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Abstract—Features on the seabed can be mapped  from remote 

sensing multi/hyperspectral imagery, provided that their effects on 
the measured  reflectance  spectrum  can be made  independent  of 
those produced  by the atmosphere  and  water  column. The non- 
linear effect of water column light attenuation can then be corrected 
to obtain the absolute reflectance of the seabed. Light attenuation by 
the water  column and bathymetry are both determined  from the 
satellite image. The water  column attenuation is then removed in 
order to apply an automated supervised classification, whatever the 
depth is. We have compared  the results obtained with and without 
the correction  of water column attenuation, for two different 
statistical measures: Euclidean (ED) and spectral angle mapper 
(SAM) distances. We have applied this methodology to MERIS 
images acquired  on the lagoon of New Caledonia. The best overall 
accuracy  (79%), as compared  to in situ data, is obtained  with the 
corrected  image and the SAM distance. 

 

Index Terms—Bathymetry,  MERIS,  seabed  mapping,  seabed 
reflectance,  water column attenuation correction. 

 

 
I. INTRODUCTION 

 

HE lagoon of New Caledonia is one of the three most 
extensive reef systems in the world, and UNESCO listed 

New Caledonia Barrier Reef on the World Heritage List under the 
name The Lagoons of New Caledonia: Reef Diversity and Asso- 
ciated Ecosystems on 7 July 2008 [1]. It features an exceptional 
diversity of coral and fish species and a continuum of habitats 
from mangroves to seagrass with the world’s most diverse con- 
centration of reef structures [2]. However, nickel mining in 
New Caledonia is a major sector of the New Caledonian economy, 
because the islands contain about 10% of the world’s  nickel 
reserves. With  the  annual  production of  about  138  000  t, 
New Caledonia is the world’s sixth largest producer, with 9% 
of the world production [3]. The mineral extraction process 
leads to massive erosion and brings important inputs of mineral 
matters into the fragile coastal ecosystem. This mining activity 
began more than 100 years ago, with important discharge and 
scattering of particles and metal deposit in the lagoon. We know 
that suspended particles have inhibiting effects on  the reef 

 

 

communities through their abrasive capacity and the reduction 
in light penetration. Reef damage (bleaching and mortality) is 
enhanced during tropical storms in areas where land development 
has increased soil erosion [4]. Impacts of higher sediment inputs 
could induce alternative states of reef development [5], [6]. The 
authorities of New Caledonia must monitor turbidity, sediment 
inputs and sedimentation rates, given the mining developments 
that are now taking place on the island. These measurements are 
necessary within the Southern Lagoon of New Caledonia as well 
as in other sensitive spots such as Prony Bay (south of Grande 
Terre), the Havannah channel (Nouméa), in the Voh-Koné- 
Pouembout district, and around the protected marine areas. 

Since 2000, researchers have been studying water composi- 
tion and marine sediments, the currents responsible for the 
dispersion of land-based inputs, habitats, and marine diversity. 
This article proposes a method to map the lagoon bottom in order 
to evaluate the seabed cover change regarding the mining activity 
in the future. 

In 1988, Chardy et al. [7] carried out a quantitative survey of 
the macrobenthos in the south-west lagoon of New Caledonia at 
35 stations, sampled both with a grab and by diving. In 2000, 
Chevillon [8] also used an acoustic ground discrimination system 
(AGDS) in mapping complex and heterogeneous coral reef 
lagoon bottoms to assess the relationship between classically 
used sedimentological parameters and bottom acoustic classifi- 
cation, and to revisit the sedimentological structure of the South- 
Western lagoon of New Caledonia. Ouillon et al. [9] studied the 
circulation and suspended sediment transport in the coral reef 
lagoon (south-west of lagoon of New Caledonia) and used these 
maps containing percentage of mud content of suspended sedi- 
ments on the same area. But these techniques do not allow the 
mapping of the whole seabed of the lagoon of New Caledonia. 

