended Lambert II projections of latitude and29

longitude).30

7



The threshold that defines the excesses for which the GP tail approximation is used is set to1

the 98% quantile of the precipitation intensities, i.e. the observations greater than 0.1 mm (the2

sensitivity of daily rain gauges). The threshold and the average number of excesses per year, see3

Section 3.2, are computed at each station resulting in an overall number of excesses per station4

ranging from 20 to 191. Local GP parameter estimates are obtained thanks to Eqs. (7-8).5

All four local estimates (threshold, average number of excesses per year and shape and scale6

parameters) are interpolated with kernel regression, see Section 3.1, onto the regular grid, see7

Fig 2a-2d. The interpolated threshold and average number of excesses define the tail approximation8

of the GP and will be used also when the regional framework introduced in Section 4 is applied to9

the French Mediterranean precipitation data. The interpolated shape and scale parameters of the10

GP will be compared with the estimates from the regional framework.11

(a) 98% quantile threshold of precipitation in-
tensities

(b) Average number of excesses per year

(c) Local shape parameter estimate (d) Local scale parameter estimate

Figure 2: Application of the basic framework to the French Mediterranean precipitation
data. The threshold and resulting average number of excesses per year together with the GP
shape and scale parameters are estimated locally and then interpolated with kernel regression.
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4 Regional framework1

4.1 Single homogeneous region2

We apply the expressions in Section 3.3 to the estimation of the GP parameters in the regional3

framework stemming from the Naveau et al. [2014] approach with a single homogeneous region,4

i.e. all the sites belong to the same homogeneous region.5

In this work, a region is called homogeneous if the shape parameter is constant over the region6

and the scale parameter varies smoothly spatially as a function of a vector of covariates x. In other7

words, for a given site i, the distribution of the excesses is given as :8

Yi ∼ G(σ(xi), ξ), (9)

where ξ can be thought of as a regional shape parameter. As a result, the scaling factor, that is9

the expectation of Yi, also varies spatially since, from Eq. (5), µ(xi) = σ(xi)/(1−ξ).10

Although the scaling factor varies spatially, the normalized variable Zi = Yi/µ(xi) is identically11

distributed over the region. Indeed, for all i, Zi ∼ G(1 − ξ, ξ), i.e. the normalized variable12

only depends on the regional shape parameter ξ, as in the basic framework in Section 3.3. By13

construction, the regional shape parameter is constant over the region. It follows that the scale14

parameter of the normalized variable is also constant. Therefore, the scale invariance assumption,15

mentioned in the introduction, is automatically fulfilled without any further assumptions on the16

scale parameter.17

The observed excesses from all the sites in the region, once normalized by their expectation, can18

be used to estimate the regional shape parameter with Eq. (7). Hence, as in the classical regional19

approach, the sample variability of the estimator of the shape parameter is reduced thanks to an20

increased sample size. The scale parameter is estimated as before with Eq. (8).21

The approach described in this section is related to the work in Naveau et al. [2014] but differs in22

two main respects. First, they considered σ(xi) as the scaling factor instead of µ(xi) which implies23

that Z ∼ G(1, ξ). However, in such a case Z is not observable because σ(xi) is unknown. To24

circumvent this problem, Naveau et al. [2014] normalized the observations with µ(xi) and account25

for the difference between σ(xi) and µ(xi) in their estimators of the GP parameters. Second, in26

Naveau et al. [2014], both the second and the third probability weighted moments are employed27

in the estimators. In this work, we adopt right away µ(xi) as the scaling factor and use only the28

second probability weighted moment of the normalized variable Z to estimate ξ. These choices29

lead to simpler expressions.30

4.2 Characterization of homogeneous regions31

As can be seen from the local estimation of the shape parameter in the basic framework in Fig. 2c,32

the assumption of constant shape parameter and thus, of a single homogeneous region, is not33

reasonable for the French Mediterranean precipitation application. Building on the expressions34

in Section 4.1, we introduce a characterization of each site with which homogeneous regions can35

