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Soil moisture is an essential climate variable influencing land—�atmosphere interactions, 4 

an essential hydrologic variable impacting rainfall—�runoff processes, an essential ecological 5 

variable regulating net ecosystem exchange, and an essential agricultural variable constraining 6 

food security.  Large�scale soil moisture monitoring has advanced in recent years creating 7 

opportunities to transform scientific understanding of soil moisture and related processes.  These 8 

advances are being driven by researchers from a broad range of disciplines, but this complicates 9 

collaboration and communication.  And, for some applications, the science required to utilize 10 

large�scale soil moisture data is poorly developed.  In this review, we describe the state of the art 11 

in large�scale soil moisture monitoring and identify some critical needs for research to optimize 12 

the use of increasingly available soil moisture data.  We review representative examples of 1) 13 

emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing 14 

missions, 3) soil moisture monitoring networks, and 4) applications of large�scale soil moisture 15 

measurements.  Significant near�term progress seems possible in the use of large�scale soil 16 

moisture data for drought monitoring.  Assimilation of soil moisture data for meteorological or 17 

hydrologic forecasting also shows promise, but significant challenges related to spatial 18 

variability and model structures and model errors remain.  Little progress has been made yet in 19 

the use of large�scale soil moisture observations within the context of ecological or agricultural 20 

modeling.  Opportunities abound to advance the science and practice of large�scale soil moisture 21 

monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.  �22 

 23 

24 
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The science and practice of large�scale soil moisture monitoring has entered a stage of 25 

unprecedented growth with the potential to transform scientific understanding of the patterns and 26 

dynamics of soil moisture and soil moisture�related processes.  Large�scale soil moisture 27 

monitoring may lead to improved understanding of soil moisture controls on water, energy, and 28 

carbon fluxes between the land and atmosphere, resulting in improved meteorological forecasts 29 

and climate projections.  Soil moisture measurements are also key in assessing flooding and 30 

monitoring drought.  Knowledge gained from large�scale soil moisture observations can help 31 

mitigate these natural hazards, yielding potentially great economic and societal benefits. Here 32 

large�scale refers to spatial support scales of >12 m2 for an in situa sensor or spatial extents of 33 

>1002 km2 for an in situa sensor network (Crow et al., 2012; Western and Blöschl, 1999).  In this 34 

review areas are often enumerated in the XX2 format to indicate the length of one side of a 35 

square of the given area, e.g. 10,000 km2 = 1002 km2.  New developments continue within the 36 

realm of in situ sensors which monitor soil moisture at the point�scale, i.e.i.e., <12 m2 support.  37 

These point�scale sensors have been reviewed recently (Dobriyal et al., 2012; Robinson et al., 38 

2008) and will not be considered here except within the context of large�scale networks. Rather, 39 

this review aims to broadly describe the state of the art in large�scale soil moisture monitoring.  40 

Airborne and satellite remote sensing approaches for soil moisture are also considered large�41 

scale monitoring techniques in this review. 42 

To provide context, it is helpful to begin with a brief historical overview of soil moisture 43 

monitoring in general.  The first major technological advance in modern soil moisture 44 

monitoring can be traced to the development of the neutron probe after World War II (Evett, 45 

2001).  The measurement of soil moisture based on neutron thermalization first appeared in peer�46 

reviewed literature in a paper by Iowa State College (now University) soil physicists, Gardner 47 
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and Kirkham (1952). This technology was soon commercialized under a contract between the US 48 

Army Corps of Engineers and Nuclear�Chicago Corporation, and by 1960 hundreds of neutron 49 

probes were in use around the world (Evett, 2001).  The neutron probe remained the de facto 50 

standard for indirect soil moisture measurement until a soil physicist and two geophysicists 51 

working for the Government of Canada made a key breakthrough in using dielectric properties to 52 

measure soil water (Topp et al., 1980).  Despite initial skepticism from the soil science and 53 

remote sensing communities (Topp, 2006), the time domain reflectometry (TDR) approach of 54 

Topp et al. (1980) eventually became a dominant technology for soil moisture monitoring, and 55 

created for the first time, the possibility of automated, multiplexed, unattended, in situ 56 

monitoring (Baker and Allmaras, 1990).  By the 1990s, the TDR technology had proven the 57 

value of electromagnetic methods for monitoring soil moisture, and an avalanche of impedance 58 

or capacitance type probes followed (Robinson et al., 2008).  These capacitance probes typically 59 

operate at frequencies much lower than the effective frequency of TDR.  As a result these probes 60 

are simpler and less expensive, but also less accurate than TDR (Blonquist et al., 2005).  Much 61 

effort has also been devoted to the development of heat dissipation (Fredlund and Wong, 1989; 62 

Phene et al., 1971; Reece, 1996) and heat pulse sensors (Bristow et al., 1993; Campbell et al., 63 

1991; Heitman et al., 2003; Ochsner et al., 2003; Song et al., 1999; Tarara and Ham, 1997) for 64 

soil moisture measurement with reasonable success.  65 

While Canadian researchers were beginning to develop the groundbreaking TDR method, 66 

scientists in the US were pioneering remote sensing of soil moisture from tower, aircraft, and 67 

satellite platforms using microwave radiometers (Schmugge et al., 1974), scatterometers (Dickey 68 

et al., 1974), synthetic aperture radar (Chang et al., 1980), and combined radar/radiometer 69 

systems (Ulaby et al., 1983).  A variety ofVarious other techniques were also introduced during 70 
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the same time, including methods based on polarized visible light (Curran, 1978), thermal inertia 71 

(Pratt and Ellyett, 1979), and terrestrial gamma radiation (Carroll, 1981).  Satellite remote 72 

sensing approaches in particular have engendered much enthusiasm and interest with their 73 

promise of global data coverage, leading Vinnikov et al. (1999) to speculate that, in regards to 74 

long�term soil moisture monitoring, “The future obviously belongs to remote sensing of soil 75 

moisture from satellites.”. And, in fact, the intervening decades of research on remote sensing of 76 

soil moisture are now beginning to bear fruit in terms of operational satellites for large�scale soil 77 

moisture monitoring. 78 

Not everyone has been content to wait for the arrival of operational soil moisture 79 

satellites; rather, some have envisioned and created large�scale in situ monitoring networks for 80 

soil moisture.  The earliest organized networks were in the Soviet Union and used repeated 81 

gravimetric sampling (Robock et al., 2000).  The Illinois Climate Network was the first large�82 

scale network to use a nondestructive measurement device, the neutron probe (Hollinger and 83 

Isard, 1994), while the US Department of AgricultureDA (USDA) Natural Resources 84 

Conservation Service (NRCS) Soil Climate Analysis Network (SCAN) (Schaefer et al., 2007) 85 

and the Oklahoma Mesonet (McPherson et al., 2007) pioneered the use of automated, unattended 86 

sensors in large�scale soil moisture networks during the 1990s.  Since then numerous networks 87 

have emerged around the world, and have come to play vital roles in the science and practice of 88 

large�scale soil moisture monitoring, not the least of which is their role in calibrating and 89 

validating satellite remote sensing techniques. 90 

The past ten years have witnessed the emergence of potentially transformative new soil 91 

moisture technologies which are beginning to fundamentally alter the possibilities for large�scale 92 

monitoring.  These new methods include the cosmic�ray soil moisture observing system 93 
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(COSMOS), global positioning system (GPS) based techniques, and fiber optic distributed 94 

temperature sensing (DTS) approaches (Larson et al., 2008; Sayde et al., 2010; Steele�Dunne et 95 

al., 2010; Zreda et al., 2008).  Meanwhile, the number and scope of large�scale automated soil 96 

moisture monitoring networks has been steadily increasing, both in the US and around the world. 97 

And, in 2009, the European Space Agency (ESA) launched the Soil Moisture Ocean Salinity 98 

(SMOS) satellite, the first one designed specifically for soil moisture monitoring (Kerr et al., 99 

2010).  100 

Despite these developments, many challenges remain within the realm of large�scale soil 101 

moisture monitoring.  The recent progress in this field has been enabled by contributions from 102 

many different disciplines, and future progress will likely be interdisciplinary, as well. But, 103 

staying informed about new developments can be challenging when the research is spread across 104 

a broad range of science disciplines from soil science to remote sensing to geodesy to 105 

meteorology.  Contemporary soil physicists, whose predecessors were instrumental in birthing 106 

the modern era of soil moisture monitoring, have been largely focused on development and 107 

testing of point�scale measurement techniques and have perhaps not been adequately engaged in 108 

advancing the science of large�scale monitoring.  Great advances have been made in satellite 109 

remote sensing approaches for estimating surface soil moisture, but the coarse horizontal 110 

resolution and the shallow sensing depth are significant limitations for many applications 111 

(Wagner et al., 2007).  Most importantlyFurthermore, the basic science and technology required 112 

to actually use large�scale soil moisture data is relatively under�developed.  There has been a 113 

dearth of research investment in developing modeling and forecasting tools informeddriven by 114 

large�scale soil moisture data, especially data from large�scale in situ networks.  There has also 115 

been little research on the use of remotely sensed soil moisture products for applications beyond 116 
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weather forecasting or streamflow prediction.    This was understandable in previous decades 117 

when the widespread availability of such data was a distant prospect, but the circumstances have 118 

changed.  Soil moisture data are now common and may be ubiquitous in the near future. 119 

In light of these circumstances, we seek to meet the need for a cross�disciplinary state of 120 

the art review for the sake of improving communication and collaboration.  We further seek to 121 

engage and mobilize the expertise of the international soil science, and specifically soil physics, 122 

community in advancing the science and practice of large�scale soil moisture monitoring.  Also, 123 

we seek to highlight the pressing need to accelerate the pace of progress in the area of using 124 

large�scale soil moisture observations for advanced Earth systems monitoring, modeling, and 125 

forecasting applications.  Our objectives are 1) to succinctly review the state of the art in large�126 

scale soil moisture monitoring and 2) to identify some critical needs for research to optimize the 127 

use of increasingly available soil moisture data. 128 

This review does not aim to be comprehensive.  Rather we have selected specific topics 129 

which are illustrative of the opportunities and challenges ahead.  This review is organized in four 130 

primary sections: 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture 131 

remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large�scale 132 

soil moisture measurements.  In this context, “in situ” techniques are those using sensors 133 

embedded in the soil, and “proximal” techniques are those using sensors which are in close 134 

proximity to the soil, but not embedded in it. Some observations regarding primary challenges 135 

and opportunities for large�scale soil moisture monitoring are provided at the end of the review.   136 

�137 
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Area�average soil moisture can be measured in the field using cosmic�ray neutron 140 

background radiation whose intensity in air above the land surface depends primarily on soil 141 

moisture. The cosmic�ray probe integrates soil moisture over an area hundreds of meters in 142 

diameter, something that would require an entire network of point measurement devices. 143 

Measurements can be made using stationary probes, which provide an hourly time series of soil 144 

moisture, or mobile probes, which provide snapshots in time over an area or along a line. 145 

Cosmic�ray protons that impinge on the top of the atmosphere create secondary neutrons 146 

that in turn produce additional neutrons, thus forming a self�propagating nucleonic cascade 147 

(Simpson, 2000; Desilets and Zreda, 2001). As the secondary neutrons travel through the 148 

atmosphere and then through the top few meters of the biosphere, hydrosphere and lithosphere, 149 

fast neutrons are created (Desilets et al., 2010). Because fast neutrons are strongly moderated by 150 

hydrogen present in the environment (Zreda et al., 2008, 2012), their measured intensities reflect 151 

variations in the soil moisture (Zreda et al., 2008) and other hydrogen present at and near the 152 

Earth’s surface (Zreda et al., 2012; Franz et al., 2013). 153 

The process of neutron moderation depends on three factors that together define the 154 

neutron stopping power of a material (Zreda et al., 2012): (1) the elemental scattering cross 155 

section or probability of scattering; hydrogen has a high probability of scattering a neutron; (2) 156 

the logarithmic decrement of energy per collision, which characterizes how efficient each 157 

collision is; hydrogen is by far the most efficient element; and (3) the number of atoms of an 158 

element per unit mass of material, which is proportional to the concentration of the element and 159 

to the inverse of its mass number.  Because of the abundance of water in soils and hydrogen's 160 

low atomic mass, hydrogen, next to oxygen and silicon, makes up a significant fraction of all 161 
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atoms in many soils.  The extraordinarily high stopping power of hydrogen makes the cosmic�162 

ray soil moisture method work. 163 

The fast neutrons that are produced in air and soil travel in all directions within and 164 

between air and soil and in this way an equilibrium concentration of neutrons is established. The 165 

equilibrium is shifted in response to changes in the hydrogen content of the media, which in 166 

practice means changes in the amount of water on or in the soil. Adding water to soil results in 167 

more efficient moderation of neutrons by the soil, causing a decrease of fast neutron intensity 168 

above the soil surface. Removing water from the soil has the opposite effect. Thus, by measuring 169 

the fast neutron intensity in the air the moisture content of the soil can be inferred, for example 170 

using the equation of Desilets et al. (2010): 171 

 [1]  172 

  173 

which is plotted in Fig. 1. In the equation θ is the neutron�derived moisture content, � is the 174 

measured neutron intensity, �� is the neutron intensity in air above a dry soil (this is a calibration 175 

parameter obtained from independent in situ soil moisture data), and ��, ��, and �� are fitted 176 

constants that define the shape of the calibration function. Neutron transport modeling shows that 177 

the shape of the calibration function is similar for different chemical compositions of soil and 178 

soil textures (Zreda et al., 2008; Desilets et al., 2010) and in presence of hydrogen pools other 179 

than pore water, for example vegetation or water vapor (Franz et al., 2013; Rosolem et al., 2012). 180 

Therefore, the same function can be used under different field conditions once corrections are 181 

made for all pools of hydrogen (Franz et al., 2013). 182 

The probe senses all hydrogen present within the distance that fast neutrons can travel in 183 

soils, water, air and other materials near the land surface. That distance varies with the chemical 184 

( ) �
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composition and density of the material, from centimeters in water through decimeters in soils to 185 

hectometers in air. The support volume can be visualized as a hemisphere above the soil surface 186 

placed on top of a cylinder in the soil (Fig. 2). For soil moisture measurements the diameter and 187 

height of the cylinder are important.  The horizontal footprint, which is defined as the area 188 

around the probe from which 86% (1�e�2) of counted neutrons arise, is a circle with a diameter of 189 

660 m at sea level (Zreda et al., 2008). It decreases slightly with increasing soil moisture content 190 

and with increasing atmospheric water vapor content, and it increases with decreasing air density 191 

(decreasing atmospheric pressure or increasing altitude)(Zreda et al., 2012). The horizontal 192 

footprint has been verified by field measurements (Zweck et al., 2011). 193 

The effective depth of measurement, which is defined as the thickness of soil from which 194 

