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The objective of this paper is to evaluate on bare soils the surface backscattering models IEM, Oh, and Dubois in X-band. This 
analysis uses a large database of TerraSAR-X images and in situ measurements (soil moisture and surface roughness). Oh’s model 
correctly simulates the radar signal for HH and VV polarizations whereas the simulations performed with the Dubois model show a 
poor correlation between TerraSAR data and model. The backscattering Integral Equation Model (IEM) model simulates correctly the 
backscattering coefficient only for rms<1.5 cm in using an exponential correlation function, and for rms>1.5 cm in using Gaussian 
function. However, the results are not satisfactory for a use of IEM in the inversion of TerraSAR data. A semi-empirical calibration of 
IEM was done in X-band. Good agreement was found between the TerraSAR data and the simulations using the calibrated version of 
the IEM. 
 

Index Terms— Integral Equation Model (IEM), Oh Model, Dubois Model, TerraSAR images 
 

I. INTRODUCTION  

umerous radar backscattering models have been reported 
in the literature. The most frequently used are those 

developed by Oh et al. ([1], [2], [3], [4]), Dubois et al. ([5]), 
and Fung et al. ([6]). These models are supposed to reproduce 
the radar backscattering coefficient (°), and to allow the 
estimation of soil surface parameters (moisture content and 
roughness) from SAR images. For bare soils, the models link 
the radar backscattering coefficient to soil parameters 
(dielectric constant, roughness) and to SAR sensor parameters 
(radar wavelength, incidence angle, polarization). However, 
discrepancies are observed in several studies between SAR 
backscattering coefficients and those predicted by the models 
(e.g. [7], [8], [9], [10]), rendering the inversion results 
inaccurate). 

The description of surface roughness on bare soils is 
currently based on three parameters: the correlation function, 
the correlation length, and the standard deviation of heights 
(rms). The backscattering coefficient varies considerably with 
the shape of the correlation function. Moreover, the 
measurements of correlation length are often inaccurate 
because of inappropriate measurement protocols (short length, 
reduced number, and low horizontal resolution of roughness 
profiles). 

Baghdadi et al. ([10], [11], [12]) proposed an empirical 
calibration of the IEM in C-band (HH, VV and HV 
polarizations), based on experimental data of SAR images and 
ground measurements (soil moisture and surface roughness). 
The approach consisted of replacing the correlation length 
measurements by a fitting parameter; so that the IEM model 
reproduces exactly the radar backscattering coefficient. 
Calibration results showed that the fitting parameter was found 
dependent on rms surface height, radar polarization, and 

incidence angle. Moreover, preliminary results using SAR data 
in X- and L-bands showed a dependence of the fitting 
parameter on radar wavelength. 

The objective of the present study is to evaluate the three 
most popular models used in inversion procedures (Oh, 
Dubois, and IEM) using databases acquired during over 
numerous study sites in France and Tunisia. The databases 
consist of TerraSAR-X SAR data (X-band) and measurements 
of soil moisture and surface roughness over bare soils. 
Moreover, we propose an extension of the calibration of IEM 
model to SAR data in X-band. 

II.  EXPERIMENTAL DATA  

A. Study areas  

A database composed of TerraSAR-X acquisitions and 
ground measurements over numerous agricultural study sites in 
France and Tunisia has been used (Figure 1, Table 1). Ground 
measurements of soil moisture and surface roughness were 
conducted simultaneously to SAR acquisition campaigns on 
several bare soil reference fields (with low local topography). 
 Orgeval site: located to the East of Paris (long. 3°07'E, lat. 

48°51'N, France). Soil composition is about 78% silt, 
17% clay, and 5% sand.  Villamblain site: located to the South of Paris (long. 
1°34'E, lat. 48°00'N, France). Soil composition is about 
60% silt, 30% clay, and 10% sand. 

 Mauzac site: located near Toulouse in the South of France 
(long. 01°17'E, lat. 43°23'N). The soil at this site has a 
texture loamy sand, composed of 48% silt, 16% clay, and 
36% sand.  

 Garons site: located near Nîmes in the South of France 
(long. 04°23'E, lat. 43°45'N). Soil composition is 54% 
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silt, 40% clay, and 6% sand. 
 Kairouan site: located to the South of Tunis, Tunisia 

(long. 09°54'E, lat. 35°35'N). Soil composition is about 
11% silt, 32% clay, and 57% sand.  Versailles site: located to the West of Paris, France (long. 
02°05'E, lat. 48°47'N). Soil composition is about 58% silt, 
24% clay, and 18% sand. 