be defined. We partition the sites into Nreg contiguous regions, i.e. each site belongs to one36

region. The so-called “region of influence” approach [Burn, 1990] could also be used as discussed37

in Section 5.38

Let Ci ∈ {1, . . . , Nreg} be the homogeneous region label associated to site i and let {ξ1, . . . , ξNreg}39
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be the regional shape parameter associated to each homogeneous region. For a site i belonging1

to the region Ci, Yi ∼ G(σ(xi), ξCi) and Zi ∼ G(1 − ξCi , ξCi). The regional shape parameter ξCi2

and hence the tail behavior of Yi varies according to the region Ci. The higher the regional shape3

parameter is, the greater the risk of extreme precipitation events in the region.4

Since the normalized variable only depends on the regional shape parameter, we propose to5

characterize the site i with a statistic of Zi. In this work, we choose to use ν, the second probability6

weighted moment of the normalized variable Zi, see Eq. (6), to summarize the information on the7

tail behavior of a given site i. We have that ν(xi) = ν(xj) if and only if Ci = Cj . For each site i,8

let ν̂(xi) be the estimation of ν. This characteristic can be fed to a clustering algorithm to identify9

the homogeneous regions. In this work, we resort to K-Means to perform the clustering [Ripley,10

1996]. K-Means iteratively assigns a site i to the cluster whose cluster center is closer in terms of11

ν̂(xi) and then re-computes the cluster centers as the averages of the ν̂(xi) of the sites belonging to12

each cluster. We set the initial cluster centers to Nreg empirical quantiles of ν̂(xi), 1 ≤ i ≤M , with13

probabilities that spread regularly the [0, 1] interval. This ensures that K-Means always converges14

to the same partition.15

4.3 Estimation at ungauged sites16

To estimate the GP parameters at an ungauged site i∗, we must first determine to which homoge-17

neous region it belongs. This is a classification problem and we employ the k-nearest neighbor rule18

with k = 5, a non-parametric classifier [Ripley, 1996]. This classifier determines the five nearest19

neighbors of i∗ by evaluating the Euclidean distances d(xi∗ ,xi) for all i ∈ {1, . . . ,M} and assigns20

i∗ to a class Ci∗ by taking a majority vote among its five nearest neighbors. The regional shape21

parameter at the site i∗ is given by ξCi∗ and is estimated as explained in Section 4.1.22

To estimate the scale parameter at site i∗, the scaling factor µ(xi∗) is interpolated as in the23

classical regional approach. It is then combined with the regional shape parameter estimate in24

Eq. (8).25

4.4 Simulation study26

We illustrate the regional framework described in this section on synthetic data whose generative27

model satisfies the assumptions of the framework. The synthetic dataset is a variant, with four28

homogeneous regions, of the dataset proposed in Naveau et al. [2014] which consists of a single29

homogeneous region. The one-dimensional covariate x takes value in the interval [1, 1000] that is30

splitted into four equal sub-intervals : ξ1 = 0.3 when x ∈ [1, 250], ξ2 = 0.2 when x ∈ [251, 500],31

ξ3 = 0.1 when x ∈ [501, 750] and ξ4 = 0 when x ∈ [751, 1000]. The scale parameter varies with x32

as a combination of a periodic and exponential signal. Fig. 3a shows a sample from the synthetic33

dataset with M = 1000 sites, xi = i for i ∈ {1, . . . ,M} and ni = 100 GP samples generated from34

each Yi. In Fig. 3a, the scale parameter is depicted as the cyan curve and the homogeneous regions35

are indicated by the vertical bands.36

A detailed description of the regional framework proposed in this paper is given in Algorithm 1.37

The algorithm must be provided with the following inputs : the number of homogeneous regions38

Nreg and for each site 1 ≤ i ≤ M , the ni observed excesses yi = {yi1, . . . , yini} and the vector39

of covariates xi. It is possible to provide additional vectors of covariates xi∗ corresponding to40

ungauged sites 1 ≤ i∗ ≤M∗. The outputs of the algorithm are the Nreg regional shape parameter41

estimates ξ̂j , 1 ≤ j ≤ Nreg, the scale parameter estimates σ̂(xi) and the region labels Ci for each42