86% (1�e�2) of counted neutrons arise, depends strongly on soil moisture (Zreda et al., 2008). It 195 

decreases non�linearly from about 70 cm in soils with no water to about 12 cm in saturated soils 196 

and is independent of air density. The effective depth of measurement decreases with increasing 197 

amount of hydrogen in other reservoirs, such as lattice water, soil organic matter or vegetation. 198 

The decrease in the vertical support volume is more significant at the dry end (on the order of 10 199 

cm) than at the wet end (on the order of 1 cm). The vertical footprint has not been verified 200 

empirically.  201 

Neutrons react with any hydrogen present near the Earth’s surface. Therefore, the 202 

measured neutron intensity reflects the total reservoir of neutrons present within the sensing 203 

distance of the probe (Fig. 2), and hence the probe can be viewed as the total surface moisture 204 

probe. The greater the concentration of hydrogen, the greater is its impact on the neutron 205 

intensity. Large near�surface reservoirs of hydrogen, roughly in order of decreasing size, are: (1) 206 

surface water (including snow), (2) soils, (3) lattice water and water in soil organic matter; (4) 207 
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vegetation, and (5) atmospheric water vapor. Because the neutron signal integrates all these 208 

factors, isolation of one of these components, for example soil moisture, requires that the others 209 

be: (a) constant in time, (b) if not constant, assessed independently, or (c) negligibly small. In 210 

addition, the support volume (or the measurement volume) will be affected by these other 211 

sources of hydrogen. 212 

Calibration requires simultaneous measurements of area�average soil moisture (θ) and 213 

neutron intensity (�), and solving Eq. [1] for the calibration parameter ��. Area�average soil 214 

moisture representative of the cosmic�ray footprint is obtained by collecting numerous soil 215 

samples around the cosmic�ray probe and measuring moisture content by the oven�drying 216 

method (Zreda et al., 2012); other methods, such as time�domain reflectometryTDR, can be used 217 

as well. The measured neutron intensities must be corrected for atmospheric water vapor and 218 

pressure variations. Soil samples must be analyzed for chemical composition to correct the 219 

calibration function for any additional water in mineral grains (lattice water) and in organic 220 

matter present in the soil (Zreda et al., 2012). The presence of that extra water shifts the position 221 

of the calibration point to the left on the calibration function (Fig. 1), which results in steeper 222 

curve and thus in reduced sensitivity of neutrons to changes in soil moisture. Other sources of 223 

water have a similar effect on the calibration function. 224 

Measurement precision of soil moisture determination is due to neutron counting 225 

statistics. The counts follow the Poisson distribution (Knoll, 2000) in which for the total number 226 

of counts, �, the standard deviation is �0.5. Thus, more counts produce better precision (i.e.i.e., 227 

lower coefficient of variation), provided that the neutron intensity remains stationary over the 228 

counting time. High counting rates are expected under these conditions: (1) high altitude and 229 

high latitude, because the incoming cosmic�ray intensity, which is the precursor to fast neutrons, 230 
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increases with both (Desilets and Zreda, 2003; Desilets et al., 2006); (2) dry soil, because of the 231 

inverse relation between soil moisture and neutron intensity (Fig. 1); (3) dry atmosphere, because 232 

of the inverse relation between atmospheric moisture and neutron intensity (Rosolem et al., 233 

2012); (4) no vegetation; (5) low lattice and organic matter content of soil. Opposite conditions 234 

will result in lower counting rates and poorer precision. 235 

The accuracy of soil moisture determination depends on a few factors related to 236 

calibration and the presence of other pools of hydrogen within cosmic�ray probe support volume. 237 

The calibration uncertainty is due to two factors: (1) the accuracy of the independent measure of 238 

area�average soil moisture, which is usually below 0.01 m3 m�3; (2) the accuracy of neutron 239 

count rate at the time of calibration, which is usually around 2%. (These calibration data sets can 240 

be viewed at cosmos.hwr.arizona.edu.) If these were the only contributing factors, the accuracy 241 

would be better than 0.01 m3 m�3. But there are a few complicating factors that may lead to an 242 

increase of the uncertainty. They include atmospheric water vapor, infiltration fronts, changing 243 

horizontal correlation scale of soil moisture, variable vegetation, and variations in the incoming 244 

cosmic�ray intensity. Corrections have been developed for these factors, but their contributions 245 

to the overall uncertainty of soil moisture determination have not been assessed rigorously. At a 246 

desert site near Tucson, Arizona, Franz et al. (2012) found a root mean square error (RMSE) of 247 

0.017 m3 m�3 between the soil moisture estimates from a well�calibrated cosmic�ray probe and 248 

the depth�weighted soil moisture average from a network of point�scale sensors distributed 249 

across the probe footprint. 250 

Cosmic�ray soil moisture probes are used as stationary or roving devices. Stationary 251 

probes are installed above the land surface to measure and transmit neutron intensity and 252 

ancillary data at user�prescribed time intervals (Zreda et al., 2012). These measurements are then 253 
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used, together with cosmic�ray background intensity data, to compute soil moisture. A network 254 

of stationary probes, called the COsmic�ray Soil Moisture Observing System (COSMOS), is 255 

beinghas been installed in the USA, with the main aim to provide area�average soil moisture data 256 

for atmospheric applications (Zreda et al., 2012). Data are available with one hour latency at 257 

http://cosmos.hwr.arizona.edu. Other networks or individual probes are being installed in 258 

Australia (the network named CosmOz), Germany (Rivera Villarreyes et al., 2011) and 259 

elsewhere around the globe. 260 

A mobile version of the cosmic�ray soil moisture probe, called COSMOS rover, is under 261 

development. Its main application is mapping soil moisture over large areas from a car or an 262 

aircraft; a backpack version is possible as well. The vehicle�mounted instrument is 263 

approximately ten times larger than the stationary cosmic�ray probe to provide more counts 264 

(better statistics) in short time as the vehicle progresses along the route. The measured neutron 265 

intensity is converted to soil moisture using the usual calibration equation (Desilets et al., 2010). 266 

Transects (Desilets et al., 2010) or maps (Zreda et al., 2011) of soil moisture can be produced 267 

within hours or days. Such maps are may prove useful for many applications, including 268 

calibration and validation of satellite soil moisture missions like SMOS. SMOS (Kerr et al., 269 

2010) and SMAP (Entekhabi et al., 2010). 270 

����������������������� ����� ���%#������������ ��$���!��� �#���271 

While the cosmic ray probe utilizes an existing natural “signal,”, the ambient fast neutron 272 

intensity, to infer soil moisture, new methods employing global positioning system (GPS) 273 

receivers utilize existing anthropogenic signals.   The GPS signals follow two types of paths 274 

between the satellites that transmit GPS signals and the antennas that receive them (Fig. 3).  275 

Some portion of GPS signals travel directly from satellites to antennas.  These direct signals are 276 
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optimal for navigation and geodetic purposes.  Antennas also receive GPS signals that reflect off 277 

the land surface , referred to as multipath by the geodetic community (Georgiadou and 278 

Kleusberg, 1988).  GPS satellites transmit microwave (L�band) signals (1.57542 and 1.22760 279 

GHz) that are optimal for sensing water in the environment (Entekhabi et al., 2010).  For bare 280 

soil conditions, the reflection coefficients depend on permittivity of the soil, surface roughness, 281 

and elevation angle of the reflections.  Therefore, reflected GPS signals can be used to estimate 282 

soil moisture, as well as other environmental parameters.  GPS antennas and receivers can also 283 

be mounted on satellites (Lowe et al., 2002) or on planes (Katzberg et al., 2005).  The data 284 

collected by these instruments are considered remote sensing observations.  Alternatively, GPS 285 

reflections can also be measured using antennas mounted fairly close to the land surface (Larson 286 

et al., 2008; Rodriguez�Alvarez et al., 2011a), yielding a hybrid remote sensing����	�
� 287 

observationproximal sensing technique.  Ground�based GPS studies use the interference of the 288 

direct and reflected GPS signals, and thus the method is often called GPS interferometric 289 

reflectometry (GPS�IR). 290 

For GPS�IR systems, the sensing footprint depends on (1) the height of the antenna above 291 

the ground and (2) the range of satellite elevation angles used in the analysis.  As satellite 292 

elevation angle (�) increases, the portion of the ground that yields specular (i.e.i.e., mirror�like) 293 

reflections both shrinks and moves closer to the antenna.  For the case of a typical geodetic 294 

antenna height of 2 m, the center of the area sensed varies from 25 m at an elevation angle of 295 

�=5° degrees to 5 m at an elevation angle of � = 30° degrees.  Larger sampling areas can be 296 

achieved by raising the antenna to heights of ~100 m, above which observations are complicated 297 

by the GPS code lengths (Rodriguez�Alvarez et al., 2011a). As GPS is a constellation of more 298 

than 30 satellites, different GPS satellites rise and set above a GPS soil moisture site throughout 299 
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the day. These reflections are measured from different azimuths depending on the orbital 300 

characteristics of each satellite. For the best sites, more than 60 soil moisture estimates can be 301 

made per day.  So, the soil moisture data estimated from GPS reflections should be considered as 302 

daily in temporal frequency, once averaged over an area of ~1000 m2 for antenna heights of 2 m 303 

(Larson et al., 2008).   304 

Two methods of GPS soil moisture sensing are currently beinghave been developed. The 305 

first is based on using GPS instruments designed for geodesists and surveyors. These GPS 306 

instruments traditionally measure the distance between the satellites and antenna in order to 307 

estimate position. However these GPS instruments also measure signal power, or signal�to�noise 308 

ratio (SNR). Embedded on the direct signal effect are interference fringes caused by the reflected 309 

signal being in or out of phase with respect to the direct signal. The SNR frequency is primarily 310 

driven by the height of the antenna above the ground. As permittivity of the soil changes, the 311 

amplitude, phase, and frequency of the SNR interferogram varies. (Larson et al., 2010; 312 

Zavorotny et al., 2010).  Of the three parameters, the phase of the SNR interferogram is the most 313 

useful for estimating soil moisture.   314 

Chew et al (2013) demonstrated theoretically that phase varies linearly with surface soil 315 

moisture. For the soils described by Hallikainen et al. (2005), the slope of this relationship does 316 

not vary with soil type. For most conditions, phase provides a good estimate of average soil 317 

moisture in the top 5 cm.  The exception is when very wet soil overlies dry soil, for example 318 

immediately following short�duration rainstorms when the wetting front has not propagated to ~5 319 

cm (Larson et al., 2010).  Estimates of soil moisture from phase have been compared to in situ 320 

soil moisture measurements (Fig. 4).  At grass�dominated sites with relatively low vegetation 321 

water content (<0.5 kg m�2), SNR phase varies linearly with in situ soil moisture (r2>0.876) 322 
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(Larson et al., 2008; and unpublished dataLarson et al., 2010), consistent with the theoretical 323 

analysis by as predicted by Chew et al. (2013).  The vegetation at these sites is typical of many 324 

rangeland areas in the western U.S.US  A SNR interferogram is also affected by higher water 325 

content vegetation, for example that which exists in irrigated agricultural fields (Small et al., 326 

2010). Methods are being developed to retrieve surface soil moisture from SNR interferograms 327 

under these conditions.   328 

One advantage to using geodetic GPS equipment to measure soil moisture is that existing 329 

geodetic networks can provide much needed hydrologic information.  The National Science 330 

Foundation’s Plate Boundary Observatory (PBO) network has more than 1100 stations with 331 

effectively identical GPS instrumentation.  Many of the stations are located amidst complex 332 

topography, which does not facilitate estimation of soil moisture via GPS�IR.  However, soil 333 

moisture is being estimated at 59 stations with relatively simple topography.  The data is are 334 

updated daily and is are available at http://xenon.colorado.edu/portal/.      335 

A second GPS soil moisture sensing method is also under development (Rodriguez�336 

Alvarez et al., 2009).  Similar to Larson et al. (2008), this system measures the interference 337 

pattern resulting from the combination of direct and reflected GPS signals.  A dual polarization 338 

antenna measures power of the vertically� and horizontally�polarized signals separately, which is 339 

not possible using standard geodetic instrumentation.   The satellite elevation angle at which 340 

reflectivity of the vertically�polarized signal approaches zero, i.e.i.e., the Brewster angle, varies 341 

with soil moisture (Rodriguez�Alvarez et al., 2011a).   The existence of this Brewster angle 342 

yields a notch in the interference pattern.  The position of the notch is then used to infer soil 343 

moisture.   344 
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Over a bare soil field, this technique yielded 10 soil moisture estimates over a one month 345 

period; they show good agreement with those measured in situ at a depth of 5 cm (RMSE error < 346 

0.03 m3 m�3) (Rodriguez�Alvarez et al., 2009).  A vegetation canopy introduces additional 347 

notches to the observed interference pattern.  The position and amplitude of these notches can be 348 

used to infer both vegetation height and soil moisture.  This approach yielded excellent estimates 349 

of corn height throughout a growing season (RMSE error = 6.3 cm) (Rodriguez�Alvarez et al., 350 

2011b).  Even beneath a 3�m tall corn canopy, soil moisture estimates typically differed by <0.04 351 

m3 m�3 from those measured with in situ probes at 5 cm.  The main difference between these two 352 

approaches is that the approach of Larson et al. (2008) uses commercially�available geodetic 353 

instrumentation – which typically already exists – and can be simultaneously used to measure 354 

position.  The approach of Rodriguez�Alvarez et al. (2009) uses a system specifically designed 355 

for environmental sensing, but it is not yet commercially�available, .  356 

 357 

����������������������� ����� �������%���&���!'��#����������� ��358 

 Much as the Larson et al. (2008) GPS�IR method repurposes commercially available GPS 359 

receivers to monitor soil moisture, other researchers have sought to develop new soil moisture 360 

monitoring methods using commercially available distributed temperature sensing (DTS) 361 

systems.  In a DTS system, an optical instrument is used to observe temperature along a 362 

continuum of points within an attached optical fiber cable, typically by the principle of Raman 363 

scattering (Selker et al., 2006).  The spatial location corresponding to each temperature 364 

measurement is determined based on the travel time of light in the fiber in a manner analogous to 365 

