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from the radar backscattering models IEM, Oh, and Dubois

Nicolas BAGHDADF, Elie SABA!, Maelle AUBERT, Mehrez ZRIBf, and Frederic Badp

! CEMAGREF, UMR TETIS, 500 rue Francois Breton, 34093 Montpellier cedesaBce
2 |RD-CESBIO, 18 av. Edouard Belin, BP 2801, 31401 Touloudex8, France
E-mail: nicolas.baghdadi@teledetection.fr
Tel.: 33 4 67 54 87 24; Fax: 33 4 67 54 87 00

The objective of this paper is to evaluate on bare soils the surfacedkscattering models IEM, Oh, and Dubois in X-band. This
analysis uses a large database of TerraSAR-X images and in situ measuents (soil moisture and surface roughnessPh’s model
correctly simulates the radar signal for HH and VV polarizations wheeas the simulations performed with the Dubois model show a
poor correlation between TerraSAR data and model. The backsttering Integral Equation Model (IEM) model simulates correctly the
backscattering coefficient only forrms<1.5 cm in using an exponential correlation function, and forms>1.5 cm in using Gaussian
function. However, the results are not satisfactory for a use of IEM itthe inversion of TerraSAR data. A semi-empirical calibration of
IEM was done in X-band. Good agreement was found between tHerraSAR data and the simulations using the calibrated version of
the IEM.

Index Terms— Integral Equation Model (IEM), Oh Model, Dubois Model, TerraSAR images

incidence angle. Moreover, preliminary results using SAR data
[. INTRODUCTION in X- and L-bands showed a dependence of the fitting

umerous radar backscattering models have been reporR?cfametef on radar wavelength. .

Nin the literature. The most frequently used are those The objective of the presen'g stgdy |s_to evaluate the three
developed by Oh et al. ([2]2], [3], [4]), Dubois et al. ([§, most. popular models' used in inversion .procedures (Oh,
and Fung et al. ([5. These models are supposed to reprodudUP0is, and 1EM) using databases acquired during over
the radar backscattering coefficient®), and to allow the numerous study sites in France and Tunisia. The databases
estimation of soil surface parameters (moisture content aﬁEnS'S.t of T_erraSAFX SAR data(X-bang and measurements.
roughness) from SAR images. For bare soils, the models iiffk Sl moisture and surface r.oughness over bare soils.
the radar backscattering coefficient to soil parameteMoreover’ WE propose an extension of the calibration of IEM
(dielectric constant, roughness) and to SAR sensor paramef@%del t0 SAR data in X-band.
(radar wavelength, incidence angle, polarization). However,
discrepancies are observed in several studies between SAR
backscattering coefficients and those predicted by the modeli Study areas
(e.g. [7], [8], [9], RO), rendering the inversion results " .
inaccurate). A database composed of TerraSAR-X acquisitions and

The description of surface roughness on bare soils geound measurements over numerous agricultural study sites in
currently based on three parameters: the correlation functidriance and Tunisia has been used (Figure 1, Table 1). Ground
the correlation length, and the standard deviation of heighigasurements of soil moisture and surface roughness were
(rm9). The backscattering coefficient varies considerably witbonducted simultaneously to SAR acquisition campaigns on
the shape of the correlation function. Moreover, theeveral bare soil reference fields (with low local topography).
measurements of correlation length are often inaccurate Orgeval site: located to the East of Paris (long. 3°07'E, lat.
because of inappropriate measurement protocols (short Jength 48°51'N France). Soil composition is about 78% silt,
reduced number, and low horizontal resolution of roughness 17% clay, and 5% sand.

Il. EXPERIMENTAL DATA

profiles). . ~ & Villamblain site: located to the South of Paris (long.
Baghdadiet al ([10], [11], [12]) proposed an empirical 1°34'E, lat. 48°00'N, France). Soil composition is about
calibration of the IEM in C-band HH, VV and H/ 60% silt, 30% clay, and 10% sand.

polarizations), based on experimental data of SAR images and pjayzac site: located near Toulouse in the South of France
ground measurements (soil moisture and surface roughness) (long. 01°17°E, lat. 43°23'N). The soil at this site has a

The approach consisted of replacing the correlation length
measurements by a fitting parameter; so that the IEM model
reproduces exactly the radar backscattering -coefficient.
Calibration results showed that the fitting parameter was fourld
dependent onrms surface height, radar polarization, and

texture loamy sand, composed4&®sb silt, 16% clay, and
36% sand.