10



(a) Synthetic dataset (b) Estimation of µ(·)
Figure 3: Left panel : A GP random sample is simulated in the interval [1, 1000] for 1000
sites with covariates taking value x = 1, . . . , 1000. The scale parameter varies as a combination
of periodic and exponential signal (cyan curve) and the regional shape parameter is piecewise
constant decreasing from 0.3, 0.2, 0.1 to 0 in each of the vertical bands. The sample size at
each site is ni = 100. Right panel : At each x, a local estimate µ̂i of µ is computed (gray dots)
and then smoothed with kernel regression to obtain µ̂(·) (red curve). The generative model of
µ(·) is represented by the black curve.

site 1 ≤ i ≤ M . If additional target sites are included in the inputs, the algorithm returns their1

region labels and their scale parameter estimates as well. In the synthetic data application, there2

is no ungauged site estimation. We set the number of regions to the value of the generative model,3

that is Nreg = 4.4

The first step of the regional framework proposed in this paper consists in estimating the5

scaling factor (Fig. 3b) and computing the normalized observations (Fig 4a). This corresponds6

in Algorithm 1 to lines 1 and 2 respectively. Kernel regression is applied to local estimates µ̂i =7

1/ni
∑ni
k=1 yik to obtain a smooth estimate of µ(·) (line 1). Then, the excesses at each site i are8

normalized with the estimated µ̂(·) yielding zik = yik/µ̂(xi) for 1 ≤ k ≤ ni (line 2). In Fig. 3b, the9

scaling factor of the synthetic data example is represented. The gray dots are the local estimates10

µ̂i, the red curve represents the kernel regression estimate µ̂(·) and the generative function µ(·) is11

shown in black. In this example, the µ(·) function of the generative model has discontinuites at12

the borders of the homogeneous regions and these cannot be well captured by kernel regression.13

Fig 4a illustrates the normalized sample.14

In the second step of the proposed framework, the gauged and ungauged sites are assigned to15

a homogeneous region (Fig. 4b). If a single homogeneous region is requested, all the M gauged16

sites and the M∗ ungauged sites are pooled together (line 3 of Algorithm 1). Otherwise, the sites17

are partitioned into Nreg regions (line 5). The partitioning goes as follows. Similarly as for µ(·),18

ν(·) is estimated (line 6) by applying kernel regression to the local estimates νi computed from zik,19

1 ≤ k ≤ ni with U-statistics [Furrer and Naveau, 2007]. Then, the M gauged sites are clustered20

into Nreg regions with K-Means based on ν̂(xi) (line 7). If ungauged sites are provided as well,21

they are assigned to a homogeneous region Ci∗ for each i∗ with a k-nearest neighbor classifier with22

k = 5 (line 8). For the synthetic data application, Fig. 4b shows the νi as gray dots, the regressed23

ν̂(·) as colored curves and the function from the generative model ν(·) in black (piecewise constant).24

Each color of the ν̂(·) curve indicates a cluster and hence an homogeneous region with constant25
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Algorithm 1: Regional framework for peaks-over-threshold based on the probability weighted
moments with a variable number of homogeneous regions with constant shape parameter

input : Nreg the number of homogeneous regions ;
yi = {yi1, . . . , yini}, ni observed excesses and xi a vector of covariates at sites 1 ≤ i ≤M ;
xi∗ 1 ≤ i∗ ≤M∗ for ungauged sites (optional)

output: {ξ̂1, . . . , ξ̂Nreg}, σ̂(xi) and Ci for 1 ≤ i ≤M ;
Ci∗ and σ̂(xi∗) for 1 ≤ i∗ ≤M∗

1 Estimate µ(·) by regressing µ̂i = 1/ni
∑ni
k=1 yik over xi ;

2 Compute the normalized excesses zik = yik/µ̂(xi) for 1 ≤ k ≤ ni ;
3 if Nreg == 1 then // single homogeneous region case

