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Abstract: The NOAA-AVHRR Normalised Difference Vegetation Index (NDVI) 

dataset is used to investigate the predictability of the vegetation cycle in an area 

centred on the Gourma region in Sahelian Mali at scales varying from 8 km
2
 to 1024 

km
2
 over a period spanning from 1982 to 2004. The predictability of the vegetation 

cycle is analysed with a model based on a reconstruction approach that fully relies on 

the dataset. Two parameters deduced from the growth of the forecast error are 

considered: the horizon of effective predictability, HE, which is the horizon at which a 

satisfying prediction can be effectively forecasted at a given level of error, and the 

level of noise. 

Predictability is therefore analysed with regard to the horizon of prediction and the 

spatial scale; the influence of the model’s dimensions is also discussed. The analysis 

clearly indicates that the signal predictability increases, and the level of noise 

decreases with an expanding area. However, even though the signal is more regular, 

its complexity increases within the narrowing entangled trajectory, setting the level of 

error of any prediction at a minimum of 15%, which matches the level of noise 

characteristic of the AVHRR-NDVI data series. 

The forecasting error quickly increases with the horizon of prediction, setting the 

optimum horizon of predictability in the range of 2 to 4 decades, with high intra-

annual variability. At the short horizon of 1 decade, a resolution of 16 km
2
 is 

reasonable to achieve an accuracy of approximately 20%. At the longer horizon of 3 

decades, only low resolutions (256 km
2
 or lower) give an accuracy equal to or better 

than 35%. 
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1 Introduction 

 

The annual cycle of Sahelian vegetation is split in two seasons: the rainy season, 

which is controlled by the African monsoon regime, with the earliest rains beginning 

in June and lasting until the end of September, and the dry season, consisting of the 

remaining 8 months. The economy and, therefore, the society of this region rely 

strongly on cropping and pastoral activities, which in turn, depend greatly on the 

rainfall regime driving primary production. This dependence gives practical 

importance to the predictability of the vegetation cycle. 

This analysis focuses on the Gourma region (in Mali), located south of the large 

loop in the course of the Niger River between Timbuctu and Labezanga at the border 

between Mali and Niger, downstream of Gao. Although the climate in the region is 

characterised by a strictly monomodal pattern of rainfall events, the rainfall 

distribution within the rainy season is irregular, and its spatial distribution is patchy 

(Lebel & Amani, 1999; Frappart et al., 2009). As a consequence, primary production 

is strongly variable in time and space, at least between years and locally, 

progressively smoothing as the area considered expands. 

The Normalised Difference Vegetation Index (NDVI) is an efficient parameter 

for monitoring the spatial patterns of vegetation and their cycle timing from space 

(Tucker, 1979). The NDVI takes advantage of the differential reflectance of green 

vegetation between the infrared and near-infrared bands. The NDVI provides 

information about the green leaf area index (LAI) and the fraction of 

photosynthetically Active Radiation (FAPAR) absorbed by vegetation (e.g., Myneni 

& Williams, 1994), which are used as main inputs in primary production models (e.g., 

Running & Coughlan, 1988). Thus, NDVI data are used to estimate primary 

production (or yields) in space and over time through empirical regressions (e.g., 

Maselli et al., 1992; Balaghi et al., 2007). Alternatively, these data are introduced into 

predictive models of vegetation growth to better constrain these models using 

assimilation and/or inversion approaches (Jarlan et al., 2008; Mangiarotti et al., 2008). 

The predictability of natural systems depends first on the dynamics of the 

system itself: an unstable system will naturally present a lower predictability than a 

stable one. Dynamical instability can be characterised by the first positive Lyapunov 

exponents (Wolf et al., 1985) that provide information about the rate of separation of 

infinitesimally closed trajectories. Dynamical instability is a typical characteristic of 

chaotic systems, which although deterministic, are characterised by low predictability. 

Of course, the ability of a model to simulate or to forecast behaviour will rely on the 

stability of the system: the more unstable the dynamics, the more difficult the 

forecasting. Stability is therefore an important indicator of the dynamic properties of a 

system and should be given particular attention with respect to forecasting. The 

predictability of the Sahelian vegetation cycle was considered in a previous study 

(Mangiarotti et al., 2010) using the theory of nonlinear dynamics as a background. 

This former study was purely statistical and did not require any forecasting: 

predictability was assessed through statistical analysis of time series providing 

estimates of geometric invariants from the correlation integral (Grassberger & 

Procaccia, 1983; Diks, 1999). The Gaussian kernel algorithm developed by C. Diks 

and his colleagues (Yu et al., 2000) was used for this purpose. Three variables were 

estimated and analysed: the correlation dimension, Dc, which is an indicator of 
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dynamical complexity (this parameter will not be considered in the present paper); the 

correlation entropy, K, which is an indicator of dynamical stability (to make this 

parameter more directly understandable, this entropy was converted to a horizon of 

predictability, HP, defined as the time for error to double); and an estimate of 

Gaussian noise, σ, was also provided by the algorithm. This previous analysis 

provided us with estimates whose order of magnitude should be confirmed and 

refined. 

Although the analysis presented in this paper is also based on the theory of 

dynamical systems, the approach used to investigate the predictability of the 

vegetation cycle is quite different. Indeed, the NDVI signal is taken here as a proxy of 

the system’s dynamics and used as a forecasting model; for this reason, the 

corresponding models will be referred to as proxy models hereafter. Forecasts are, 

thus, obtained from these models, and predictability is assessed from the growth of the 

forecast error. Because proxy models are directly derived from observational time 

series, the results are only slightly model dependent. 

Two main parameters will be estimated in this analysis: the horizon of effective 

predictability, HE, which is estimated from effective forecasts; and the level of noise. 

These parameters will be compared with the results obtained in the previous study for 

the horizon of predictability, HP, and the level of Gaussian noise, σ, respectively. 

The main aims of this work are to introduce a prediction approach based on a 

proxy model built directly on an NDVI series and to demonstrate its forecasting 

ability and its usefulness for studying the predictability of vegetation cycles in semi-

arid regions. Because spatial non-stationarity is expected to arise from dynamics when 

addressing varying scales, the balance between prediction accuracy and spatial scales 

is considered carefully. As this work represents a first step, it will not consider the 

entire West Africa region but will instead focus on a smaller region centred on 

Gourma. 