The originality of this publication is that the water column 
light attenuation and the bathymetry can also be determined with 
the coarse resolution of MERIS imagery in order to correct the 
seabed reflectance from the water column attenuation and finally 
to map the seabed in the lagoon of New Caledonia. The MERIS 
sensor was designed for sea color observation, with a 300-m 
spatial resolution, 15 spectral bands, over a 1150-km swath 
width, and a 3-day revisit period [10], more adapted to monitor 
coastal zones than previous sensors such as SeaWifs (8 bands, 
1-km resolution) or MODIS (8 bands, 500-m resolution). The 
spatial resolution of MERIS is here too coarse to map fine details 
of the lagoon bottom, but this disadvantage is balanced by its 
large swath (1150 km), which makes it possible to map the 
bottom of the whole lagoon of New Caledonia. 
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In the literature, seabed mapping is largely used to map marine 
habitats. Mumby et al. [11] used aerial multispectral images to 
map the corals in the Turks and Caicos Islands. Andréfouët et al. 
[12] characterized the microbial mats in Rangiroa atoll using 
SPOT, ETM, and CASI. Fornes et al. [13] and Pasqualini et al. 
[14] mapped the Posidonia oceanica seagrass. Jaubert et al. [15] 
evaluated the extent of Caulerpa taxifolia development using 
airborne spectrographic remote sensing. 

For a terrestrial landscape, classification (supervised or not) 
can directly be applied on the remote sensing images. For marine 
landscape, the problem is more difficult because the water 
column attenuates the seabed reflectance as a function of depth 
and water turbidity, and an automatic classification then cannot 
be applied without considering the water column attenuation and 
depth, because the variable total optical thickness of the water 
column depends on these two parameters. 

Indeed, the above-surface reflectance derived by the sensor 
measurements (   ), once corrected from the atmospheric effect, 
is a function of different parameters such as the water reflectance 
(    ), the diffuse attenuation (   ), the seabed reflectance (   ), and 
depth (z). The water reflectance is influenced by the water 
molecules as well as organic and inorganic components such 
as chlorophyll, suspended particulate matter (SPM), and colored 
dissolved organic material (CDOM). Pure water gradually 
absorbs light from the blue to the red spectral domain, but the 
other components contained in seawater modify the absorption 
and scattering as a function of their concentration: chlorophyll 
pigments increase the absorption in the blue and the red wave- 
lengths, the SPM increases the scattering all over the visible 
domain, and the CDOM increases the absorption in the UV-blue 
domain. The water diffuse attenuation coefficient (           ) 
describes the spectral selective absorption and scattering due to 
water components [16]. The reflected radiation is then attenuated 
as a decreasing exponential function of water attenuation and 
depth as modeled by Maritorena [17] 

 

 
 
 

where      is the water surface reflectance,      is the bottom 
reflectance,       is the deep water reflectance,      is the water 
diffuse attenuation, and z is the depth of the ocean bottom. All 
parameters, except z, are wavelength-dependent. 

This question has been addressed by different studies. 
Lyzenga [18] proposed a method to eliminate the effect of water 
column attenuation on bottom radiance (or reflectance) using a 
unitless index image of bottom type (depth independent). This 
method was also used by Mumby et al. [11], but the drawback of 
this method is that index values cannot be related to radiance or 
reflectance measured in situ [12]. Durand et al. [19] chose to use a 
forward model to generate a synthetic library of surface reflec- 
tance with different depths, seafloor reflectance, and water 
composition inputs. Once the library is generated, each spectrum 
of the image is then compared to the spectral library to associate 
the optimum input parameters to this pixel. Some authors directly 
apply a classification because the depth is supposed to be 
constant [13]. Vahtmäe and Kutser [20] created different classes 
of same items at different depths. After a classification using the 
Euclidean (ED) distance, classes are merged. 

Concerning the bathymetry, in the last decade, approaches in 
optically shallow water bodies have evolved to nonlinear opti- 
mization of semi-analytical models [21], [22] and comparative 
methods of spectral library matching [23], [24] from hyperspec- 
tral data and modeled data. These approaches, based on radiative 
transfer (RT) equations, are used to produce bathymetric maps 
and to quantify concentration of organic and inorganic water 
constituents. 

Among the optimization of semi-analytical models, Lee et al. 
[21], [22] assumed that the seabed is covered by sand whose 
spectral profile was known with an unknown multiplicative 
coefficient. Several authors recently extended the method devel- 
oped by Lee et al. by incorporating linear unmixing of the benthic 
cover. Giardino et al. [25] used two substrate classes (bare sand 
and submerged macrophytes) for the littoral zone of a lake, 
whereas Goodman and Ustin [26] and Klonowski et al. [27] 
integrated a semi-analytical inversion model with a linear 
unmixing of three known substratum types for coral reef 
environments. 

Brando et al. [28] presented the quantitative comparison of 
model-derived depth for coastal water with high-resolution 
multibeam acoustic bathymetry data and showed that the preci- 
sion of the bathymetry retrieval was a function of the contribution 
of substratum to the remote sensing signal. Adler-Golden et al. 
[29] combine atmospheric correction, water reflectance spectral 
simulations, and a linear unmixing bathymetry algorithm that 
accounts for water surface reflections, thin clouds, and variable 
bottom brightness, and can incorporate blends of bottom 
materials. 