Garons site: located near Nimes in the South of France
(long. 04°23'E, lat. 43°45N Soil composition is 54%
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silt, 40% clay, and 6% sand. calculated using the mean of all correlation functions. riiee
e Kairouan site: located to the South of Tunis, Tunisigurface heights range from 0.42 cm to 4csB The lower
(long. 09°54E, lat.35°35N). Soil composition is about values ofrms (<1.5 cm) corresponded to sown plots, whereas
11% silt, 32% clay, and 57% sand. the higher values (above 2.5 cm) corresponded to recently
e Versailles site: located to the West of Paris, France (longloughed plots. The correlation lengtt) aries from 2.32 cm
02°05'E, lat. 48°47'N). Soil composition is ab@&®s silt, in sown fields to 10.4tmin ploughed fields.
24% clay, and18% sand. TABLE |
e Thau site: located near Montpellier in the South of FranCan cHARACTERISTICS OF THE DATABASE USED IN THIS STUDY226DATA IN

(long. 03°40'E, lat. 43°30'N). Soil composition is abouttH AND 130IN VV). 6°: BACKSCATTERING COEFFICIENTMV: SOIL MOISTURE
. RMS STANDARD DEVIATION OF HEIGHTS L: CORRELATION LENGTH
52% silt, 35% clay, and12% sand.

e Seysses site: located near Toulouse in the South of Francesie Number of data vear | Radar configurations
o om A . . . (6°, mv, s, L) (polarization-incidence)
(long. 01°I7'E, lat. 43°29'N). Soil composition is about [5 -~ 12 2008 | HF-50° For calbration
. 0 9 27 HH-26° For calibration
50% Sllt, 16% Clay, and 34% sand. 30 HH-50° For calibration
28 HH-26° For calibration
Orgeval 4 2009 VV-26° For calibration
N 7 VV-50° For calibration
15 HH-50° For validation
Tunss, Orgeval 19 2010 HH-26° For validation
= : Villamblain 30 2009 HH-52° For validation
0.0 / 15 HH-43° For calibration
e ée Mauzac 5 2009 HH-28° For calibration
5 5 HH-49° For calibration
Garons 5 2009 HH-25° For validation
. 14 HH-30° For calibration
Kairouan 21 2010 HH-35° For validation
; 18 VV-33° For calibration
° Montpeliier Versailles 12 2010 VV-54° For calibration
Grovouse 11 VV-26° For calibration
oy Thau 25 2010 VV-35° For calibration
14 VV-41° For validathin
H 14 VV-52° For validation
France Tunisia Seysses 9 2010 VV-33° For validation
Fig. 1 Location of various study sites in France and Tuni&la: Orgeval, 16 VV-46° For calibration

"2": Versailles "3": Villamblain, "4": Seysses’5": Mauzag "6": Thau "7": . )
Garon "8": Kairouan. In general, the precision on the roughness measurements is

influenced mainly by the roughness profiles length, the number

B. Sateliite data of profiles, and the horizontal resolution (sampling interval) of

Fourty-five TerraSAR-X images (X-band ~ 9.65 GHz) wergofiles ([13], [14). It was demonstrated that significant errors
acquired between the 15f January 2008 and thEBth of 416 ghserved when short profiles with a low horizontal

November 2010 with different incidence angles between 253¢4 ution are used.
and 52°, and in monpelarization mode (HH, VV). The

imaging mode used ag Spotlight with a pixel spacingfd m. Il. EVALUATION OF RADAR BACKSCATTERING MODELS

Characteristics of TerraSAR images used in this study arei . . .
) . ) . n this section, the three most used radar backscattering
summarized in Table 1. Images were first calibrated to enable

L ; - Is Oh, Duboi IEM will I i ing th

the derivation of backscattering coefficients)( The average models Oh, Dubois and will be eva u_ated In using the

. . large database of TerraSAR-data and soil measurements
backscattering coefficient was then calculated for ea

reference field are soils) The errors of the models were studied as function
' of the radar angle of incidence, the polarization, andriswe
C. Field data surface height.