After a brief description of the data and data pre-processing are presented in 

section 2, the theoretical background of the forecasting approach is described in 

section 3, as is a description of the methodology used to estimate the horizon of 

effective predictability, HE, and the level of noise. The results are presented and 

discussed in section 4, and finally, conclusions are drawn in section 5. 

 

2 Data 

 

The NDVI product used in this study c was produced by the Global Inventory 

Modelling and Mapping Study (GIMMS) of the Global Land Cover Facility (GLCF, 

www.landcover.org) (Tucker et al., 2004; 2005; Pinzon et al. 2005). These NDVI data 

have been calculated using radiometric data from the AVHRR (Advanced Very High 

Resolution Radiometer) sensor onboard NOAA (National Oceanic Atmospheric 

Administration) satellites 7, 9, 11, 14, 16 and 17. The data used cover the period 

spanning from 1982 to 2004 at a spatial resolution of 8×8 km
2
 resulting from 

subsampling of initial 1.2 km² pixel data (Justice et al., 1989; James & Kalluri, 1994). 

The data are 10-day composites selecting the maximum NDVI value for each pixel 

over ten days to reduce atmospheric interference and observe angle effects on the 

signal (Holben, 1986). Corrections applied to the dataset account for sensor 

degradation over time as well as the geometric effects of the view and atmospheric 

aerosols resulting from eruptions of El Chichon and Mt Pinatubo. To fill the gaps 

encountered in the time series (less than 4% in the region of study), data pre-

http://www.landcover.org/
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processing is applied, including temporal interpolation when 1 or 2 successive data 

points are missing in the series and spatial interpolation in other cases (see 

Mangiarotti et al., 2010 for details). Note that such treatments are no longer required 

with the last version of the GIMMS product. However, to achieve a rigorous 

comparison of the results of this study with those of the previous study, the same time 

series had to be used. 

The effective predictability of the signal is considered at scales ranging from 

8×8 km
2
 pixels (aggregation index, IA = 1) to 1024×1024 km

2
 pixels (aggregation 

index, IA = 8). Series representing scales larger than the original resolution are 

constructed via simple spatial aggregation of the original time series. To reduce the 

number of basic assumptions and to maintain coherency with the former study, no 

direction is privileged, and no land surface classification has been considered in the 

aggregation process. The number of aggregated series and the corresponding 

resolution are given in Table 1. 

This study is centred on the Agoufou site of the AMMA program (15.3°N, 

1.5°W, see Mougin et al., 2009) located in the centre of the Gourma region (Figure 1). 

The surface characterised by the NDVI time series varies greatly when the signal is 

spatially aggregated. A qualitative description of the aggregated surfaces is given in 

Figure 2 with regard to the scale. At IA = 1, the vegetation is mostly characterised by 

open grassland and shrubby steppes. As the aggregation scale increases, the area 

considered expands in both longitude and latitude, including an increasing diversity of 

landscapes. As a consequence, the percentage of grassland regularly decreases as the 

aggregation scale increases, reaching ~15% at IA = 8, whereas the contribution of 

shrubby steppes, together with that of woody and shrubby savannahs from the 

Sudanian and Guinean zones, increases up to ~15%. The percentage of bare soils 

linked to rock outcrops and to the bare sands of Saharan landscapes becomes 

significant beginning at IA = 3. Other contributions become clearly significant (> 5%) 

starting at IA = 7, especially open and park croplands (annual crops), further 

associated with perennial crops at IA = 8. 

 

3 Theoretical background and methodology 

 

The predictability of the vegetation cycle is investigated using the theory of 

nonlinear dynamical systems (Bergé et al., 2004) for support. This theory associates a 

geometric trajectory with the successive states experienced by a system. Practically, 

each state is characterised by a vector of values corresponding to the variables of the 

system. This trajectory can be reconstructed easily when all of the variables of the 

system are assessed. Most often, only a few variables are measured or usable, 

impeding the completion of the task. However, using the theorem of Floris Takens 

(Takens, 1981), under ergodic assumptions, information regarding the whole system’s 

dynamics can be retrieved from a single time series. In this application, the trajectory 

is reconstructed from the NDVI series and used as a proxy for the original dynamics. 

A forecasting algorithm is built from this reconstructed trajectory, with the behaviour 

of one current state being estimated by considering the neighbouring trajectories 

experienced by the system (see Farmer & Sidorowich, 1987 for a development based 

on similar background; see Miksŏvský & Raidl 2006 for an application to climatic time 

series). 
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3.1 Reconstruction approach 

 

Among the methods for reconstructing a trajectory in multi-dimensional space 

from a single time series, the delayed variable method consists of representing the 

NDVI time series  tx  as a function as itself with time delays: 

 

   1...,, 
edjjjj xxxy         (1) 

 

where j is the j
th

 decade since January 1982; τ is the delay; and de is the embedding 

dimension. An illustration of a 3-dimensional reconstruction is presented in Figure 3. 

Reconstructed trajectories of NDVI time series corresponding to spatial scales IA = 1, 

IA = 5 and IA = 8 are presented in Figure 4 at dimensions of dr = 2 and dr = 3. 

For this purpose, it is necessary to determine appropriate values of the time 

delay, τ, and the embedding dimension, de. The appropriate time delay is estimated 

from the first minimum of the average mutual information function (Fraser & 

Swinney, 1986), which is a generalisation of the correlation dimension. The resulting 

delay corresponds to the average time for information to be lost. The embedding 

dimension is the number of dimensions required for appropriate reconstruction of the 

trajectory. The embedding dimension is classically estimated using the Global False 

Neighbours method (Kennel & Abarbanel, 2002). In practice, this method consists of 

checking that two trajectories cannot cross each other in space. The lowest dimension 

value for which no crossing is observed is the embedding dimension de. When applied 

to the present case, this method provides a dimension range of 3 to 4. However, this 

approach has limitations (see Letellier et al., 2008), and as an important aim of this 

study was to assess the optimal predictability of the vegetation cycle, it was decided 

not to fix the embedding dimension but to retain and explore a large range of 

reconstruction dimensions from dr = 2 to dr = 8 to obtain the optimal forecasting 

dimension. 