4 Assign all the sites to a single region Ci = 1 ∀i and Ci∗ = 1 ∀i∗;

5 else // partitioning into Nreg regions

6 Estimate ν(·) by regressing ν̂i, the second probability weighted moment sample estimate
of Zi, over xi ;
// νi is estimated using U-statistics [Furrer and Naveau, 2007]

7 Assign each site i to a region Ci, 1 ≤ Ci ≤, Nreg by clustering ν̂(xi) ;
8 Assign each i∗ to a region Ci∗ with a classifier based on xi∗ and xi ;

9 end
10 for j ← 1 to Nreg do
11 Estimate νj from all zik, 1 ≤ k ≤ ni, such that Ci = j ;

12 Estimate ξj , the shape parameter of region j as ξ̂j = (1−4ν̂j)/(1−2ν̂j), see Eq. (7) ;

13 end

14 Estimate σ(xi) thanks to σ̂(xi) = µ̂(xi)(1− ξ̂Ci), see Eq. (8) ;
15 Estimate σ(xi∗) similarly ;

shape parameter.1

In the last step of the regional framework described in Algorithm 1, the GP parameters are2

estimated at the gauged and ungauged sites (Fig. 5a and 5b, lines 10 to 15 of Algorithm 1). For3

each homogeneous region j ∈ {1, . . . , Nreg}, all the zik, 1 ≤ k ≤ ni, belonging to that region,4

i.e. such that Ci = j, serve to estimate νj , the regional second probability weighted moment,5

and ξj , the regional shape parameter with Eq. (7) (lines 11-12). Finally, the scale parameter6

is computed by combining the µ̂(xi) estimate (line 1) at the gauged sites 1 ≤ i ≤ M with the7

regional shape parameter estimate ξ̂Ci of the associated homogeneous region in Eq. (8) (line 14).8

The same computation is carried out for ungauged sites if needed (line 15). Parametric bootstrap9

is employed to deduce 95% confidence intervals for the shape and scale estimators of the proposed10

regional framework (Fig. 5a and 5b respectively). A 1000 copies of the synthetic data set are11

generated and the estimation at all M = 1000 sites is performed on each copy. In Fig. 5a and 5b,12

the 95 % confidence intervals are shown as gray bands and the parameters of the generative model13

are shown as black curves.14

The main contribution of this work is the use, in the regional framework stemming from the15

Naveau et al. [2014] framework, of the statistic ν̂(xi) that is successful at identifying regions16

with constant shape parameter, as shown in Fig. 4b. As a consequence, the proposed framework17

yields a reliable estimation of the shape parameter in each region (see Fig. 5a), provided that18

the assumptions behind the framework are fulfilled. In addition, by relying on non-parameteric19

regression instead of local estimation for both µ and ν, spatial information is introduced and20

the noise of the local estimates is considerably reduced (see Fig. 3b and 4b). Finally, the 95%21

confidence intervals shows the stability of the algorithm for the synthetic data example and good22
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(a) Normalized sample zik = yik/µ̂(xi) (b) Estimation of ν(·) and partitioning into ho-
mogeneous regions

Figure 4: Left panel : The synthetic dataset from Fig 3a is normalized with the smoothed
µ̂(·) estimate (red curve in Fig. 3b). Right panel : Local estimates νi are obtained from the
normalized sample (gray dots) and kernel regression is applied to obtain a smooth estimate ν̂(·)
(colored curves). Homogeneous regions are determined by applying K-Means on the smoothed
estimates ν̂(xi). Each region, represented by a different colored ν̂(·) curve, determines an area
with constant shape parameter.