Field measurements of soil moisture and surface roughness on model

have been achieved. The soil moisture measurements wetg, . . . .

) . e semi-empirical Oh model relates the co-polarized patio
carried out from the top 5 cm of soil because the low

penetration of radar signal at X-barkhe soil moistureroy) (=0 HH/GIVV?= tzebcr‘fs'ptct"ar'ZEdﬁfétmgzc tHV/.G Yé) atnd thle
of each bare soil reference field was assumed to be equal to fhos-Poarized bac Scam?r. coefficiestify) to inciden angie
mean value measured from several samples collected in thd Wave numberk-2 cmv in X-bang, rms surface height,

field in usinga calibrated TDR (Time Domain Reflectometry) correlfition !ength, and volumetric soil moisture\) or thg
probe. The soil moistures range from 5 tadicn? with a soil dielectric constant[1-4]). Oh et al. proposed analytical

standard deviation of about 5¥ant expressions fop and g in 1992. The expression af was

Roughness measurements were made using laser and ne@&giﬁed in 1994 gnd a new expression that incorporates the
profilometers (1 and 2 m long and with 0.5, 1, and 2 crﬂﬁect O_f the quent angle was proposed_. In 2002, an
sampling intervals). Ten roughness profiles along and acrd&§ression was given fer®,y and new expressions fprand
the direction of tillage (five parallel and five perpendicularf Finally, Oh proposed a new formulation in 2004 dathat
were established in each reference fielBrom these !'dnores the correlation length. The validity of Oh model was
measurements, the two roughness parameters, root migied for 0.4mw<0.29 mi/m’, 0.13%krms<6.98 (in X-band,
square g surface height and correlation length),(were 0-06 IMs<3.5 cm) 10°<H<70°.



Our database contains data with only HH and V\30-35°to 3.19 dB for 49-52°. The RMS error is about 3.06 dB
polarizations Because of this we have calculatetl, and in VV polarization and about 3.85 dB in VV polarization (Fig.
GOHH in using the expressions m q and GOHV as fo”ows 3) The biaS and RMSE Valu'es are h|gher W|th DUbOiS mOQGl
W=0 /Gy ANd  Go=(Dyyy/ GOy Where  yyyy than with Oh model. Slm'ulatllons performed with thg DubOIS
corresponds to 1992 or 2002 forand 1992, 1994, 2002 or model shoyv an under-estimation of backscatter coefficients for
2004for g surfaceg W|th low levels of roughness (fors<1.5 cm) and an
ver-estimation for surfaces with a roughness greater than 1.5
; o m. Moreover, the Dubois model over-estimates the measured
usmg G H, op and q. Resuilts shows that. the baCkscatteBackscatter coefficients for values wiv less than 15% and
cpeﬁluentSG ny Mmeasured from TerraSAR images and th,osﬁnder—estimatesan and o° for mv above 15%. This
simulated by the Oh model are of the same order of magnitudenaviour of the error witmv andrms were also observed by
for all Oh model versions. The mean difference betwe%ghdadi et al. ([9]) in using C-band data.

TerraSAR in HH polarization and model (bias) varies between
-0.66 and +0.87 dB. As for the RMSE (root mean square
error), itis between 2.64 and 2.82 dB. The 2002 model is
slightly better than the other versions (Bias=-0.01dB and
RMSE=2.64dB) (Fig. 2). The error of the model does not
seem to depend on the inciden@®. (The behaviour of the
error as a function of soil moisture shows two trends. The first - R
trend corresponds to values v lower than about 236%, oo 0 s [dOB] 5 oo a0 s [d‘;] s
where we find that Oh's model considerably over-estimat%s 3 oo and oo measured from TerraSAR.imades versus those
o°uy (by 7 dB maximum). For values afv above25-30%, sig{ulated“‘from Dubois model. g