 

3.2 Simpler approaches 

 

For the sake of comparison, two alternative approaches, a seasonal model and a 

plain climatology model, were developed. The seasonal model is a 2-dimensional 

model in which one dimension is the seasonal time. One state of the system is 

therefore defined as follows: 

 

 jjj xdoyy ,          (2) 

 

where j is the j
th

 decade since January 1982; doyj is the corresponding decade (each 

month is split in three decades) of the year; and xj is the corresponding NDVI value. 

An illustration of the corresponding trajectory is provided in the top panels of Figure 

4 for IA = 1, IA = 5 and IA = 8. The trajectory crossings of this representation clearly 

indicate that this approach does not allow embedding of the NDVI signal. 

The climatology model is based on the intra-annual average of the full series as 

follows: for each decade of the year, an averaged value of the NDVI is computed 

from the NDVI values for the same decade of all other years available. The state of 

this model is also 2-dimensional but is characterised by a single cycle. Its trajectory is 

defined as follows: 
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 climato, jjj xdoyy           (3) 

 

where j is the j
th

 decade since January 1982; doyj is the corresponding decade of the 

year; and climato

jx  is the averaged value. Because of its static definition, this last model 

does not allow for any inter-annual variations in the prediction. The corresponding 

trajectory is given by the individual dark lines in the top panels of Figure 4. 

 

3.3 Forecasting 

 

The trajectory reconstructed in the phase space is a geometric representation of 

the vegetation dynamics constructed from the successive dynamical states 

experienced by the system. This trajectory is used as a surrogate of the dynamical 

equations underlying the system. The general principle of the forecasting algorithm is 

as follows: starting from a current state of the system corresponding to one point in 

the reconstructed space, the neighbouring states already experienced by the system are 

identified in the vicinity of this state; the evolution of these neighbouring states is 

monitored over time (by simply following the trajectories) and used to forecast the 

future states of the system. An illustration of the method is presented in Figure 5 and 

is based on a local representation of the geometric trajectory reconstructed in a 3-

dimensional space. Corresponding states of the NDVI values are also shown in Figure 

6 in a temporal representation. More precisely, forecasts are achieved through the 

following steps. (1) The neighbouring states of the currently experienced state are 

searched within a circle whose radius, rn, has a moderate length. This circle is 

represented in black in Figure 5. (2) The geometric distances of these neighbouring 

states from the current state are calculated. (3) Only the Nn closest states are retained 

(if the number of closest neighbours is less than 40, the search radius is increased, and 

steps (2) and (3) are repeated accordingly). In Figure 5, these closest states are 

represented as small (blue) squares inside the black circle. (4) A weight is attributed to 

each of these Nn closest states as a function of its distance to the current state (an L
1
 

norm is used for this purpose). (5) The evolution of these small squares over time is 

investigated at a chosen horizon of prediction, h, which is the term for which a 

forecast is targeted. The resulting states are obtained after h decades along the 

trajectory (the direction of the trajectory is illustrated with an arrow). In Figure 5, the 

resulting states are plotted after 11 decades as small dark (blue) circles. A weighted 

average of the resulting states provides the forecast of the new state, which is 

represented in Figure 5 as a thick black circle. The 10 preceding black dots represent 

the forecast obtained in a similar manner for h = 1 to 10 decades. This forecasted 

trajectory can be compared a posteriori to the real (temporarily unknown) trajectory, 

which is represented in the figure as a (red) dotted line (corresponding to h = 1 to 10 

decades) ended with a (red) cross (corresponding to h = 11 decades). 

The forecasting approach used based on the seasonal model is similar. (1) The 

distances of the state currently experienced by the system from the states experienced 

in other years (in the same decade of the year) are estimated. (2) A relative weight is 

deduced from these distances. (3) The evolution of these neighbouring states is 

considered at the horizon h, basically following their trajectory. (4) The forecast is 

obtained from a simple weighted average of the resulting states. 
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Finally, the predictions of the climatology model do not depend on the current 

state of the system but only on the decade of the year for which the forecast is run. 

The forecast is therefore directly provided by the static value of the climatology in a 

given decade, doyj. 

 

3.4 Effective predictability 

 

Predictability is estimated through a series of forecasting experiments upon 

which a statistical analysis is compiled. One experiment is constructed as follows: any 

time series is divided into 2 subsets (see Figure 6). The first subset (the part of the 

NDVI curve that has been removed) covers the time interval over which the NDVI 

will be forecasted. These data are removed from the time series and set aside to assess 

the forecasting skill. The forecasting skill is estimated over a horizon ranging from 1 

decade to 1 year. To avoid boundary effects, the length of the forecasting window is 

fixed at two years. The second subset (light green line) is used as the informative part 

of the forecasting model. To obtain sufficiently long data archives of a constant length 

to achieve a robust estimate of the statistical error, data posterior to the prediction 

zone are also included in this subset. 

Statistics for the predictive skill are based on the forecasting error,  he j , which 

is the forecasting error at time j+h when forecasting from time j for the horizon h. The 

forecasting error is defined as follows: 

 

    hjjj xhxhe  ˆ          (4) 

 

where hjx   represents the data at time j+h, and  hx j
ˆ  is the forecast from time j at 

horizon h, corresponding to time j+h. 

The % of error  hp  is defined as follows: 

 

 
 

100
x

e h
hp




         (5) 

 

where x  is the standard deviation of the original time series xj, and  he  is defined 

as 

 

    
N

j

je he
N

h
21

         (6) 

 

Note that in practice, the systematic error    
N

j

j he
N

he
1

 is very low 

(   310he ). 
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4 Results and discussion 

 

4.1 Inter-annual variability and scale dependence of the 
forecasting error 

 

Both the forecasting error  he j  and its absolute value  he j  are presented in 

Figure 7 together with the corresponding time series  tx  with an original resolution 

of IA = 1. In these patterns, j is the date from which the forecast is estimated. The 

diagonal orientation of the pattern is the most salient feature and represents the error 

associated with temporally approaching events. This diagonal pattern exhibits strong 

intra-annual heterogeneity with a low predictability (larger error) during rainy seasons 

and a high predictability (lower errors due to less vegetation) in the dry season (see 

Figure 7, bottom panel). Large errors may also occur during dry seasons (e.g., at the 

end of 2003). Large inter-annual variability is also observed with maximum 

magnitudes of errors generally corresponding to the peak of the rainy season (Figure 7 

middle panel). Positive errors correspond to low rainfall years while negative errors 

correspond to high rainfall years. These results highlight the limits of the method with 

respect to estimating extreme events (maximum or minimum) when based on a 

representation of the dynamics restricted by the length of the time series (23 years of 

data available). 