(a) Shape parameter (b) Scale parameter

Figure 5: GP parameter estimates from the regional framework described in Algorithm 1
together with 95% confidence bands computed with parametric boostrap. The black curve
represents the generative model. The normalized sample (Fig 4a) is used to estimate the
shape parameter within each homogeneous region. The scale parameter estimate is obtained
by combining the shape parameter estimate with the smoothed µ̂(·) estimate from Fig. 3b.
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agreement between the estimated and the generative models. Only in the case of the sub-interval1

corresponding to the higher shape parameter (ξ1 = 0.3), the shape parameter of the generative2

model is at the lower end of the asymmetric confidence bands.3

4.5 Regional analysis of the daily precipitation data4

We apply the regional framework described above to the 332 French Mediterranean precipitation5

stations from Section 2 and compare the results with those from the basic framework in Section 3.4.6

The same covariates x (the x and y coordinate in extended Lambert II projections of latitude and7

longitude) and the same regular grid of about 500 m is used for the interpolation. The grid boxes8

are provided as ungauged sites in Algorithm 1. The threshold that defines the excesses which are9

approximately GP distributed, along with the corresponding average number of excesses per year,10

are the same as those presented in the basic framework, see Fig. 2a-2b.11

4.5.1 Partitioning into homogeneous regions12

From the regional framework of Algorithm 1, a partition into homogeneous regions is obtained as13

each grid box is assigned to a region corresponding to a regional shape parameter. We present the14

partitioning for increasing numbers of regions (three to six), sees Fig. 6a-6d. This partitioning can15

be compared to the estimated shape parameter from the basic framework, see Fig. 2c.16

The homogeneous regions are remarkably continuous in space although geographical information17

is used only indirectly to define the regions through the regression of the local νi estimates (line 618

of Algorithm 1). Even in the 6-region partition in Fig. 6d, i.e with the larger number of regions,19

although the regional parameter estimates can be very similar for some regions, the regions remain20

approximately spatially coherent. In addition, for all the partitions, the regions are roughly aligned21

along the same direction, with a slight counterclockwise angle from 12 o’clock (a central vertical22

line).23

In most cases, the regions have clear borders. However, in a number of cases, especially when24

the number of regions increases, the borders are somewhat blurred. This happens when a region has25

only a few scattered representative stations in a given geographical area. In such a configuration,26

the k-nearest neighbor rule yields unstable region assignment.27

As the number of regions increases, the partitioning provides more detailed patterns that are28

nested into the smoother patterns of partitions with less regions. As expected, with a larger29

number of regions, the partitioning reproduces more closely the patterns of the local estimates in30

Fig. 2c. On the contrary, with less regions, the shape parameter estimates seem to smooth the31

local estimates over the larger regions.32

For all partitions, the high risk region, corresponding to the highest shape parameter value with33

ξ̂j ≈ 0.27 − 0.30, is located in the South and represented with the blue-green color. The region34

starts at the coast, goes up to the foothills of the Cevennes mountain range and is consistent with35

the local estimates in Fig. 2c and expert knowledge [Delrieu et al., 2005, Braud et al., 2014].36

4.5.2 Scale parameter estimates37

Fig. 7a and 7b present the maps of the differences between the estimated scale parameter from38

the basic framework, see Fig. 2d, and the estimated scale parameter from the regional framework39

described in Algorithm 1. The latter estimate corresponds to the partitioning into three and six40
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(a) Three homogeneous regions (b) Four homogeneous regions

(c) Five homogeneous regions (d) Six homogeneous regions

Figure 6: Partitioning into homogeneous regions associated to estimated regional shape
parameter values {ξ̂1, ..., ξ̂Nreg} in the legends. The partitions, with Nreg = 3, 4, 5, 6, are
defined based on the regional framework detailed in Algorithm 1.