TDR.  Weiss (2003) pioneered the use of DTS systems for soil moisture monitoring by 366 

successfully demonstrating the potential use of fiber optics to detect the presence of moisture in a 367 
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landfill cover constructed from sandy loam soil.  A 120�V generator supplied current to the 368 

stainless steel sheath of a buried optical fiber cable for ~626 s at a rate of 18.7 W m�1, and the 369 

corresponding spatially variable temperature rise of the cable was observed at 40�s temporal 370 

resolution and 1�m spatial resolution.  Analysis of the temperature rise data using the single 371 

probe method (Carslaw and Jaeger, 1959) resulted in satisfactory estimates of the spatial 372 

variability of soil thermal conductivity along the cable, which in turn reflected the imposed 373 

spatial variability of soil moisture.  However, the temperature uncertainty achieved was ~0.55°C, 374 

and Weiss concluded that without improvements in signal�to�noise ratio, that system would not 375 

be able to resolve small changes in soil moisture above 0.06 m3 m�3 for the sandy loam soil used 376 

in that study. 377 

 The potential of using passive (unheated) DTS methods for soil moisture estimation was 378 

explored by Steele�Dunne et al. (2010).  Optical fiber cable was installed in a tube on the soil 379 

surface and at depths of 8 and 10 cm.  The soil texture was loamy sand, and the vegetation cover 380 

was sparse grass.  With temperatures from the upper and lower cables as time�dependent 381 

boundary conditions, the temperature at the middle cable was modeled by numerical solution of 382 

the 1�D heat conduction equation.  A numerical search routine was used to find the thermal 383 

diffusivity which produced the best agreement between the simulated and observed temperatures 384 

at the 8 cm depth.  The results demonstrated that the passive DTS system could detect temporal 385 

changes in thermal diffusivity associated with rainfall events, but the accuracy of the diffusivity 386 

estimates was hindered by uncertainties about the exact cable depths and spacings.  Furthermore, 387 

deriving soil moisture estimates was complicated by uncertainty and nonuniqueness in the 388 

diffusivity—soil moisture relationship. 389 
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 Sayde et al. (2010) modified the active DTS approach of Weiss (2003) by interpreting the 390 

temperature rise data in terms of cumulative temperature increase, i.e.i.e., the integral of the 391 

temperature rise from the beginning of heating to some specified time limit.  Based on a 392 

laboratory sand column experiment with 2�min, 20 W m�1 heat pulses, they developed an 393 

empirical calibration function which fit the observed cumulative temperature increase (0 to 120 394 

s) versus soil moisture data.  Based on that function and the observed uncertainty in the 395 

cumulative temperature increase data, the uncertainty in the soil moisture estimates would 396 

increase approximately linearly from 0.001 m3 m�3 when soil moisture is 0.05 m3 m�3 to 0.046 m3 397 

m�3 when soil moisture is 0.41 m3 m�3.   Gil�Rodríguez et al. (2012) used the approach of Sayde 398 

et al. (2010) to satisfactorily monitor the dimensions and evolution of the wetted bulb during 399 

infiltration beneath a drip emitter in a laboratory column of sandy loam soil.   400 

Striegl and Loheide (2012) used an active DTS approach to monitor spatial and temporal 401 

dynamics of soil moisture along a 130�m transect associated with a wetland reconstruction 402 

project (Fig. 5).  They used a 10�min, 3 W m�1 heat pulse, a lower heating rate than used in 403 

previous active DTS studies.  They followed Sayde et al. (2010) in adopting a primarily 404 

empirical calibration approach, but rather than cumulative temperature increase, they related soil 405 

moisture to the average temperature rise observed from 380 to 580 s after the onset of heating.  A 406 

calibration function was developed by relating the observed temperature rise data to independent 407 

soil moisture measurements at three points along the transect, and the resulting function had a 408 

RMSE = 0.016 m3 m�3 for soil moisture < 0.31 m3 m�3 but RMSE = 0.05 m3 m�3 for wetter 409 

conditions. Their system successfully monitored field scale spatiotemporal dynamics of soil 410 

moisture at 2�m and 4�h resolution across a 2�month period consisting of marked wetting and 411 

drying cycles (Fig. 6). 412 
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 The passive and active DTS methods for monitoring soil moisture offer the potential for 413 

unmatched spatial resolution (<1 m) in long�term soil moisture monitoring on field scale (>100 414 

m) transects.  These methods may in the near future greatly impact our understanding of the fine�415 

scale spatiotemporal structure of soil moisture and shed new light on the factors influencing that 416 

structure.  Thus far, the active DTS methods have shown more promise than passive DTS, but 417 

more sophisticated data assimilation approaches for interpreting passive DTS data are in 418 

development.  The active DTS method is still in its infancy, and many key issues remain to be 419 

addressed.  None of the active DTS methods developed to date involve spatial variability in the 420 

soil moisture calibration function, so heterogeneity in soil texture and bulk density could give 421 

rise to appreciable uncertainties in field settings.  Field installation of the optical fiber cables at 422 

the desired depths with good soil contact and minimal soil disturbance is also a significant 423 

challenge.  Custom designed cable plows (Steele�Dunne et al., 2010) and commercial vibratory 424 

plows (Striegl and Loheide, 2012) have been used with some success.  The active DTS methods 425 

have demonstrated good precision for low to moderate soil moisture levels, but further 426 

improvements in measurement precision are needed for wet conditions.  Obtaining good quality 427 

temperature measurements using a DTS instrument in the field requires that thermally�stable 428 

calibration baths be included in the system design.  The instrument itself must also be in a 429 

thermally�stable environment because sizeable errors can result from sudden changes in the 430 

instrument temperature (Striegl and Loheide, 2012).   The measurement principles behind DTS 431 

are discussed in more detail by Selker et al. (2006), and practical aspects of DTS, including key 432 

limitations and uncertainties, are described by Tyler et al. (2009).  433 
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  Remote sensing approaches for soil moisture monitoring have been investigated since 436 

the 1970s, although but the first dedicated soil moisture satellitemission, measuring in the L�437 

band range (1�2 GHz), SMOS, was not launched until 2009.  However, sSoil moisture estimates 438 

have been are also being, nonetheless, derived retrieved from other satellite instruments not 439 

specifically designed for sensing soil moisture, most notably from microwave sensors operating 440 

at sub�optimal frequencies.not specifically optimized for soil moisture monitoring.  The 441 

Advanced Microwave Scanning Radiometer for EOS (AMSR�E) instrument was carried into 442 

orbit aboard the US National Aeronautics and Space Administration (NASA) Aqua satellite in 443 

2002 and provided passive measurements in the C�band range (~4�8 GHz)at six dual�polarized 444 

frequencies until October 2011 when a problem with the rotation of the antenna ended the data 445 

stream (Njoku et al., 2003).  Several different retrieval algorithms have been developed to 446 

retrieve soil moisture from the lowest two frequencies (6.9, 10.6 GHz) observed by AMSR�E 447 

(e.g., Owe et al, 2001; Njoku et al 2003). Soil moisture information is also being retrieved from 448 

active microwave sensors, specifically from Following the launch of AMSR�E, theESA’s 449 

launched the Advanced Scatterometer (ASCAT), which was launched in  in 2006 aboard the 450 

MetOp�A meteorological satellite (and before that from ASCAT’s predecessors, the ERS 451 

satellites).  The ERS and The ASCAT instruments areis aC�band radar scatterometers designed 452 

for measuring wind speed; however soil moisture retrievals have also been developed (Bartalis et 453 

al., 2007Wagner et al., 1999).  An operationally�supported, remotely�sensed soil moisture 454 

product derived from the ASCAT instrument is currently available (Wagner et al., 2013).  455 

Wagner et al. (2007) provided an excellent review of then�existing satellite remote sensing 456 

approaches for soil moisture; here we focus on two newer satellite approaches and one airborne 457 

approach. 458 
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The Soil Moisture and Ocean Salinity mission (Kerr et al., 2010), an Earth Explorer 461 

Opportunity mission, was successfully launched on November 2, 2009, and successfully 462 

cconcluded its commissioning phase in May 2010. It was developed under the leadership of the 463 

European Space Agency (ESA) with the Centre National d’Etudes Spatiales (CNES) in France 464 

and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. 465 

Microwave radiometry at low frequencies is an established technique for estimating 466 

surface soil moisture with an adequate sensitivity. The choice of L�band as the spectral range in 467 

which to operate was determined from a large number of studies that demonstrated L�band has 468 

high sensitivity to changes of moisture in the soil (Schmugge and Jackson, 1994) and salinity in 469 

the ocean (Lagerloef, 2001). Furthermore, observations at L�band are less susceptible to 470 

attenuation due to the atmosphere or the vegetation than measurements at higher frequencies 471 

(Jackson and Schmugge, 1989; Jackson and Schmugge, 1991). L�band also enables a larger 472 

penetration depth into the surface soil layer than is possible with shorter wavelengths 473 

(Escorihuela et al., 2010). 474 

Even though the L�band radiometry concept was demonstrated early by a space 475 

experiment (SKYLAB) back in the 1970’s, no dedicated space mission followed because 476 

achieving a suitable ground resolution (≤ 50�60 km) required a prohibitive antenna size (≥ 4 8 477 

m). The so�called interferometry design, inspired from the very large baseline antenna concept 478 

(radio astronomy), made such a venture possible. Interferometry was first put forward in the 479 

1980’s (Levine, 1988) and validated with an airborne prototype (Levine et al., 1994; Levine et 480 

al., 1990).  The idea consists of deploying an array of small receivers in space (located 481 

���������	�����������������������������
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ondistributed along a  a deployable structure) that folds for launch then unfolds in orbit.  This 482 

approach enables reconstruction of, then reconstructing a brightness temperature (�) field with a 483 

resolution corresponding to the spacing between the outmost receivers.  The two�dimensional 484 

interferometer allows measuring � at several incidence angles, with full polarization. Such an 485 

instrument instantaneously records a whole scene; as the satellite moves, a given point within the 486 

2D field of view is observed from different view angles. The series of independent 487 

measurements allows retrieving surface parameters with much improved accuracy. 488 

The baseline SMOS payload is thus an L�band (1.413 GHz, 21 cm � located within the 489 

protected 1400�1427 MHz band) 2D interferometric radiometer designed to provide accurate soil 490 

moisture data with moderate spatial resolution.  The radiometer that is Y shaped with three 4.5 m 491 

arms as shown in Figure 7.�SMOS is on a sun� synchronous (6 a.m. ascending) circular orbit and 492 

measures the � brightness temperature emitted from the Earth at L�band over a range of 493 

incidence angles (0 to 55º) across a swath of approximately 1000 km (covering the globe twice 494 

in less than 3 days) with a spatial resolution of 35 to 50 km (average is 43 km) and a maximum 495 

revisit time of three days for both ascending and descending passes (Kerr et al., 2001; Kerr et al., 496 

2010).  A retrieval algorithm incorporating an L�band microwave emission forward model is 497 

applied to the � data to estimate soil moisture (Kerr et al., 2012).).  498 

The SMOS mission originated from recognition of the need for accurate, global, soil 499 

moisture monitoring from space. Short wave radiation instruments were quickly discarded 500 

because of poor sensitivity and the negative impact of cloud cover (Kerr, 2007).  Use of thermal 501 

infra�red also suffered complications due to the need for accurate knowledge of forcings (Kerr, 502 

2007). Radars and synthetic aperture radar (SAR) typically suffer from low temporal resolution, 503 

often compensated by a high spatial resolution. Another limitation of these active techniques is 504 
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linked to the difficulty in separating the surface roughness contribution from that of soil 505 

moisture, often requiring the “change detection approach” (Moran et al., 1998; Moran et al., 506 

2002). Another possibility is to use scatterometers which are characterized by a lower spatial 507 

resolution but higher temporal resolution adequate for water budget monitoring. The European 508 

Remote Sensing Satellite 1 (ERS�1), European Remote Sensing Satellite 2 (ERS�2), and then 509 

MetOp scatterometers offered such opportunities (Magagi and Kerr, 1997a; Magagi and Kerr, 510 

1997b; Magagi and Kerr, 2001; Wagner et al., 2007) relying on a change detection approach, and 511 

thus not delivering absolute values. Consequently, it seemed logical to investigate passive 512 

microwaves at low frequencies as the ultimate approach to infer soil moisture from space with 513 

the caveat of lower spatial resolution. Interferometry was first put forward by D. LeVine et al. in 514 

the 1980’s (the ESTAR project) and validated with an airborne prototype (Le Vine et al., 1994; 515 

Le Vine et al., 1990). In Europe, an improved concept was next proposed to the European Space 516 

Agency (ESA): the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) concept 517 

(Goutoule, 1995). This concept has now materialized into the SMOS mission. 518 

The SMOS data have demonstrated good sensitivity and stability.  The data quality was 519 

sufficient to allow the production – from an interferometer – of prototype global surface soil 520 

moisture maps within one year after launch. It was the first time ever such maps were obtained.  521 

Initially, the accuracy was relatively poor and many retrievals were not satisfactory. The data 522 

were much impaired by radio frequency interference (RFI) leading to degraded measurements in 523 

several areas including parts of Europe and China (Oliva et al., 2012).  With the help of the 524 

SMOS team, ESA and CNES took actions to reduce RFI.Actions have since been taken by ESA 525 

and CNES to reduce RFI.  Specific RFI sources are now identified and localized thentheir 526 

locations are provided to ESA personnel who interact directly with the appropriate national 527 
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agencies. These efforts have resulted in over 215 powerful and persistent RFI sources 528 

disappearing, including the US Defense Early Warning System in Northern Canada and many 529 

sources in Europe. Unfortunately, the remaining number of sources in some countries is large. 530 

While RFI reduction and retrieval algorithm improvements efforts were ongoing, first 531 

attempts to use SMOS data in a variety of applications were investigated.  The first topic 532 

wasefforts to validate the SMOS soil moisture retrievals began against in situ measurements, 533 

model outputs or other remote sensing platforms.  In one of the first SMOS validation studies, 534 

locally�calibrated relationships between surface soil moisture and microwave � allowed 535 

estimation of surface soil moisture from SMOS � with RMSE values ranging from 0.03 to 0.12 536 

m3 m�3 when compared to the 5 cm soil moisture data from eleven stations of the SMOSMANIA 537 

in situ network in France (Albergel et al., 2011).  A subsequent study using 16 stations in the 538 

SMOSMANIA network and a different SMOS soil moisture retrieval produced RMSE values 539 

ranging from 0.03 to 0.08 m3 m�3 (Parrens et al., 2012).  Across four in situ networks in the US 540 

that are approximately the size of the SMOS footprint, Jackson et al. (2012) found RMSE values 541 

for SMOS ranging from 0.03 to 0.07 m3 m�3.  Collow et al. (2012) evaluated SMOS soil moisture 542 

retrievals against in situ soil moisture observations in Oklahoma and in the northern US and 543 

found a consistent dry bias, with SMOS soil moisture values ranging from 0.00 to 0.12 m3 m�3 544 

lower than the in situ data from the 5 cm depth.  In the northern US, RFI from the Defense Early 545 

Warning System contributed to the bias.  A dry bias for SMOS was also found by Al Bitar et al. 546 

(2012) using data from NRCS SCAN and SNOTEL in situ networks and by Albergel et al. 547 

(2012a) using data from in situ stations around the world.  U nderstanding the causes of the 548 

apparent underestimation of surface soil moisture by SMOS These efforts showed that SMOS 549 

soil moisture retrievals equaled or surpassed the best techniques previously available with ample 550 
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room for improvements (Al Bitar et al., 2012; Albergel et al., 2012a; Bircher et al., 2012; 551 

