
HAL Id: ird-00968855
https://ird.hal.science/ird-00968855

Submitted on 1 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intercomparison of four remote-sensing-based energy
balance methods to retrieve surface evapotranspiration
and water stress of irrigated fields in semi-arid climate

Jonas Chirouze, Gérard Boulet, Lionel Jarlan, Rémy Fieuzal, J. C. Rodriguez,
J. Ezzahar, S. Er Raki, G. Bigeard, Olivier Merlin, J. Garatuza-Payan, et al.

To cite this version:
Jonas Chirouze, Gérard Boulet, Lionel Jarlan, Rémy Fieuzal, J. C. Rodriguez, et al.. Intercomparison
of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water
stress of irrigated fields in semi-arid climate. Hydrology and Earth System Sciences Discussions, 2014,
18, pp.1165-1188. �10.5194/hess-18-1165-2014�. �ird-00968855�

https://ird.hal.science/ird-00968855
https://hal.archives-ouvertes.fr


Hydrol. Earth Syst. Sci., 18, 1165–1188, 2014
www.hydrol-earth-syst-sci.net/18/1165/2014/
doi:10.5194/hess-18-1165-2014
© Author(s) 2014. CC Attribution 3.0 License.

Hydrology and 

Earth System

Sciences

O
p
e
n
 A

c
c
e
s
s

Intercomparison of four remote-sensing-based energy balance
methods to retrieve surface evapotranspiration and water stress
of irrigated fields in semi-arid climate

J. Chirouze1, G. Boulet1, L. Jarlan1, R. Fieuzal1, J. C. Rodriguez2, J. Ezzahar3, S. Er-Raki4, G. Bigeard1, O. Merlin 1,
J. Garatuza-Payan5, C. Watts2, and G. Chehbouni1

1Centre d’Etudes Spatiales de la Biosphère, UPS, CNRS, CNES, IRD – UMR5126, Toulouse, France
2Universidad de Sonora, Hermosillo, Sonora, México
3Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Kénitra, Morocco
4LP2M2E, Département de physique, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
5Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, México

Correspondence to: G. Boulet (gilles.boulet@cesbio.cnes.fr)

Received: 18 December 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 21 January 2013
Revised: 11 February 2014 – Accepted: 15 February 2014 – Published: 27 March 2014

Abstract. Instantaneous evapotranspiration rates and surface
water stress levels can be deduced from remotely sensed
surface temperature data through the surface energy bud-
get. Two families of methods can be defined: the contex-
tual methods, where stress levels are scaled on a given im-
age between hot/dry and cool/wet pixels for a particular veg-
etation cover, and single-pixel methods, which evaluate la-
tent heat as the residual of the surface energy balance for
one pixel independently from the others. Four models, two
contextual (S-SEBI and a modified triangle method, named
VIT) and two single-pixel (TSEB, SEBS) are applied over
one growing season (December–May) for a 4 km× 4 km ir-
rigated agricultural area in the semi-arid northern Mexico.
Their performance, both at local and spatial standpoints, are
compared relatively to energy balance data acquired at seven
locations within the area, as well as an uncalibrated soil–
vegetation–atmosphere transfer (SVAT) model forced with
local in situ data including observed irrigation and rainfall
amounts. Stress levels are not always well retrieved by most
models, but S-SEBI as well as TSEB, although slightly bi-
ased, show good performance. The drop in model perfor-
mance is observed for all models when vegetation is senes-
cent, mostly due to a poor partitioning both between tur-
bulent fluxes and between the soil/plant components of the
latent heat flux and the available energy. As expected, con-
textual methods perform well when contrasted soil moisture

and vegetation conditions are encountered in the same im-
age (therefore, especially in spring and early summer) while
they tend to exaggerate the spread in water status in more ho-
mogeneous conditions (especially in winter). Surface energy
balance models run with available remotely sensed prod-
ucts prove to be nearly as accurate as the uncalibrated SVAT
model forced with in situ data.

1 Context and objectives

Evapotranspiration is the largest water loss component of
continental surfaces (Oki and Kanae, 2006; Shiklomanov,
1998). In semi-arid areas, more than 80 % of the annual avail-
able water is lost through evapotranspiration (Chehbouni et
al., 2008a). In most countries, and especially the least devel-
oped ones, irrigation consumes the largest amount of water.
It often represents more than 80 % of all uses (World Water
Assessment Programme, 2012). In many cases, water use ef-
ficiency is lower than 50 %. For countries facing water short-
age, or likely to suffer from more frequent drought spills
under climate change scenarios, there is a great need to ra-
tionalize this use, and therefore to monitor more closely the
different terms of the water budget (Oki and Kanae, 2006).
Among them, evapotranspiration is of major importance.
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Although the water budget can be fairly easily monitored
by the farmer at plot scale, it is much more difficult for re-
gional authorities or national planners to monitor water allo-
cation and use at the relevant scales, i.e., the irrigated perime-
ter and the basin scales. To do so, remote sensing data is in-
creasingly used, because it allows for the description of the
surface at most scales ranging from plot to region, at a tem-
poral scale no greater than a few weeks, which is particularly
important to follow the growth of vegetation.

There are many methods that compute evapotranspiration
with the help of remote sensing data (Courault et al., 2005).
Some methods rely only on the atmospheric demand through
different radiation and atmospheric variables derived from
remote sensing (Venturini et al., 2008). Since evapotranspi-
ration depends largely on the availability of water, which is
often greater in the root zone than at the soil surface, sur-
face losses depend mostly on the intensity of transpiration.
Many methods, especially those designed for irrigated agri-
culture, which is usually not short of water, compute a poten-
tial or reference evapotranspiration rate and weight the latent
heat flux by the amount of vegetation present for each pixel,
through the use of a vegetation index such as the NDVI (nor-
malized differential vegetation index; Cleugh et al., 2007).
But these methods are of little help when vegetation suffers
from water stress, which means that they have little applica-
bility for operational management of irrigation water when
the objective is to prevent stress.

Since evaporation is the most efficient way to dissipate ex-
tra energy at the surface, there is a tight coupling between
water availability and surface temperature under water stress
conditions. Therefore, the use of information in the thermal
infrared (TIR) domain (3–15 µm) is an appropriate way to
assess actual evaporation and soil moisture status at rele-
vant space and timescales (Boulet et al., 2007; Hain et al.,
2009). Methods to estimate evapotranspiration from satellite
data in the TIR domain are reviewed in Kalma et al. (2008)
and Kustas and Anderson (2009). Estimates of instantaneous
evaporation rates at the time of the satellite overpass can be
converted into daily values through the use of extrapolation
algorithms based on the diurnal self-preservation of quan-
tities like the evaporative fraction, i.e., the ratio between the
latent heat flux and the available energy (Delogu et al., 2012).

TIR-based methods to compute instantaneous evapotran-
spiration can be broadly divided into two families: contextual
and single-pixel methods. Contextual methods cover all ap-
proaches based on the simultaneous presence, at the time of
acquisition, of hot/dry and cold/wet pixels within the satel-
lite image, for a sufficiently large range of vegetation covers
or surface states. The latter are usually inferred in other opti-
cal wavelengths so that for given vegetation type/extent or a
given value of the scaling surface parameter one can securely
associate contrasted temperature patterns with contrasted soil
moisture conditions. Those methods use synchronous infor-
mation of several pixels of a given image. Each intermedi-
ate temperature for a given vegetation class is then scaled

to these extremes to provide an intermediate water stress
condition.

On the other hand, single-pixel methods mostly solve the
surface energy budget for each pixel independently from the
others. They are more sensitive to absolute errors in surface
temperature estimates (Cammalleri et al., 2012; Norman et
al., 2000). However, one usually expects that they are well
adapted to uniform landscapes with fairly homogeneous veg-
etation and surface water conditions, such as natural land-
scapes or rain-fed monoculture, for which contextual meth-
ods are likely to fail. They are also more adapted to the use
of low-resolution data. For the latter indeed, pixels are mixed
and often cover many individual plots with contrasted lev-
els of NDVI and soil moisture. The resulting conditions tend
to blur into average effective moisture/vegetation character-
istics at the pixel scale. They are therefore applied to produce
global maps of evapotranspiration (Jiménez et al., 2011).

Contextual models, which use temperature differences in-
stead of absolute values, are less sensitive to absolute errors
in surface temperature estimates. But they rely on the as-
sumption that all soil moisture conditions are present within
one image for a large enough range of vegetation fraction
cover. This hypothesis can be sometimes misleading (Choi
et al., 2009; Gonzalez-Dugo et al., 2009). For instance, just
after rainfall or after a long dry-down, this assumption can
be challenged for natural landscapes or rain-fed agriculture.
Moreover, wet bare soils or fully stressed vegetation are not
always present on a single image, especially in irrigated agri-
cultural areas with sufficient water supply.

Many studies have tested the performance of these mod-
els at various scales, from very high (Gomez et al., 2005;
Jacob et al., 2002; Long and Singh, 2012; Minacapilli et al.,
2009; Su et al., 2005; Timmermans et al., 2007) to low spa-
tial resolution (Jia et al., 2003; McCabe and Wood, 2006; Su
et al., 2007; Verstraeten et al., 2005; Yang and Wang, 2011).
But in most cases, those studies lack the temporal represen-
tativeness of a surface evolution during a full growing season
(Choi et al., 2009; French et al., 2005; Gonzalez-Dugo et al.,
2009; van der Kwast et al., 2009; Li et al., 2005, 2008; Long
and Singh, 2012; Ma et al., 2011; McCabe and Wood, 2006;
Minacapilli et al., 2009; Su et al., 2005, 2007). A nonexhaus-
tive list of validation and intercomparison studies of surface
energy budget (SEB) models is shown in Table 1. Depending
on the experiments, root mean square differences (RMSD)
for instantaneous retrievals of turbulent fluxes range from
40 W m−2 (Gonzalez-Dugo et al., 2009; Jia et al., 2003; Li et
al., 2008; Long and Singh, 2012; McCabe and Wood, 2006;
Verstraeten et al., 2005) to more than 150 W m−2 (Choi et
al., 2009; Li et al., 2005; Oku et al., 2007). Understanding of
the reasons for such a wide range of performance is crucial
in order to implement thermal data in automated operational
algorithms.

Amongst well-known models, two algorithms emerge in
the “single-pixel models” category: TSEB (two-source en-
ergy balance; Norman et al., 1995) and SEBS (surface
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Table 1. Nonexhaustive review of validation exercises of instantaneous models. One site covers less than 30× 30 low-resolution pixels,
1 station covers less than 10 high-resolution pixels.