Oh's model under-estimatesy by 3 dB maximum. This

results was observed by Baghdadi et al. ([9]) in using C—baﬁ:d IEM model

data Moreover, results show higher error fonslower than [N X-band, the Integral Equation Model [6] has a validity

Oh's model s compared to the experimental database b

e
3o

HH from TerraSAR-X [dB]
5
° o
I
B

VV from TerraSAR-X [dB]

1.5cm. domain that covers only a part of the range of roughness
T on a0z o L values that are commonly encountered for agricultural surfaces
g . o o g .| s (krms<3 corresponds toms<1.5 cm in X-band,). Over bare
% ;@;’ ;‘i % B W% w@ soils.ir.l agricultural areas, IEM. simulates the pagkscattering
; 10 o %q%g E* e <A coeﬁ|0|e|jts_(5°HH, 6°hv, G°w) using .the characteristics of the
s s & ] e @ sensor (incidence angle, polarization, and radar wavelength)
- s and the soil (dielectric constamtns surface height, correlation
-20 -20

v a5 w0 5 o e length, and correlation function). The surface correlation
HH from Oh model [d&] WV from Oh model (48] function is exponential for low surface roughness values and

Fig. 2. 6°wn and o°vw measured from TerraSAR-X images versus thosgsaussian for high surface roughness values.

simulated from 2002 Oh model. In HH and VV polarizations, the IEM model simulates

L . correctly the backscattering coefficient only for two cases:
For VV polarization, the difference between SAR data and. y g y

simulated data ranges from.88 dB (1994 model) to -0.01 rMms<1.5 cm and exponential correlation function, amd>1.5

dB (2002 model). The RMSE varies between 2.66 (2003 2nd Gaussian function (Fig. 4). For these two cases in VV
model) and 3.13 dB (1994 model). The analysis of the error polarization, the mean difference between IEM and TerraSAR

. . _ &)slas) is better than -1 dB (-0.75 fons<1.5 cm and -0.55 dB
afgncthn of6, rms andmv shows the same pehawourwnh thefor rms>1.5 cm) with a RMSE about 4 dB (4.21 fons<1.5
soil moisture but not a clear tendency withand rms. The cm and 3.94 dB forms>1.5 cm). In HH polarization, the
database in VV polarization is not big enough for a detailgg <oc are of -1.88 dB and -0.01 dB for surfaces midx1.5
study of the behaviour of the error as a functiomasandé. cm andrms>1.5 cm, respectively. BRMSE for HH database
B. Dubois Model is of the same order of magnitude than for VV polarization

The semi-empirical expressions of radar backscatté3-51 forrms<1.5 cm and 4.89 dB fams>1.5 cm). When an
coefficientss® ands®yy suggested by Duboit al ([5]) for expongnﬂal correlatmn function is used fans>1.5 cm an.d a
bare soils depend of the incident angle, the dielectric constafigussian function forms<1.5 cm, the RMSEs are higher
the rms surface height, and the radar wavelengihe (Petween 6.2 and 11.9 dB).
algorithm is optimized for bare soils witkms<2.5 (in X- !N practice, during the inversion of SAR images for
band,rms<1.25 cm) m35%, and)>30°. estimating soil moisture, thens values could not be known.

Thus, it is difficult to choose the adapted correlation function,

The Dubois model seems to under-estimate the radar sigf@lat would lead to an inaccurate estimation of the soil

by about 1.78 dB in VV polarization (between 0.28 dB for 26,54 re due to the inadequacy between IEM simulations and
and 3.38 dB for 50-54°). For HH polarization, the differenc

between SAR data and simulated data varies from -2.97 dB %’?\R data. To improve the performance of IEM model and to



make possible its use in the inversion process of SAR imagawgle (Fig. 5). Moreovet,opt2in HH were higher than those
in X-band, we propose to replace the correlation length byimVV for the Gaussian function (Fig. 6a).

flttlng parame':er in ConSidering the same Correlation funCtiOI’l %07 025-26-28° ® 30-35° x43° - 49-50-52° %0 026° ©33-35° x41-46° - 50-52-54°
whatever the range afns height. The choose to replace the gz 25| VY7 Gaussian conelation function