Concerning the comparative methods of spectral library 
matching, Mobley  et  al.  [24]  generated a  Look  Up  Table 
of  remote  sensing  reflectance  (Rrs)  with  Hydrolight  RT 
model. The range of input values (water composition and depth) 
needs to be sampled before simulations. The seabed reflectance 
present in the image also needs to be known. Hedley et al. [30] 
also chose this approach and optimized the searching process 
with the use of an adaptive linearized Look Up Tree. The 
drawback of this technique is the quantified output maps due 
to the model inputs sampling used to produce the Look Up Table. 
These last two approaches are known to be time-consuming 
(Dekker et al. [31]). 

But the most noticeable drawback of these two approaches is 
the necessity of a priori knowledge of the bottom reflectance and 
the nondelivery of the real substratum reflectance. In this study, 
an inverse classical approach was preferred to remove from the 
image the influence of water attenuation due to the water column 
without knowledge of bottom reflectance. In other words, we try 
to remove the water layer on the seabed or “bring up” the seabed 
to the water surface and to provide for each pixel the attenuation- 
corrected spectrum of the bottom. This correction then allows to 
apply an automatic classification because a same item should 
now have the same reflectance, whatever the depth is. This 
method is even more interesting when the classification is 
operated using a spectral library, because it generally contains 
only one spectrum for each item, normalized from the depth. This 
last correction was then applied to MERIS images to map the 
seabed in the Southern part of the New Caledonia lagoon. Two 
important assumptions of the method used are the water clarity 
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and the horizontal homogeneity. The choice of this method is 
here justified because these two assumptions are sometimes met 
in the New Caledonia lagoon. Additionally, pre-exiting knowl- 
edge on the water depth at a number of sites with known seabed 
type is also required. 

In this paper, we applied a method for correcting the effects of 
water column attenuation on MERIS images, retrieving bathym- 
etry, and classifying bottom types, using the lagoon of New 
Caledonia as a case study. Results obtained are presented with 
and without correction of the water column attenuation and with 
two different distances [ED distance and spectral angle mapper 
(SAM)]. The results are then discussed, and conclusion and 
perspectives are proposed. 

 
 
 

II. SITE, METHOD, AND DATA 

 
 
Fig. 1. Spectral rotation for bathymetric estimation [38]. 
 

Concerning bathymetry, the depth can be obtained by the 
combination of two spectral bands [38]. From (1) and (2), (3) can 
be deduced as 

 

A. Site 
 

The New Caledonian lagoon ( , 25-m mean depth)  
lies in the South-Western Tropical Pacific from 20   to 22 S 
and 166  to 167 E, with a heterogeneous bathymetry due to a 
complex geomorphology and a variety of different bottom 
colors. It is largely connected to the open ocean in the south 
part of the lagoon, but only by narrow passages in the south-west                               
part of the lagoon. Exchanges with the sea can modify the 
phytoplanktonic assemblage in the central lagoon character- 
ized by oligotrophic to mesotrophic waters (yearly average 
chlorophyll-a concentration of                                  ) [32], [33]. 
With relatively low river inputs and a low turbidity range 
compared with other tropical lagoons (TSM concentrations 
ranging from 0.20 to              , Ouillon et al. [32]), its trophic 
state is linked to spatial variations in flushing times [35], [36]. 
The variability of the turbidity was studied by Ouillon et al. [32] 
and the optical properties and chlorophyll concentration by 
Dupouy et al. [37]. 

 
 

B. Method 
 

1) Oceanic Correction: Equation (1) needs to be inverted in 
order to estimate the bottom reflectance . Because , , , 
and z can be deduced by different means that is detailed below, 
can be estimated for each pixel and for each spectral band. 

When the water is clear, an assumption can be made that the 
water is homogenous in the lagoon, and      and      can then be 
considered as constant in the image. The attenuation can then be 
estimated by the measurement of sea surface reflectance of the 
same homogeneous items located at different depths as homo- 
geneous sand. For each spectral band, sea surface reflectance of 
this same item can be plotted as a function of depth. This curve 
describes a decreasing exponential function that becomes, in 
natural logarithm, a line whose slope equals the attenuation (   ) 
in this band [18]. 