 Thau site: located near Montpellier in the South of France 
(long. 03°40'E, lat. 43°30'N). Soil composition is about 
52% silt, 35% clay, and 12% sand. 

 Seysses site: located near Toulouse in the South of France 
(long. 01°17'E, lat. 43°29'N). Soil composition is about 
50% silt, 16% clay, and 34% sand. 

 

 
France 

 
 

Tunisia 
Fig. 1. Location of various study sites in France and Tunisia. 1: Orgeval, 2: Versailles, 3: Villamblain, 4: Seysses, 5: Mauzac, 6: Thau, 7: 
Garon, 8: Kairouan. 

B. Satellite data 

Fourty-five TerraSAR-X images (X-band ~ 9.65 GHz) were 
acquired between the 15th of January 2008 and the 18th of 
November 2010 with different incidence angles between 25° 
and 52°, and in mono-polarization mode (HH, VV). The 
imaging mode used was Spotlight with a pixel spacing of 1 m. 
Characteristics of TerraSAR images used in this study are 
summarized in Table 1. Images were first calibrated to enable 
the derivation of backscattering coefficients (°). The average 
backscattering coefficient was then calculated for each 
reference field. 

C. Field data 

Field measurements of soil moisture and surface roughness 
have been achieved. The soil moisture measurements were 
carried out from the top 5 cm of soil because the low 
penetration of radar signal at X-band. The soil moisture (mv) 
of each bare soil reference field was assumed to be equal to the 
mean value measured from several samples collected in that 
field in using a calibrated TDR (Time Domain Reflectometry) 
probe. The soil moistures range from 5 to 41cm3/cm3 with a 
standard deviation of about 5cm3/cm3. 

Roughness measurements were made using laser and needle 
profilometers (1 and 2 m long and with 0.5, 1, and 2 cm 
sampling intervals). Ten roughness profiles along and across 
the direction of tillage (five parallel and five perpendicular) 
were established in each reference field. From these 
measurements, the two roughness parameters, root mean 
square (rms) surface height and correlation length (L), were 

calculated using the mean of all correlation functions. The rms 
surface heights range from 0.42 cm to 4.55 cm. The lower 
values of rms (<1.5 cm) corresponded to sown plots, whereas 
the higher values (above 2.5 cm) corresponded to recently 
ploughed plots. The correlation length (L) varies from 2.32 cm 
in sown fields to 10.41 cm in ploughed fields. 

 
TABLE I 

MAIN CHARACTERISTICS OF THE DATABASE USED IN THIS STUDY (226 DATA IN 

HH AND 130 IN VV). °: BACKSCATTERING COEFFICIENT, MV: SOIL MOISTURE, 
RMS: STANDARD DEVIATION OF HEIGHTS, L: CORRELATION LENGTH. 

 

Site Number of data 
(° , mv , rms , L) Year Radar configurations 

(polarization-incidence) 

Orgeval 12 
27 2008 HH-50° For calibration 

HH-26° For calibration 

Orgeval 

30 
28 
4 
7 

2009 

HH-50° For calibration 
HH-26° For calibration 
VV-26° For calibration 
VV-50° For calibration 

Orgeval 15 
19 2010 HH-50° For validation 

HH-26° For validation 
Villamblain 30 2009 HH-52° For validation 

Mauzac 
15 
5 
5 

2009 
HH-43° For calibration 
HH-28° For calibration 
HH-49° For calibration 

Garons 5 2009 HH-25° For validation 

Kairouan 14 
21 2010 HH-30° For calibration 

HH-35° For validation 

Versailles 18 
12 2010 VV-33° For calibration 

VV-54° For calibration 

Thau 

11 
25 
14 
14 

2010 

VV-26° For calibration 
VV-35° For calibration 
VV-41° For validation 
VV-52° For validation 

Seysses 9 
16 2010 VV-33° For validation 

VV-46° For calibration 

 

In general, the precision on the roughness measurements is 
influenced mainly by the roughness profiles length, the number 
of profiles, and the horizontal resolution (sampling interval) of 
profiles ([13], [14]). It was demonstrated that significant errors 
are observed when short profiles with a low horizontal 
resolution are used. 

III.  EVALUATION OF RADAR BACKSCATTERING MODELS 

In this section, the three most used radar backscattering 
models Oh, Dubois and IEM will be evaluated in using the 
large database of TerraSAR-X data and soil measurements 
(bare soils). The errors of the models were studied as function 
of the radar angle of incidence, the polarization, and the rms 
surface height. 