Publication Model(s) Resolution Precision onλE Spatial and temporal
(W m−2) coverage

Anderson et al. TSEB 10 m to 10 km (airborne) – 1 station on 1 site, 1 flight
(2011)

Choi et al. (2009) TSEB, 60 m (LANDSAT 7) RMSD 50–150 14 stations on 1 site, 2 dates
METRIC,
TRIM

French et al. (2005) TSEB, 15–90 m (ASTER) Bias 10–80 8 stations on 1 site, 1 date
SEBAL

Galleguillos et al. S-SEBI, 90 m (ASTER) – Comparison with SVAT
(2011) WDI (Hydrus 1-D) and 1 station

on 1 site

Gomez et al. (2005) S-SEBI 20 m (airborne) RMSD∼ 90 7 stations on 1 site, 19 dates

Gonzalez-Dugo et TSEB, 120–60 m (Landsat 5 & 7) RMSD∼ 50 12 stations on 1 site, 3 dates
al. (2009) METRIC

Jia et al. (2003) SEBS, 1 km (ATSR-2) RMSD 10–40 (BR) 11 stations on 1 site,
SEBI 11 dates, 1 scintillometer

Li et al. (2005) TSEB 120–60 m (Landsat 5 & 7, RMSD 40–120 5 stations on 1 site, 4 dates
aircraft)

Li et al. (2008) TSEB 120 m (Landsat 5) RMSD∼ 40 3 stations on 1 site, 3 dates

Long and Singh TTME 90–60 m (ASTER & Landsat) RMSD∼ 50 12 stations, 1 site, 4 images
(2012)

Ma et al. (2011) SEBS 90 m (ASTER) Bias> 80 3 stations on 1 site, 4 dates

McCabe and SEBS 990–1020 m (aggregated RMSD 60 (HR) 7 stations on 1 site, 1 date
Wood (2006) ASTER & Landsat+ MODIS) −80 (BR)

Minacapilli et al. TSEB, 15 m (airborne) – 1 date
(2009) SEBAL

Oku et al. (2007) SEBS 5–7 km (GMS-5) RMSD> 100

Su et al. (2007) SEBS 1 km (MODIS) RMSD 40–60 2 dates, sites CEOP EOP-1

Su et al. (2005) SEBS 30 m (LANDSAT 7) & 20 km RMSD 30 (HR) 1 date, 8 stations on 8 sites
(GOES, MODIS) −140 (BR)

Timmermans et al. TSEB, 6–12 m (airborne) RMSD 60–70 2 stations on 1 site,
(2007) SEBAL 5 airborne flights

Van der Kwast et SEBS 90 m (ASTER) – 6 stations on 1 site, 1 date
al. (2009)

Verstraeten et al. S-SEBI 1.1 km (NOAA/AVHRR) RMSD∼ 40 13 stations on 13 sites,
(2005) AVHRR series

Yang and Wang S-SEBI 1 km (MODIS) Only evaporative 12 stations, 12 sites,
(2011) fraction evaluated 16 dates

Jacob et al. (2002) SEBAL 20 m (airborne) RMSD∼ 85 7 stations, 1 site,
∼ 15 airborne flights

energy balance system; Su, 2002); amongst the contextual
approaches, one can cite the popular S-SEBI (simplified sur-
face energy balance index; Roerink et al., 2000) and “trian-
gle” or “trapezoidal” (Moran et al., 1994) approaches, for
the most simple ones, or two complex but widely used meth-
ods, SEBAL (surface energy balance algorithm for land;

Bastiaanssen et al., 1998) and METRIC (mapping evapo-
transpiration at high resolution with internalized calibration;
Allen et al., 2007).

Due to the limited availability of high-resolution images,
these models have not yet been tested for a wide range
of climates and landscapes, spanning various climatic and
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vegetation conditions. Indeed, it is difficult to build a com-
prehensive yet exhaustive protocol to validate the SEB mod-
els with enough data in space and time. The main reason is
that observations of turbulent fluxes are available for long-
term applications, but for a few locations only, and except
for intensive international campaigns, no more than one or
two points within each image.

Soil–vegetation–atmosphere transfer (SVAT) models,
however, are able to simulate the surface temperature from
irrigation and rainfall inputs. In the case of local-scale appli-
cations where all water-related variables are well known (i.e.,
water inputs, initial soil moisture, etc.), they are expected to
perform better than surface energy balance methods. How-
ever, since information about irrigation at regional scale is
very difficult to assess, those models are difficult to imple-
ment in large irrigated perimeters. Because surface tempera-
ture is related to water stress (Hain et al., 2009), one can con-
strain model prediction through the assimilation of the ob-
served surface temperature into SVAT models (Coudert and
Ottlé, 2007; Olioso et al., 2005) and compensate for errors
in water inputs estimates. Even for most hydrological mod-
els with daily time steps, which do not simulate the equi-
librium surface temperature, a remotely sensed evapotran-
spiration product could be used in an assimilation scheme
(McCabe et al., 2008; Schuurmans et al., 2003). Again, even
if most SVAT models are able to assimilate directly the sur-
face temperature, it is often hard to specify model errors,
observation errors, and, particularly, spatial model error co-
variance when assimilating surface temperature images into
distributed SVAT models. If contextual models show robust
and reliable performance, the TIR-based evapotranspiration
products could be assimilated either in SVAT or hydrological
models by providing additional information about distributed
constraints of studied areas.

The main objective of this paper is to test the relative per-
formance of four TIR-based instantaneous evapotranspira-
tion and water stress simulation models (two contextual and
two single-pixel) to retrieve surface fluxes and water stress
levels from remote sensing data over an intensive irrigated
perimeter in semi-arid land throughout the main agricultural
season. It is a necessary preliminary study before assimilat-
ing evapotranspiration products and their relative error in dis-
tributed SVAT models, which is our ultimate goal beyond the
scope of this study. The performance of those four models
will be assessed through data collected at seven flux stations
and compared to outputs of an uncalibrated SVAT model
forced with in situ vegetation, climate and irrigation input
data measured at those seven stations.

2 Material and methods

2.1 The surface energy balance for estimating
evapotranspiration

The first three models (SEBS, TSEB and S-SEBI) compute
evapotranspiration as the residual of the energy balance, writ-
ten as follows:

λE = Rn − H − G, (1)

whereRn is the net radiation,H the sensible heat flux,λE

the latent heat flux andG the soil heat flux, all expressed in
watts per square meter (W m−2).

Models differ primarily in the partitioning of available en-
ergy Rn − G into turbulent fluxesH andλE, and secondly
on the way they compute the available energy.

2.1.1 Available energy

There are many different ways in the literature to estimate the
net radiationRn and soil heat fluxG as well as their compo-
nents from remote sensing data. However, in our model in-
tercomparison, we focus more precisely on the way available
energy is partitioned between latent heat fluxλE and sensi-
ble heat fluxH . That is why we made the choice to use the
same formulation ofRn andG for the three models requir-
ing available energyRn − G estimates in the computation of
evapotranspiration. Starting from the same basis, it will be
easier to analyze the different model behaviors.

The general formulation of net radiation is:

Rn = (1 − α) · Rsw + ε ·

(

Rlw − σ · T 4
0

)

. (2)

Rsw andRlware the shortwave and longwave incoming radi-
ation (respectively),T0 the surface temperature,α andε are
the albedo and the emissivity of the surface (respectively)
andσ the Stefan–Boltzmann constant. For all SEB models,
the emissivity value of the surface is fixed at 0.98 for the
whole scene and for each date.

The amount of available formulation in the literature to
estimate the soil heat flux is much larger than for the net ra-
diation (for example, see Bastiaanssen, 2000; Norman et al.,
1995; Roerink et al., 2000; Santanello and Friedl, 2003; and
Su, 2002). It has been shown that for a fixed time around
midday,G can be considered as proportional to the net ra-
diation, the proportionality factor being determined by the
surface vegetation and soil properties.

We tested each formulation of G proposed in the three SEB
models (Norman et al., 1995; Roerink et al., 2000; Su, 2002),
which require an estimate of the ground heat flux, as well
as the Bastiaanssen (2000) formulation implemented in the
METRIC model. The latter proved to be the most accurate,
with a RMSD of 57 W m−2 when applied to the current data
set (which will be detailed later in the paper) whereas the
other formulations showed RMSD greater than 90 W m−2.
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Thus we chose to implement it for all methods. Its formula-
tion is detailed in Eq. (3).

G = RnT0 × (0.0038+ 0.0074α) × (1 − 0.98NDVI4) (3)

2.1.2 Single-pixel models

Both single-pixel models compute turbulent exchanges be-
tween the source at the aerodynamic level and the reference
level z where atmospheric forcing data is available, usually
just a few meters above the crop height. Heat transfers are
based on the Monin–Obukhov similarity theory in the atmo-
spheric boundary layer (ABL). Bulk ABL similarity func-
tions proposed by Brutsaert (1999) describe the wind and
temperature profiles in the turbulent environment (Eqs. 4, 5;
see Brutsaert, 1999; and Su, 2002).

Taero− Ta =
H

ρ Cp
×

1

ku∗

[

ln

(

z − d0

z0h

)

− 9h

(

z − d0

L

)

+9h
z0h

L

]

=
H

ρ Cp
× ra (4)

u =
u∗

k

[

ln

(

z − d0

z0m

)

− 9m

(

z − d0

L

)

+ 9m
z0m

L

]

(5)

ra is the aerodynamic resistance to heat transfer at the
surface–atmosphere interface,u is the wind velocity at
level z, k = 0.4 is the von Karman constant,d0 is the dis-
placement height (d0 ≈ hc × 2 / 3,hc being the crop height),
and z0m is the roughness height for momentum transfer
(d0 ≈ hc × 0.123).Ta andTaeroare the temperature of the air
at reference and aerodynamic levels (respectively),ρ is the
density of the air,Cp is the heat capacity of air andz0h is the
roughness height for heat transfer.9m and9h are the sta-
bility correction functions for momentum and sensible heat
transfer andL is the Monin–Obukhov length (Su, 2002).

If one agrees in general that Eq. (4) provides a fairly robust
estimate of the aerodynamic resistance to heat transferra,
estimating the aerodynamic temperature remains a difficult
issue (Kustas and Anderson, 2009). There is currently no way
to measure this temperature directly, and models rely usually
on the only available data, the surface temperature obtained
by satellite imagery. The difference between the two single-
pixel models will thus lie in the approximation made in order
to relateTaero to the radiometric surface temperatureT0.

The surface energy balance system (SEBS) model

SEBS (Su, 2002) computes the latent heat flux as the residual
of the energy balance for a mixed pixel. The particularity
of the SEBS model resides in two points. First, it proposes
a new formulation of the difference between the roughness
for heat transferz0h (Eqs. 6–7) and momentumz0m, which
allows one to replaceTaeroby T0 in Eq. (4):

z0h =
z0m

exp
(

kB−1
) , (6)

where:

kB−1
= A1 × f 2

c + A2 × fcfs + kB−1
s × f 2

s . (7)

The first termA1 describes the full canopy aerodynamic
properties (Choudhury and Monteith, 1988),kB−1

s is rep-
resentative of the bare-soil properties and theA2 term takes
into account the interactions between the vegetation and the
bare soil.fc is the canopy coverage fraction andfs = 1− fc.

The other specificity of SEBS lies in the retrieval of the
latent heat flux. Once the sensible heat flux is computed using
Eq. (4) the model ensures that the retrieved latent heat flux
is bounded by two theoretical, extreme conditions under the
given climate forcing (null and potential evapotranspiration
rates, Eqs. 8 and 9, respectively). This is achieved through the
substitution of any outlier with the corresponding theoretical
minimum (Eq. 8) or maximum (Eq. 9):

λEdry = 0, (8)

λEwet =

[

Rn − G −
ρ Cp (es − e)

rewγ

]

/

(

1 +
1

γ

)

. (9)

λEdry andλEwet are the latent heat fluxes in those extreme
dry and wet conditions.e andes are respectively the actual
and saturation vapor pressure,γ is the psychrometric con-
stant,1 is the slope of saturation vapor pressure curve at
temperatureTa andrew is the aerodynamic resistance for wet
conditions.