Jackson et al., 2012; Kerr et al., 2012; Leroux et al., 2012; Mecklenburg et al., 2012; Rahmoune 552 

et al., 2012; Schwank et al., 2012). in these studies is an important area of ongoing research. 553 

Floods in Pakistan occurring just after the end of the commissioning phase proved that 554 

SMOS was able to track such events in spite of the complex topography. The floods in the US 555 

during spring 2011 were clearly seen in the SMOS data, as well as the related human activities 556 

such as levee bursting. Most of the large flood events occurring since launch have been 557 

monitored, and SMOS has shown its ability to provide information quickly and regularly, not 558 

being hindered by either cloud cover or revisit time, at the cost of a spatial resolution which is 559 

lower than optimal for this application. In several cases, the arrival of intensive rains (Yasi 560 

Huricane in Australia for instance) SMOS data enabled anticipation of flooding risks as a 561 

function of soil wetness prior to the rains.  562 

Currently intensive work is underway to improveOne of the primary challenges in using 563 

SMOS soil moisture data is that the spatial support volume, roughly 40 km X 40 km X 5 cm, is 564 

not ideal for some applications.  Significant horizontal spatial variability in soil moisture is likely 565 

to occur within a SMOS footprint.  This sub�footprint scale soil moisture variability can 566 

significantly influence catchment runoff responses (e.g. Zehe et al., 2005) and simulation of 567 

latent heat flux in a land surface model (e.g. Alavi et al., 2010; Li and Avissar, 1994).  Some 568 

progress has been made toward deriving accurate soil moisture estimates with higher spatial 569 

resolution by using SMOS data together with other data sources. the spatial resolution of the 570 

SMOS retrievals  By combining SMOS data with data from the Moderate Resolution Imaging 571 

Spectroradiometer, surface soil moisture estimates with 4�km resolution (Merlin et al., 2010) and 572 

1�km resolution (Merlin et al., 2012; Piles et al., 2011) have been developed. with good success 573 
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using disaggregation techniques (Merlin et al., 2010; Merlin et al., 2012).   Further work is 574 

needed to refine and validate these higher resolution surface soil moisture estimates and to 575 

expand their spatial coverage beyond limited test areas. 576 

Current activities are also devoted to the estimation of water in the entire root zone with some 577 

success, to inferring a drought index, as well as to the possibilities of using SMOS for routing 578 

modeling (Pauwels et al., 2012) and for correcting space estimates of rainfall over land. Work to 579 

address science challenges affecting the SMOS data is also ongoing (Kerr et al., 2012). One may 580 

cite for instance improving knowledge of water bodies and their temporal evolution, modeling of 581 

forests, improving knowledge of soil texture on a global basis and – of course – general 582 

instrument calibration issues. Other current efforts are devoted to improving the auxiliary data 583 

sets used in retrievals (e.g. snow and frozen soils) as well as improving underlying models (e.g. 584 

dielectric permittivity, forest emissions, etc…).  585 

Currently, SMOS data is freely available from different sources, depending on the type (or 586 

Level) of data required.  Level 1 (�brightness temperatures) and Level 2 (ocean salinity over 587 

oceans or soil moisture/ vegetation opacity over land) data are available from ESA. The data is 588 

provided in swath mode (half orbits from pole to pole) in BinHex format and on the ISEA 49H 589 

grid. These Levels are available through the ESA ((https://earth.esa.int/web/guest/missions/esa�590 

operational�eo�missions/SMOS).  Level 3 data consist of composited data over either one day 591 

(i.e.i.e., all the Level 2 data of one day in the same file), three days, ten days, or one month and 592 

over the globe (either morning or afternoon passes) for soil moisture and vegetation opacity. 593 

Over oceans the sampling is either daily or monthly. Level 3 data are available from the Centre 594 

Aval De Traitement des données SMOS (CATDS) through an ftp site 595 

(ftp://eftp.ifremer.fr/catds/cpdc; write to support@catds.fr to get access).  The data is provided in 596 
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NetCDF format on the EASE grid (25km sampling). Other soil moisture products (root zone soil 597 

moisture, drought indices, etc…) will soon be available from the same site.  Finally, theThe 598 

implementation of these Level 3 products is expected tomay bring significant improvements, 599 

particularly in the vegetation opacity retrieval using temporal information (Jacquette et al., 600 

2010). Figure 8 shows a typical monthly Level 3 soil moisture product.  Note that the SMOS 601 

surface soil moisture maps are global in extent but contain gaps where no soil moisture retrieval 602 

is currently possible.  These gaps are associated with RFI, steep topography, dense vegetation, 603 

snow cover, or frozen soils.  604 

 605 

After the successful launch of SMOS, Aquarius was successfully launched on June 10 606 

2011 and SMAP (see below) is scheduled to launch in 2014. These NASA missions are in a way 607 

complementary to SMOS and should also bring their yield of good results.  New breakthroughs 608 

are expected either using single instrument measurements or, more likely, through synergisms 609 

with other sensors either in the optical/thermal infra�red range or with active/ passive microwave 610 

sensors. But, a lingering challenge remains. How to achieve better temporal and spatial sampling 611 

of the globe for soil moisture? The simplest approach relies on dis�aggregation techniques.  612 

These techniques use data from high resolution sensors to distribute soil moisture as measured by 613 

an interferometer, and successful results have been already obtained (Merlin et al., 2010; Merlin 614 

et al., 2005; Merlin et al., 2012).  Recognizing the challenge of improving spatial resolution, 615 

CNES has initiated research activities whose goal is to develop a new mission which would 616 

fulfill all the SMOS requirements but with a ten times better spatial resolution and an improved 617 

sensitivity (factor of three for salinity applications), paving the way to more applications in water 618 

resources management, coastal area monitoring, basin hydrology or even thin sea ice monitoring 619 
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(Kaleschke et al., 2012). The concept, named SMOSNEXT, is based of merging spatial and 620 

temporal 2D interferometry and is currently undergoing phase 0 at CNES with a proof of concept 621 

experiment funded by the R&D program. 622 

���������������"��*��+�#���*����������(����)�623 

The NASA Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010) is 624 

scheduled to launch in October 2014.  Like SMOS, the SMAP mission will utilize L�band 625 

measurements to determine surface soil moisture conditions, but SMAP will feature both active 626 

and passive L�band instruments, unlike SMOS which relies on passive measurements alone.  The 627 

SMAP measurement objective is to provide frequent, high�resolution global maps of near�628 

surface soil moisture and freeze/thaw state. These  measurements willwill greatly improve play a 629 

role in improving  estimates of water, energy and carbon fluxes between the land and 630 

atmosphere.  Observations of the timing of freeze/thaw transitions over boreal latitudes will may 631 

help reduce major uncertainties in quantifying the global carbon balance.  The SMAP soil 632 

moisture mission requirement is to provide estimates of soil moisture at 10 km spatial resolution 633 

in the top 5 cm of soil with an error of no greater than 0.04 cm3 cm�3 at three�day average 634 

intervals over the global land area, excluding regions of snow and ice, frozen ground, 635 

mountainous topography, open water, urban areas, and vegetation with water content greater 636 

than 5 kg m�2 (averaged over the spatial resolution scale). This level of performance will enable 637 

SMAP to meet the needs of hydrometeorology and hydroclimate applications. 638 

The SMAP spacecraft (Fig. 9) will carry two L�band microwave instruments:  a non�639 

imaging synthetic aperture radar operating at 1.26 GHz and a digital radiometer operating at 1.41 640 

GHz.  The instruments share a rotating 6�meter offset�fed mesh reflector antenna that sweeps out 641 

a 1000 km�wide swath.  The spacecraft will operate in a 685�km polar orbit with an 8�day 642 
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repeating ground track. The instrument is designed to provide high�resolution and high�accuracy 643 

global maps of soil moisture at 10 km resolution and freeze/thaw state at 3 km resolution, every 644 

two towith a maximum revisit time of three days using combined active (radar) and passive 645 

(radiometer) instruments. The radiometer incorporates radio�frequency interference (RFI) 646 

mitigation features to protect against RFI from man�made transmitters.  The radiometer is 647 

designed to provides high accurate soil moisture data accuracy at moderate spatial resolutions 648 

(40 km) by measuring microwave emission from the surface. The emission is relatively 649 

insensitive to surface roughness and vegetation as compared to the radar. The radar measures 650 

backscatter from the surface with high spatial resolution (1–3 km in high resolution mode), but is 651 

more influenced by roughness and vegetation than the radiometer. The combined radar and 652 

radiometer measurements are expected to provide soil moisture accuracy approaching 653 

radiometer�based retrievals but with intermediate spatial resolution approaching radar�based 654 

resolutions. Thus, the driving aspects of SMAP’s measurement requirements include 655 

simultaneous measurement of L�band �brightness temperature and backscatter with a three�day 656 

revisit and high spatial resolution (40 km and 3 km, respectively). The combined SMAP soil 657 

moisture product will be produced at 10�km resolutionoutput on a 9�km grid. Significant 658 

progress has been made towards developing a suitable soil moisture retrieval algorithm for 659 

merging the SMAP radiometer and radar data (Das et al., 2011). 660 

The planned data products for SMAP are being developed by the SMAP project and 661 

Science Definition Team and include: Level 1B and 1C instrument data (calibrated and 662 

geolocated radar backscatter cross sections and radiometer �brightness temperatures); Level 2 663 

geophysical retrievals of soil moisture; Level 3 daily composites of Level 2 surface soil moisture 664 

and freeze/thaw state data; and Level 4 value�added data products that are based on assimilation 665 
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of SMAP data into land surface models.  The SMAP Level 1 radar data products will be archived 666 

and made available to the public by the Alaska Satellite Facility in Fairbanks, AK, while the 667 

Level 1 radiometer and all higher level products will be made available by the National Snow 668 

and Ice Data Center in Boulder, CO.  669 

The Level 4 products will support key SMAP applications and address more directly the 670 

driving science questions of the SMAP mission.  SMAP L�band microwave measurements will 671 

provide direct sensing of surface soil moisture in the top 5 cm of the soil column. However, 672 

several of the key applications targeted by SMAP require knowledge of root zone soil moisture 673 

(RZSM) in the top 1 m of the soil column, which is not directly measured by SMAP. The SMAP 674 

Level 4 data products are designed to fill this gap and provide model�based estimates of root 675 

zone soil moistureRZSM that are informed by and consistent with assimilated SMAP surface 676 

observations.  The Level 4 algorithm will use an ensemble Kalman filter to merge SMAP data 677 

with soil moisture estimates from the NASA Catchment land surface model (Reichle et al., 678 

2012).. Error estimates for the Level 4 soil moisture product will be generated as a by�product of 679 

the data assimilation system. A Level 4 carbon product will also be produced that utilizes daily 680 

soil moisture and temperature inputs with ancillary land cover classification and vegetation gross 681 

primary productivity (GPP) inputs to compute the net ecosystem exchange (NEE) of carbon 682 

dioxide with the atmosphere over northern (> 45°N latitude) vegetated land areas. The NEE of 683 

carbon dioxide with the atmosphere is a fundamental measure of the balance between carbon 684 

uptake by vegetation GPP and carbon losses through autotrophic and heterotrophic respiration. 685 

The SMAP Level 4 carbon product will provide regional mapped measures of NEE and 686 

component carbon fluxes that are within the accuracy range of tower�based eddy covariance 687 

measurement approaches.    688 
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���%�������"��,#*���%���*#���$��-���%"#��'$�#�&���%���-#"����������(�������)�689 

Current estimates of NEE at regional and continental scales contain such important 690 

uncertainties that amongst the 11 or so models tested there could be differences of 100 percent or 691 

more, and it is not always clear whether the North American ecosystem is a net sink or source for 692 

carbon (Denning et al., 2005; Friedlingstein et al., 2006).  Root zone soil moisture (RZSM) is 693 

widely accepted to have a first�order effect on NEE (e.g. Law et al., 2002Suyker et al.,2003), yet 694 

RZSM measurements are not often available with spatial or temporal extent necessary for input 695 

into regional or continental scale NEE models.  Unlike the L�band missions, SMOS and SMAP, 696 

which measure surface soil moisture, the AirMOSS mission is designed to measure RZSM 697 

directly.  The hypothesis of the NASA�funded AirMOSS project is that integrating spatially and 698 

temporally resolved observations of root zone soil moistureRZSM into ecosystem dynamics 699 

models can significantly reduce the uncertainty of NEE estimates and carbon balance estimates.   700 

The AirMOSS plan is to provide measurements to estimate RZSM using an ultra�high 701 

frequency (UHF – also referred to as P�band) airborne radar, over representative sites of the nine 702 

major North American biomes (Fig. 10).  These include: boreal forest (Biome 1); temperate 703 

grassland and savanna shrublands (Biome 5); temperate broadleaf and mixed forest (Biome 2); 704 

temperate conifer forest east (Biome 3); temperate conifer forest west (Biome 4); Mediterranean 705 

woodlands and shrublands (Biome 6); arid and xeric shrublands (Biome 7); tropical and 706 

subtropical dry forest (Biome 8); and tropical and subtropical moist forest (Biome 9).  These 707 

radar observations will be used to retrieve root zone soil moistureRZSM, which along with other 708 

ancillary data, such as topography, land cover, and various in�situ flux and soil moisture 709 

observations, will provide the first comprehensive data set for understanding the processes that 710 
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control regional carbon and water fluxes.  The public access web site for the AirMOSS project is 711 

http://airmoss.jpl.nasa.gov/. 712 

The airborne P�band radar system, flown on a NASA Gulfstream III aircraft, has a flight 713 

configuration over the experimental sites of typically 100 km by 25 km made up of four flight 714 

lines (Fig. 11).  This represents an intermediate footprint between the flux tower observations (on 715 

the order of 1 km) and regional to continental scale model simulations.  It should be noted that 716 

each Each AirMOSS flux site also has a hydrologic modeling domain of on the order of 100 km 717 

by 100 km that will be populated with the corresponding ancillary data sets to allow flexibility in 718 

the flight line design.  The hydrologic simulation domain is determined based on maximizing the 719 

overlap of full watersheds with the actual flight domain.  These watersheds are to be simulated 720 

using the fully distributed, physically�based finite element model PIHM (Penn State Integrated 721 

Hydrologic Model) (Qu and Duffy, 2007; Kumar et al., 2010).  Carbon dioxide modeling will be 722 

performed using the Ecosystem Demography (ED2) model (Moorcroft et al., 2001).  Each 723 

AirMOSS site has flux tower measurements for water vapor and carbon dioxide made using an 724 

eddy covariance system.   725 

The P�band radar operates in the 420 to 440 MHz frequency range (70 cm), with a longer 726 

wavelength than typically used in the L�band missions such as SMOS or the upcoming U.S.US 727 

SMAP mission (next section).  Previous studies using similar wavelengths have shown that 728 

RZSM can be computed with an absolute accuracy of better than 0.05 m3 m�3 and relative 729 

accuracy of 0.01 to 0.02 m3 m�3 through a canopy of up to 120 Mg ha�1 and to soil depths of 50 to 730 