Another important feature of the pattern is the low error values at short horizons. 

However, the error level quickly increases with the magnitude of the horizon. Indeed, 

at a horizon of 1 decade, the error does not exceed ±0.05 in magnitude, while at 3 

decades, it remains in the range of ±0.15, and at 4 decades, it surpasses ±0.25 in 

magnitude. 

Although less salient, some vertical patterns also appear in the error diagram 

(e.g., at the end of 1985). Vertical patterns are associated with a poorly experienced 

current state from which the prediction is achieved. These effects can be observed at 

any horizon but are generally characterised by a limited range of action of ±5 decades. 

These patterns can be interpreted to result from temporary meteorological conditions 

(sudden growth of vegetation associated with large rainfall events or, in contrast, 

sudden drying up of vegetation due to long dry spells during the rainy season). These 

conditions act as a stochastic perturbation and diminish (generally temporarily) the 

predictability of the dynamics. Vertical patterns may also be due to artefacts 

associated with meteorological conditions (e.g., aerosols, dust) that affect the NDVI 

observed from satellites. Although they are less probable at these latitudes, 

perturbations caused by clouds cannot be excluded. 

The forecasting error  he hj  is plotted in Figure 8 for IA = 1, IA = 5 and IA = 8. 

In this representation, the time corresponds to the target date of the prediction j+h 

(instead of the date of the initial condition j). As a consequence, the diagonal 

(approaching events) patterns encountered in Figure 7 become vertical in Figure 8, 

whereas the vertical (current events) patterns become diagonal. At IA = 1 and IA = 5, 

the error patterns are dominated by the peak annual error corresponding to the rainy 

season and vegetation growth. The annual variation pattern of NDVI predictability is 

low during vegetation growth, which depends strongly on rain (date of germination, 

peak yield), and high during vegetation senescence, which depends only marginally 

on rainfall. Between 1985 and 1988, the error patterns associated with current events 

(i.e., the diagonal patterns in Figure 8) are more salient and exhibit a higher level of 
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error overall, which may arise from the lower quality of the sensor used in earlier 

NOAA missions. Note that the range of the error progressively decreases with scale 

from ±0.25 at IA = 1 to ±0.1 at IA = 8. 

Although the error level is lower at IA = 8 (see Figure 8, bottom panel), the 

trajectory appears to be more complex (its predictability varies greatly over time). 

Indeed, the annual error patterns are less salient. Intuitively, such complexity of the 

scene may have led to a greater complexity of the dynamics and therefore to lower 

predictability (Justice et al., 1989; Lambin, 1996). This is not what is observed. In 

practice, the aggregation of the scene tends to concentrate the signal in a more 

delimited zone, appearing to be visually simpler (compare the top panels in Figure 4) 

and becoming more predictable. However, the complexity of the dynamics has not 

actually disappeared but has just been condensed in a delimited zone. The complex 

pattern shown in Figure 8 reflects the intricate mix of trajectories in a narrower 

channel that ensues from the large number of aggregated series. At this scale, a wide 

range of vegetation landscapes are contributing to the signal, including both annual 

and perennial plants, such as those found in croplands, woody and shrubby savannahs, 

steppes and forests in the south and open grasslands and bare sands in the north (see 

Figure 2). Practically, one consequence of this complexity is the necessity of 

reconstructing the signal into a higher dimensional space to obtain more precise 

forecasts. 

The error level also varies with the forecasting horizon. The % error  hp  

values obtained with the applied models (the climatology model, the seasonal model 

and the proxy models for dr = 2 through 8) are presented in Figure 9 for IA = 1, IA = 5 

and IA = 8. As expected, the errors obtained with the climatology model are 

independent of the horizon of prediction h (straight line), highlighting the low 

forecasting skill of this model. The other approaches exhibit a clear dependence with 

regard to the target horizon, showing low errors at short horizons and a rapid increase 

in error as the horizon expands, followed by stabilisation affected by some minor 

oscillations. 

The seasonal model exhibits poor scores, with a reasonable error being obtained 

only at horizons of less than 3 to 4 decades. The errors associated with the proxy 

models exhibit a more complex dependence. At a low horizon (h = 1 decade), the best 

results are obtained with dr = 2 through dr = 4. This behaviour reflects the greater 

robustness of low-dimensional models due to their better ability to filter 

contamination caused by noise (although the resulting dynamics will consequently be 

simplified). At longer horizons, higher dimensional models clearly become more 

efficient, showing compensation for the sensitivity to noise through the use of a larger 

window of memory, leading to a better representation of the dynamics. The 

convergence of the error with regard to the reconstruction dimension thus provides 

some information about the dynamical dimension of the underlying dynamics (see 

section 4.2). 

When passing from IA = 1 to IA = 5 (Figure 9), the behaviour of the error  hp  is 

mostly a matter of magnitude. At IA = 5, errors become lower than at IA = 1 for both 

the seasonal model and proxy models. At intermediate horizons (h = 4 to h = 8), the 

best improvements are seen for the models with higher dimensions (dr = 5 to dr = 8), 

revealing that deterministic and nontrivial dynamics are accessible at longer time 

scales. This intermediate scale appears to be optimal for achieving a reasonable 

forecast of a nontrivial behaviour. This scale is in agreement with the ‘optimal’ non-

trivial prediction scale (IA = 5) found in the previous study (Mangiarotti et al., 2010). 

The lower contamination by stochastic and local perturbations may also contribute to 
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explaining the higher deterministic portion of the signal. At IA = 8, the level of relative 

error is much lower, regardless of the modelling approach applied. Predictability is 

therefore much higher, but the dynamics are more trivial and thus, less interesting (a 

simple linear forecasting approach would be sufficient but would provide a forecast 

with a poor resolution). 