The two-source energy balance (TSEB) model

TSEB computes two separate energy budgets for the soil
and the vegetation, and estimates evaporation and transpi-
ration (respectively) as residual terms of the energy balance
(see Eqs. 10 and 11). Net radiation is computed according
to Eq. (2). It is then partitioned based on fraction cover into
the two main components, the net radiation of the canopy
Rn,c, and the bare-soilRn,s (Norman et al., 1995) respec-
tively. Both energy balance equations read

Rn,c = Hc + λEc, (10)

Rn,s = Hs + λEs + G. (11)

Hs and λEs are the sensible and latent heat flux at the
soil–atmosphere interface andHc and λEc the fluxes at
the canopy–atmosphere interface (partitioning of the energy
budget is summarized in Fig. 1).

Similarly to Eq. (1), both latent heat flux componentsλEs
and λEc can be retrieved as residuals of both energy bal-
ance equations provided that the soil (Ts) and vegetation (Tc)
component surface temperatures are known. The “trick” to
get two unknowns out of one single piece of information
(mixed-pixel temperature) is to assume that in many cases
the vegetation is unstressed and transpires at a potential rate
λEc, which is obtained with a Priestley–Taylor formulation
(see Eq. 12).

λEc = 1.3fg
1

1 + γ
Rn,c, (12)

www.hydrol-earth-syst-sci.net/18/1165/2014/ Hydrol. Earth Syst. Sci., 18, 1165–1188, 2014
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Fig. 1. Scheme of the resistance network of TSEB following
Norman et al. (1995).

wherefg is the green fraction of leaf area index (LAI). Here,
LAI is retrieved from the NDVI and is thus considered as
green LAI. As a consequence,fg is set to one in our appli-
cation. Fraction cover is estimated from LAI with a Beer–
Lambert law using a fixed extinction coefficient of 0.4. This
first computation ofλEc gives us a first guess ofHc, as a
residual of the energy budget of the canopy (Eq. 10). The
canopy temperatureTc can be deduced from the canopy’s
sensible heat fluxHc through a formulation similar to Eq. (4).
The total sensible heat fluxH is

H = Hs + Hc = ρ Cp
Ts − Ta

ra + rs
+ ρ Cp

Tc − Ta

ra
, (13)

where the resistancers takes into consideration the resistance
to heat transfer in the boundary layer immediately above the
soil surface.

Equation (14) (Norman et al., 1995) links canopy and soil
temperatures to the observed radiometric temperatureT0 and
fc and allows one to calculateTs:

T0 =

[

fcT 4
c + (1 − fc) T 4

s

]1/4
. (14)

Combining Eqs. (11) and (13) givesHs andλEs. If λEs is
positive then a balance is reached. IfλEs< 0, the assumption
that the vegetation transpires at a potential rate is no longer
valid, the soil is considered as dry andλEs set to zero and the
other parameters are computed from Eqs. (11), (13) and (14).
λEc is obtained as a residual of Eq. (10). IfλEc is negative
then soil and vegetation are dry andλEc is set to zero. Then
Hc =Rn,c and Eqs. (13) and (14) lead to a newHs. G is com-
puted as the residual of the energy balance for the bare soil
(and thus differs in this specific case from the other models).

2.1.3 Contextual models

The simplified surface energy balance index (S-SEBI)
model

The S-SEBI (Roerink et al., 2000) model is based on the ob-
servation that for homogeneous atmospheric conditions over
a scene, the scatter plot between surface temperatureT0 and
surface albedoα is bounded by two theoretical lines cor-
responding to extreme soil moisture conditions (see Fig. 2,
upper panels). The method then considers for each pixelα

the corresponding extreme conditions (with the same avail-
able energy) with the respective surface temperaturesThot
andTcold. Those conditions correspond respectively to dry
(λEmin = 0, H =Hmax) and wet (λE =λEmax, Hmin = 0) ar-
eas where all the available energy is used to evaporate. The
evaporative fraction is then computed using those extreme
temperatures according to

3 =
λE

Rn − G
=

Rn − G − H

Rn − G
=

Hmax − H

Hmax
. (15)

From Eq. (4), we can deduce that, for a given range of albedo,
the wet boundary conditions (H = 0) impliesTcold≈ Ta. So if
we replaceTa by Tcold, we can deduce from Eqs. (4) and (15)
the following formulation of the evaporative fraction:

3 =
Thot(α) − T0

Thot(α) − Tcold(α)
. (16)

The turbulent fluxesH andλE are then deduced from the
evaporative fraction (Eq. 16) and an estimate of the available
energy (Eq. 2).

A vegetation index-temperature trapezoid method
(VIT)

Similarly, Moran et al. (1994) proposed a method for retriev-
ing λE on large areas by combining information on the tem-
perature difference,1T =T0 − Ta, and vegetation extent. In
the original method, the Penman–Monteith equation is ap-
plied to calculate equilibrium surface-to-air temperature dif-
ferences (T0 − Ta) in four extreme conditions of soil mois-
ture and vegetation cover (well watered and fully stressed
canopies, wet and dry bare soils). Four theoretical vertices
of a trapezoid in theT0/VI (VI for vegetation index) space
are obtained (see Fig. 2, lower left panel). The other assump-
tion is thatT0 − Ta is linearly related to the vegetation cover,
which itself is linearly related to the vegetation index used
by Moran et al. (1994), the soil-adjusted vegetation index
(SAVI). This allows straight lines to be drawn between the
vertices 1 and 3 and the vertices 2 and 4. The third assump-
tion that us allows to link this graphic representation to the
water status of the surface is that, for uniform available en-
ergy, vapor pressure deficit of the air and aerodynamic resis-
tance values,Ts− Ta andTc − Ta, are linearly dependent on
evaporation and transpiration, respectively. The land surface
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Fig. 2.Upper panels: ASTER surface temperature vs. FORMOSAT-2 albedo scatter plot and dry and hot regression law determined with the
SPLIT method in S-SEBI. The points’ colors correspond to the value of FORMOSAT-2 NDVI for each pixel. Lower panels: FORMOSAT-2
NDVI vs. ASTER surface temperature scatter plot and the trapezoid determined with the SPLIT method in VIT. For both methods, the plots
are made for 10 March and 6 May.

temperatureT0 being directly linked toTs andTc, the linear
relation betweenT0 and evapotranspiration is established as
follows:

WDI =
1T − 1Tmin

1Tmax − 1Tmin
, (17)

where WDI is the water deficit index;1T , 1Tmin and1Tmax
are respectively the surface-to-air temperature difference at
points C (actual case), A (well watered case) and B (stressed
case). Graphically, it corresponds to the ratio of the dis-
tances AC and AB. WDI can be assimilated to surface water
stress. Other applications of the VIT method also use NDVI
or fraction cover instead of SAVI.

In our case, a preliminary study had shown that the the-
oretical vertices calculated with the Moran et al. (1994) ap-
proach were not usable. Actually, the theoretical trapezoid
did not include all the situations present in the images (not
shown). Thus, pixels with unrealistic values of WDI were
present, i.e., either with negative values or values larger than
one. We then chose to make an assumption similar to the one
made in the S-SEBI method, which is that the variety of rel-
ative moisture conditions present in the image is sufficient

to assess, if not the four extreme points, at least the bounding
linear relationships (lines 1–3 and 2–4) corresponding to well
watered cold points and stressed hot ones. We thus decided
to derive the four vertices graphically and not theoretically
by drawing the bounding trapezoid for each1T –NDVI scat-
ter plot. Since we have a flat study zone of limited extent, we
consider that a single air temperature measurement at 10 m
is representative of the whole area. We can then work on the
NDVI–T0 scatter plots directly.

2.1.4 Method to retrieve water status extremes in
contextual models

Various methods to retrieve linear relationships correspond-
ing to extreme boundary conditions between surface tem-
perature and albedo (S-SEBI) or NDVI (VIT) have been
tested (not shown). They are either manual or automatic, with
different levels of complexity. An entirely manual method
would allow the user to take into account qualitative a priori
information on the surface (type of cultivated crop, sewing,
harvesting and irrigations dates, etc.) to decide whether ex-
tremes correspond to target situations (for instance, wet bare

www.hydrol-earth-syst-sci.net/18/1165/2014/ Hydrol. Earth Syst. Sci., 18, 1165–1188, 2014



1172 J. Chirouze et al.: Intercomparison of four remote-sensing-based energy balance methods

soils or dense vegetation under water stress) or anecdotic out-
liers. However, manual methods are not appropriate for inte-
gration into operational automated retrieval algorithms. That
is why we chose to use the automatic method presented in
Verstraeten et al. (2005) and named SPLIT method. In this
method, a classification of albedo values is performed. We
chose a subdivision in ten classes of albedo values for each
image. For each class, the median of the 5 % maximum and
the median of the 5 % minimum surface temperature values
are identified, then the least square method is applied to those
median values to retrieve each bounding linear relation. In
our application of the VIT and S-SEBI methods, we infer
the bounding relationships on a subset of the original image,
corresponding to our area of interest (4 km× 4 km). This is
justified by the fact that our landscape is an irrigated agri-
cultural area, which is by nature heterogeneous but holds a
fairly uniform distribution of this heterogeneity (in terms of
land cover and irrigation practices).

2.1.5 The soil–vegetation–atmosphere transfer (SVAT)
model

In this study we use the outputs of the interactive canopy
radiative exchange (ICARE) SVAT model as a reference or
benchmarking tool to relate the SEB models’ performance.
ICARE is a classic dual-source SVAT model that solves both
water and energy balance of the surface. It is forced with
climatic and vegetation growth data. The main differences
between the SVAT model and the SEB models reside in two
points.

First, the water balance module simulates the evolution of
soil moisture for two soil layers (shallow surface and root
zone) using the force–restore method (Noilhan and Planton,
1989):

{

∂ws
∂t

=
C1

ρw d1
(P + I − Es) −

C2
τ

(

ws − weq
)

∂w2
∂t

=
P +I −Es−Ec

ρw d2

(18)

wherews andw2 are respectively the surface layer and root
zone volumetric soil moisture,P the precipitation rate,I the
irrigation rate,Es the soil evaporation rate,Ec the plant tran-
spiration rate,d1 andd2 the thickness of surface layer and
root zone respectively set at 0.05 and 1 m for all crops,τ

the diurnal time period (1 day) andρw the density of wa-
ter.C1 andC2 are coefficients estimated following the ISBA
model (Noilhan and Mahfouf, 1996) depending on soil tex-
ture (pedotransfer functions) andweq is an equilibrium soil
surface moisture representing the case where capillarity and
gravity forces compensate each other.Es andEc are com-
puted with a coupled two-source energy balance equation
(Shuttleworth and Wallace, 1985); and they depend respec-
tively on a surface resistance to evaporation (a function of
surface soil moisture, Passerat de Silans, 1986) and a stom-
atal resistance (a function of root zone soil moisture, Noilhan
and Planton, 1989). Surface and root zone temperatures in

the soil are also computed using the force–restore method
based on a classical heat diffusion law. As any dynamic
model, initial conditions for the surface and the root zone
temperature and moisture levels are required. In our applica-
tion, initial conditions are taken from in situ measurements
at each station.