15



regions shown in Fig. 6a and 6d. The results are similar for the partitioning into four and five1

regions (not shown).2

The estimation of the scale parameter with the proposed regional framework is little sensitive to3

the selected number of regions and is very close to the estimate from the basic framework. Indeed,4

for all the partitions considered (three to six regions), the differences in scale parameter estimates5

for about 95% of the grid boxes is at most 5 mm in magnitude.6

In most cases, the scale parameter estimates of the proposed regional framework do not show7

major discontinuities at the region borders. The highest risk region discussed above is an exception :8

the North-East border is quite visible in the maps of differences in scale parameter estimates Fig. 7a9

and 7b (this can be compared to the corresponding partitions in Fig. 6a and 6d).10

(a) Three homogeneous regions (b) Six homogeneous regions

Figure 7: Differences in scale parameter estimates : basic framework estimates minus regional
framework estimates. In the latter, σ(x) = µ(x) (1 − ξj) where ξj is the regional shape
parameter for the jth homogeneous region and µ(x)] is the conditional expectation of the
excesses for the covariates x. The homogeneous regions corresponds to the partitioning in
Fig. 6a and 6d.

4.5.3 Confidence intervals11

We selected two distinctive grid boxes as target sites to illustrate the sampling distributions of the12

estimators in both the basic and the regional framework. The first grid box is located 20 km East13

of the city of Montpellier in the high risk region with shape parameter taking value from 0.27 to14

0.30, see Fig. 6. In contrast, the second grid box lies 20 km North of the city of Valence in a low15

risk region with shape parameter value around zero.16

The sampling distributions of the GP parameter estimates can be obtained with spatial block17

bootstrap to preserve temporal and spatial dependence of the excesses. More precisely, blocks of18

three days are randomly sampled from the original observations for all the stations simultaneously.19

The size of the block was determined from the maximum number of consecutive excesses in the20

precipitation data.21

The region labels Ci for each gauged site are determined once and for all on the original22

observations. This means that the configuration of the regions is kept fixed for each bootstrap23

sample. In addition, the thresholds are estimated only once on the original observations. For24
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each bootstrap sample, for each site, the excesses are extracted and the scaling factor µ(·), the1

conditional estimation of the excesses, is estimated. The normalized observations zik, 1 ≤ k ≤ ni,2

are then computed and serve to estimate the regional shape parameters using the original region3

labels Ci. Last, the scale parameter estimates are obtained as usual. Return levels are computed4

thanks to Eq. (3) for return periods ranging from 1 to 100 years. This is repeated a 1000 times.5

Confidence bands at 95 % for the return levels of the basic framework (magenta) and the6

regional framework with three (light blue) and six regions (dark blue) are presented in Fig. 8 and7

9 for the high and low risk grid boxes respectively. In addition, to the left of each figure, the8

smoothed empirical distributions (resulting from the application of the function density of R to9

the sample estimates) of the shape (top) and scale parameter (bottom) estimates are shown.10

Figure 8: Uncertainty estimation at the grid box 20 km East of the city of Montpellier
(high risk region). Left panel : bootstrap distribution of the shape (top) and scale (bottom)
parameters for the basic framework (magenta) and the regional framework with three regions
(light blue) and six regions (dark blue). Right panel : 95 % confidence bands for the return
level curves with the same color code.

For the high risk grid box, Fig. 8, the proposed regional framework with either three or six11

regions tend to yield higher shape and scale parameter estimates which result in significantly12

higher return levels. In contrast, for the low risk grid box, Fig. 9, the sampling distribution of the13

shape and scale parameter estimates is similar in both frameworks which explains the overlapping14

confidence bands of the estimated return levels.15

5 Discussion and Conclusion16

In an area such as the French Mediterranean area where heavy precipitation events can trigger flash17

floods with devastating consequences, it is essential to obtain reliable estimates of the distribution18

of extreme precipitation at both gauged and ungauged locations. To this end, regional analysis can19

be combined with the block maxima or the peaks-over-threshold approach in a robust framework.20

In this paper, we built on the approach proposed in Naveau et al. [2014] to address some of the21

shortcomings of regional analysis. First, we cast the Naveau et al. [2014] approach into a regional22

framework for peaks-over-threshold with a single homogeneous region and simplified the expressions23

to compute the GP parameter estimates. The scaling factor, in this approach, is the estimated24
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Figure 9: Uncertainty estimation at the grid box 20 km North of the city of Valence (low risk
region). Left panel : bootstrap distribution of the shape (top) and scale (bottom) parameters
for the basic framework (magenta) and the regional framework with three regions (light blue)
and six regions (dark blue). Right panel : 95 % confidence bands for the return level curves
with the same color code.