 

4.2 Model dimension and forecast accuracy 

Convergence to optimal models is appreciated through the convergence of the 

error level. This latter type of convergence is achieved at a lower dimension when 

expanding the area studied (see Figure 10 top panel). However, depending on the 

targeted horizon of prediction, the convergence of the system dimension clearly 

differs. The dimension for which the convergence of the error is obtained is shown in 

Figure 10 (top panel) for h = 1, h = 10 and h = 15 decades. The closer the horizon of 

prediction, the fewer reconstruction dimension are required. This result contributes to 

explaining the greater robustness of the low-dimensional approach at short time 

scales. Another salient feature of this result is the decrease in the reconstruction 

dimension required with an increasing area of application. Indeed, at h = 15 decades 

and more, the dimension requirement decreases from dr = 8 at IA = 1 to dr = 4 at IA = 

8, which shows that the complexity of the trajectory at a local scale is higher than the 

complexity arising from the data aggregation process. This result also suggests that 

despite the heterogeneous composition of scenes, the regional scale is dominated by 

the global behaviour of mixed vegetation dynamics controlled by regional gradients in 

rainfall, which are locally patchy but result from a coherent monsoon regime. More 

sophisticated methods of data aggregation may be interesting to test in further 

analyses to account for directional effects resulting from the climatic gradients. 

Alternative strategies of aggregation by eco-zone, land cover type or rainfall isohyets 

may also lead to a better or at least complementary description of the dynamics of 

scenes. Indeed, the changes in the vegetation phenology analysed from AVHRR data 

over the 1982-2005 series by Heumann et al. (2007) presented a zonal pattern with an 

increased amplitude of the NDVI signal in northern Sahel while the duration of the 

green signal expands in southern Sahel. A zonal distribution was also observed when 

attempting to disentangle the effects of climate and population in the AVHRR-NDVI 

trend over time in West Africa (Herrmann et al., 2005; Seaquist et al., 2009; Fensholt 

& Rasmussen, 2011). 

Another way of analysing the forecasting error is to plot the lowest error minp  

obtained among the model forecasts as a function of the aggregation scale for 

horizons of prediction ranging from h = 1 to h = 15 decades (Figure 10 bottom panel). 

A deeper horizon of prediction leads to a larger error. However, the error clearly 

reaches saturation at the horizons of 5 to 6 decades, which means that, statistically, 

averaged forecasts only improve marginally at farther horizons. At shorter horizons (h 

≤ 4 decades), the error in the forecast strongly depends on the aggregation scale. 

Moreover, the horizon of predictability also varies with the expected accuracy. For 

example, at a maximum acceptable error of 20%, (statistically) satisfying forecasts at 

the horizon of 1 decade are obtained for most aggregation scales (slightly less than 1 

decade at IA = 1, slightly more at IA = 8). Fixing the maximum accepted error at 30% 

instead extends the horizon at 2 decades for aggregation scales ranging from IA = 2 to 

IA = 7 (slightly less than 2 at IA = 1 and much more (4 decades) at IA = 8). 

One of the objectives pursued in the first part of the previous study (Mangiarotti 

et al., 2010) was to determine the aggregation scale that would optimise the 
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predictability of a non-trivial behaviour. The optimal aggregation scale found for the 

site of Agoufou was IA=3, corresponding to an area of 32 km
2
. The results of the 

present analysis clearly indicate that the aggregation scale is not the only factor that 

should be considered when searching for an optimal forecast of the vegetation cycle; 

the horizon of prediction is another factor to consider. Indeed, at low horizons, the 

results are quite similar whatever scale is considered, and full resolution (IA = 1) or the 

first level of aggregation (IA = 2) may be preferred. At larger horizons such as h = 5 

decades, the errors observed at scales IA = 1 to IA = 6 are larger than 40%, and thus, 

higher aggregation scales should be chosen to keep the level of errors below the 

threshold. 

 

4.3 Horizon of effective predictability 

 

The horizon of predictability HP aims to assess the term for which a forecast can 

reasonably be targeted. Mangiarotti et al. (2010) defined this parameter as the horizon 

at which the perturbation doubles. In this previous study, the horizon of predictability 

HP was derived from the correlation entropy K, which was computed from the 

correlation integral with a Gaussian kernel developed by C. Diks and his colleagues 

(Diks, 1999; Yu et al., 2000). The horizon of predictability was statistically deduced 

from the structure of the trajectories in the phase space. In contrast in the present 

study, the horizon of predictability is not based on a direct analysis of the trajectories 

but on forecasts. Here, the predictability is assessed from the growth of the error of 

the effective forecasts provided by the proxy models. The horizon of predictability is 

therefore referred to as the horizon of effective predictability, denoted HE, and defined 

as the horizon for which the forecasting error doubles, assuming an exponential error 

growth. In practice, this parameter is computed from the ratio of the increasing error 

between decades 1 and 2 (as the level of noise corresponding to h = 0 is unknown) as 

follows: 

 

 
    12log

2log

pp
H E           (7) 

 

The resulting values of HE obtained at IA = 1 through 8 are shown in Figure 11 

(top panel) together with the values obtained for HP via the correlation integral 

method (Mangiarotti et al., 2010). The averaged values of HP and HE obtained for dr = 

3 through 5 are also given in Table 1. The horizons of effective predictability HE are 

deeper than HP when HE ≥ 2 decades, while HP < 1 decade at most of the aggregation 

scales. At high aggregation scales, especially at the scale IA = 8, the horizons of 

predictability expand, regardless of the approach applied, and the differences between 

HE and HP tend to decrease (HE ranges from 2 to 3 and HP from 2 to 4 decades). This 

expansion indicates the regularity of the overall behaviour of the vegetation cycle at 

the scale of a large region. 