Second, contrary to SEB models, the surface temperature
is not an input but an output of the SVAT model. Direct infor-
mation about soil moisture is absent from the SEB models,
in opposition to the SVAT model, which is forced by rain
(null over the season in our case) and irrigation time series.
Next is the computation of the radiation budget. The model
used by ICARE is not forced by a remotely sensed albedo
value but computes its own broadband albedo with a multi-
ple reflections model and fixed values of soil and vegetation
broadband reflectances; and it is likely to introduce differ-
ences in the computation of the net radiation. Finally, the soil
heat fluxG is not calculated as a fraction of the net radiation
but as a residual of the energy budget; and it provides an up-
per boundary condition to the heat diffusion law between the
soil layers. Soil texture was determined from in situ measure-
ments at each station and the main physical parameters of soil
were estimated following ISBA’s own pedotransfer functions
(Noilhan and Mahfouf, 1996, Appendix A4). Estimation of
the available energy differs significantly from the SEB mod-
els. A more detailed presentation of the model is available in
Gentine et al. (2007).

As any complex physically based SVAT model, ICARE re-
quires a large set of input parameters describing the different
properties of the surface (soil and vegetation). Those parame-
ters need to be calibrated in order to obtain consistent results.
However, we chose to run the model in its most standardized
version, with literature or measured values, when available.
Vegetation parameters such as leaf aerodynamic properties
were determined using standard values from the literature.
In situ measured input data for vegetation includes vegeta-
tion height and green and dry LAIs, respectively. Total LAI
is used to compute fraction cover and within canopy aerody-
namic resistances, whereas green LAI weights the stomatal
resistance. The only soil parameter that has been calibrated
was the soil resistance to evaporationrss, because soil tex-
ture and composition are almost uniform over the whole area.
This choice was also made because future implementation of
data assimilation in ICARE would provide a way to calibrate
the model. Therefore, we wished to compare the SEB models
to a SVAT model running with the most “standard” set of pa-
rameters possible. The formulation ofrss is given in Eq. (19)
from Passerat de Silans (1986).ws is the soil water content
index andwsat the soil saturation soil water content index.
Arss andBrss are therefore the only two empirical constants
that have been calibrated.

rss = exp

(

Arss − Brss
ws

wsat

)

(19)
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The calibration ofArss and Brss has been done simultane-
ously on the sole northeastern wheat eddy covariance (EC)
station (wheat(1), see Sect. 2.2.1) when the surface was al-
most bare using a multicriteria approach on two observed
variables: the latent heat flux and the surface (5 cm) soil
moisture. The minimum value of the sum of the relative ab-
solute difference of these two variables, scaled by their mean
value, was searched systematically for all parameters com-
binations within the 0–20 range. Results of this calibration
lead to values of 12 and 19 forArss andBrss (respectively).
The minimum stomatal resistance, which is a very sensitive
parameter for the estimation of latent heat flux, has been set
to 100 s m−1 (Gentine et al., 2007; Martin et al., 1999).

The SVAT model has been run at each station at a half hour
time step for the whole growing season, except for the chili
pepper station. The latter was covered by a white cap dur-
ing half of the season, which is not accounted for by ICARE.
Since irrigation patterns are not known with enough preci-
sion, ICARE is not run spatially to produce maps, but locally
at each flux station.

2.2 Site and data acquisition

2.2.1 Site description

This study was conducted in the Yaqui Valley (27.4◦ N,
109.9◦ W), in the state of Sonora, northwestern Mexico. With
an area of 225 000 ha, bordered on the southwest by the
Sea of Cortez and on the northeast by the Sierra Madre,
it is the largest agricultural district of the state. The main
cultivated crop is winter wheat. The climate is semi-arid
with an average annual potential evapotranspiration of about
2233 mm (1971–2000 average; Servicio Meteorológico Na-
cional, México, http://smn.cna.gob.mx), far greater than the
average annual precipitation, which is 290 mm (1981–2000
average; see http://smn.cna.gob.mx/observatorios/historica/
obregon.pdf). Rainfall is brought essentially during the mon-
soon season (from June to September) with only 42.8 mm of
precipitation from January to June. About 90 % of the water
consumption in the valley comes from irrigation (Chehbouni
et al., 2008b). The estimation of water losses by evapotran-
spiration is consequently a key factor in the management of
water at the regional scale.

From December 2007 to May 2008, an international
cooperative experiment was carried out over a square of
4 km× 4 km, located south of the city of Ciudad Obregón
(center of the zone: 27.263◦ N, 109.892◦ W). Around 50 %
of the cultivated crops are wheat. The remaining part is di-
vided between broccoli, beans, chili pepper, potatoes, chick-
pea, safflower, orange and corn. Seven micro-meteorological
stations equipped with an EC flux measurement system were
installed in different fields. Their location is shown in Fig. 3.

Fig. 3.Satellite view of the studied zone with respective positions of
the EC stations (Imagerie©2012 Cnes/Spot Image, DigitalGlobe,
Données cartographiques©2012 Google, INEGI).

2.2.2 Automated data acquisition

Meteorological data were acquired at a height of 10 m from a
weather station installed at the center of the zone. It provided
measurements of wind speed and direction (R. M. Young
anemometer), air temperature and moisture (Vaisala humid-
ity and temperature sensor). Missing data were replaced with
a combination of the meteorological data also available at
each EC station. Data were acquired with half hourly time
steps from 27 December 2007 to 13 May 2008.

At each of the seven sites, the net radiation was acquired
using CNR1 (Kipp & Zonen, stations (1), (3) and (7)) and
Q7.1 (REBS, stations (2), (4), (5) and (6)) radiometers. The
soil heat flux was estimated with HUKSEFLUX HFP-01
plates buried at 0.05 m at the top and bottom of the fur-
row (when applicable). Surface temperature was measured
at each site with Apogee infrared radiometers at nadir, at 2m
height (which corresponds to a footprint radius of 0.66 m).
Soil moisture was acquired at 0.05 and 0.3 m depths using
a CS616 TDR (time domain reflectometer, Campbell Scien-
tific Inc., UT, USA). Those data were acquired at a sampling
interval of 10 s then averaged and recorded every 30 min.

Latent and sensible heat fluxes were measured with KH20
fast response hygrometers (Campbell) and Campbell CSAT3
or RM Young 81000 3D sonic anemometers at a frequency
of 10 Hz.

2.2.3 Discontinuous measurements

In addition to the data acquired by the automatic stations, in
situ measurements of vegetation properties were also carried
out. Crop height and LAI were measured at various dates
during the whole study, every week on average. They were
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linearly interpolated between two successive dates to pro-
vide input data for ICARE. LAI was estimated from destruc-
tive measurements as well as hemispherical photographs for
23 fields representative of the various land use types. Gravi-
metric soil moisture profiles at each station were carried
out each week. Those measurements allowed us to cali-
brate the CS616 TDR installed at each station. Soil texture
was analyzed at each site at the beginning of the study pe-
riod. Surface (0–5 cm) soil moisture was acquired spatially
with ThetaProbe sensors (Delta-T) every week also at some
200 locations from December to May.

2.2.4 Remote sensing data

Seven ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer; http://asterweb.jpl.nasa.gov/)
images were acquired in the thermal infrared domain from
December 2007 to May 2008. The resolution of the land
surface temperature product (AST08; https://lpdaac.usgs.
gov/products/aster_productstable/ast08) is 90 m and is atmo-
spherically corrected.

FORMOSAT-2 is an earth observation satellite launched
in 2004 by the National Space Organization of Taiwan. It
provides high-resolution (8 m) images of a particular area ev-
ery day at 09:30 LT (local time) for four bands (blue, green,
red and near infrared) and with the same view angle. More
details can be found in Chern et al. (2008). For our study,
26 cloud-free images were obtained from 27 December 2007
to 13 May 2008, which represents a regular acquisition fre-
quency of on average 1 image every 5 days (see Fieuzal and
al., 2011, for more details). Remote Sensing products such
as NDVI derived from FORMOSAT-2 data were linearly in-
terpolated to the date of the ASTER acquisition date.

2.3 Data processing

2.3.1 Flux data

The turbulent fluxes from the EC stations were processed of-
fline. A post-processing software (EC Pack) developed by the
Meteorology and Air Quality group at Wageningen Univer-
sity (http://wwWmet.wau.nl/) was applied. A detailed expla-
nation of the correction procedure is available in Van Dijk et
al. (2004).

After rejection of inconsistent data due to instability or
malfunction of the instruments, erroneous values ofH and
λE were still present. The closure of the energy balance was
not achieved most of the time, with a residual at the half
hourly time step comprised between 24 and 38 % of total
available energy, depending on the station. This error is in
the upper range of what can be found in the literature (Twine
et al., 2000; Wilson et al., 2002). The gap in energy clo-
sure is often partly due to instrumental limitations. Indeed,
although they acquire wind speed and specific humidity fluc-
tuations at high frequencies, EC systems still miss part of the

energy fluctuations occurring at very high frequencies, lead-
ing to an underestimation of turbulent fluxes. Estimation of
the soil heat flux can also be questioned for row crops since
it is derived from a simple average of values measured at the
top and bottom of the furrow, corrected for the soil energy
storage through the use of a thermocouple buried at 5 cm. In
addition, the malfunctioning of some instruments was iden-
tified during the Yaqui 2008 experiment, especially Krypton
hygrometers of stations (2) and (4) and the CNR1 sensor of
station (1). Finally, differences of energy closure issues be-
tween the stations result both from the variability of observed
surface properties, like crop geometry, and differences be-
tween the various instrumental setups (brand, provenance,
and maintenance history). At station (1), the CNR1, com-
pared to those installed at other stations, proved to underesti-
mate the incoming solar radiation component of the radiation
budget. This term has been replaced with a mean value of
measurements at other stations. Surface energy balance clo-
sure was forced using two different methods. In the case of
stations (2) and (4) where the KH20 did not work, we chose
to trust the estimation ofH by the sonic anemometer and
to discard the measurements ofλE. The correctedλE was
computed as the residual of the energy balanceRn − G − H .
For stations (1), (3) and (6), the regression slope between
available energy and the sum of turbulent fluxes was larger
than 0.65, therefore both fluxes can be considered as consis-
tent. The “Bowen-ratio closure” method is then used (Barr et
al., 1994; Blanken et al., 1997). The estimation of the Bowen
ratio H/λE is considered as correct and the fluxes are ad-
justed to close the energy balance. The safflower station (7)
had both problems with the turbulent and soil heat fluxes so
we excluded its data from the study. Finally, we did not suc-
ceed in integrating the drip irrigation data of the chili pepper
station (5) into ICARE, therefore this station has not been
used in the intercomparison. The dates and EC station num-
bers for which data were used in the intercomparison are re-
ported in Table 2.