Deep water reflectance ( ) can be directly measured in the 
image in an area too deep for the seabed to be of influence. In this 
area, z is high, seabed reflectance is out of influence, the first term 
of (1) is null, and the sea surface reflectance then equals the water 
reflectance (            ). 

where <    . As MERIS has a high SNR ratio (          ), the 
surface reflectance is always higher than the deep water 
reflectance and the logarithm term is never negative. The depth 
expression (z) can be obtained from (2) and replaced in (3). Y can 
then be written as a linear expression of X (4) whose slope equals 
the attenuation ratio for the two wavelengths ( ). 
This slope does not depend on the sea bottom cover (   ), unlike 
the y-intercept. 

When the two bands are projected on the two new axes (Fig. 1) 
obtained by rotation with an angle of , we obtain 
two new images. This rotation aims at separating the influence of 
depth from other influences contributing to the measured reflec- 
tance (such as the seabed and the water color). One of the images 
is a depth-dependent image, linearly dependent on the underwa- 
ter topography. Several pixels corresponding to different known 
depths are required to determine this linear relationship (see [38] 
for more details on the method). This calibration with true depths 
avoids the need of tidal correction. 

In other words, because we assume the water to be homoge- 
nous, all the bottom reflectances are attenuated in the same way 
by the water column (k is then the same for all the water pixels of 
the image). The variation of seabed reflectance is then only due to 
the depth. Fig. 1 explains this phenomenon. For one particular 
seabed such as sand, located at four different depths, points of 
this graph are aligned. For another seabed such as mud, located at 
four different depths, points of this graph will also be aligned and 
parallel to the first line because the attenuation parameter k is the 
same on the two seabeds, and this would be similar for all other 
seabeds. The rotation of the two bands then decorrelates the 
depth from the reflectance; one resulting band will be only depth- 
dependent and the other will be only bottom reflectance- 
dependent. 
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With MERIS, different combinations are possible to constitute 
the pair of bands required to apply the method. The optimization of 
the pair of bands choice has been carried in a previous work [39]. 
All combinations with 13 bands were tested and the estimation 
results were compared with ground measurements. The best 
bathymetry estimates were obtained using a combination of 
MERIS blue  (510  nm)  and  green  (560  nm)  bands.  These 
bands are different from those advised by Philpot [38] [green 
(520–600) nm and red (630–690 nm) band] because he used 
Landsat/TM-MSS images and the choice in the bands selection 
was then limited. The signal-to-noise ratio was also too low to 
enable the use of the blue-green band. MERIS reaches 500 in 
signal-to-noise ratio, even in the blue with good atmospheric 
corrections allowing the choice of better bands. Finally, the blue- 
green pair is more adequate than the green-red one, because the 
signal from the bottom is less attenuated in the blue and green 
regions than in the red one. If no signal from the bottom reaches the 
surface in the red band, the depth estimation cannot be operated 
especially in water that contains chlorophyll and sediments [16]. 

The attenuation, bathymetry, and deep water reflectance being 
defined, (1) can now be inverted in order to estimate the seabed 
reflectance (   ) for all pixels 

 

 
 

The corrected image then provides the bottom reflectance for 
each pixel. This image is now independent of the depth and an 
automatic classification can be applied to the corrected image. 

2) Seabed Classification: The training samples were used to 
extract from the image the reference spectral profiles 
corresponding to the seabed substrate classes. All pixels of 
the image are then compared spectrally to these reference 
profiles and associated to the closest class in terms of spectral 
distance. 

Two different statistical measures were applied to determine to 
which class a spectral profile belongs to: ED distance [40] and 
SAM distance [41] 

 

 
 
 
 
 
 
 
 
 
 

where X and Y correspond to two spectral profiles. X is the 
spectral profile of the class and Y the spectral profile of the 
processing pixel. The pixels are associated to the closest class in 
terms of distance. 

In fact, ED compares spectra in absolute value when SAM 
distance compares the shape of the spectra (in relative value). 

To figure out the impact of the attenuation correction, the two 
classification distances are applied to the original image and to 
the image corrected from the attenuation. Fig. 2 presents a 

 
 
Fig. 2. Graphical representation of the methodology, with the water surface 
reflectance and the bottom reflectance. 
 

 
graphical  representation  of  the  methodology  (step-by-step 
flowchart). 

3) Evaluation of the Method: The training and validation 
areas were obtained from the ground observations operated by 
Chardy et al. [7], Chevillon [8], and Ouillon et al. [9]. Their maps 
were co-registrated with the MERIS image, and the training and 
validation data were compared to each of these maps depending 
on the date of image acquisition. The confusion matrix can be 
analyzed to evaluate the performance of the classifications, with 
and without attenuation correction for both classification 
methods. 