The residual error  0p  is also estimated by assuming exponential growth for 

the error and by extrapolating this growth in a backward direction. The percentage of 

error at h = 0 decades is estimated as follows: 

 

 
 
 2

1
0

2

p

p
p            (8) 
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When considering the optimal models at each scale (i.e., the proxy models 

exhibiting the lowest prediction error 1hpmin
 at h = 1), a clear scale dependence of the 

error appears, with errors ranging from 14.5% at IA = 1 to 10.4% at IA = 8 (see 0hpmin
 

in Table 1). This decrease in error is due to compensation for the Gaussian noise when 

aggregating the signal. This decrease was only marginally detectable when the error 

was assessed via a nonlinear invariant approach (Mangiarotti et al., 2010). This poor 

detectability could be arise from the uncertainty associated with the invariant 

approach under noisy conditions and from the difficulty of confirming the embedding 

dimension (additionally, estimates obtained with reconstruction dimensions of dr = 3 

through dr = 5 were averaged). To allow comparison with the error estimates σ 

obtained via the nonlinear method, the errors observed for dr = 3 through 5 were 

averaged in both methods. Averaging increases the corresponding average errors 1hp  

and 0hp  (Table 1) and tends to attenuate the decreasing pattern associated with an 

increasing aggregation scale (Figure 11 bottom panel). However, the average errors σ 

obtained with the invariant approach are much higher than 1hp  and 0hp , suggesting 

that the invariant approach tends to overestimate the error. 

As noted in the introduction, one of the critical issues in the Sahelian region is 

the forecasting of seasonal primary production. The absolute values of the forecasting 

error are plotted separately for aggregation scales IA = 1, IA = 5 and IA = 8 and for both 

approaching events  he j  and current events  he hj  (Figure 12). These graphs also 

show the local horizon (white curve) of effective predictability  dOYH l

E , which was 

deduced from the seasonal error as follows: 

 

 
 

    12

2

dOYdOY

l

E
pp

dOYH
log

log
        (9) 

 

The representation utilising the forecast date j+h as the abscise (Figure 12, top 

panels) clearly highlights two seasons: one with a short horizon of predictability ( l

EH  

ranges from 2 to 6 decades), stretching from the earliest rain event of the rainy season 

until the end of the growing season of annual vegetation, and one with a shorter length 

and a farther horizon of predictability ( l

EH  >> 10 decades), corresponding to the dry 

season, during which annual plants are dead and form straw and litter. However, the 

horizons of predictability, l

EH , being defined by the doubling of the error (equation 9) 

are highly sensitive to the initial error (here,  1dOYp ). The particularly long horizon 

of predictability values reached at the end of the dry season is attributed to the low 

dispersion of the signal due to the absence of vegetation. As expected, this behaviour 

is less marked at the scale of a large region (IA = 8) because of the greater contribution 

of evergreen perennial vegetation in the south. The farther horizon of predictability 

associated with the end of the dry season does not considerably contribute to the 

forecasting of primary production, which requires a farther horizon during the rainy 

season. However, the decrease in the horizon of predictability at the onset of the rainy 

season is not abrupt, as intermediate low values are reached, followed by a much 

slower decrease (with possible fluctuations) before the wet season lower threshold is 

reached, and these intermediate values may be helpful in predicting germination and 

early growth. If predictability is defined by the maximum threshold error, rather than 
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by the growth of the error, quite different horizon magnitudes are obtained (see the 

dashed white lines plotted in Figure 12). This definition highlights the differences 

arising from variations in scales, with large increases of predictability being observed 

when the area studied is expanded. In particular, at an average NDVI error of greater 

than ±0.07, the horizon of predictability becomes very far for IA = 8 (even 

disappearing from the figure). In contrast, below this limit of precision, the horizon of 

predictability collapses. Indeed, at this level of precision, the trajectory becomes 

highly entangled because of the aggregation of a large scene of tremendous 

complexity. Scale non-stationarity therefore contributes to the origin of the increasing 

complexity of the patterns. Alternate aggregation strategies will likely lead to 

different but complementary results. An aggregation based on directional (latitudinal 

and longitudinal) averages or on rainfall isohyets would help to understand the 

gradient effects. Similarly, an aggregation based on eco-zones or land cover types 

would represent a better approach for addressing the various components of the scene. 

The representation utilising the current date j as the abscise (Figure 12 bottom 

panels) provides complementary information regarding the horizon of predictability 

arising from the approaching event at any point in the course of the year. Two seasons 

are also clearly identifiable in this representation: at the onset of the dry season, the 

trajectories are converging, and the horizon of predictability expands abruptly, then 

regresses as the next rainy season approaches, characterised by a building up of 

divergence in the trajectories. 
 

5 Conclusions 

 

The predictability of the vegetation cycle in the semi-arid region of Gourma in 

Mali is analysed using a forecasting approach based on a reconstruction method. The 

analysis of predictability is estimated from an analysis of the forecasting errors. The 

forecasting error is first analysed over time with regard to the horizon of prediction. 

The forecasting error reveals a strong annual variability in the error, which is closely 

linked to the alternating rainy/dry seasons, with higher errors corresponding to the 

rainy season. The analysis indicates a rapid increase in error with regard to the 

horizon of prediction and shows large interannual variability, revealing the weak 

ability of the approach to forecast extreme situations. Forecasting error due to the 

error associated with the current state of the system is also assessed but is found to be 

comparatively low. 

The degree of forecasting error clearly decreases as the aggregation scale 

increases, revealing the higher predictability of the behaviour of vegetation at the 

scale of large regions. However, the horizon of predictability also depends on the 

expected level of precision. On average, at a threshold level of error of 15%, no 

satisfactory forecasting based on a decadal NDVI dataset can be performed, even at 

the scale of very large regions [1024 km]
2
. 

The reconstruction approach is investigated for dimensions ranging from dr = 2 

to dr = 8 and is also compared with a seasonal model and to a plain climatology 

model. Models based on a reconstruction approach are systematically more efficient, 

regardless of the horizon of prediction targeted. However, the optimal dimension of 

such models varies with respect to the horizon of prediction. At a very short horizon 

(1 decade), low-dimensional models (especially dr = 3 and 4) are more robust, 

whereas at farther horizons (2 decades and more), ‘optimal’ predictions are only 

obtained with models of higher dimensions. From a functional point of view, this 
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contrast of behaviour reflects the more homogeneous response of vegetation to 

meteorological variations at short time scales, as captured by simple models, and 

more spatially differentiated responses at longer time scales, requiring more complex 

models. Spatially differentiated responses may result from the different phenological 

behaviours of plant species at small aggregation scales or from the heterogeneous 

landscape (e.g., regarding the topography, soil texture, redistribution of water at the 

soil surface, soil fertility, and land use) and patchy climate forcing that occur at larger 

scales. 