2.3.2 Remote sensing data

The observed distributed radiometric surface temperature
used in this paper is the AST08 product from the ASTER
sensor. The seven images were downloaded from the Earth
Observing System Data Gateway. The overpass time is
around 11:00 LT and the dates of the images are 30 Decem-
ber 2007, 23 February, 10 March, 11 April, 27 April, 6 and
13 May 2008. The resolution of this product is 90 m and the
scenes are around 60 km× 60 km. The surface temperature
is retrieved by the temperature and emissivity separation al-
gorithm (Gillespie et al., 1998; Schmugge et al., 1998). The
absolute registration of the images has been done based on
a FORMOSAT-2 8 m resolution image (Merlin et al., 2010).
The extracted sub-images of the 4 km× 4 km study zone were
then resampled by bi-cubic interpolation at a resolution of
100 m for future model comparison.
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Table 2.EC stations used to compute performance statistics at each date. Correspondence of numbers and stations : (1) wheat (east), (2) wheat
(west), (3) broccoli/beans, (4) chickpea, (5) chili pepper, (6) potatoes/sorghum and (7) safflower.

Observed data
Date

30 Dec 2007 23 Feb 2008 10 Mar 2008 11 Apr 2008 27 Apr 2008 6 May 2008 13 May 2008

Rn – 1–4 1–4 1–4, 6 1–4, 6 1–4, 6 1, 2, 4, 6
G – 1, 2, 4 1–4 1–4, 6 1–4, 6 1–4, 6 2–4, 6
H 3 1–3 1–3 1–4, 6 1–4, 6 1–4, 6 1–4, 6
λE 3 1, 2, 4 1, 2 1–4, 6 1–4, 6 1–4, 6 1–4,
α 3 1, 3 1, 3, 7 1, 3, 7 1, 3, 7 1, 3, 7 1, 7
T0 – 1–5 1–5, 7 1–5, 7 1–7 1–7 1, 2, 4–7

The error in the ASTERT0 product is classically around
1.5 K (Jacob et al., 2008; Sabol et al., 2009).

The 26 FORMOSAT-2 images were registered using
GPS ground control points and reprojected in the UTM
WGS (Universal Transverse Mercator World Geodetic Sys-
tem) 1984 12 N coordinate system. Then an atmospheric
correction was applied (Hagolle et al., 2008). Finally,
the 4 km× 4 km study area was extracted and re sam-
pled at 100 m resolution by aggregation (averaging) of
FORMOSAT-2 pixels.

Although the ASTER platform provides more bands in
the near (NIR) and shortwave infrared (SWIR) domain than
FORMOSAT-2, which would suggest that a more consistent
shortwave broadband albedo can be computed, a dysfunction
of the SWIR sensor occurred on four of the seven available
ASTER dates. This made calculus of an ASTER albedo im-
possible on those dates and FORMOSAT-2 data were chosen
in order to keep a homogeneous albedo over the whole study
and not multiply the sources of error. Albedo was computed
as a linear combination of bands 3 (red) and 4 (near infrared)
of FORMOSAT-2, according to Courault et al. (2008):

α = 0.645ρred + 0.382ρNIR. (20)

The NDVI was also calculated from bands 3 and 4 of
FORMOSAT-2.

A remotely sensed LAI was computed from NDVI using a
single relationship (Clevers, 1989) for the whole study area
(Eq. 21):

LAI = −
1

k
ln

(

NDVI∞ − NDVI

NDVI∞ − NDVIsoil

)

. (21)

This relationship between LAI and NDVI was calibrated us-
ing values of hemispherical LAI retrieved for all 23 fields
during the growing season with a minimal RMSD crite-
rion (Fieuzal et al., 2011). The calibrated extinction fac-
tor k is 1.13 and the asymptotical values of NDVI are
NDVI∞ = 0.97 and NDVIsoil = 0.05. NDVI∞ and NDVIsoil
are the NDVI values for a fully developed canopy and a
bare soil respectively. We found that a single relationship was
valid for all crops with a satisfying accuracy.

Table 3. Performance statistics of the models for the four compo-
nents of the energy balance (in W m−2).

RMSD CV Bias
(RMSD)

Rn
TSEB/SEBS/S-SEBI 42.5 7.1 −1.6
ICARE 69.0 11.4 3.16

G

TSEB 60.4 55.0 −9.1
SEBS/S-SEBI 57.4 52.2 −7.8
ICARE 96.1 87.8 37.4

H

TSEB 131.4 62.2 −77.7
SEBS 136.4 64.6 −41.1
S-SEBI 133.6 63.2 −20.1
ICARE 99.3 49.1 25.8

λE

TSEB 122.1 43.0 82.4
SEBS 130.6 46.0 40.0
S-SEBI 116.5 41.0 28.8
ICARE 130.9 42.2 −72.1

Finally, vegetation height was interpolated spatially and
temporally from discontinuous measurements based on
NDVI time series to provide input data for the SEB models.

3 Results

First, the biophysical variables (surface temperature, albedo)
extracted from the ASTER and FORMOSAT2 images (re-
spectively) at each station are compared to the available mea-
surements at the seven locations. Single-pixel values were se-
lected since land use and most conditions (vegetation height
etc) are fairly homogeneous within each field and EC stations
are located at the center of those fields. Then, the available
instantaneous energy components (net radiation and soil heat
flux) and the turbulent fluxes at the time of the satellite over-
pass are compared to station values, with a special insight
on water stress. The statistical results for the four models are
summarized in Table 3. Finally, the patterns deduced from
the models for the entire 4 km× 4 km square are analyzed
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Fig. 4. ASTER (left panel) and ICARE (right panel) versus in situ
radiometric surface temperature at each station at ASTER overpass
dates. Color code: red: LAI< 0.4; yellow: 0.4≤ LAI < 0.8; green:
0.8≤ LAI < 1.2; navy-blue: 1.2≤ LAI < 2.0; black: LAI≥ 2.0.

by comparison with available information on moisture lev-
els, vegetation type, etc.

3.1 Analysis of remotely sensed input data

Measurements of albedo were made on three sites ((1), (3)
and (7), see Table 2 for dates) by CNR1 sensors. Compari-
son of FORMOSAT-2 against in situ albedo values shows a
mean bias of around 4.4 % and a coefficient of variation of
the RMSD, noted CV(RMSD) (ratio of the root mean square
difference and the average value) of 10 %. Those results are
quite acceptable with respect to previous studies (Bsaibes et
al., 2009; Courault et al., 2008; Jacob and Olioso, 2005),
which document CV(RMSD) values between 3 and 15 %.

Extraction of ASTER and ICARE surface temperature val-
ues at each EC station’s pixel are shown in Fig. 4. We com-
pared our ground data to ASTER values of temperature at
the coordinates of the EC stations (Fig. 1). Brightness sur-
face temperature of the Apogee sensors was corrected for
emissivity and reflected atmospheric radiation using a classi-
cal emissivity–NDVI relationship (Van de Griend and Owe,
1993). Dates and stations at which surface temperature is
available are displayed in Table 2. The absolute error on tem-
perature is around 3.5K and clearly exceeds the values re-
ported in the literature, but this can be explained by the dif-
ference between the footprint of the instruments (less than
1 m of diameter) and the pixel size (100× 100 m) as well as
the representativeness of the surface temperature when the
surface is heterogeneous. Moreover, large temperature val-
ues are encountered in this semi-arid region. A mean bias
around 0.9◦C appeared in the estimation ofT0. Despite those
results, the mean bias was different for each station (from
−0.2 to 3.9◦C), thus no global correction was applied to
AST08. ICARE proves to be less accurate with a RMSD of
5.4◦C and a mean bias of 1.8◦C. ASTER seems to be less ac-
curate for intermediate LAIs (between 0.8 and 1.2) where it
seems to overestimate the surface temperature. This error can
be attributed to the larger representative area of ASTER pix-
els than the Apogee footprint: ASTER can “see” more bare

Fig. 5. Computed versus measured net radiation for the SEBS,
TSEB and S-SEBI (left panel) and ICARE (right panel). Color code:
red: LAI < 0.4; yellow: 0.4≤ LAI < 0.8; green: 0.8≤ LAI < 1.2;
navy-blue: 1.2≤ LAI < 2.0; black: LAI≥ 2.0.

soil (which is hotter than the canopy) than the in situ instru-
ment. Larger errors for ICARE radiometric temperatures can
be interpreted as a consequence of model error in the en-
ergy balance resolution. The radiative surface temperature in
ICARE is determined as a linear combination of the aerody-
namic canopy and soil temperatures (Model RTM-TIR0 of
Merlin and Chehbouni, 2014), which are all computed from
the resolution of the energy budget at each source (soil and
canopy).

3.2 Surface energy balance components

Scatter plots of modeled (SEB and ICARE) versus observed
(measured) net radiation are displayed in Fig. 5. The estima-
tion of the available energy by the three SEB models gives
results often encountered in the literature with a RMSD of
around 42 W m−2 (< 10 % of the mean value) for the com-
putedRn and of 57 W m−2 for G. Almost no bias is observed
in net radiation.

Net radiation is better retrieved by the SEB models than
ICARE. ICARE net radiation flux shows a coefficient of vari-
ation of the RSMD CV(RMSD) of 11 %, which, while still
being a reasonable error, can be explained by the differences
between the surface temperature and albedo used by the var-
ious algorithms. Indeed, in the SVAT model, albedo is com-
puted using soil and dry/green vegetation albedos (respec-
tively set at 0.15, 0.35 and 0.22 in our case, which correspond
to rough estimates observed during the experiment). The
ICARE albedo was not calibrated, thus it was not expected
to obtain optimal results for each crop (∼ 20 % CV(RMSD)
on albedo for wheat and chickpea crops,∼ 55 % for beans).
On the contrary, the formula used to calculate the broadband
albedo from FORMOSAT-2 bands has been calibrated on a
large area with a substantial variety of crops (Courault et
al., 2008). It gets a CV(RMSD) lower than 10 % for wheat
and beans and of around 17 % for chickpea, with a global
CV(RMSD) of 9.6 % (against 35.7 % for ICARE). This gap
can be explained by the fact that we did not use remotely
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Fig. 6. Computed versus measured soil heat flux for SEB mod-
els (left panel) and ICARE (right panel). The only point dif-
fering between TSEB and the other SEB methods has been re-
ported as a white-faced triangle, the Bastiaanssen (2000) esti-
mation being reported as a red-faced triangle. Color code: red:
LAI < 0.4; yellow: 0.4≤ LAI < 0.8; green: 0.8≤ LAI < 1.2; navy-
blue: 1.2≤ LAI < 2.0; black: LAI≥ 2.0.

sensed albedo data to calibrate the albedo parameterization
of ICARE.