Finally, to show the consistency and usefulness of the method 
for change detection, we applied the method to another MERIS 
image acquired almost 5 years before the processed image (Janu- 
ary 2004 and December 2008), and we analyzed the evolution. 
 
C. Data 
 

A level-2 MERIS image acquired on the 7 December 2008 over 
New Caledonia (Fig. 3) was used to map the seabed in the lagoon. 
This image has been chosen for the water clarity given by in situ 
measurements [39] in order to better discriminate the seabed 
features. This image corrected from the atmospheric effect (stan- 
dard MERIS atmospheric corrections) contains above-surface 
reflectance (   ). Only the first six bands of MERIS, respectively, 
centered at 412, 442, 490, 510, 560, and 620 nm, were used in the 
frame of this study, because in the other bands, the reflectance of 
the seabed is absorbed by the water column. 

For validation purposes, we used eight control points located 
all around the Southern part of the island to evaluate the quality of 
the bathymetric map (Fig. 4) and also used the data from a 
quantitative survey of the macrobenthos in the south-west lagoon 
of New Caledonia at 35 stations, sampled both with a grab and by 
diving [7]. In their work, stations were classified by multivariate 
analysis on the basis of their floral and faunal compositions 
and three major bottoms types: muddy sand, gray sand, and 
white sand. This map was updated with the map published by 
Chevillon et al. [8] and Ouillon et al. [9] established from 859 
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Fig. 3. Original MERIS image acquired on the 7/12/2008 on the Southern part of 
the New Caledonia Lagoon, color composite with bands 1, 3, and 5, and X 
represents ground training points for depth estimation. 

 

 

 
 

Fig. 4. Bathymetry resulting from the estimation model and ground control 
points for validation. 

 

stations. Training and validation dataset can be localized in 
Fig. 5: small circles for training areas and polygons for validation 
areas. The training and validation samples contain three classes 
(muddy sand, gray sand, and white sand). The number of classes 
is limited to only three, because the resolution of MERIS is too 
coarse to identify algae and sea grass patches as well. 

 
III. RESULTS 

 

A. Bathymetry 
 

Fig. 3 contains training locations for depth estimation, and 
Fig. 4 shows the resulting bathymetry map for the lagoon and the 
control points for validation. The color scale shows the deep 
water in dark blue and shallow water in white. When the water is 
clear, as in this image, the maximum depth that can be estimated 
is around 50 m. This means that the estimation is only valid 
within the barrier reef of the lagoon of New Caledonia and this is 
the reason why the ocean is masked in Fig. 4. 

Fig. 5. Seabed reflectance resulting from the water column attenuation correction 
shown as color composite using MERIS bands 1, 3, and 5. ROI used for 
supervised classification: small circles for training areas and polygons for 
validation areas (yellow corresponding to white sand, orange to muddy sand, 
and cyan to gray sand). 
 
 

The obtained bathymetry can be compared on the training 
locations (located in Fig. 3) in Table I, and on eight control points 
around “Grande Terre” island (located in Fig. 4) in Table II. 

Table I shows that on the training locations, the depth is well 
estimated (RMSE of 3.55 m and a mean relative error at 11.6%). 
On the eight control points, the error has increased compared to 
the training area; depth is often over-estimated. An explanation 
of the likely reasons for the observed deviations and their 
potential impact on the classification is provided in Section IV. 
 
B. Water Column Attenuation Correction 
 

Compared to Fig. 2, the water column correction has signifi- 
cantly reduced the effect of the water attenuation on the light 
reflected from the seabed (Fig. 5). The seabed appears now as if 
the water layer had been removed because a same item located at 
different depths now shows similar reflectance. The spectral 
profiles of the three different seabed items located by small 
circles in Fig. 5 are plotted in Fig. 6. These spectra correspond to 
white sand, gray sand, and muddy sand in the lagoon, and they 
were used as the training spectra for the supervised classification. 