100 cm, depending on the vegetation and soil water content (Moghaddam et al., 2000; 731 

Moghaddam 2009).  This P�band radar system has evolved from the existing Uninhabited Aerial 732 

Vehicle Synthetic Aperture Radar (UAVSAR) subsystems, including the radio frequency 733 
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electronics subsystem (RFES), the digital electronics subsystem (DES), the power subsystem, 734 

and the differential GPS subsystem.  In fact, the P�band radar system is mounted within the 735 

UAVSAR platform pod on the NASA Gulfstream III thereby negating the requirement for 736 

additional air�worthiness trials.  The radar backscatter coefficients are available at both 0.5 arc�737 

second (approximately 15 m, close to the fundamental spatial resolution of the radar) and at 3 738 

arc�second (approximately 100 m), and the retrieved root zone soil moistureRZSM maps will be 739 

at 3 arc�second resolution.   740 

AirMOSS flight operations began in Fall of 2012, and all sites in North America except 741 

the tropical sites (Chamela, Mexico and La Selva, Costa Rica) and the woody Savanna site 742 

(Tonzi Ranch, CA) were flown.  These P�band data are currently undergoing initial calibration.  743 

However, aA three�band raw data image showing the spatial variation of soil moisture over the 744 

Metolius, Oregon site, along with soil roughness and vegetation effects which have not yet been 745 

removed, is shown in Fig. 12.   746 

 747 

��	����������
����
���	�����
��	
�����.�	/��748 

 Soil moisture networks with spatial extents of >1002 km2 are well�suited for monitoring 749 

the meteorological scale of soil moisture spatial variability as defined by Vinnikov et al. (1999) 750 

because atmospheric forcings often exhibit spatial autocorrelation lengths of 100s of km.  These 751 

large�scale networks are also appropriate for studies related to basin�scale hydrology and meso�752 

scale meteorology.  Numerous smaller networks exist worldwide with spatial extents <1002 km2, 753 

both within and outside the US.  For example, the USDA Agricultural Research Service (ARS) 754 

has developed several soil moisture networks to enhance their experimental watershed program.  755 

Locations include the Little Washita in Oklahoma, Walnut Gulch in Arizona, Reynolds Creek in 756 
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Idaho, and Little River in Georgia (Jackson et al., 2010). The smaller scale networks are often 757 

well�suited for watershed�scale hydrologic studies.  A recent surge in the creation of these 758 

smaller�scale networks has been driven by the need to validate soil moisture estimates from 759 

satellites such as SMOS and SMAP.  A partial list of current and planned soil moisture networks 760 

with spatial extents <1002 km2 was provided by Crow et al. (2012). 761 

�#� ���"#��������������������,��0������1�������&���#����762 

Large�scale soil moisture networks in the U.S.US are currently currently operating in a 763 

variety of configurations at both national and state levels (Fig. 13, Table 1).  In 1981, the Illinois 764 

Water Survey began a long term program to monitor soil moisture in situ (Hollinger and Isard, 765 

1994; Scott et al., 2010).  This network was limited by its use of neutron probes, which required 766 

significant resources to operate and maintain.  These neutron probes were used to measure soil 767 

moisture as frequently as twice a month.  These stations were collocated with the Illinois Climate 768 

Network stations as the Water and Atmospheric Resources Monitoring Program and ultimately 769 

totaled 19 stations with measurements from the surface to a depth of 2 m.  Beginning in 1998, 770 

these stations were converted to continuously monitor soil moisture using dielectric sensors 771 

(Hydra Probe, Stevens Water Monitoring Systems, Inc., Portland, OR), providing regular 772 

statewide estimates of soil moisture. 773 

The next network to develop was in Oklahoma, which has become an epicenter ofa focal 774 

point for mesoscale weather and climate research. The Oklahoma Mesonet was launched in 1991 775 

and became fully operational in 1994, now consisting of 120 stations, with at least one station in 776 

each county of Oklahoma (Brock et al., 1995; McPherson et al., 2007).  Each station hosts a suite 777 

of meteorological measurements, including air temperature, wind speed and direction, air 778 

pressure, precipitation, and soil temperature.  These stations monitor soil matric potential using 779 
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heat dissipation sensors (CS�229, Campbell Scientific, Inc., Logan, UT) at the 5 cm, 25 cm, and 780 

60 cm depths, with archived data from the 75 cm depth available for some sites.  These matric 781 

potentials can be converted to soil moisture estimates via site� and depth�specific water retention 782 

curves (Illston et al., 2008).  Recent improvement in the accuracy of the water retention curve 783 

parameters resulted in a field�validated, network�wide accuracy for the soil moisture data of 784 

±0.053 m3 m�3 (Scott et al., in review).  Also distributed through Oklahoma is a network of 785 

stations belonging to the Southern Great Plains (SGP) site of the US Department of EnergyOE  786 

Atmospheric Radiation Measurement (ARM) Program (Schneider et al., 2003).  This network 787 

uses the same type of sensor as the Oklahoma Mesonet.  This network began in 1996 and spans 788 

portions of Oklahoma and Kansas.  There are a variety of facilities administered by the ARM�789 

SGP site including a large central facility, as well as extended and boundary facilities, hosting a 790 

variety of meteorological, surface, and soil profile measurements.  791 

While the Oklahoma Mesonet was being developed, the USDA Natural Resource 792 

Conservation Service (NRCS) began a pilot soil moisture/soil temperature project to monitor 793 

these parameters on a national scale.  This project developed into the Soil Climate Analysis 794 

Network (SCAN network,), which now numbers approximately 180 stations across the U.S.US 795 

(Schaefer et al., 2007).  This network has a standardized depth profile of Hydra Probe sensors at 796 

5, 10, 20, 50, and 100 cm.  A similar network to SCAN is the Climate Reference Network 797 

(CRN), operated by the National Oceanic and Atmospheric Administration (NOAA) National 798 

Climatic Data Center (Palecki and Groisman, 2011).  This network commissioned 114 stations to 799 

provide a national scale weather and climate monitoring network.  Soil moisture sensors are 800 

being added to these stations currently based on the SCAN configuration (Hydra Probes at 5, 10, 801 

20, 50, and 100 cm), but three profiles of sensors are installed at each site providing data in 802 
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triplicate for each depth.  In addition to soil moisture, standard weather variables such as air 803 

temperature, solar radiation, precipitation, and wind speed are also collected.  804 

A number of other state�wide or large�scale networks have been developed since the mid 805 

1990s.  In 1998, the High Plains Regional Climate Center added soil moisture sensors to 14 806 

Automated Weather Data Network (AWDN) stations in Nebraska.  Since then sensors have been 807 

added to other stations, so now there are 53 stations throughout the state monitoring soil moisture 808 

on an hourly basis.  These stations monitor soil moisture using impedance sensors (Theta Probe 809 

ML2x, Delta�T Devices, Ltd., Cambridge, UK) at depths of 10 cm, 25 cm, 50 cm, and 100 cm 810 

(Hubbard et al., 2009). 811 

The North Carolina Environment and Climate Observing Network (ECONet) has been in 812 

operation since 1999 when 27 stations were instrumented with Decagon ECHO probes (Weinan 813 

et al., 2012).  In 2003, these stations were converted to Theta Probe sensors and the network was 814 

expanded to 37.  Unlike most other networks, this network does not have a near�surface 815 

measurement depth as these data are collected only at a 20 cm depth.  The West Texas Mesonet 816 

was initiated by Texas Tech University in 1999 and currently monitors soil moisture at 53 817 

stations at depths of 5 cm, 20 cm, 60 cm, and 75 cm using water content reflectometers (615, 818 

Campbell Scientific, Inc., Logan, UT) (Schroeder et al., 2005).  In addition the network monitors 819 

wind information, atmospheric pressure, solar radiation, soil temperature, precipitation, and leaf 820 

wetness.  The Georgia Automated Environmental Monitoring Network began in 1991 821 

(Hoogenboom, 1993) and has since grown to include 81 stations.  Soil moisture sensors have 822 

been added to these stations at a depth of 30 cm for the purpose of agricultural and 823 

meteorological monitoring.  The newest large�scale soil moisture networks in the US are the 824 

COSMOS and GPS�IR networks described in preceding sections of this manuscript.  Additional 825 
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networks are on the horizon as well, including the National Ecological Observatory Network 826 

(NEON) which will operate study sites in 20 eco�climatic domains throughout the U.S.US in the 827 

coming years (Keller et al., 2008).  828 

�#� ���"#��������������������,��0�������&���1�������&���#����829 

In recent years, several large�scale soil moisture monitoring networks have been 830 

established outside of the US, either serving research purposes, supporting natural hazard 831 

forecasting, or being an integrative part of meteorological observing systems (e.g., Calvet et al., 832 

2007). Table 1 gives an overview of known large�scale networks that are currently measuring 833 

soil moisture on an operational or quasi�operational basis.  No active network outside the US has 834 

a spatial extent as large as that of the US national networks, but several have spatial extents and 835 

densities comparable to the state level networks in the US.  Worth mentioning are theSome 836 

networks, such as those in France and Mongolia, that were installed for validating satellite soil 837 

moisture missions, and thus have a setup that allows for representing as accurately as possible 838 

soil moisture variations at the spatial scale of a satellite footprint.  839 

The networks described in the previous section have each been designed to meet different 840 

research and operational objectives, and this has resulted in a large variety of measurement 841 

setups and techniques, available metadata, data access points, and distribution policies. The first 842 

action to offer a centralized access point for multiple, globally available in�situ soil moisture data 843 

sets was the Global Soil Moisture Data Bank (GSMDB; Robock et al., 2000; Robock et al., 844 

2005). The GSMDB collected data sets existing at that time but did not perform any 845 

harmonization of variables or data formats. The first international initiative addressing the latter 846 

has been FLUXNET (Baldocchi et al., 2001), a “network of networks” dedicated to monitor 847 

land�atmosphere exchange of carbon, energy, and water. Unfortunately, within FLUXNET soil 848 
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moisture is not measured at all sites while, more importantly, practical use of soil moisture data 849 

from FLUXNET is severely hampered by restricted accessibility and the large time gap between 850 

acquisition of the data and making them available to the science community. 851 

In 2009, the International Soil Moisture Network (ISMN; http://ismn.geo.tuwien.ac.at/) 852 

was initiated to overcome the issues of timeliness in data delivery, accessibility, and 853 

heterogeneity of data (Dorigo et al., 2011a; Dorigo et al., 2011b). This international initiative is a 854 

result of the coordinated efforts of the Global Energy and Water Cycle Experiment (GEWEX)  in 855 

cooperation with the Group of Earth Observation (GEO) and the Committee on Earth 856 

Observation Satellites (CEOS) to support calibration and validation of soil moisture products 857 

from remote sensing and land surface models, and to advance studies on the behavior of soil 858 

moisture over space and time. The decisive financial incentive was given by the European Space 859 

Agency (ESA) who considered the establishment of the ISMN critical for optimizing the soil 860 

moisture products from the SMOS mission. 861 

The ISMN collects and harmonizes ground�based soil moisture data sets from a large 862 

variety of individually operating networks and makes them available through a centralized data 863 

portal.  Currently, the database contains almost 6000 7000 soil moisture data sets from almost 864 

1500more than 1600  sites, distributed among 37 40 networks worldwide (Fig. 14).  Not all the 865 

networks are still active. Also, the data sets contained in the former GSMDB were harmonized 866 

and transferred into the ISMN. It should be noted that not all networks are still active.  867 

Recently, several updates of the ISMN system were performed to keep up with the 868 

increasing data amount and traffic, and to meet the requirements of advanced users. Many 869 

datasets from operational networks (e.g., SCAN, the US Climate Reference Network, SWEX 870 

Poland, and ARM) are now assimilated and processed in the ISMN on a fully automated basis in 871 
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near�real time. In addition, an enhanced quality control system is currently being implemented 872 

(Dorigo et al., 2013) while novel methods are being explored to obtain objective measures of 873 

reliability and spatial representativeness of the various sites (Gruber et al., 2013). 874 

�1#���� ���#�&��''�����������	��#��&�����#� ���"#��������������������,��0��875 

The steadily increasing number of soil moisture monitoring stations goes hand in hand 876 

with the growing awareness of the role of soil moisture in the climate system. Nevertheless, Figs. 877 

14 and 15 show that the current stations are concentrated geographically and mainly represent a 878 

limited number of climate classes in temperate regions. The number of permanent soil moisture 879 

stations is still very limited in the tropics (A category), dry areas (Bw classes), and in high 880 

latitude areas (Dfc and E classes). Especially in the latter the hydrological cycle is not yet well 881 

understood, and these regions are expected to be particularly sensitive to climate change. Thus, 882 

international efforts should concentrate on expanding networks in these areas.  883 

However, the major challenge is not only to setup new networks but also to keep them 884 

operational in the future. Since many networks heavily rely on project funding, their continuation 885 

is typically only guaranteed for the lifetime of the project.  Thus, internationally coordinated 886 

effort should focus on developing mechanisms for continued financial and logistical support.  887 

One of such mechanisms may be the development of a soil moisture component as part ofis the 888 

integration of the ISMN into the Gglobal Tterrestrial Nnetwork for Hhydrology (GTN�H) 889 

envisaged by the GCOS Global Climate Observing System (GCOS, 2010). The task of such a 890 

network should go beyond the achievements of the ISMN and also define standards for the 891 

measurements themselves in order to guarantee the consistency between sites. Alsoternatively, 892 

the integration of soil moisture monitoring sensors into existing operational meteorological 893 

stations would may increase the probability for continued operation. 894 
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      Another significant challenge for in situ networks is defining standards for the 895 

measurements themselves in order to enhance the consistency between sites.  Best practices for 896 

sensor calibration, installation, and in situ validation, as well as data quality control procedures 897 

and data archiving and retrieval standards need to be developed.  The Automated Weather Data 898 

Network in Nebraska (Hubbard et al., 2009), the Oklahoma Mesonet (Illston et al., 2008), and 899 

the ISMN (Dorigo et al., 2013) have documented, automated quality control procedures in place 900 

which may prove useful for other networks.  The Oklahoma Mesonet soil moisture network has 901 

also been subjected to in situ validation by soil sampling (Illston et al., 2008; Scott et al. in 902 

review), allowing quantitative estimates of the accuracy of the soil moisture data.  Calibration 903 

and validation are two separate and necessary steps in measurement.  Calibration here means 904 

developing a relationship between the sensor output and the true soil moisture value.  Validation 905 

here means collecting independent soil moisture data in situ after sensor installation to quantify 906 

the accuracy of the calibrated and installed sensor.  Such in situ validation is needed for all 907 

networks. 908 

 909 
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���	�������	�������910 

���� 1����������� �911 

Droughts are typically classified as either meteorological, agricultural, or hydrological 912 