The results of the calculation of the soil heat flux for each
model has been displayed in Fig. 6. Because of the structure
of the TSEB algorithm, which computesG as the residual of
the soil energy balance when the surface is totally stressed,
estimation ofG by TSEB differs from SEBS and S-SEBI
only by one point. Thus, we did not plot results for TSEB
on a separate graph and just reported that point on the left
plot in Fig. 6 as a white triangle. For the SEB methods, an
effect of saturation is clearly noticeable for bare soils and
quasi-bare soils (red dots). This means that not only the max-
imum ratio ofG overRn but also the dynamic range for low
LAI values should be larger than what is suggested by Basti-
aanssen et al. (2000). The red dots group (group 1 in Fig. 6)
shows an overestimation of the soil heat flux by the selected
model. It corresponds to the end of the senescence period and
the harvesting time of wheat. At that time, vegetation is still
dense and standing, but dry. Since the formulation is based
on NDVI, and therefore represents the amount of shading
due to green vegetation only, shading is largely underesti-
mated. A series of green and yellow dots (intermediate and
low LAIs, group 2 in Fig. 6) corresponding to the same sta-
tion (beans) are constantly overestimated with a bias around
50 W m−2. No particular overestimation of net radiation or
surface temperature was observed at this location. We can
assume that this bias comes in a large extent from the mea-
surements. However, the models largely underestimate the
flux for high values of measuredG. The third group of out-
liers (Fig. 6) comes from the chickpea station. Even if the
four points at the far right of the figure correspond to dates
whereRn was greatly underestimated (∼ 100 W m−2 at each
date), it sums up with an underestimation of theŴ =G/Rn
factor by the models. At the station,Ŵ values estimated from
observations ranged between 0.3 and 0.45 whereas the model
computes values between 0.2 and 0.3. Although all in situ

Fig. 7. Simulated versus measured sensible heat fluxH for
every station at ASTER overpass dates. Color code: red:
LAI < 0.4; yellow: 0.4≤ LAI < 0.8; green: 0.8≤ LAI < 1.2; navy-
blue: 1.2≤ LAI < 2.0; black: LAI≥ 2.0.

values seem high for the study area (other stations giveŴ val-
ues of around 0.3 for bare soil), the maximum of this factor
encountered in the literature can be as high as 0.35 (Kustas
and Daughtry, 1990; Monteith, 1973; Norman et al., 1995).
In our case, the formulation ofŴcannot reach those values,
and rarely exceeds 0.3.

Greater scattering is observed in ICARE with a larger
RMSD (96 versus 57 W m−2 for the other models). Since the
soil heat flux is determined by ICARE as the residual of the
energy budget at the soil interface, those errors are mainly
due to the absorption byG of the various errors made during
the estimation of both net radiation and turbulent fluxes.

Scatter plots of simulated versus measured turbulent fluxes
are presented in Figs. 7 and 8 forH andλE, respectively.
TSEB has a systematic tendency to underestimateH (and
thus overestimateλE) with a strong bias of 82 W m−2. In
Fig. 7, strong underestimation ofH at low LAIs can be ob-
served. Underestimation ofH for intermediate LAI values
can be due to errors in the ASTER temperature. At high
LAIs, we observe in most cases an overestimation ofλE(see
Fig. 8) certainly related to an overestimation of the canopy
transpiration (Eq. 12), since TSEB’s initial assumption is that
the vegetation always transpires at the potential rate.

In terms of absolute error, SEBS shows a similar per-
formance (Table 3). There is a great underestimation ofH

for quasi-bare soils. Since the remotely sensed temperature
is rarely underestimated, and given the fact that vegetation
height is well constrained by in situ measurements,H un-
derestimation is likely to be due to an overestimation of the
excess resistancekB−1 at low LAIs. This is in agreement
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Fig. 8. Simulated versus measured latent heat fluxλE for
every station at ASTER overpass dates. Color code: red:
LAI < 0.4; yellow: 0.4≤ LAI < 0.8; green: 0.8≤ LAI < 1.2; navy-
blue: 1.2≤ LAI < 2.0; black: LAI≥ 2.0.

with the current findings published in the literature (Boulet
et al., 2012; Gokmen et al., 2012). The few overestimations
of H observed for moderate LAIs (between 0.4 and 1) come
from an underestimation of the aerodynamic resistance, in
some cases combined with an overestimation of the surface
temperature by a few degrees.

S-SEBI showed the best performance (among the SEB
models) in the computation ofλE with RMSD of
116 W m−2. Opposite mean biases of−20 and 29 W m−2

have been observed onH andλE, respectively. A large un-
derestimation ofH occurs during senescence for the wheat
plots. The vegetation is stressed but still dense and surface
temperature and albedo are not as high as for bare-soil pix-
els. Senescence can be observed on the upper-right scatter
plot of Fig. 2. Senescent wheat corresponds to yellow points
with albedos between 0.2 and 0.3 and temperatures between
35 and 45◦C. They are located in the middle of the scatter
plot because of the low surface temperatures induced by tur-
bulent heat exchanges still going on above the canopy.

ICARE performs better than the other three models in the
computation ofH but falls behind in the estimation ofλE

with a RMSD of respectively 99 and 130 W m−2. Contrary to
SEB models, it tends to underestimateλE and overestimate
H with biases of respectively−72 and+26 W m−2.

3.3 Water stress

For hydrological applications, it is important to test not
only the performance in estimating ETR (evapotranspira-
tion) when water is not limiting (potential evapotranspi-
ration being relatively easy to compute from NDVI and

Fig. 9. Scatter plots of water stress at each station for TSEB,
SEBS, S-SEBI, VIT method and ICARE. Values calculated
for ASTER overpass dates. Color code: red: LAI< 0.4;
yellow: 0.4≤ LAI < 0.8; green: 0.8≤ LAI < 1.2; navy-blue:
1.2≤ LAI < 2.0; black: LAI≥ 2.0.

meteorological information) but during periods of water
shortage as well. This is why we concentrate in this section
on the assessment of the relative water stress of the surface.
Of course, for agronomical applications, it is more interesting
to get information about the water status of the plant. How-
ever, SEB models, TSEB excepted, only estimate evapotran-
spiration rates for the surface as a whole. Even in TSEB, the
simulated vegetation component of the latent heat flux does
not always represent transpiration. Indeed, when the vegeta-
tion is partially stressed, the soil evaporation term is set to
zero and the transpiration term represents the evapotranspi-
ration of the whole surface, excluding the case where the soil
still evaporates at a very low rate. We computed a surface
water stress at each measurement point for each date where
ASTER data were available. Results are shown in Fig. 9. The
definition of surface water stress reported here is the same as
the one introduced as WDI for the VIT method (Eq. 17):

water_stress= 1 −
λE

λEmax
. (22)

In Eq. (22),λEmax is the maximum (potential) latent heat
flux achievable for one particular pixel. Each SEB method
uses its own potential conditions in order to compute actual
evapotranspiration (Penman–Monteith in SEBS, Priestley–
Taylor in TSEB and the available energy in S-SEBI). In or-
der to assess the capacity of each model to retrieve water
stress (which can be later on used as a proxy for total root
zone soil moisture, cf. Hain et al., 2009), it appears only
natural to consider water stress as an output of the models
and to use their own version of potential conditions. In or-
der to compute an in situ water stress, we used a two-source
potential evapotranspiration model, which was the clos-
est estimate amongst common models (Penman–Monteith,
Priestley–Taylor), when compared toλE measurements at
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Fig. 10.Stress frequency histograms and maps for the whole area on 10 March.

each EC station for a short period following irrigation (not
shown). Since potential evapotranspiration and average sur-
face stress were not routine outputs of ICARE, we chose to
run the SVAT model with a low continuous irrigation in order
to obtain its ownλEpot.

In terms of water stress, ICARE would be expected to
show good results, since it is the only model that is not forced
with surface temperature (which is indirectly related to soil
moisture) but directly with a time series of rain and irriga-
tion, which control soil moisture and therefore stress levels.
However, a significant overestimation of water stress is ob-
servable at medium and high LAIs. This seems to be due
to the water balance module (force–restore), which tends to
quickly dry the upper soil layer with bursts ofλEs on days
immediately following irrigation.

TSEB globally underestimates stress, which is in agree-
ment with the general overestimation ofλE seen in Fig. 8,
but it has a lower scattering and number of outliers than the
other three SEB models. Additionally, it performs quite well
for low stressed vegetation.

SEBS has a strong tendency to underestimate stress for
low LAI, which is related to the overestimation of the surface
aerodynamic resistance for bare soil discussed in Sect. 3.2. A
group of points with large water stress values when stress is
expected to be absent is, as explained in Sect. 3.2, mostly a
consequence of an underestimation of thekB−1 factor, and
thus of the surface aerodynamic resistance.

The contextual models, as expected, dispatch all stress lev-
els between extremes and produce a large spread of stress
levels. Around observed medium stress values (0.5), S-SEBI
and VIT simulate lower than observed stress values (red
dots, LAI< 0.4). This is directly due to the observed sur-
face temperatures at those locations, which are not high
enough for theT (α) relation to detect a significant stress.

The corresponding points are in the lower part of the scat-
ter plot so S-SEBI simulates evaporative fractions over 0.5
when measured values lie around 0.3 or 0.4. Two yellow
points with intermediate LAIs (0.4–0.8) present overesti-
mated stress values. This is due, for the one in the upper part
of the diagram (chickpea, on 10 March), to an overestimation
of the ASTER temperature of around 7◦C (one must keep
in mind that the ASTER pixel is bigger than the EC instru-
ment footprint and includes more bare soil with higher tem-
peratures). The one in the lower part of the diagram (beans,
27 April) seems to be due to a high surface temperature of
the whole bean field (around 40◦C), which is consistent with
the station measurement, while the crop is still growing and
well irrigated. Figure 10 shows an example of how contextual
methods are dependent on the surface properties of the stud-
ied area. In the case of the VIT method, pixels with stressed
and well developed vegetation (i.e., isolated pixels with high
NDVI and high surface temperature values) seem to be lack-
ing in the area, which is consistent with the agricultural prac-
tices: the whole zone being irrigated, stress is normally ab-
sent in the growing period. The boundaries drawn from the
scatter of points shown in Fig. 2 are therefore misinterpreted
as stressed for various pixels with high NDVI values located
near the top-right edge of the trapezoid, while those points
correspond to unstressed crops. However, stress is underes-
timated for some pixels classified as bare soils, which cor-
responds to pixels with low NDVI and a lower temperature
than the observed maximum. If some straw is left on the
ground after harvesting or if the bare-soil properties are dif-
ferent (e.g., higher albedo), evaporation is reduced. But since
the temperature is in the lower range, the pixel is not located
close enough to the bottom-right corner of the trapezoid to
detect a strong reduction in evaporation.
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Table 4.Mean values of turbulent flux and water stress on the whole area at two dates of ASTER overpass.