The correction of water column attenuation provides consis- 
tent spectra. For example, the white sand has a higher reflectance 
than the gray sand and the muddy sand (Fig. 6). If we compare 
these spectra with real reflectance spectra found in the literature 
[24], [28], and [31] between 400 and 575 nm, we can note the 
same behavior for white sand, gray sand, and muddy sand. Some 
weak spectral difference between pure white, gray, and muddy 
sand can be due to other elements in the sea bottom that cannot be 
discriminated by MERIS such as seagrass, algae, gravel, and 
corals. All of these elements can influence the spectral profile of 
our classes according to their proportion within the pixels. But, 
we did not consider the proportion of other classes in the major 
item because these classes are a minority and their proportion can 
vary from one pixel to another. We then prefer to calculate a 
mean spectrum for each class and then associate the similar 
pixels in terms of spectral distance to the same class. These three 
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TABLE I 
ABSOLUTE AND RELATIVE ERROR OF DEPTH ESTIMATION ON THE TRAINING LOCATIONS (LOCATED IN FIG. 3) 

 
 

 
TABLE II 

ABSOLUTE AND RELATIVE ERROR OF DEPTH ESTIMATION ON EIGHT CONTROL POINTS (LOCATED IN FIG. 4) 

 
 

 
 

TABLE III 
NUMBER OF TRAINING AND VALIDATION PIXELS 

 
 

 
spectra are then used to classify seabed substrates into three 
different classes. 

 

 

C. Results of Classification 
 

Four different supervised classifications were applied with 
training samples. The training samples are defined by region of 
interest (ROI) (Table III, training pixels localized by small circles 
in Fig. 5) and not by spectral profiles interest in order not to 
penalize the classification on the different types of image. The 
first classification was applied to the original image (without 
correction) with the ED distance [Fig. 7(a)], whereas the second 
was applied on the corrected image with the same distance 
[Fig. 7(b)]. The SAM distance was also applied to the original 
[Fig. 7(c)] and the corrected image [Fig. 7(d)]. No other processing 
was applied on the classification results. 

The classification results were then compared to the validation 
dataset (Table III, validation pixels located by polygons in Fig. 5) 
and the results are presented in Table IV. When the ED distance is 
applied to the original image, the overall accuracy, defined as 
percentage of correctly classified pixels, is the lowest (36.36%) 
because the attenuation effect modifies the spectral profile as a 
function of depth. When the SAM distance is applied to the 
original image, the overall accuracy was improved (47.62%) 
because the SAM distance compares the relative shape of the 
spectra and not the absolute reflected value. When the attenuation 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Spectral profiles of major seabed items extracted from the corrected image 
(located by small circles in Fig. 5). 

 
correction is applied, the classification with the ED distance was 
only slightly improved (40.13%), but the best result was obtained 
by applying the SAM distance to the depth corrected image 
(79.19%). 
 

 
IV. DISCUSSION 

 

Before discussing the results, we can summarize the limita- 
tions of using MERIS images. 



 

7 
 

 
 

 
 

Fig. 7. Results of supervised classifications: (a) original image and ED distance, (b) water corrected image and ED distance, (c) original image and SAM distance, and 
(d) water corrected image and SAM distance. 

 

1) The first limitation is the cloud cover, significant in tropical 
regions. In New Caledonia, even if MERIS provides two 
images per week, most of MERIS images are useless 
because of the cloud cover. 

2) The second limitation can be the viewing angle because as 
the water reflectance is not lambertian, the viewing angle 
can have an influence on the error of seabed classification. 
Concerning the temporal comparison of two images not 
acquired on the same track, since the reflectance references 
are extracted in the image (ROI) instead of taking theoreti- 
cal spectra for the classification, the error is then mini- 
mized. Concerning the viewing angle variation within one 
image, simulations with Hydrolight show that a variation 
of 34  of viewing angle can lead to a variation of 20% in 
surface reflectance; it is then effectively important to limit 
the geographic area in order to limit the reflectance varia- 
tion due to the viewing angle. In our study, in which we 
used MERIS images extraction, the variation of viewing is 
limited to 8  leading to a surface reflectance variation of 
maximum 2% to limit the influence of viewing angle on the 
classifications. 

3) Concerning  the  sunglint  areas,  MERIS  processing 
removes the sunglint contribution to the ocean signal 
with the statistical method developed by Cox and Munk 
[42]. It uses external knowledge of the wind speed and 
direction and the illumination and observation geometry 

 

of each pixel, to estimate the level of sunglint contri- 
bution to the surface reflectance. When this contribution 
is below a “low threshold” value, the sunglint is 
neglected; when it is above that threshold and below 
a “high threshold,” it is subtracted from the signal and a 
“medium glint” flag is raised; and when above the “high 
threshold,” pixels are flagged as “high glint” and pro- 
cessed, even if the correction is less reliable. In case the 
correction yields negative values, it is disabled. The 
sunglint correction method uses a model which con- 
siders the sea surface as a collection of facets, each with 
individual slope components      and    . The probability 
distribution of facet slopes               depends on the wind 
speed and direction [42]. 