(Mishra and Singh, 2010).  Meteorological drought is indicated by a lack of precipitation over a 913 

specified region during a particular period of time.  Agricultural drought occurs when declining 914 

soil moisture levels negatively impact agricultural production.  Some have used the term 915 

“ecological drought” to designated similar conditions which reduce primary productivity in 916 

natural ecosystems (Le Houérou, 1996).  These two drought concepts are closely related and 917 

���������	����������	
����	��������

Page 40 of 119

5585 Guilford Rd., Madison WI 53711

Soil Science Society of America Journal



For  Review
 O

nly

 

41 

 

should perhaps be represented by the composite term “agro�ecological drought.”.  A third 918 

common drought classification is hydrological drought, which is a period of inadequate surface 919 

and subsurface water resources to support established water uses.  Soil moisture is most directly 920 

related to agro�ecological drought, which is often preceded by meteorological drought and comes 921 

before hydrological drought.  This places soil moisture squarely in the center of the spectrum of 922 

drought classifications and drought indicators, but soil moisture measurements have been largely 923 

neglected in the science and practice of drought monitoring to date.   924 

In earlier decades this deficiency was unavoidable because sufficient soil moisture data 925 

were simply not available to enable their use in operational drought monitoring.  That situation 926 

began to change dramatically in the 1990s with the rise of large�scale soil moisture monitoring 927 

networks in the US (Hollinger and Isard, 1994; McPherson et al., 2007; Schaefer et al., 2007), a 928 

change now spreading around the world.  Even more recently, global maps of surface soil 929 

moisture based on satellite remote sensing have become available, and these could be useful in 930 

drought monitoring.  The primary impediment to the use of soil moisture measurements in 931 

operational drought monitoring is no longer a lack of data, but rather a lack of scientific 932 

understanding regarding how soil moisture measurements quantitatively indicate agro�ecological 933 

drought.  Strong and transparent conceptual models are needed to link soil moisture 934 

measurements with vegetation impacts in agricultural and ecological systems. 935 

The first known attempt to use large�scale soil moisture measurements in drought 936 

monitoring was the Soil Moisture Index (SMI) introduced by Sridhar et al. (2008) based on data 937 

from the Automated Weather Data Network (AWDN) in Nebraska.  Their results demonstrated 938 

that continuous soil moisture data measurements at 10, 25, 50, and 100 cm depths from 37 939 
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stations in Nebraska provided formed the basis for a strong quantitative drought indicator.  The 940 

SMI was subsequently revised by Hunt et al. (2009) who proposed the following relationship 941 

 [2] 942 

where FAW is the fraction of available water.  Fraction of available water is calculated by 943 

 [3] 944 

where θ is the volumetric water content at a specified depth, θfc is the volumetric water content 945 

corresponding to field capacity, and θwp is the volumetric water content corresponding to 946 

permanent wilting point.  Hunt et al. (2009) calculated SMI using data from sensors at 10, 25, 947 

and 50 cm depths, and then calculated the average SMI across depths.   948 

The use of FAW as the basis for SMI is substantiated by current scientific understanding 949 

of plant water stress because water stress is more strongly related to the relative amount of plant 950 

available water in the soil than to the absolute amount of soil moisture (Allen et al., 1998).  951 

Values of FAW are typically between 0 and 1, however both higher and lower values are possible.  952 

The scaling relationship in Eq. [2] thus causes SMI values to typically fall in the range from �5 to 953 

+5.  This scaling was perhaps chosen to make the range of SMI comparable to the range of other 954 

drought indicators (e.g., Drought MonitorPalmer Drought Severity Index;; Svoboda et al., 955 

2002Palmer, 1965).  Although stress thresholds vary somewhat with plant species and weather 956 

conditions, generally FAW values < 0.5 result in water stress (Allen et al., 1998).  When FAW is 957 

0.5, the SMI value is 0, the transition between stressed and non�stressed conditions.  Again using 958 

data from the Nebraska AWDN, Hunt et al. (2009) found that the modified SMI was effective for 959 

identifying drought onset as well as soil recharge from rainfall events following significant dry 960 

periods.   961 

������ 105+−=

( ) ( )wpfcwp θθθθ −−=���

���������	����������	
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Recently, the SMI was applied using data daily measurements of soil moisture in the 0�50 962 

cm depth layer from a network of six monitoring stations in the Czech Republic (Mozny et al., 963 

2012).  That study supported the drought intensity scheme proposed by Sridhar et al. (Sridhar et 964 

al., 2008) in which SMI values < �3 signify severe or extreme drought.  Mozny et al. (Mozny et 965 

al., 2012) related the concept of “flash drought” to SMI, specifying that a flash drought occurs 966 

when SMI values decrease by at least 5 units during a period of 3 weeks.  Thus, the SMI concept 967 

has shown good potential as a quantitative drought indicator based on soil moisture 968 

measurements, but some key uncertainties remain.  The indicator is sensitive to the site� and 969 

depth�specific values chosen for θfc and θwp.  These critical water contents can be estimated from 970 

the in situ soil moisture time series in some cases (Hunt et al., 2009), measured directly in the 971 

laboratory, calculated using pedotransfer function models (Schaap et al., 2001), or estimated 972 

from literature values (Sridhar et al., 2008), but best practices for determining these parameters 973 

in the SMI context need to be developed. 974 

 Recently, Torres et al. (2013) introduced a method for using long�term measurements of 975 

soil water deficits (SWD) from a large�scale monitoring network to compute site�specific 976 

drought probabilities as a function of day of year.  Improved quantification of seasonal patterns 977 

in drought probability may allow crop cycles to be better matched with periods when drought is 978 

less likely to occur; therefore, yield losses due to drought may be reduced.  Soil water deficit for 979 

each soil layer (�) is defined as 980 

 [4] 981 

where 
� is the thickness of the soil layer, and SWD is calculated by summing � over the 982 

desired soil layers.  Soil moisture data from eight stations of the Oklahoma Mesonet spanning 15 983 

years were used to calculate deficits for the 0�10 cm, 10�40 cm, and 40�80 cm layers.  Drought 984 

( ) �� 
θ−θ= fc
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was defined in this context as a period when SWD is sufficient to cause plant water stress, 985 

i.e.i.e., SWD exceeds a predetermined threshold.  The threshold was set for each site and layer as 986 

0.5TAW, where TAW is the total available water calculated by substituting θwp for θ in Eq. [4]. 987 

Values of SWD calculated from 0�40 cm (SWD40) were similar to 7�d cumulative atmospheric 988 

water deficits (AWD), calculated as reference evapotranspiration minus precipitation, during 989 

much of the spring and fall, but the soil and atmospheric deficits diverged in the winter and 990 

summer months (Fig. 16). 991 

 Historical drought probabilities estimated for each day of the year using the SWD data 992 

were consistent between depths and agreed with general knowledge about the climate of the 993 

region (Fig. 17), while probabilities estimated using AWD data (Purcell et al., 2003) were 994 

substantially lower and inconsistent with general knowledge about the region and with prior 995 

drought probability estimates in nearby states.  Torres et al. (2013) proposed modifications to the 996 

AWD method, either lowering the AWD threshold used to define drought or extending the 997 

summation period from 7 to 15 days, both of which resulted in drought probability estimates 998 

more consistent with the estimates from SWD method.  They concluded that the new SWD 999 

method gave plausible and consistent results when applied to both the 0� to 40� and 0� to 80�cm 1000 

soil layers and should be utilized when long�term soil moisture data are available. 1001 

The first known operational use of large�scale soil moisture measurements for drought 1002 

monitoring involves, not SMI or SWD, but a related measure, plant available water (PAW).  1003 

Plant available water is defined as 1004 

 [5] 1005 

for soil layers �=1…� of thickness ���.  In 2012, the Oklahoma Mesonet (McPherson et al., 2007) 1006 

introduced daily�updated PAW maps based on its network of >100 stations monitoring soil 1007 

( )∑ =
−=

�

� ����� �����
1

θθ
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moisture at standard depths of 5, 25, and 60 cm.  These maps are intended for use in drought 1008 

monitoring and show PAW for the 0�10 cm (4�inch), 0�40 cm (16�inch), and 0�80 cm (32�inch) 1009 

soil layers (http://www.mesonet.org/index.php/weather/category/soil_moisture_temperature).  1010 

The depth units (e.g., mm or inches) of PAW make it compatible with familiar hydrologic 1011 

measurements such as precipitation and evapotranspiration (ET).  Figure 18 shows maps of 1012 

departure from average PAW for the 0�16 inch (40 cm) soil layer across Oklahoma for the 1013 

months of May 2012 and May 2013.  The maps show that significantly drier than average PAW 1014 

conditions prevailed across large areas of central and eastern Oklahoma in May 2012 but 1015 

significantly wetter than average PAW conditions covered much of the State in May 2013.  1016 

These soil moisture patterns bear little resemblance to US Drought Monitor (Svoboda et al., 1017 

2002) maps from the same time periods (Fig. 18c,d), which suggest that drought conditions were 1018 

substantially worse in May 2013 than May 2012 across the entire State.  These maps illustrate 1019 

that a drought indicator based on large�scale soil moisture monitoring can provide a dramatically 1020 

different assessment of drought severity than the Drought Monitor, which blends information 1021 

from meteorological indicators, streamflow percentiles, a soil moisture model, and expert 1022 

opinion. 1023 

total rainfall, total short�crop reference ET based on the FAO�56 procedure (Allen et al., 1998), 1024 

and average PAW across the state of Oklahoma during May 2012.  Dry conditions prevailed 1025 

across the state with reference ET exceeding rainfall at all measured locations.  The PAW map 1026 

reflects the influence of rainfall and ET with relatively high PAW values in eastern, northeastern, 1027 

and central OK corresponding to regions with relatively high rainfall and/or relatively low 1028 

reference ET.  However, the PAW maps also suggest more complex influences of vegetation, 1029 

soil type, and landscape “memory”.  For example, note that PAW values were generally lower in 1030 

Page 45 of 119

5585 Guilford Rd., Madison WI 53711

Soil Science Society of America Journal



For  Review
 O

nly

 

46 

 

the southwest portion of the state than in the Panhandle region even though the Panhandle region 1031 

experienced lower rainfall totals and comparable reference ET.  This illustrates the challenges 1032 

with using atmospheric data alone to monitor agro�ecological drought and suggests a unique and 1033 

complementary role for soil moisture measurements. 1034 

 These recent developments in the use of soil moisture measurements for drought 1035 

monitoring are encouraging; however the research needs in this area are significant.  As yet, little 1036 

is known regarding how soil moisture�based drought indicators relate to other widely�accepted 1037 

drought indicators like the Standardized Precipitation Index (Guttman, 1999) or the Palmer 1038 

Drought Severity Index.  Likewise, we do not know how soil moisture�based drought indicators 1039 

are related to actual drought impacts in agricultural or ecological systems.  Already SMI, SWD, 1040 

and PAW have demonstrated potential as soil moisture�based drought indicators driven by in situ 1041 

measurements, but these three indicators all address the question, “How dry is it?” rather than the 1042 

equally important question, “How much drier than average is it?”.  Other soil moisture�based 1043 

indicators have been proposed on the basis of numerical modeling studies.  These include the 1044 

model�based Normalized Soil Moisture index (Peled et al., 2010) and the Soil Moisture Deficit 1045 

Index (Narasimhan and Srinivasan, 2005), neither of which has been evaluated using actual soil 1046 

moisture measurements.   1047 

 Furthermore, most in situ soil moisture measurements are made under grassland 1048 

vegetation because of problems with establishing long�term meteorological stations in cropland 1049 

or forest.  There is a dearth of research on how to estimate soil moisture under contrasting land 1050 

use/land cover combinations based on in situ observations under grassland vegetation.  This 1051 

deficiency complicates the interpretation of agro�ecological drought indicators based on in situ 1052 

soil moisture measurements.  Clearly, there should be a role for satellite remote sensing of soil 1053 
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moisture to assist in overcoming some of the deficiencies of drought monitoring by in situ soil 1054 

moisture observations.  Bolten et al. (2010) showed that AMSR�E AMSR�E surface soil 1055 

moisture retrievals could add significant value to root zone soil moistureRZSM predictions in an 1056 

operational drought modeling framework. Soil moisture data from AMSR�E have also shown 1057 

potential as part of an integrated drought monitoring system for East Africa (Anderson et al., 1058 

2012) . However, there are as yet no operational systems for drought monitoring that utilize 1059 

satellite soil moisture measurements.  We anticipate a surge in this type of research in the near 1060 

future. 1061 

�1062 

��������� �"#����&���� �#�&�����"#���� �1063 

Drought provides a clear example of the interaction between the atmosphere and the land 1064 

surface, an interaction strongly influenced by the soil moisture conditions.  A schematic of 1065 

atmospheric boundary layer (ABL) interactions with the land surface is presented in Fig. 19.  1066 

Daytime growth of the ABL is directly affected by soil and vegetation states and processes, and 1067 

these processes play a role in partitioning the energy balance which relates net radiation to soil 1068 

heat flux, sensible heat flux, and latent heat flux, i.e.i.e., evapotranspiration.  Root �zone soil 1069 

moisture can influence the atmospheric boundary layerABL by controlling land surface energy 1070 

and moisture fluxes.   For example, Basara and Crawford (2002) found that soil water content in 1071 

the root� zone, particularly the 20 to 60 cm depths, during the summer was linearly correlated 1072 

with daytime evaporative fraction and daily�maximum values of sensible heat flux and latent 1073 

heat flux on days with strong radiative forcing and weak shear in the lower troposphere.  Root� 1074 

zone soil moisture was also linearly related to key parameters in the ABL such as the daily 1075 

maximum air temperature at 1.5 m. 1076 
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Numerous large�scale hydrologic�atmospheric�remote sensing experiments have been 1077 

conducted to better understand the soil moisture�moderated interactions of the soil�vegetation 1078 

system with the diurnal atmospheric boundary layerABL.  Improved parameterization of general 1079 

circulation models (GCMs) was one of the initial objectives of the experiments.  Table 2 gives a 1080 

concise overview of a few of these experiments, including HAPEX�MOBILHY which was the 1081 

first experiment conducted on this scale (André et al, 1986; André et al., 1988).  It should be 1082 

noted mMost of the experiments listed cover large geographic areas which play a significant 1083 

roles in the general circulation system of the planet.   1084 

The strong linkage of surface soil moisture and parameterization of soil hydraulic 1085 

processes with ABL response was demonstrated by Ek and Cuenca (1994), based on data from 1086 

the HAPEX�MOBILHY.  This study found that variations in soil hydraulic process 1087 

parameterization could have a clear impact on the simulated surface energy budget and 1088 

atmospheric boundary layerABL development.  This impact was accentuated for dry to moderate 1089 

soil moisture conditions with bare soils.  Ek continued to do considerable work in the area of 1090 

simulation of the ABL and the influence of soil moisture conditions, often using data from 1091 

regional experiments such as HAPEX�MOBILHY and the Cabauw data set from the Netherlands 1092 