10 March 6 May

TSEB SEBS S-SEBI VIT TSEB SEBS S-SEBI VIT

Hmean(W m−2) 101.31 154.21 173.00 – 230.13 289.66 209.39 –
λEmean(W m−2) 425.57 372.67 353.88 – 272.70 207.76 288.02 –
Water stress 0.13 0.11 0.35 0.38 0.46 0.56 0.44 0.40

3.4 Spatial variability

In this section we move from the local to the spatial stand-
point. Model intercomparison at a local scale allows us to as-
sess their performance and draw specific behaviors but not
to assess how they represent the spatial variability at the
perimeter scale. In Fig. 11, we plotted frequency histograms
for turbulent fluxes and remote sensing data (albedo, NDVI,
surface temperature) on 10 March for the whole area. At this
time of the year, most crops are well developed and green. On
the histograms, TSEB and SEBS have a similar response: low
H and highλE peaking around the potential rate. However,
as expected for a contextual model, S-SEBI shows a large
spread of values, which in this case does not seem to be rep-
resentative of the real situation. As seen before, TSEB tends
to simulate large values of latent heat flux for green land-
scapes. This is due to the starting hypothesis of the algorithm,
which states that vegetation is transpiring at the potential rate
given by the Priestley–Taylor formulation. This result is ob-
served as well in Table 4, where arithmetical means of turbu-
lent flux and water stress over the whole area are displayed.
TSEBλEmeanis higher than the other two (425 W m−2), the
smallest being S-SEBI with aλEmeanof 354 W m−2. The re-
sults in terms of stress are shown in Fig. 10. Both contex-
tual models compute a larger amount of stressed areas than
the other models. This is expected since they distribute stress
values on the whole 0–1 interval. It is particularly true for
the beans and chili pepper fields (heavily stressed fields in
the northeastern 2 km× 2 km square, see Fig. 3). The sur-
face temperature of those fields being high, the contextual
models interpret them as stressed, whereas both crops are in
an early growing stage and thus well irrigated. The reason
of those high temperatures can be related to a large surface
aerodynamic resistance (low LAIs and crop height) and to
the effect of rows (large surfaces of bare soil are observed
between crop rows by ASTER because the plant has yet to
develop itself horizontally) rather than low water availability
for plants. Single-pixel models compute surface water stress
using theoretical potential rates taking into account LAI and
thus tend to minimize this problem. This also shows the lim-
itations of the use of a surface water stress to assess informa-
tion about plant stress. Both models have mean water stress
values of around 0.35 whereas single-pixel models compute
low mean stress values (0.11 for SEBS, 0.13 for TSEB). Con-
trarily to TSEB, SEBS computes very high stress values (null

Fig. 11. Frequency histograms of simulated turbulent-calculated
fluxes and remote sensing parameters on 10 March. On theT0 his-
togram, the value of air temperatureTa is indicated as a green line.

evapotranspiration) for two orchard fields in the southeastern
2 km× 2 km part of the research area. Those sparse canopies
have large amounts of intercropping bare soils with large
temperatures. Both fields are irrigated, which means that the
average surface stress is sensitive to fraction cover. For this
land use type, one can question the validity of the de facto
parameterizations ofkB−1 and fraction cover from mean
NDVI values, which have been built for herbaceous vegeta-
tion. TSEB seems to better accommodate the contrasted wa-
ter status of those fields with its two-source energy balance.

In Fig. 10, as well, SEBS shows medium peaks of stress
at the edge of many fields. Similar patterns are observed on
NDVI (not shown) and thus LAI, and correspond to roads be-
tween the fields lowering the average NDVI of the surround-
ing pixels. Similar but more subtle edge effects are observed
on VIT stress maps. Although it was expected that the VIT
method would be the most sensitive to variations of NDVI,
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Fig. 12.Stress frequency histograms and maps for the whole area on 6 May.

it seems that thekB−1 parameterization in SEBS induces a
high sensitivity of the model to vegetation cover.

On 6 May both well watered and stressed vegetation were
present in the area. As expected, in heterogeneous condi-
tions, contextual models react consistently to variations of
the surface water status (see Fig. 12). TSEB, S-SEBI and
VIT show very similar results in terms of patterns and stress
distribution as well as mean stress value. Again, SEBS distin-
guishes itself from the others with a higher mean stress value
(see Table 4) and a very different distribution of stress values
over the area. Its difficulty to accommodate the hot bare-soil
fractions is discussed below.

4 Discussion

Considering that we are looking for a possible assimilation of
thermal data into SVAT or, more largely, hydrological mod-
els, SEB models – which provide information on the water
status of the surface combining TIR, visible/NIR and mete-
orological data – seem like a decent lead. Understanding of
their respective errors and robustness depending on surface
and climatic conditions of the area is crucial.

4.1 Performance intercomparison

Models have shown fairly high errors in the computation of
turbulent fluxes (RMSD over 100 W m−2 for the SEB meth-
ods), but it remains in the upper limit of what has already
been published (see Table 1). Although part of those errors
can be attributed to remote sensing uncertainties, most com-
ponents of the energy budget are often large in semi-arid
lands at low latitudes. In addition, fluxes are measured and
simulated near midday, close to the peak in incoming so-
lar radiation, and instantaneous energy flux values are also

large. It is therefore not surprising that RMSD values are in
the upper range of the literature. Moreover, the Yaqui exper-
iment was a “one shot” program carried out over a single
cereal growing season and thus could not benefit from the
experience in data understanding and correction that long-
term projects like FLUXNET (http://fluxnet.ornl.gov/) can
provide. Flux data quality is therefore also questionable.

In addition to the general performance of the models over
the whole season, we had a closer look at their performance
over different crop types and at different dates. ICARE per-
formed better than the other methods over wheat and chick-
pea fields, showing RMSD on turbulent fluxes lower by 20–
70 W m−2 than the others. It could be expected for wheat
fields since the calibration of the soil resistance to evapora-
tion and minimum stomatal resistance has been made over
those crops. In addition, a fairly strong bias is present on
the net radiation calculated by the three SEB methods, which
tends to worsen their performance. However, over potatoes,
sorghum, broccoli and beans, the three SEB models perform
better, particularly over sorghum where the three models
present RMSD of around 70–90 W m−2. Despite the higher
global performance of ICARE than the energy balance mod-
els, it seems that SEB models can give better results for some
specific vegetation types. This can be partly due to their
relative simplicity compared to ICARE, which needs a fair
amount of surface parameters difficult to assess precisely. It
could be expected that the SEB methods that use remotely
observed surface temperature and albedo would be more con-
sistent than the more complex SVAT model that internally
calculates those parameters from user-defined properties of
the soil and vegetation.

Another observation made during this experiment is that
the relative error in surface temperature computation by
ICARE seems to compensate the error made for the turbulent
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fluxes. Indeed, the situation where ICARE is not accurate in
surface temperature but has a very acceptable error inH and
λE is not uncommon and it questions the relevance of as-
similation of thermal data alone in SVAT models in order
to improve its performance in turbulent flux determination.
For instance, on 6 May, there is a 7◦C difference between
the simulated and the observed surface temperatures for the
wheat (1) station, while errors in turbulent heat flux are lower
than 50 W m−2. On 6 March, there is also a 7◦C tempera-
ture difference for the chickpea flux station while the sensible
heat is correct (corresponding error is 10 W m−2) and the la-
tent heat is underestimated by more than 70 W m−2. In those
cases, correcting the model estimations based on thermal in-
formation may not be sufficient to correctly force ICARE
into the right partition between the various components of
the energy balance.

4.2 Models’ structures and improvements

One big issue of the SEB models in their original formulation
is that they have difficulties to account for the senescence
phenomenon. For contextual methods, senescent vegetation
has a lower temperature than stressed green vegetation (for
VIT), due to a higher reflection of the incoming solar energy,
and than bare, sandy soil (for S-SEBI), due to a higher crop
height that enhances turbulent heat exchange at the surface.
Since senescent vegetation pixels do not appear in extreme
temperature conditions, those models do not detect very large
stress values. RMSD on senescent pixels was found to be
40 W m−2 higher than for green ones.

SEBS tends to overestimate evapotranspiration for low
LAIs. This seems to be mostly due to the bare-soil compo-
nent of thekB−1 factor that generates very high surface aero-
dynamic resistances and thus very lowH values. RMSDs
of 170 and 240 W m−2 are observed on latent and sensible
heat fluxes (respectively) for pixels with LAI lower than 0.2.
Solutions to this problem have been proposed. They consist
in either using another empirical factor in order to compute
turbulent fluxes (Boulet et al., 2012), including information
about soil moisture in thekB−1 (Gokmen et al., 2012) or
lowering the soil component of thekB−1 (Chen et al., 2013).
Implementation of the Boulet et al. (2012) formulation leads
to performance similar to the original SEBS but tends to
overcorrect errors onλE with a lower bias of−70 W m−2

(against+40 W m−2 for Su, 2002). Overestimations ofH
at intermediate LAIs (0.4< LAI < 1) seems to confirm the
limitations of one-source methods and the advantage of us-
ing two-source approaches. Even if the new formulation of
thekB−1 factor introduced by Su (2002) was meant to add
information about soil–plant interactions, the corresponding
term in Eq. (8) seems to be underestimated. The generated
error is lower than for bare soil but still needs to be noted,
with a RMSD of around 130 W m−2 onH against 83 W m−2

for pixels with LAI larger than 1.

A major issue was encountered in TSEB during the senes-
cence period in the partitioning of net radiation between soil
and vegetation. The model has various new versions that
modify the partitioning of net radiation between the soil and
the vegetation for row crops, for instance, but we kept the
original formulation by Norman et al. (1995). RMSD was
found higher for senescent pixels than for bare soil and green
ones (144, 106 and 109 W m−2, respectively). Indeed, the
LAI used in this study is computed from NDVI and is there-
fore a green LAI. However, during senescence, part of the
canopy becomes yellow when drying. For crops like wheat,
vegetation is fully yellow before harvesting. Our version of
TSEB assimilates this part of vegetation as bare soil since it
is not taken into account in the green LAI. It results in a great
overestimation of the soil component of the net radiation for
TSEB. Since the soil heat flux is bounded by a maximum
fraction of Rn,s and the soil sensible heat flux is well con-
strained by the soil temperature mostly (which is in turn well
defined byT0 andTc), the residual soil latent heat flux is the
most sensitive to big variations inRn,s. It translates into a
large overestimation ofλEs, and by consequence ofλE. In
order to integrate information about total and dry LAI into
TSEB, we made the coarse assumption that during the senes-
cence period, and until the harvesting date, the global LAI
was constant and equal to its maximum value LAImax. Global
LAI extracted from the FORMOSAT-2 time series was used
to compute the fraction cover during senescence and thus to
better partitionRn. We then calculated the green fractionfg
according to Norman et al. (1995) with the new definition of
global LAI:

fg =
LAI green

LAI global
=

LAI green

LAI max
. (23)

This approximation is not very accurate since the leaf’s sur-
face decreases while drying, leading to a gradual decrease of
global LAI over the senescence period. However it is suffi-
cient to greatly improve the repartition of net radiation and
thus the estimation ofλE and water stress. Results onλE

and net radiation with this new formulation of LAI are com-
pared to the initial version of the model in Fig. 13. Large
variations are observed between the two formulations on
soil and canopy net radiation, with differences as large as
500 W m−2. This influences greatly the energy balance at the
soil–atmosphere interface and produces smallerRn,s values.
As a result, RMSD onλE is reduced by 10 W m−2 and the
bias is lowered to 19 W m−2 (against 82 W m−2 with the ini-
tial formulation). The computation of water stress is also im-
proved with a very low positive bias of 0.03 against−0.1
in the previous version (not shown). One must also stress
that since we use global LAI in the computation of surface
aerodynamic resistances, it tends to lower bothra andrs by
adding more roughness to the surface and thus to favor sensi-
ble heat transfer at the soil interface overλEs. Thus, integrat-
ing information about dry vegetation could greatly improve
the performance of TSEB in senescent cases when vegetation

Hydrol. Earth Syst. Sci., 18, 1165–1188, 2014 www.hydrol-earth-syst-sci.net/18/1165/2014/



J. Chirouze et al.: Intercomparison of four remote-sensing-based energy balance methods 1183

Fig. 13.Comparison of TSEB and observedλE fluxes withfg = 1
(top left panel) and withfg taking into account the drying of leaves
(top, right), and corresponding values of the net radiation compo-
nents for the vegetation (Rn,c, bottom left panel) and the soil (Rn,s ,
bottom right panel) withfg = 1 (x axis) and withfg taking into ac-
count the drying of leaves (y axis), respectively. Color code: red:
LAI < 0.4; yellow: 0.4≤ LAI < 0.8; green: 0.8≤ LAI < 1.2; navy-
blue: 1.2≤ LAI < 2.0; black: LAI≥ 2.0.

height is reconstructed using LAI or NDVI time series. In our
case, many cloud-free FORMOSAT-2 images were available,
allowing us to follow each phenological stage of the vegeta-
tion and thus estimate the maximum LAI precisely. How-
ever, even if we hope that high-resolution images acquired
frequently enough will be easier to afford in the near future,
such clear-sky conditions over the whole growth season seem
almost impossible to find in temperate or tropical regions and
it would make the calibration offg much more delicate.