The convergence of the forecasting error at long horizons of prediction is used 

as a proxy to investigate the model dimensions required for optimal forecasts, 

suggesting a decrease from 8-dimensional dynamics at an aggregation scale of 8 km
2
 

to 4-dimensional dynamics at 1024 km
2
. These values are higher than the dimensions 

estimated with the global false neighbours approach (from 4 to 3). These results show 

that from a forecasting perspective, a fully empirical estimate of dimensions should be 

preferred. 

Finally, the horizon of predictability and level of noise is estimated and 

compared with the results obtained in a former study based on a statistical analysis. 

The horizons of predictability estimated in the present study are longer at all 

aggregation scales (especially at small and intermediate scales), and the levels of 

noise estimated are significantly lower. The results obtained with the present approach 

are more consistent and robust than in the previous study. 

The semi-arid Sahel region is not the only area where a better forecasting of the 

vegetation cycle can be expected from satellite data. Vegetation prediction can be 

considered to be an important task in most areas where cropping and pastoral 

activities take place. It would therefore be interesting to extend this analysis of 

effective predictability over the entire West Africa window. Moreover, as a 

forecasting tool, this approach may also prove to be an effective and robust method. 

Therefore, this approach should also be tested in other semi-arid regions of the world. 

Finally, among other developments related to potential applications to the real world, 

this approach could be coupled to biophysically based models, or these forecasts 

could be used as an input in simple statistical models used to estimate primary 

production or yields. 
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1
 

2
 

Table 1: scale dependence of the time series average x , standard deviation x , minimum error 1hpmin
 and its extrapolation 0hpmin

 

at h = 0, averaged error 1hp obtained from dr = 3 through 5 and its extrapolation 0hp  at h = 0. The reconstruction dimensions 

1h

rd , 10h

rd  and 15h

rd  for which convergence is reached are given for horizons of h = 1, h = 10 and h = 15 decades, respectively. 

The horizon of effective predictability 21

EH  is estimated from the increase in the error of prediction between 1 decade and 2 

decades. The other estimates come from Mangiarotti et al. (2010): GFN

ed  is the embedding dimension estimated using the Global 

False Neighbours method; Diks

cD  is the correlation dimension; HP is the horizon of predictability estimated from the correlation 

entropy K; and the % noise represents the percentage of additive Gaussian noise, in which Diks

cD , K and the % noise σ were 

simultaneously estimated using an algorithm from Diks et al. (1999). 

 



 18 

 
3
 

4
 

IA # of 

pixels 

Surface 

(km
2
) 

x  
x  1hpmin

 

(%) 

0hpmin
 

(%) 

1hp  

(%) 

0hp  

(%) 

1h

rd  
10h

rd  
15h

rd  
21

EH  

(dec.) 

GFN

ed  
Diks

cD  HP 
(dec.) 

Σ 
(%) 

1 1 8×8 0.21 0.080 22.9 14.5 24.4 17.0 3 4 8 2.0 4 1.59 0.5 26.0 

2 4 16×16 0.20 0.070 20.0 12.9 21.9 15.5 2-3 4 6 2.0 4 1.55 0.8 23.7 

3 16 32×32 0.19 0.067 19.6 12.6 21.6 15.3 2-3 4 6 2.0 4 1.67 0.7 21.7 

4 64 64×64 0.19 0.068 18.7 12.0 20.9 14.6 2-3 4 6 1.9 4 1.68 0.6 22.5 

5 256 128×128 0.19 0.064 18.8 11.5 21.3 15.0 2 4 5 2.0 4 1.73 0.6 22.6 

6 1024 256×256 0.20 0.063 19.5 12.3 21.3 15.0 2 4 5 2.1 4 1.68 0.7 23.4 

7 4096 512×512 0.21 0.062 17.8 11.5 20.5 15.0 2 4 5 2.3 4 1.59 1.0 23.0 

8 16384 1024×1024 0.23 0.060 15.9 10.4 18.1 14.5 2 3 4 3.3 3 1.33 2.4 24.5 
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Figure Captions 
 

Figure 1: Maps of the study area. The larger scale map (IA = 8, 1028×1028 km
2
, full 

left map) includes a climatic gradient ranging from the Soudanian region in the south 

to the arid region in the north with a large panel of land surface (see working Table 1 

for details). Decreasing areas corresponding to scales of IA = 7 to IA = 4 are also 

plotted. Note that the IA = 6 window is entirely included within Sahel and Gourma. 

Smaller areas corresponding to IA = 5 to IA = 2 are shown on the right map. The cross 

represents the Agoufou site of the AMMA program, on which all of the square areas 

are centred. 

 

Figure 2: Qualitative description of the aggregated surfaces with regard to the IA scale 

(see Figure 1). The distribution of the land cover is separated into natural vegetation, 

crops and bare soils. The classes of natural vegetation include (a) thickets + riverine 

forests + open woodlands (>> 50% woody plants); (b) woody savannahs + shrubby 

savannahs + shrubs steppes (>> 15% woody plants, north contribution); (c) open 

grassland (90% annual herbaceous plants, < 1% woody plants); and (d) wetland 

aquatic herbaceous, including perennial grasses + open water (<10% woody plants). 

Crops are separated into two classes: (e) cropland parks (>> 3% woody plants) and (f) 

open cropland (annual crops, < 3% woody plants). Bare soils (0% vegetation) are 

separated into two classes: (g) bare sands and (h) rock outcrops. Note the jump in 

composition that occurs between IA = 6 and IA = 7 when the area expands beyond 

Sahel. 

 

Figure 3: An example of the reconstruction approach using the delayed vector 

technique. The reconstructed trajectory plotted in the right figure is built from the 

time series shown in the left figure. The initial state of the time series is based on 

three values (dark, red) separated by a time delay, τ, and represented by a cross, a 

circle and a square. These values can be represented in a 3-dimensional space, one on 

each axis, designated  tx ,  tx  and  2tx , respectively. Following the  tx  

series of left panel step by step, a 3-dimensional trajectory is progressively 

reconstructed until the last state is reached (light green). 