(Monna and van der Vliet, 1987).  Data from HAPEX�MOBILHY wereas used to evaluate the 1093 

evolution of the relative humidity profile in the ABL in Ek and Mahrt (1994).  The relationships 1094 

between canopy conductance, root density, soil moisture and soil heat flux with simulation of the 1095 

ABL using the Cabauw data set was investigated in Ek and Holtslag (2004).  It should be noted 1096 

that tThe ABL simulation evolved from the Oregon State University 1�D planetary boundary�1097 

layer model (OSU1DPBL) (Mahrt and Pan, 1984; Pan and Mahrt, 1987) to the Coupled 1098 

Atmospheric boundary layer�Plant�Soil (CAPS) model.  These models in turn are the basis for 1099 
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the Noah land�surface model (Chen and Dudhia, 2001; Ek et al., 2003) which plays a major role 1100 

in the Medium�Range Forecast Model for numerical weather prediction (NWP) at the NOAA 1101 

National Center for Environmental Prediction. 1102 

Given its influence on ABL development, root�zone soil moistureRZSM can have a 1103 

strong influence on weather forecasts. If not suitably constrained, the root�zone soil 1104 

moistureRZSM in a an atmosphericNWP model will drift from the true climate, resulting in 1105 

erroneous boundary layer forecasts (Drusch and Viterbo, 2007). Root�zone soil moisture cannot 1106 

currently be  observed at the spatial scales required by NWP, and Ssince the mid 1990s, many 1107 

NWP centers have been indirectly constraining their model soil moisture using methods that 1108 

minimize the errors in measured screen�level (1.5�2.0 m) temperature and humidity (Best et al 1109 

2007; Hess, 2001; Mahfouf 1991; Mahfouf et al 2009).  While this approach reduces boundary 1110 

layer forecast errors, it does not generate realistic soil moisture since the latter is often adjusted 1111 

to compensate for model errors unrelated to soil moisture (Douville et al., 2000; Drusch and 1112 

Viterbo, 2007; Hess, 2001).  Ultimately a model with inaccurate soil moisture cannot accurately 1113 

describe the atmosphere across the full range of forecast lengths produced from NWP models.   1114 

Hence, the NWP community has been working towards improving model soil moisture 1115 

by assimilating remotely sensed near�surface soil moisture.  Near�surface soil moisture is more 1116 

directly related to root�zone soil moistureRZSM than screen�level variables, and assimilating 1117 

near�surface soil moisture data (0 to 5 cm) has been shown to improve model root�zone soil 1118 

moistureRZSM (Calvet et al., 1998; Hoeben and Troch, 2000; Montaldo et al., 2001).   Figure 20 1119 

compares several experiments constraining model root�zone soil moistureRZSM by assimilating 1120 

observations of near�surface soil moisture and screen�level temperature and relative humidity, 1121 

highlighting the fundamental difference between these two approaches. These experiments were 1122 
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conducted with Météo�France’s NWP land surface model using an Extended extended Kalman 1123 

Filter filter and the Advanced Microwave Scanning Radiometer for the Earth Observing System 1124 

(AMSR�E) Land Parameter Retrieval Model near�surface soil moisture data (Owe et al., 1125 

20082001).  Refer to Draper et al. (2011) for further details.   1126 

In general, assimilating the screen�level observations (black�dashed line) improved the fit 1127 

between the mean forecast and observed screen�level variables, compared to the open loop (no 1128 

assimilation, solid black line). However, the assimilation had a slight negative impact on the fit 1129 

between the mean forecast and observed near�surface soil moisture. In contrast, assimilating the 1130 

AMSR�E soil moisture (grey solid line) improved the fit between the mean forecast and observed 1131 

near�surface soil moisture, while degrading the fit between the modeled and observed screen�1132 

level variables.  This result is consistent with previous studies showing that adjusting model soil 1133 

moisture to improve screen�level forecasts does not necessarily improve soil moisture (Douville 1134 

et al, 2000; Drusch and Viterbo, 2007;  Seuffert et al 2004), and conversely improving the model 1135 

soil moisture does not necessarily improve atmospheric forecasts (Seuffert et al 2004). 1136 

Consequently, in the foreseeable future it is unlikely that remotely sensed near�surface soil 1137 

moisture will be used in NWP in place of screen�level observations. However, combining the 1138 

assimilation of both observation types can reduce errors in both model soil moisture and low�1139 

level atmospheric forecasts. For example, when both data types were assimilated together (Fig. 1140 

20) (grey dashed line) in Fig. 20, the fit between the model and both observation types was 1141 

improved, although the mean soil moisture improvements were very small (see also Seuffert et 1142 

al, 2004).  1143 

Currently near�surface soil moisture observations are assimilated operationally at the UK 1144 

Met Office (UKMO) and the European Centre for Medium Range Weather Forecasting 1145 
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(ECMWF). While the development of soil moisture assimilation in NWP is motivated by the 1146 

eventual use of L�band observations (e.g., SMOS and SMAP), both centers are currently 1147 

assimilating Advanced Scatterometer (ASCAT) Surface Degree of Saturation (SDS) data 1148 

(Bartalis et al, 2007), ansince this is currently the only  operationally�supported remotely sensed 1149 

soil moisture product with global coverage.  At  the UKMO the screen�level observation based 1150 

soil moisture analysis was amended in July 2010, to also constrain the near�surface soil moisture 1151 

by nudging it with ASCAT SDS data (Dharssi et al, 2011). Compared to nudging with only 1152 

screen�level observations, adding the ASCAT data very slightly improved near�surface soil 1153 

moisture forecasts over selected sites in the US, while also improving screen level temperature 1154 

and relative humidity forecasts over the tropics and Australia (with neutral impact elsewhere).  1155 

At  ECMWF the NWP  land surface analysis was updated in November 2010, to an extended 1156 

Kalman filter based scheme, enabling the assimilation of remotely sensed data (de Rosnay et al 1157 

2012, Drusch et al 2009). The ASCAT SDS are not used in their weather forecasting model, but 1158 

are assimilated together with screen�level observations in an offline land surface analysis system.  1159 

Including the ASCAT data in this system has had a neutral impact on near�surface soil moisture 1160 

and screen�level forecasts (Albergel et al 2012b; de Rosnay et al, 2012).  1161 

The above examples highlight some challenges of land data assimilation specific to NWP 1162 

applications.  For example, the computation cost of the assimilation is a major limitation in NWP 1163 

(de Rosnay et al 2012, Drusch et al 2009), hence the assimilation methods applied must be 1164 

relatively simple. Further work is required to improve the land surface analysis schemes used in 1165 

NWP, and in particular to propagate the surface soil moisture information into the root�zone (not 1166 

currently achieved by the schemes in place at the UKMO or ECMWF). Additionally, Dharssi et 1167 

al. (2011) and de Rosnay et al. (2012) identified the observation bias correction strategy, i.e.i.e., 1168 
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the method by which satellite derived surface soil moisture values are adjusted to be consistent 1169 

with the model used for assimilation, as a likely cause of the limited impact of assimilating the 1170 

ASCAT data. Bias correction of remotely sensed soil moisture is difficult in NWP, since the long 1171 

data records required to estimate statistics of the model climatology are not available from NWP 1172 

models, due to frequent model updates and the prohibitive cost of rerunning models.  1173 

However, the greatest challenge faced by soil moisture assimilation in NWP is that 1174 

improving the model soil moisture may not immediately improve atmospheric forecasts, due to 1175 

errors in the model physics.  It is likely that the greatest contribution of using remotely sensed 1176 

near�surface soil moisture observations in NWP will be in helping to identify and address these 1177 

physics errors.  Already, the availability of remotely sensed soil moisture and efforts to 1178 

assimilate that data have stimulated improvements in modeling soil moisture processes. For 1179 

example, in response to discrepancies between modeled and SMOS observed �brightness 1180 

temperatures, ECMWF recently improved their bare soil evaporation parameterization, resulting 1181 

in improved model near�surface soil moisture and � brightness temperature (Albergel et al, 1182 

2012b). As soil moisture data is used more extensively in NWP models, this should also help to 1183 

expose and eventually address other errors in the model surface flux processes. 1184 

�"��� �"#����&���� �#�&�����"#���� �1185 

Ecological modeling is another area which could logically benefit from increased 1186 

availability of large�scale soil moisture monitoring.  Soil moisture is a key parameter in the 1187 

control of plant growth, soil respiration, and distribution of plant functional types in terrestrial 1188 

ecosystems (Blyth et al. 2010; Ren et al. 2008; Pan et al. 1998; Neilson 1995).  Plant growth 1189 

(i.e.i.e., assimilation of CO2 through photosynthesis) is coupled with water loss through 1190 

transpiration which is regulated by soil water availability (Yang et al. 2011; Sellers et al. 1997; 1191 

���������	���!��
	��
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Field et al., 1995).  Decomposition of soil organic carbon is also sensitive to soil moisture 1192 

content via microbial activity and other processes (Ise and Moorcroft 2006; Xu et al. 2004; 1193 

Orchard and Cook 1983).  Furthermore, temporal and spatial availability of soil moisture content 1194 

constrains distribution and properties of plant functional types (Bremond, Boom, and Favier 1195 

2012; Seneviratne et al. 2010; Gerten et al. 2004; Breshears and Barnes 1999). 1196 

A striking example of the interactions between vegetation and soil moisture conditions is 1197 

provided by the Tiger Bush sites in the HAPEX�Sahel experiment.  The Tiger Bush is made up 1198 

of relatively long and narrow patches of vegetation approximately 40�m wide separated by 1199 

nearly cemented patches of bare soil approximately 60�m wide and these sites are characteristic 1200 

of certain regions in the Sahel.  One can note in the >3�m deep profile in Fig. 21 (monitored by 1201 

neutron probe) that there is limited variation in soil moisture content and only in the upper 50 cm 1202 

of the bare soil profile, while there are appreciable soil moisture changes even past 300�cm in the 1203 

vegetated strip.  The result is that nearly all of the high intensity rainfall during the rainy season 1204 

in this environment runs off the bare soil into the vegetated strip which thereby receives on the 1205 

order of two hundred percent200% of the precipitation.  Verhoef (1995) noted this effect and that 1206 

the result was a well�watered vegetation strip adjacent to a very dry bare soil strip in this 1207 

environment.  Verhoef (1995) was able to show that in the generally hot and dry conditions of 1208 

the Sahel, advective conditions for sensible heat flux from the bare soil resulted such that the 1209 

evapotranspiration (ET) from the vegetated strip clearly exceeded the potential, or reference, ET 1210 

rate (Verhoef et al., 1999; Verhoef and Allen, 2000).  Carbon fluxes would obviously be affected 1211 

by the heterogeneity in the Tiger Bush system, as well. 1212 

To better understand and predict ecosystem dynamics such as these, different classes of 1213 

ecological models have been developed for various scales and emphases.  For example, 1214 
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biogeography models such as MAPSS (Neilson, 1995) and BIOMEs (Prentice et al., 1992; 1215 

Haxeltine and Prentice, 1996) focus on the distribution of species and ecosystems in space.  1216 

Biogeochemistry models such as CENTURY/DAYCENT (Parton et al., 1987, 1998), RothC 1217 

(Jenkinson and Coleman, 1994) and DNDC (Li et al., 1992) place emphasis on the carbon and 1218 

nutrient cycles within ecosystems.  Biophysics models based on soil�vegetation�atmosphere 1219 

transfer (SVAT) schemes (SiB: Sellers et al. 1986; BATS: Dickinson et al. 1986) have been 1220 

developed to support regional and global climate modeling to provide accurate information for 1221 

the fluxes of water, radiation, heat and momentum between the atmosphere and the various land 1222 

surfaces.  Recently developed dynamic global vegetation models (DGVM) such as LPJ (Sitch et 1223 

al., 2003), IBIS (Foley et al., 1996) and MC1 (Bachelet et al., 2001), generally incorporate above 1224 

classes of models and schemes to simulate dynamics of potential vegetation and its associated 1225 

biogeochemical and hydrological cycles.    1226 

These models estimate soil moisture content or its proxy using different schemes such as 1227 

the bucket method (Robock et al. 1995; Manabe 1969), the precipitation to potential 1228 

evapotranspiration ratio method (Scheffer et al., 2005), and the water balance model (Law et al. 1229 

2002).  Details of these and other schemes are discussed in Shao and Henderson�Sellers (1996) 1230 

and Ren et al. (2008).  These schemes often use simple algorithms to reduce computational 1231 

demand and are less reliable compared to schemes used in hydrologic models [e.g., the Richards 1232 

equation (Richards, 1931)].  Also, especially in cases of large scale ecological models, a more 1233 

realistic parameterization of soil moisture content at subgrid�scale as related to topography is 1234 

often desirable (Gordon et al. 2004).  Optimization of the degree of the simplification and the 1235 

spatial resolution is necessary due to computational restrictions, but is difficult to judge due to 1236 
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lack of adequate observational data with which to verify the performance of the models (Ren et 1237 

al.2008).   1238 

Traditionally, ecological models have been tested through intercomparison studies such 1239 

as the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP; VEMAP Members 1240 

1995), the Carbon Land Model Project (CLAMP; Randerson et al. 2009), the Project for 1241 

Intercomparison of Land�surface Parameterization Schemes (PILPS; Henderson�Sellers et al. 1242 

1996; 1995), and the Global Soil Wetness Projects (GSWP/GSWP2; Dirmeyer et al. 2006; 1243 

Dirmeyer 1999) because evaluating the model performance, especially at larger scales, has been 1244 

difficult due to the incompleteness of observation data sets.  However, these models are not 1245 

independent because they have integrated the same theories and relied on similar data sets as 1246 

they evolved (Reichstein et al. 2003).  Therefore, while model intercomparison is an important 1247 

task, extreme care must be exercised to derive any conclusions.   1248 

Future research advances in this area will require use of newly available observation data 1249 

at suitable spatial and temporal scales  (Seneviratne et al. 2010).  Observation data from large�1250 

scale soil moisture monitoring in particular should be valuable to validate the simplification and 1251 

scaling of ecological models.  Wagner et al. (2003) found that modeled 0 to 50 cm monthly 1252 

average soil moisture from the Lund�Potsdam�Jena (LPJ) dynamic global vegetation model 1253 

agreed “reasonably well” over tropical and temperate locations with values derived from satellite 1254 

microwave scatterometer, yielding Pearson correlation coefficients >0.6.  The agreement was 1255 

poorer over drier and colder climatic regions.  However, few studies have used large�scale soil 1256 

moisture data to improve the structure or parameterizations of ecological models or to improve 1257 

model predictions through data assimilation. 1258 
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Furthermore, the relationship between soil moisture and terrestrial ecosystem is dynamic 1259 

and interdependent: soil moisture constrains the properties of the ecosystem as described earlier, 1260 

which in turn, modifies hydrology through evapotranspiration, LAI, and surface roughness 1261 