Comparing behaviors of TSEB and ICARE is also inter-
esting since they are both dual-source models. They partition
radiative energy between soil and vegetation in fairly differ-
ent ways. In the original TSEB formulation, global net ra-
diation is distributed between soil and vegetation based on
fraction cover whereas ICARE computes two separate net
radiations from LAI, soil and vegetation albedo, and emis-
sivity, using a multireflection and transmission network, as
proposed by Shuttleworth and Wallace (1985). The original
TSEB method for net radiation can be criticized because it
bypasses the effects of the vegetation’s transmissivity and
longwave radiation exchanges between soil and vegetation
(emission of radiation from one layer to another). In Tang et
al. (2011), a more physical way to calculateRn is used, tak-
ing into account those two phenomena, and delivers better
performance than a MODIS-basedRn (RMSD = 24 versus

44 W m−2 on a MODIS pixel). However, this method re-
quires estimates of vegetation and soil albedos, as well as
the vegetation transmission factor, which can be quite diffi-
cult if studying a very heterogeneous zone. The method used
in ICARE considers all radiation exchanges between the two
layers (vegetation and bare soil), including transmission and
multiple reflections, but it assumes that the vegetation cover
is homogeneous. It is not adapted to row crops (see Colaizzi
et al., 2012 for recent formulations of net radiation for row
crops). As long as FORMOSAT-2 images are available, the
method used in this paper seems to be the most accurate for
estimatingRn independently of the heterogeneity of the sur-
face or regional topographic features. Furthermore, the as-
similation of this net radiation into the ICARE SVAT model
could be studied in order to calibrate vegetation and soil ra-
diative properties.

In the partitioning of the soil and vegetation latent heat flux
components, the two methods have also very different behav-
iors. Underestimation ofλE by ICARE during the growing
period is due to the quick drying of the first layer of soil, re-
sulting in very lowλEs. However, since ICARE takes into
account the dry part of the vegetation through green and
dry LAIs, it performs better during senescence, with realistic
low λEc values, whereas TSEB maintains a potential rate for
the vegetation. As a consequence, canopy temperature sim-
ulated by TSEB is almost equal to the air temperature while
the soil temperature computed by the model rises towards
ASTER surface temperature values. On the contrary, ICARE
distributes both temperatures around the computed surface
temperature. Although the partition of radiation sounds more
realistic with TSEB (subject to some changes about dry LAI),
the soil–vegetation partition between turbulent fluxes seems
to make more sense for ICARE, mostly because of the strong
initial hypothesis on vegetation water status in TSEB. After
correction, TSEB seems to be the most accurate of all four
SEB models after reconstitution of total fluxes, but its soil–
canopy distribution of latent heat and estimates of component
temperatures remains questionable.

4.3 Determination of distributed water stress

We focus here on the intercomparison of stress patterns sim-
ulated by all four SEB models. In order to remain as concise
as possible, we chose not to discuss model results on every
ASTER image but to focus on the dates that can represent
the most significant cases encountered in this study. Differ-
ences were particularly important for two dates that represent
contrasted vegetation cover and soil moisture patterns: one,
10 March, when the quasi-totality of the area is green and
irrigated (and thus the spatial variability of water availabil-
ity is relatively low) and the other, 6 May, when wheat has
been harvested and thus the major part of the area is under
water stress whereas many crops are still growing and irri-
gated (and thus the spatial variability of water availability
is fairly high). We decided to focus on these two dates. In

www.hydrol-earth-syst-sci.net/18/1165/2014/ Hydrol. Earth Syst. Sci., 18, 1165–1188, 2014



1184 J. Chirouze et al.: Intercomparison of four remote-sensing-based energy balance methods

Table 5. Double-entry table of coefficient of determinationR2

(lower-left part) and RMSD (upper-right part) between the SEB
models and their standard deviationσ on 10 March.

RMSD σ

TSEB SEBS S-SEBI VIT

R2

TSEB 0.15 0.27 0.28 0.14
SEBS 0.43 0.27 0.26 0.18
S-SEBI 0.94 0.46 0.06 0.26
VIT 0.91 0.58 0.95 0.27

Tables 5 and 6 coefficients of determinationR2 and RMSD
values of the simulated water stress by the different models
are displayed, as well as their standard deviationσ over the
whole area. As expected for contextual models, which dis-
tribute stress over the whole 0–1 interval, S-SEBI and VIT
show higherσ values than single-pixel models on 10 March.
The quasi-totality of crops are green and well developed and
stress should be almost absent of the scene. We enlarged the
target area (from 4 km× 4 km to the whole FORMOSAT-
2 image) hoping to encounter truly stressed pixels, but the
slight change in the resulting bounding relationships did not
modify this finding (not shown). This tends to confirm that
our sample zone is representative of the whole irrigation
perimeter. For that date, the missing extremes should be in-
ferred from theoretical boundaries and not derived from the
images alone. For a later date in spring (on 6 May when
wheat is mostly senescent), TSEB and contextual models
are in good agreement with each other, showing equivalent
σ values, and low RMSDs between models (a difference of
around 0.1 between TSEB and contextual models, 0.04 be-
tween S-SEBI and VIT).

TSEB, S-SEBI and VIT show a strong correlation with
each other on both dates but with a narrower interval of dis-
tribution than for contextual models, which can explain their
differences in terms of mean values and standard deviation.
In May, the correlation between TSEB and the contextual
models is a bit lower than in March but the pattern shown in
Figs. 10 and 12, as well as the mean value and standard devi-
ation, are very similar. It shows that in the case of contrasted
conditions, simpler contextual models reproduce quite faith-
fully the general behavior of a more complex model like
TSEB, which is already used in operational algorithms at
continental scales and thus whose performance is trusted. On
the contrary, SEBS seems to behave very differently from the
other three models during the whole season in terms of stress
distribution, with a low standard deviation in winter as well
as in spring. It has a very low correlation with the other three
models and the patterns and histograms displayed in Figs. 10
and 12 are very distinct from the others. One possible expla-
nation could be that SEBS is more sensitive to vegetation
properties due to its use of thekB−1 parameterization of
the roughness length for heat exchange in the aerodynamic

Table 6. Double-entry table of coefficient of determinationR2

(lower-left part) and RMSD (upper-right part) between the SEB
models and their standard deviationσ on 6 May.

RMSD σ

TSEB SEBS S-SEBI VIT

R2

TSEB 0.28 0.10 0.13 0.25
SEBS 0.07 0.23 0.25 0.18
S-SEBI 0.84 0.28 0.04 0.22
VIT 0.78 0.32 0.95 0.23

resistance. The resulting roughness is very sensitive to the
vegetation height, which is very difficult to retrieve spatially.
Thus a lot of approximations are made using a priori values
based on in situ qualitative knowledge in order to distribute
crop heights over the whole area. The contextual models do
not need this information and TSEB is strongly driven by
fraction cover and surface temperature in his architecture,
which enables it to by-pass some crop height determination
issues.

5 Summary and conclusions

Performance and structure particularities of two contextual
and two single-pixel methods to retrieve energy fluxes at
the surface using thermal remote sensing data have been lo-
cally compared with in situ measurements and outputs of
a complete SVAT model (ICARE) during a whole cereal-
growth season. In terms of energy fluxes, TSEB, SEBS and
S-SEBI showed comparable results with RMSD onλE rang-
ing from 117 (S-SEBI) to 131 W m−2 (SEBS). These re-
sults are in the same range as the uncalibrated ICARE SVAT
model forced with in situ data (RMSD = 131 W m−2 on λE)

but with an opposite behavior in the repartition of turbulent
fluxes. ICARE tends to underestimate the evapotranspiration
whereas the SEB methods overestimate it. TSEB and ICARE
are the two models that estimate water stress with the best
accuracy. However, TSEB performs better at high LAIs (low
stress) and shows difficulties in detecting stress during senes-
cence, whereas ICARE has a strong tendency to overestimate
stress for green vegetation but is more accurate than TSEB at
low LAIs. SEBS performs poorly for senescent and bare-soil
situations and contextual models present a lot of dispersion.
Corrections for TSEB and SEBS have been suggested in or-
der to account for their respective limitations in processing
dry vegetation and low LAI cases.

From the spatial standpoint, general behaviors of the mod-
els have been described. SEBS distinguishes itself from the
others in its way of incorporating and processing vegetation
data, resulting in a singular distribution of stress. However,
for dates with a strong contrast in surface soil moisture, con-
textual models have shown mean stress values and stress
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patterns very similar to TSEB, whereas for dates with uni-
form surface moisture (winter and summer times mostly),
they tend to accentuate extreme values of water stress. This
was expected since they are self-calibrated and thus distribute
the values between fully stressed and potential conditions for
the whole image. In this paper, we used an automatic deter-
mination of the empirical laws driving contextual models. A
manual selection was also tested but did not produce better
or worse statistics (not shown). However, a user-monitored
determination of the bounding curves might still be the only
way to decide whether extremes correspond to target situa-
tions (for instance, wet bare soils or dense vegetation under
water stress) or meaningless outliers.

This work has been carried out as a preliminary study of
the SEB models in order to assess if thermal remote sens-
ing data could yield valuable information to assimilate into
a land surface or hydrological model. Results have shown
that the single-pixel SEB models, after various modifica-
tions, can provide relevant information about water stress,
especially during the growing period where ICARE tends to
overestimate stress. By combining data assimilation of sur-
face temperature, water stress index and broadband albedo
in a Kalman ensemble assimilation scheme, both perfor-
mance amelioration (by adjusting soil water content) and cal-
ibration of ICARE could be done (see Er-raki et al., 2008;
Cammalleri and Ciraolo, 2012; Merlin et al., 2014). Further-
more, as current environmental and water use issues require a
more regional point of view, distributed SVAT models could
be an interesting tool, but very difficult to implement be-
cause of the lack of knowledge in subsurface characteristics
of wide areas. Assimilation of thermal data could be a way to
calibrate those models with a limited amount of information
about the surface. Finally, it seems that contextual and single-
pixel approaches could be merged in order to take advantage
of the increased accuracy of the later in homogeneous con-
ditions (winter and summer times) while keeping the uncer-
tainty reduction of the former for very contrasted landscapes.
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