 

Figure 4: seasonal NDVI time series (top panels) and its geometric reconstruction (at 

dr = 2, middle panels, and dr = 3, bottom panels) at a non-aggregated scale of IA = 1 

(left panels), an aggregated scale of IA = 5 (vertical middle panels) and an aggregated 

scale of IA = 8 (right panels). In the top panel, the thicker line represents the intra-

annually averaged signal (climatology model), whereas the thinner lines represent the 

individual years from 1982 to 2004 on which the seasonal model is based. 

 

Figure 5: The geometric trajectory of the NDVI time series (see Figure 6) 

reconstructed in a 3-dimensional space using the time delayed method. The black 

arrow shows the direction of the flow (increasing time). The last states experienced by 

the system are represented by the (red) thick line; the large (red) square is the ultimate 

state from which the forecasting will be launched and is referred to as the current 

state. The dotted (red) line continuing the trajectory represents measures that have 

been removed from the trajectory and retained to analyse the forecasting skill. The 

states experienced by the system in the close vicinity of the ultimate state are 

identified by small squares (blue). The resulting states at the horizon h are represented 

by small circles (blue circles). The observed value at horizon h is indicated by the 
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thick (red) cross. The forecasting trajectory is delineated by the large (black) dots. 

Current points corresponding to these various states are also represented in the 

temporal representation (Figure 6); the same symbols are used. 

 

Figure 6: The green line represents the informative signal. The last states experienced 

by the signal are shown by the thick solid (red) line, until the ultimate state from 

which the forecasting is launched is reached. The small (blue) circles represent the Np 

states closest to the ultimate state experienced by the signal (see Figure 5). The small 

(blue) circles represent the time evolution after a given horizon of h decades. The 

black circle is the model forecast obtained from the weighted averaged values 

(computed in the embedded space, see Figure 5) of the evolution of the neighbouring 

states. This forecast can be compared with the real data represented with a (red) cross. 

Black dots represent intermediate forecasts, whereas the dashed (red) line represents 

the intermediate signal that has been temporarily removed for testing of the 

forecasting skill. 

 

Figure 7: Relative (middle panel) and absolute (bottom panel) forecasting errors 

obtained from NDVI time series (top panel) at an aggregation scale of IA = 1 (full 

resolution). The abscise gives the date j from which the forecasting is launched, and 

the ordinate gives the horizon h of the prediction (in decade) at which the forecast is 

estimated. The error is given in NDVI units (no unit). Diagonal patterns represent the 

error associated with approaching events. Vertical patterns represent the error 

associated with currently experienced states. 

 

Figure 8: Relative forecasting error obtained from NDVI time series at an initial 

resolution of IA = 1 (top panel), at an aggregated scale of IA = 5 (middle panel) and at 

an aggregated scale of IA = 8 (bottom panel). In contrast to what is shown in Figure 7, 

the abscise gives the date j+h at which the forecasting is performed. The ordinate 

gives the horizon h (in decade) at which the forecast is estimated. The error is given in 

NDVI values (no unit). The orientations of the patterns are therefore contrary: vertical 

patterns represent the error associated with approaching events, whereas diagonal 

patterns represent the error associated with currently experienced states. 

 

Figure 9: The % forecasting error is given as a function of the horizon of prediction h 

(in decade) for the original non-aggregated time series IA = 1 (left panel), for the IA = 

5 aggregated time series (middle panel) and for the IA = 8 aggregated time series (right 

panel). A logarithmic representation of the horizon of prediction was selected to make 

the initial development of error more visible and to retain the behaviour observed at 

long horizons. The (red) solid thick line is obtained from the climatology model and 

the dashed (red) line from the seasonal model. The black lines correspond to the low-

dimension proxy models: dr = 2 (dashed line), dr = 3 (solid line) and dr = 4 (dashed-

dotted line). The thin (green) solid lines correspond to proxy models for higher 

dimensions, dr = 5 through 8. 

 

Figure 10: Reconstruction dimension dr (top panel) corresponding to the convergence 

of the level of forecast error (see Figure 9) as a function of the aggregation scale IA, 

for h = 1 decade (green dots and line), for h = 10 decades (red dots and line) and for h 

= 15 decades (black circles and line). The forecasting error corresponding to the 

optimal dimension (i.e., the reconstruction dimension for which the lowest forecasting 

error is obtained) is given as a function of the aggregation index IA (bottom panel) for 
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h = 1 to 6 decades (alternating solid (green) lines and dashed (red) lines from bottom 

to top) as well as for h = 15 decades (thick black line). 

 

Figure 11: Top graph: the horizons of predictability HP (green, light lines) and 

effective predictability HE (red, dark lines) are given as a function of the aggregation 

scale IA. Bottom graph: the % noise σ (green lines) and % error 0hp  extrapolated at h 

= 0 (red lines) are plotted as a function of the aggregation scale IA. In both graphs, 

results obtained at three reconstruction dimensions are presented: dr = 3 (solid line), dr 

= 4 (dashed-dotted line) and dr = 5 (dashed line). 

 

Figure 12: The patterns represent the seasonal variations (x axis in decade of year – 

dOY) in the error as a function of the horizon of prediction h (y axis in decades) for 

aggregation scales IA = 1 (left patterns), IA = 5 (middle patterns) and IA = 8 (right 

patterns). The top graphs show the forecast error at the decade j+h for which the 

forecast is performed whereas the bottom graphs show the forecast error at the decade 

j from which the forecast is launched. The seasonal evolution of the horizon of 

effective predictability  dOYH l

E  (in decades) is superimposed for each of the six 

patterns (white lines). Seasonal evolution deduced from an NDVI error threshold of 

±0.07 is also overlaid (white dashed lines); note that these last lines do not appear at 

aggregation scale IA = 8 because the averaged error is always lower than 0.07. 
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Figure 7 (colour version for Web edition): 
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Figure 7 (black and white version for print edition): 
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Figure 8 (colour version for Web edition): 
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Figure 8 (black and white version for print edition): 
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