4) The surface roughness is the most difficult parameter to 
evaluate. It can be higher on deep water area than on 
shallow water, and a new error can then be introduced 
because as the water is not lambertian, the surface rough- 
ness can lead to a reflectance change. It can also increase 
the sunglint phenomenon and induce the apparition of 
foam. Because we did not have the information during 
the image acquisition, we then cannot evaluate the influ- 
ence of the surface roughness on the water column correc- 
tion that can dramatically decrease the signal of the surface 
reflectance by the addition of noise averaged in the signal at 
300-m resolution. 
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TABLE IV 
CONFUSION MATRIXES (IN %) OBTAINED WITH SUPERVISED CLASSIFICATIONS WITH AND WITHOUT THE CORRECTION OF WATER COLUMN 

ATTENUATION AND WITH THE ED OR THE SAM DISTANCES 

 
 
 
 

 
 

Fig. 8. Reflectance of sand patches of (a) sea surface reflectance and (b) retrieved bottom reflectance. 
 
 

Concerning the  water conditions, in  the  lagoon  of  New 
Caledonia, the trophic status of water ranges from oligotrophic 
to mesotrophic depending on the atmospheric conditions (rain- 
fall, wind [43]). The choice of the image is then also fundamental 
as well for the bathymetry estimation and water column attenu- 
ation correction. The image from 3 December 2008 has been 
chosen because the water was relatively clear. Values of chloro- 
phyll and suspended matter concentrations (measured in situ) 
varied, respectively, from 0.1 to and from 0.2 to 

in the lagoon [37], [44], [45]. The high water clarity 
was checked in the image: in the visible domain, we estimated an 
attenuation of                  at 490 nm (MERIS band 3) in the 
training area (south-western lagoon). 

In Table II, the depth estimation error on the eight control 
points around “Grand Terre” is higher than on the training area. 
This is due to the variation of attenuation, which means that the 
assumption of horizontal homogeneity was not fulfilled across 
the image. The depth is often over-estimated in regions where the 
attenuation is low, but when the error being under 30%, the 
bathymetry remains valid for the water column correction. 

Compared to RT methods, this technique provides similar 
accuracy because the fuller RT treatments reduce to (1) at large 
enough depths and because the reflectance ratios for the two 
spectral bands appear to be constant enough for the two-band 
bathymetry method to give satisfactory results. Dekker et al. [31] 
compared the different methods and showed that this kind of 
method breaks down in shallow water and when there is a large 
spectral variation among bottom types. However, in the case of 

this study, this method gives similar bathymetric accuracy to RT 
methods (around 11% in the training area and maximum 25% out 
of this training area). 

Concerning the attenuation correction, the bottom reflectance 
was then calculated by (4) according to the depth value. The same 
bottom type located at different depths should now have the same 
spectral profile. This result was checked on four sand patches 
located at different depths (15, 25, 32, and 45 m). The ratio 
(standard deviation/mean averaged on the first five bands) of the 
gray sand patches reflectance is 0.15 with correction and 0.09 
without correction. It means that the variation of the reflectance 
due to the depth is now reduced with the correction and this 
reduction was noticed for all the types of sand: white sand 
(0.23/0.11) and muddy sand (0.18/0.10). In Fig. 8(a), the sea 
surface reflectance above sand patches located at different depths 
can be visualized. Fig. 8(b) shows the corresponding retrieved 
bottom reflectances, e.g., sand now displays very similar spectra, 
whatever the depth is. The difference at 15-m depth is due to the 
increase of chlorophyll concentration and then of attenuation, the 
retrieved bottom reflectance is then here over-estimated. 

When comparing the different classification results, if no 
correction is applied in the original image (Fig. 3), two same 
sand patches located at different depths offer different spectral 
profiles and may, therefore, apparently represent different seabed 
types. In contrast, two differing bottom types located at different 
depths may apparently belong to the same class (gray sand at low 
depth and white sand at high depth). This explains the low overall 
accuracy (36.36%) obtained without attenuation correction and 
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Fig. 9. Maps obtained from two MERIS images acquired: (a) 08/01/2004 and (b) 07/12/2008 (black areas represent clouds in the 2004 image). 
 

with the ED distance. White sand and muddy sand are classified, 
respectively, with an accuracy of 66.74% and 64.95%, whereas 
gray sand is almost entirely incorrectly classified (6.75% classi- 
fied as white sand and 93.17% classified as muddy sand). 