conditional expected value of the excesses, noted µ̂(xi). Although the scaling factor does not have1

a clear physical meaning, it does have a clear statistical advantage. Indeed, the scale invariance2

property of the normalized variable is automatically fulfilled, without further assumptions. In3

addition, the scale parameter of the normalized variable solely depends on the shape parameter.4

In other words, in the regional framework proposed in this paper, the regional distribution has a5

single parameter. Madsen and Rosbjerg [1997] also considered a regional framework for peaks-over-6

threshold with the expected value of the excesses as the scaling factor. They resorted to L-moment7

ratios [Hosking and Wallis, 2005] to estimate the shape parameter based on the normalized excesses.8

The main contribution of this work is, in the regional framework derived from Naveau et al.9

[2014], the characterization of homogeneous regions with the second probability weighted moment10

estimate of the normalized variable, noted ν̂(xi) for site i. In the simulation study on synthetic11

data, homogeneous regions, i.e. with constant shape parameter, were successfully identified. The12

correct identification of homogeneous regions lead to GP parameter estimates with low variance,13

as shown by the narrow 95% confidence bands computed with parametric bootstrap. Finally,14

the use of regressed (as opposed to local) statistics to estimate both µ and ν introduced spatial15

information and reduced the noise of the estimators. The application on daily precipitation data16

from the French Mediterranean area illustrated the regional framework on a complex region with17

several homogeneous sub-regions and shape parameter estimates ranging from approximately 0 to18

0.3. For the real data application, uncertainty was estimated with an easy-to-implement spatial19

block bootstrap. Another approach to properly estimate the uncertainty when observations are20

spatially dependent has been proposed in Van de Vyver [2012].21

As recommended in Hosking and Wallis [2005], most authors (e.g. Kyselỳ et al. [2011]) define22

regions based on physiographic variables rather than on site statistics. In particular, Hosking and23

Wallis [2005] argue against the use of the L-CV statistic (L-moment analog of the coefficient of24

variation). They claim that (1) not much information on homogeneous regions can be gained from25

the L-CV statistic as it won’t take very different values from site to site, (2) outliers might bias the26
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identification of the regions and (3) the homogeneity of the regions must be tested with a statistic1

that may contain redundant information with the statistic used to create the regions. We discuss2

these three points in turn.3

(1) The L-CV statistic is used to partition into three homogeneous regions the sites of the French4

Mediterranean precipitation data in Fig. 10 in order to compare with the partitioning obtains with5

the ν statistic. The L-CV statistic is estimated at each gauged site with the R package lmomRFA6

[Hosking, 2015]. To ensure a fair comparison, the same steps from the regional framework described7

in Algorithm 1 for the ν statistic are applied : the local L-CV statistics are smoothed with kernel8

regression, K-Means clusters the sites into three regions and the k-nearest neighbor rule with k = 59

assigns each grid point to a region. From Fig. 10, we can see that the L-CV statistic allows to10

identify the high risk region in the South, including the city of Montpellier. However, the other11

two regions are not well separated. Similar partitioning are obtained with more regions or with12

other L-Moment ratios (not shown). This corroborates the claim above that not much information13

on homogeneous regions can be gained from the L-CV or other L-Moment ratios.14

Figure 10: Partitioning into three homogeneous regions based on the L-CV statistic estimated
from kernel regression. K-Means performed the clustering and the k-nearest neighbor rule
with k = 5 assigned each grid point to a region, following the steps of the regional framework
described in Algorithm 1 but with a different statistic.