1 H . ~ y 57,47
correlation length is related to the uncertainty of the %z %08 5o 20

correlation length measurements when conventionalé ;|
profilometers of 1 or 2 m long are used ([13], [14]). In the §,, |
following paragraph, we propose a semi-empirical calibration§ .
of the IEM by redefining the measured correlation length so as " b - Gaussian carrolaton functon
to ensure better agreement between the model and the data. 0o,o 015 110 115 z:o 2:5 3:0 3:5 410 415 0,0 015 110 115 zlo 2:5 310 315 410 415

rms surface height [cm] rms surface height [cm]

4,30x°%

Fitting parameter Lopt2 [cm]
s @

o

y =2,30x"%

0

5
© rms<1,5cm

1 -rms>1,5cm _

© rms<1,5cm
1 -rms>1.5em .- Fig. 5. Fitting parametdropt2 as a function ofms (X-band, HH, VV), with
- §-- 7 Gaussian correlation function.
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30 ” 0 26°to 54 ; Gaussian corresponds tams-values between 0.5 and 3 cm with a step of 0.5 cm.
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Fig. 4. Comparison betweesf-IEM using correlation length measurements, For Gaussian correlation functiobopt2 follows a power-
ando°-TerraSAR for exponential and Gaussian correlatiorcions. Mean  type relationship ¢ rm¢). « is dependent of incidence angle
and standard deviation of the difference were catedl . o L

whereasf is dependent of both polarization and incidence
angle:

IV. EMPIRICAL CALIBRATION OF THE IEM

Based on the previous studies carried out by Baghdadi et al oouts
([10], [11], [12)) in C-band, the objective is to propose a Lopt2 (rms 6,VV) =18075e ***"* rms %% @
robust calibration of the IEM model in X-band that would @ is in degreelopt2 andrms are in cm. The coefficient of
allow reproducing correctly the SAR signal. The approactieterminatiorR?is 0.92.
consists of replacing the measured correlation length by aln order to analyse the effect of radar frequency on the IEM
fitting parameterl(opt). As illustrated in Table 1, a part of thecalibration, comparison was done using the expressions of
database was used in the calibration phase while the remaindept2 obtained by Baghdadi et al. in C-barfdl][and those
of the database was used for the validation of this approaeivtained in this study in X-band. Figure 6b show C-band and
For each element of the calibration datab&asgt ensures a X-band calibration results for radar configurations with HH
good fit between IEM simulation and SAR data. In the fittingind VV polarizations and incidence angles of 26° and 50°.
process, all experimental data at inside or outside of the IEWith the Gaussian correlation function, the C-bangt2 was
validity domain were used. Results show that the fittinigher than the X-bandopt2 Baghdadi et al. [imen] observed
parameter follows the same relationship fors smaller or a similar behaviour between the L-banopt2and the C-band
larger than 1.5 cm. Lopt2, what leads to the conclusion thatpt2 decreases as the

Like to C-band/opt has two possible solutionspptl and radar frequency increases.
Lopt2 which ensure good agreement between the IEM and the
SAR backscattering coefficient. Whehoptl (the lowest V. VALIDATION OF THE IEM CALIBRATION
value) was used in the IEM model, it proved difficult for some |n order to validate i IEM calibration approaghthe
incidence angles to ensure the correct physical behavialidation database (Table 1) was used Witipt2 given by
betweens® and thems (increasings® with increasingms, for  the analytical expressions (1) and (2). Results show that the
a given moisture value) for both exponential and Gaussignoposed semi-empirical calibration of the IEM provides
correlation functions. OnlyLopt2 (the highest value) with improved results (Figure 7lFor HH polarization, the bias and
Gaussian correlation function ensures a correct physidie standard deviation of the error have decreased from -2.81
behaviour ofc°. The fitting parameteriopt2 is strongly dB to +0.36 dB (difference between IEM and TerraSAR-X),
dependent omms surface height and the incidence angle. @nd from 8.73 dBd 2.08 dB, respectively. For VV, the
increases as thensincreases and decreases with the inciden&i@ndard deviation of the error decrease from 3.78 dB to 1.73

Lopt2 (rms @, HH) =18.102e °%3¥ rmd764¢™™ (1)
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