If the water column correction is applied with the same ED 
distance, the overall accuracy increases but is not as high as 
expected (only 40.13%). Only the white sand is better classified 
(accuracy of 74.77%) but gray sand is still misclassified (10.0% 
classified as white sand and 87.56% classified as muddy sand). 
This can be explained by the nonperfect attenuation correction 
with the assumption made on the attenuation homogeneity. The 
water is often clearer close to the reef than near the coasts due to 
river inputs that bring suspended matter. With the SAM distance, 
the overall accuracy is largely increased (79.19%) because this 
distance measures the difference among spectral shapes rather 
than absolute values and then improves the results of classifica- 
tion. White, gray, and muddy sands are better classified (83.64, 
66.56, and 97.34%), and the omission (18.04, 33.44, and 2.66%) 
are also strongly reduced. 

We can now wonder if the SAM would be sufficient without 
attenuation correction. But the overall accuracy is only at 47.62% 
in that case. Gray sand is still classified as muddy sand (76.06%) 
and white sand as muddy sand (43.90%). The SAM distance 
alone cannot cancel the difference of reflectance due to water 
column attenuation. It only cancels a constant coefficient between 
two spectra. The correction of water column attenuation is then 
necessary, associated with the SAM distance. 

If the best classification is now analyzed [Fig. 7(d)], the muddy 
sand is located close to the coast (due again to river input), the 
white sand is found around the small islands in the lagoon and in 
the large beds near the coral barrier reef and the gray sand is 
located between these two zones. This classification is in accor- 
dance with Chardy et al. [7], Chevillon et al. [8], and Ouillon 
et al. [9] determinations. 

The over/under estimation of the bathymetry can affect atten- 
uation correction; however, the choice of the SAM distance can 
minimize the impact of this error because it compares the spectra 
in terms of shape and not in absolute values. For the pixels whose 
depth and bottom type are known, we noticed that when the 
relative depth error is below 31%, 100% of the pixels are well 
classified with the SAM distance. For the ED distance, misclas- 
sification begins when the relative depth error is higher than 16%. 

The error tolerance is then higher for the SAM distance than for 
the ED distance. 

In order to show the consistency and usefulness of the method 
for change detection, we applied the method to another MERIS 
image acquired almost 5 years before the previous analyzed 
image, in the same summer season. Fig. 9 allows to compare the 
two maps. 

Both images were acquired with different observation angles 
but since the bathymetry and attenuation were calculated inde- 
pendently for each image, the effect of the skewed view was 
minimized. This is shown by comparing our two images acquired 
with different observation angles, providing similar classification. 

Between January 2004 and December 2008, muddy sand 
surfaces increased (from 22.1% of the total surface in 2004 to 
23.1% in 2008), the gray sand surfaces increased (from 51.2% in 
2004 to 57.5% in 2008), and the white sand surfaces decreased 
(from 26.6% in 2004 to 19.3%). This statistics were calculated on 
pixels that are cloud-free on both dates. These changes can be due 
to the 2008 La Nina event, which caused rain levels over New 
Caledonia unreached since 1951 due to the intrusion of the cold 
equatorial tongue to the west inducing extensions of the warm 
pool (and rains) to the latitudes of New Caledonia and so, excess 
precipitations. Indeed, from March to May 2008, high turbidity 
impacts on lagoonal waters were observed on the coast during the 
ValHyBio cruise in March–April 2008 [44] and modeled by 
considering river inputs and coastal run offs [45], which could 
have led to the expansion of the coastal muddy areas. 
 

 
V. CONCLUSION 

 

In this article, we detailed a fast method based on the correc- 
tion of water attenuation effect to map the seabed without a priori 
knowledge of the seabed reflectance. We used this method to 
map the seabed of the New Caledonian lagoon with MERIS 
images acquired during periods of oligotrophic waters typically 
encountered during summer months. We pointed out the impor- 
tance of the choice of the SAM distance to map the seabed with 
accuracy. We also compared two maps obtained with two 
MERIS images acquired with an interval of 5 years. The two 
maps are similar with a low increase of muddy sand over the gray 
sand surfaces. Only three bottom types were classified in the 
image (white sand, gray sand, and muddy sand) because of the 
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coarse resolution of MERIS sensor (300 m), which does not 
allow to map bottom types of typically smaller extensions such as 
corals, seagrass, and algae, but this resolution is balanced by the 
high swath that allows to map the whole seabed of the New 
Caledonia lagoon with only one MERIS image. An unmixing 
method (decomposition of mixed pixels) could probably improve 
the number of bottom types but the resolution of the map would 
not be improved; it could just provide the proportion of each 
bottom types within each pixel. 
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