A. Oh model 

The semi-empirical Oh model relates the co-polarized ratio p 
(=°HH/°VV), the cross-polarized ratio q (=°HV/°VV) and the 
cross-polarized backscatter coefficient (°HV) to incident angle 
(), wave number (k~2 cm-1 in X-band), rms surface height, 
correlation length, and volumetric soil moisture (mv) or the 
soil dielectric constant ([1-4]). Oh et al. proposed analytical 
expressions for p and q in 1992. The expression of q was 
modified in 1994 and a new expression that incorporates the 
effect of the incident angle was proposed. In 2002, an 
expression was given for °HV and new expressions for p and 
q. Finally, Oh proposed a new formulation in 2004 for q that 
ignores the correlation length. The validity of Oh model was 
tested for 0.4<mv<0.29 m3/m3, 0.13<krms<6.98 (in X-band, 
0.06 <rms<3.5 cm), 10°<<70°. 
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Our database contains data with only HH and VV 
polarizations. Because of this we have calculated °VV and 
°HH in using the expressions of p, q and °HV as follows: 
°VV=°HV/qyyyy and °HH=(pyyyy/qyyyy)°HV where yyyy 
corresponds to 1992 or 2002 for p and 1992, 1994, 2002 or 
2004 for q. 

Oh's model was compared to the experimental database by 
using °HV,  p and q. Results shows that the backscatter 
coefficients °HH measured from TerraSAR images and those 
simulated by the Oh model are of the same order of magnitude 
for all Oh model versions. The mean difference between 
TerraSAR in HH polarization and model (bias) varies between 
-0.66 and +0.87 dB. As for the RMSE (root mean square 
error), it is between 2.64 and 2.82 dB. The 2002 model is 
slightly better than the other versions (Bias=-0.01dB and 
RMSE=2.64dB) (Fig. 2). The error of the model does not 
seem to depend on the incidence (). The behaviour of the 
error as a function of soil moisture shows two trends. The first 
trend corresponds to values of mv lower than about 25-30%, 
where we find that Oh's model considerably over-estimates 
°HH (by 7 dB maximum). For values of mv above 25-30%, 
Oh's model under-estimates °HH by 3 dB maximum. This 
results was observed by Baghdadi et al. ([9]) in using C-band 
data.  Moreover, results show higher error for rms lower than 
1.5 cm. 
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Fig. 2. °HH and °VV measured from TerraSAR-X images versus those 
simulated from 2002 Oh model. 

 
For VV polarization, the difference between SAR data and 

simulated data ranges from –1.88 dB (1994 model) to -0.01 
dB (2002 model). The RMSE varies between 2.66 (2002 
model) and 3.13 dB (1994 model). The analysis of the error as 
a function of , rms and mv shows the same behaviour with the 
soil moisture but not a clear tendency with  and rms. The 
database in VV polarization is not big enough for a detailed 
study of the behaviour of the error as a function of rms and . 

B. Dubois Model 

The semi-empirical expressions of radar backscatter 
coefficients °HH and °VV suggested by Dubois et al. ([5]) for 
bare soils depend of the incident angle, the dielectric constant, 
the rms surface height, and the radar wavelength. The 
algorithm is optimized for bare soils with krms2.5 (in X-
band, rms1.25 cm), mv35%, and 30°. 

The Dubois model seems to under-estimate the radar signal 
by about 1.78 dB in VV polarization (between 0.28 dB for 26° 
and 3.38 dB for 50-54°). For HH polarization, the difference 
between SAR data and simulated data varies from -2.97 dB for 

30-35° to 3.19 dB for 49-52°. The RMS error is about 3.06 dB 
in VV polarization and about 3.85 dB in VV polarization (Fig. 
3). The bias and RMSE values are higher with Dubois model 
than with Oh model. Simulations performed with the Dubois 
model show an under-estimation of backscatter coefficients for 
surfaces with low levels of roughness (for rms<1.5 cm) and an 
over-estimation for surfaces with a roughness greater than 1.5 
cm. Moreover, the Dubois model over-estimates the measured 
backscatter coefficients for values of mv less than 15% and 
under-estimates °HH and °VV for mv above 15%. This 
behaviour of the error with mv and rms were also observed by 
Baghdadi et al. ([9]) in using C-band data. 