On the other hand, in view of the results on both the synthetic and real precipitation data, we15

claim that the ν statistic is efficient to identify homogeneous regions. The obtained regions are16

mostly continuous in space and are meaningful according to expert knowledge. The choice of the ν17

statistic, in the proposed regional framework, is quite natural as it is a summary of the distribution18

of the normalized variable Z that possesses a unique parameter which is the shape parameter. This19

is precisely what characterizes homogeneous regions, their shape parameter value. In addition, ν20

is the lower not trivial probability weighted moment of Z (the only probability weighted moment21

below ν is the expectation of Z which is one by construction). As each homogeneous region is22

associated with a shape parameter value derived from the ν statistic, it is associated with an23

interpretable level of risk of extreme precipitation.24

(2) The potential effect of outliers is greatly reduced in the regional framework from Algorithm 125

as the local estimate of ν are regressed. As mentioned earlier, this introduces spatial information26

and smooths out the noise. Large outliers might still affect the ν estimates but probably to a lesser27
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degree.1

(3) In the proposed regional framework, there is no automated method to select an appropriate2

number of homogeneous regions. Homogeneity tests could be employed, for instance, to determine3

if a region needs to be further divided to achieve homogeneity. However, as concluded in Viglione4

et al. [2007], these tests lack power. For this reason, we prefer to resort to expert knowledge to5

choose the number of homogeneous regions. This is the only subjective decision in the proposed6

framework.7

Quite often, because its sampling variability is larger than its spatial variability, the shape pa-8

rameter is kept constant across the region of interest. This appears to be appropriate when studying9

extremes in a region with little orography such as Belgium [Van de Vyver, 2012]. Nevertheless,10

in a region with a sharp orography inducing a high spatial variabiliy such as the French Mediter-11

ranean area studied in this paper, we believe that the assumption of a constant shape parameter12

is not realistic. The partitioning into homogeneous regions strikes a middle ground between the13

assumption of a constant and spatially varying shape parameter. Indeed, each region possesses14

several sites whose observations contributes to the estimation of the regional shape parameter. In15

order to guide the selection of the number of homogeneous regions, the sampling distribution could16

be used to determine how many distinct regional shape parameters can be identified. Preliminary17

analysis of the French Mediterranean precipitation data showed that at least two regions could be18

identified. However, this is beyond the scope of this paper and should be further analysed.19

Further study is also required in order to determine in which cases the regional framework with20

the GP distribution proposed in this paper performs better than other interpolation methods such21

as the direct interpolation of the GP parameters described in the basic framework. For the block22

maxima approach with the GEV distribution, Carreau et al. [2013] have shown that the regional23

framework outperforms a direct interpolation of the parameters for sparsely gauged network. In24

addition, the comparison of return levels showed that there are significant differences between the25

direct interpolation of the GP parameters from the basic framework and the interpolation from26

the regional framework for the grid box in the high risk region, see Fig. 8, but not for the grid box27

in the low risk region, see Fig. 9. Although this should be validated, it might indicate that there28

is a gain in resorting to the regional framework in particular when the interpolation conditions are29

more difficult such as when the network is sparsely gauged or when the shape parameter can take30

high values.31

Other perspectives for this work are as follows. Instead of employing the characterization of32

homogeneous regions to create contiguous regions, the ν statistic could be employed in a region-33

of-influence type-of approach [Burn, 1990]. Indeed, a neighborhood around a site (gauged or34

ungauged) could be defined in terms of similarity in the ν statistic. The size of the neighborhood35

could be determined based on expert knowledge, as for the number of regions in the contigu-36

ous case. Another perspective would be to apply the proposed regional framework to a sparsely37

gauged network. In such a case, covariates would have to be chosen with care. Most likely, x38

and y coordinates would not be informative enough and covariates related to the orography could39

be of interest [Benichou and Le Breton, 1987]. In addition, non-parametric methods (k-nearest40

neighbor rule and kernel regression) worked well in the dense precipitation network to which the41

regional framework was applied. However, in sparser network, it might be more appropriate to42

seek parcimonious parametric models.43
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J. Kyselỳ, J. Picek, and R. Huth. Formation of homogeneous regions for regional frequency analysis34

of extreme precipitation events in the czech republic. Studia Geophysica et Geodaetica, 51(2):35

327–344, 2007.36
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