-20

-15

-10

-5

0

5

-20 -15 -10 -5 0 5

HH from Dubois model [dB]

H
H

 fr
om

 T
er

ra
S

A
R

-X
 [d

B
]

 

-20

-15

-10

-5

0

5

-20 -15 -10 -5 0 5

VV from Dubois model [dB]

V
V

 fr
om

 T
er

ra
S

A
R

-X
 [d

B
]

 
Fig. 3. °HH and °VV measured from TerraSAR-X images versus those 
simulated from Dubois model. 

C. IEM model 

In X-band, the Integral Equation Model [6] has a validity 
domain that covers only a part of the range of roughness 
values that are commonly encountered for agricultural surfaces 
(krms3 corresponds to rms1.5 cm in X-band,). Over bare 
soils in agricultural areas, IEM simulates the backscattering 
coefficients (°HH, °HV, °VV) using the characteristics of the 
sensor (incidence angle, polarization, and radar wavelength) 
and the soil (dielectric constant, rms surface height, correlation 
length, and correlation function). The surface correlation 
function is exponential for low surface roughness values and 
Gaussian for high surface roughness values. 

In HH and VV polarizations, the IEM model simulates 
correctly the backscattering coefficient only for two cases: 
rms<1.5 cm and exponential correlation function, and rms>1.5 
cm and Gaussian function (Fig. 4). For these two cases in VV 
polarization, the mean difference between IEM and TerraSAR 
(bias) is better than -1 dB (-0.75 for rms<1.5 cm and -0.55 dB 
for rms>1.5 cm) with a RMSE about 4 dB (4.21 for rms<1.5 
cm and 3.94 dB for rms>1.5 cm). In HH polarization, the 
biases are of -1.88 dB and -0.01 dB for surfaces with rms<1.5 
cm and rms>1.5 cm, respectively. The RMSE for HH database 
is of the same order of magnitude than for VV polarization 
(3.51 for rms<1.5 cm and 4.89 dB for rms>1.5 cm). When an 
exponential correlation function is used for rms>1.5 cm and a 
Gaussian function for rms<1.5 cm, the RMSEs are higher 
(between 6.2 and 11.9 dB). 

In practice, during the inversion of SAR images for 
estimating soil moisture, the rms values could not be known. 
Thus, it is difficult to choose the adapted correlation function, 
what would lead to an inaccurate estimation of the soil 
moisture due to the inadequacy between IEM simulations and 
SAR data. To improve the performance of IEM model and to 
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make possible its use in the inversion process of SAR images 
in X-band, we propose to replace the correlation length by a 
fitting parameter in considering the same correlation function 
whatever the range of rms height. The choose to replace the 
correlation length is related to the uncertainty of the 
correlation length measurements when conventional 
profilometers of 1 or 2 m long are used ([13], [14]). In the 
following paragraph, we propose a semi-empirical calibration 
of the IEM by redefining the measured correlation length so as 
to ensure better agreement between the model and the data. 
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Fig. 4. Comparison between °-IEM using correlation length measurements, 
and °-TerraSAR for exponential and Gaussian correlation functions. Mean 
and standard deviation of the difference were calculated. 

IV.  EMPIRICAL CALIBRATION OF THE IEM 

Based on the previous studies carried out by Baghdadi et al. 
([10], [11], [12]) in C-band, the objective is to propose a 
robust calibration of the IEM model in X-band that would 
allow reproducing correctly the SAR signal. The approach 
consists of replacing the measured correlation length by a 
fitting parameter (Lopt). As illustrated in Table 1, a part of the 
database was used in the calibration phase while the remainder 
of the database was used for the validation of this approach. 
For each element of the calibration database, Lopt ensures a 
good fit between IEM simulation and SAR data. In the fitting 
process, all experimental data at inside or outside of the IEM 
validity domain were used. Results show that the fitting 
parameter follows the same relationship for rms smaller or 
larger than 1.5 cm. 

Like to C-band, Lopt has two possible solutions, Lopt1 and 
Lopt2, which ensure good agreement between the IEM and the 
SAR backscattering coefficient. When Lopt1 (the lowest 
value) was used in the IEM model, it proved difficult for some 
incidence angles to ensure the correct physical behaviour 
between ° and the rms (increasing ° with increasing rms, for 
a given moisture value) for both exponential and Gaussian 
correlation functions. Only Lopt2 (the highest value) with 
Gaussian correlation function ensures a correct physical 
behaviour of °. The fitting parameter Lopt2 is strongly 
dependent on rms surface height and the incidence angle. It 
increases as the rms increases and decreases with the incidence 

angle (Fig. 5). Moreover, Lopt2 in HH were higher than those 
in VV for the Gaussian function (Fig. 6a). 
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Fig. 5. Fitting parameter Lopt2 as a function of rms (X-band, HH, VV), with 
Gaussian correlation function. 
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Fig. 6. (a) Lopt2 in VV as a function of Lopt2 in HH for X-band, and (b) 
comparison between Lopt2 in C-band and those in X-band. The points 
corresponds to rms-values between 0.5 and 3 cm with a step of 0.5 cm. 

 
For Gaussian correlation function, Lopt2 follows a power-

type relationship ( rms).  is dependent of incidence angle 
whereas  is dependent of both polarization and incidence 
angle: 

 0035.07644.0033.0102.18),,(2 ermseHHrmsLopt    (1) 
 0145.02594.10379.0075.18),,(2

 ermseVVrmsLopt    (2) 

 is in degree, Lopt2 and rms are in cm. The coefficient of 
determination R² is 0.92.  

In order to analyse the effect of radar frequency on the IEM 
calibration, comparison was done using the expressions of 
Lopt2 obtained by Baghdadi et al. in C-band [11] and those 
obtained in this study in X-band. Figure 6b show C-band and 
X-band calibration results for radar configurations with HH 
and VV polarizations and incidence angles of 26° and 50°. 
With the Gaussian correlation function, the C-band Lopt2 was 
higher than the X-band Lopt2. Baghdadi et al. [imen] observed 
a similar behaviour between the L-band Lopt2 and the C-band 
Lopt2, what leads to the conclusion that Lopt2 decreases as the 
radar frequency increases.  

V. VALIDATION OF THE IEM CALIBRATION 

In order to validate this IEM calibration approach, the 
validation database (Table 1) was used with Lopt2 given by 
the analytical expressions (1) and (2). Results show that the 
proposed semi-empirical calibration of the IEM provides 
improved results (Figure 7). For HH polarization, the bias and 
the standard deviation of the error have decreased from -2.81 
dB to +0.36 dB (difference between IEM and TerraSAR-X), 
and from 8.73 dB to 2.08 dB, respectively. For VV, the 
standard deviation of the error decrease from 3.78 dB to 1.73 
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dB. The bias is of the same order before and after calibration 
(-0.37 dB before and -0.34 dB after calibration).  
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Fig. 7. Validation of the empirical calibration approach in using the fitting 
parameter Lopt2 and the validation database (TerraSAR and in situ data). 

 
Moreover, the parameterization of the fitting parameter 

enables a correct simulation of the backscattering signal. The 
expressions of Lopt2 (eq. (1) and (2)) were validated for 
incidences between 25° and 50°. The use of Gaussian 
correlation function ensures correct physical behaviour of IEM 
to approximately rms=3.2cm for 25° and rms=4.7cm for 50°. 

VI.  CONCLUSIONS 

The semi-empirical models of Oh and Dubois as well as the 
IEM physical backscattering model were evaluated by using 
TerraSAR-X data and ground measurements on bare soils in 
agricultural environments. The objective of this article is to 
evaluate the errors of these models and to propose a semi-
empirical calibration of the IEM model in X-band. Oh’s model 
correctly simulates the radar signal for HH and VV 
polarizations (bias<1dB and RMSE<3dB). Simulations 
performed with the Dubois model show a poor correlation 
between TerraSAR data and model simulations (RMSE 
between 2.2 and 4.4 dB, bias can reach 3.4 dB according to 
incidence and polarization). 

The IEM model simulates correctly the backscattering 
coefficient only for rms<1.5 cm in using an exponential 
correlation function, and for rms>1.5 cm in using Gaussian 
function. However, the results are not satisfactory for a use of 
IEM in the inversion of TerraSAR data (bias can reach 1.9 dB 
and RMSE about 4 dB). 

A semi-empirical calibration of the IEM was proposed in 
this study to ensure better agreement between IEM and the 
SAR data in X-band. It consisted of finding a fitting parameter 
which replaces the inaccurate correlation length measurements 
and corrects the defects of model.The results showed that the 
fitting parameter was found to be dependent on rms surface 
height, radar wavelength, incidence angle, and polarization. 
The simulations produced by the calibrated IEM fit correctly 
SAR measurements (bias and standard deviation of the error 
were reduced). With this calibration, bare agricultural soils can 
be characterized by two surface parameters (rms height and 
soil moisture) instead of four (rms height, correlation length, 
correlation function, and soil moisture).      
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