(Breshears and Barnes 1999).  Newer generations of ecological models, especially dynamic 1262 

global vegetation models, include these important feedback processes to simulate the effects of 1263 

future climate change on natural vegetation and associated carbon and hydrologic cycles.  1264 

Validation of these models studies willmay reveal an increased need for data from large�scale 1265 

soil moisture observations across various ecosystems and for continuous expansion of 1266 

observation networks.   1267 

�$&���� �"���&���� �#�&�����"#���� �1268 

 One motivation underlying many large�scale soil moisture monitoring efforts is the desire 1269 

to more accurately model and forecast watershed dynamics, especially streamflow and flood 1270 

events.  Pauwels et al. (2001) demonstrated the possibility of improved stream discharge 1271 

estimates through assimilation of surface soil moisture estimates derived using data from the 1272 

ESA satellites ERS1 and ERS2 into a land atmosphere transfer scheme.  The study was limited 1273 

to bare soil conditions and small catchments (<20 km2).  The assimilation improved discharge 1274 

estimates 20�50% in seven out of 12 cases considered, but degraded model accuracy by up to 1275 

10% in the remaining five cases.  Francois et al. (2003) showed that assimilation of ERS1 SAR 1276 

data into a simple two�layer land surface scheme through an extended Kalman filter approach 1277 

improved the Nash�Sutcliffe efficiency (NSE) for streamflow from 70% to 85%.  Their study 1278 

involved a larger catchment (104 km2) than that of Pauwels et al. (2001) and included vegetation 1279 

cover.  The sensitivity of simulated flow to soil moisture was highest when soil moisture itself 1280 
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was high.  The assimilation scheme was also able to correct for 5�10% errors in the input data, 1281 

e.g., potential evapotranspiration or precipitation.   1282 

 More recent applications of large�scale soil moisture data for hydrologic modeling and 1283 

forecasting have focused on newer satellite remote sensing datasets.  Brocca et al. (2010) used a 1284 

simple nudging scheme to assimilate the ASCAT surface soil wetness index into a rainfall—1285 

runoff model for five catchments (<700 km2) in the Upper Tiber River basin in Italy.  1286 

Assimilation increased the NSE for streamflow prediction during flood events in all five 1287 

catchments, with increases ranging from 2 to 17% (Fig. 22).  In a subsequent study, root zone 1288 

soil moistureRZSM was estimated from the ASCAT surface soil moisture data through 1289 

application of an exponential filter, and both data types were then assimilated into a two�layer 1290 

rainfall—runoff model using an ensemble Kalman filter approach (Brocca et al., 2012).  1291 

Assimilation of the root zone soil moistureRZSM estimates produced a clear improvement in 1292 

discharge prediction for a 137 km2 catchment (NSE improved from 76% to 86%), while 1293 

assimilation of surface soil moisture had only a small effect. 1294 

Thus far only a few studies have evaluated methods for using soil moisture data to 1295 

improve hydrologic forecasting in catchments of >1000 km2.  One example is the work of Meier 1296 

et al. (2011) in which the ERS1 and ERS2 soil water index was used, along with rainfall data, to 1297 

drive a conceptual rainfall—runoff model in an ensemble Kalman filter framework assimilating 1298 

observed discharge every 10 days.  The method was applied to three catchments in the Zambezi 1299 

River basin in southern Africa.  The catchments ranged in size from 95,300 to 281,000 km2.  The 1300 

catchment average soil water index correlated well with measured discharge when the data were 1301 

shifted by a catchment�specific time lag.  This time lag allowed 40�d lead time streamflow 1302 

forecasts with a NSE value of 85% for the largest watershed, but in a catchment with steep 1303 
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slopes and little soil water storage the lead time was as short as 10 d.  Gains in streamflow 1304 

forecast accuracy, especially during flood events, have even been demonstrated by using 1305 

assimilating point soil moisture observations from a single location within a catchment of 1120 1306 

km2 together with streamflow data, suggesting that even sparse observations networks in large 1307 

catchments can be quite useful (Fig. 22; Aubert et al., 2003).    The effectiveness of the 1308 

assimilation process was dominated by streamflow assimilation when considering the entire 1309 

period, but the effectiveness of the assimilation process was dominated by soil moisture 1310 

assimilation during flood events. 1311 

 That large�scale soil moisture monitoring can benefit hydrologic modeling and 1312 

forecasting is now well�established with gains in forecast efficiency of 10�20% being typical; 1313 

however, significant challenges and uncertainties remain.  Most of the research to date in this 1314 

area has focused on the use of satellite derived surface soil moisture products, with few studies 1315 

using in situ soil moisture measurements within a data assimilation framework (Aubert et al., 1316 

2003; Chen et al., 2011).  Thus, the world’s growing in situ soil moisture monitoring 1317 

infrastructure (Table 1) is a virtually unexplored resource in this context, and many opportunities 1318 

exist to develop hydrologic forecasting tools which utilize that infrastructure.   1319 

A key challenge associated with assimilation of soil moisture data, regardless of the 1320 

source, is to identify and overcome structural deficiencies in the hydrologic models themselves.  1321 

For example, a data assimilation experiment using in situ soil moisture measurements in 1322 

Oklahoma was generally unsuccessful in improving streamflow predictions from the widely used 1323 

Soil and Water Assessment Tool (SWAT) model (Chen et al., 2011).  The calibrated SWAT 1324 

model significantly underestimated the vertical coupling of soil moisture between upper and 1325 

lower soil layers, and the inadequate coupling was apparently a structural, rather than parametric, 1326 
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problem in the model.  Thus, the ensemble Kalman filter assimilation approach was not effective 1327 

in improving estimates of deep soil moisture or streamflow. This particular challenge of correctly 1328 

representing linkages between soil moisture across two or more soil layers has been identified as 1329 

a key concern in studies with other models as well (Brocca et al., 2012).  Further research is 1330 

needed to optimize the structure of SWAT and other hydrologic models in order to maximize the 1331 

benefits from assimilating increasingly available large�scale soil moisture observations (Brocca 1332 

et al., 2012). 1333 

Another challenge which has been encountered in this arena is uncertainty regarding 1334 

proper characterization of model errors and observation errors within the assimilation procedure 1335 

(Francois et al., 2003; Brocca et al., 2012).  Statistical representations of model errors must often 1336 

be made in a somewhat arbitrary or subjective fashion, and pre�existing biases in either the 1337 

observations or the model can be particularly problematic (Chen et al., 2011; Brocca et al., 1338 

2012).  Nevertheless, research in this area appears to be gaining momentum, and opportunities 1339 

abound to advance hydrologic modeling and forecasting with the help of existing and emerging 1340 

large�scale soil moisture datasets. 1341 

  1342 

�	
��	2�������������������	���
�
���1343 

In this review, we have attempted to describe the state of the art in large�scale soil 1344 

moisture monitoring and to identify some critical needs for research to optimize the use of 1345 

increasingly available soil moisture data. We have considered:  1) emerging in situ and proximal 1346 

sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture 1347 

monitoring networks, and 4) applications of large�scale soil moisture measurements.  The 1348 

primary challenges and opportunities in these topic areas can be summarized as follows.  For 1349 
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emerging in situ and proximal sensing techniques (e.g., COSMOS and GPS) empirical 1350 

confirmations of theoretical predictions regarding the variable measurement depths are needed. 1351 

Calibration procedures for these methods, as well as the DTS methods, need to be further refined 1352 

and standardized with due accounting for site�specific factors such as soil and vegetation 1353 

characteristics which influence instrument performance.  Spatial and temporal heterogeneity in 1354 

these site�specific factors must also be considered in some instances, creating additional 1355 

challenges.  Also, the community of expertise for these methods, that is the number of 1356 

researchers with the capability to advance these technologies, needs to be expanded.  1357 

Probably the largest share of scientific resources in this general topic area is currently 1358 

devoted to the advancement of satellite remote sensing approaches for soil moisture monitoring.  1359 

These investments are bearing fruit, but challenges and opportunities remain.  One significant 1360 

challenge is to further improve methods for estimating root zone soil moistureRZSM, the 1361 

information we often need, using surface soil moisture observations, the information satellites 1362 

provide. Progress has been made towards this goal, by using data assimilation into numerical 1363 

models to retrieve root�zone soil moistureRZSM from near�surface observations.  Continued 1364 

iImprovements are also needed in downscaling relatively coarse resolution calibration and 1365 

validation of remotely�sensed soil moisture products to describe sub�footprint spatial variability 1366 

which plays an important role in many applications.because the relatively coarse resolution of 1367 

these products is not well matched with most in situ observations.  Coarse resolution, satellite�1368 

derived soil moisture products are challenging to validate (Reichle et al., 2004), so continuing 1369 

efforts to effectively use these products for modeling and forecasting will likely play an 1370 

important role in their evaluation.  Although not primarily a scientific challenge, more work is 1371 

needed to reduce problems associated with RFI.  Similarly, continuity of missions is a necessity 1372 
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if remotely sensed soil moisture data are to be adopted for operational applications like 1373 

numerical weather prediction.    1374 

In contrast with remote sensing approaches, relatively few resources are currently 1375 

devoted toward large�scale in situ soil moisture monitoring networks.  Although the number of 1376 

networks is growing steadily, the lack of standardization of procedures across networks is a 1377 

significant challenge.  There is a need for rigorous guidelines and standards to be developed and 1378 

adopted worldwide for in situ soil moisture monitoring networks, similar to guidelines for 1379 

measurement of other meteorological variables.  Best practice standards for sensor selection, 1380 

calibration, installation, validation, and maintenance are needed, as well as standards for site 1381 

selection, data quality assurance and quality control, data delivery, metadata delivery, and data 1382 

archives.  The recent recognition of soil moisture as an “Essential Climate Variable” by the 1383 

Global Climate Observing System, and the development of the International Soil Moisture 1384 

NetworkISMN are positive steps in this direction, but much more is needed. 1385 

For both in situ networks and remote sensing approaches, sustainability is a significant 1386 

challenge, perhaps underestimated.  Societal and scientific needs for soil moisture data would 1387 

seem to justify that our monitoring systems be designed to function without interruption for 1388 

many decades.  Current realities within science and society at large typically result in monitoring 1389 

systems which are designed to function for only a few years.  Researchers are rewarded for 1390 

developing new systems and technologies, not for ensuring their long�term viability.  Successful 1391 

long�term operation of monitoring systems generally requires substantial state or federal support.  1392 

Securing such long�term support for soil moisture monitoring systems is often difficult.  Thus, 1393 

determining effective pathways to transition monitoring systems from research mode to 1394 

operational mode remains a key challenge. 1395 
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In closing, we again note the growing need to develop the science necessary to make 1396 

effective use of the rising number of large�scale soil moisture datasets.  One area where 1397 

significant progress seems possible in the near term is the use of large�scale soil moisture data 1398 

for drought monitoring.  Already some progress has been made using in situ data for this purpose 1399 

and approaches using remote sensing data seem sure to follow.  Significant efforts have been 1400 

devoted to the use of soil moisture observations within the area of numerical weather prediction.  1401 

In general, assimilation of soil moisture data has resulted in only modest improvements in 1402 

forecast skill.  The primary problem is that the current model structures are not well suited for 1403 

assimilation of these data, and the model physics may not be properly parameterized to allow for 1404 

accurate soil moisture values.  A smaller effort, but arguably greater progress, has been made in 1405 

the assimilation of soil moisture data into models designed primarily for hydrologic prediction, 1406 

especially rainfall—runoff models.  Here gains in forecast efficiency of 10�20% are not 1407 

uncommon.  Nonetheless, as with numerical weather prediction, a key challenge is to identify or 1408 

create models that are structured in a way that is optimal for assimilation of soil moisture data.  1409 

To date little or no progress has been made in using large�scale soil moisture observations to 1410 

improve the structure, parameters, or forecasts of ecological models, and perhaps surprisingly, 1411 

the same can be said for crop models.  These topic areas are ripe with opportunity opportunities 1412 

and challenges yet to be uncovered.  Another frontier where the potential is great but the workers 1413 

are few is the use of soil moisture observations in socio�economic modeling and forecasting to 1414 

address issues such as drought impacts and food security (Simelton et al., 2012).  We are 1415 

optimistic that these challenges and opportunities can be addressed by improved communication 1416 

and collaboration across the relevant disciplines.  The international soil science community has 1417 

much to contribute in this context.  Hopefully this review will be a small step towards further 1418 
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engaging that community in advancing the science and practice of large�scale soil moisture 1419 

monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.   1420 
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Table 1. Partial list of large�scale (>1002 km2) in situ soil moisture monitoring networks ordered 1425 

from largest to smallest in areal extent. The areas are enumerated by XX2 to indicate the length 1426 

of one side of a square of the given area.     1427 

Network Name Country or 
State 

Site 
no. 

 
Extent 

 
Density 

 
Reference 

�   km2 km2 st�1  
��	����
%��(���(��      
Soil Climate Analysis Network  USA 180 31002 2302a Schaefer et al. (2007) 
Climate Reference Network  USA 114 31002 2902 Palecki and Groisman (2011) 
Cosmic Ray Soil Moisture Observing System USA 67 31002 3802 Zreda et al. (2012) 
Plate Boundary Observatory Network Western US 59 18002 2402 Larson et al. (2008) 
Automated Weather Data Network Nebraska 53 4502 622 Hubbard et al. (2009) 
Oklahoma Mesonet Oklahoma 108 4302 412 Illston et al. (2008) 
Automated Environmental Monitoring Network Georgia 81 3902 442 Hoogenboom (1993) 
Water & Atmospheric Resources Monitoring Program Illinois 19 3902 892 Scott et al. (2010) 
Environment and Climate Observing Network N. Carolina 37 3702 612 Weinan et al. (2012) 
West Texas Mesonet Texas 53 3002 412 Schroeder et al. (2005) 
ARM�SGP Extended Facilitiesb OK/KS 13 1502 422 Schneider et al. (2003) 
&�
	����
%��(���(�� � � � � �

Tibet�Obs China 46 16002 2302 Su et al. (2011) 
GTK Geological Survey of Finland  Finland 23 5802 1212 Sutinen et al. (2008) 
OzNet  Australia 38 2902 472 Smith et al. (2012) 
SMOSMANIA France 21 2002 442 Calvet et al. (2007) 
Gourma Mesoscale Site Mali 10 1702 552 de Rosnay et al. (2009) 
Automatic Stations for Soil Hydrology Mongolia 12 1402 402 Yang et al. (2009) 
Central Tibetan Plateau SMTMNc China 50 1002 142 Zhao et al. (2013) 
Umbria Region Hydro�meteorological Network Italy 15 1002 262 www.cfumbria.it 

�����	�
)��	���#��#�
����	�
%����
����*��+
��
�
��	�
���� '������
�������, ��-���!����, ���1428 
'
%�����.�����+
����������#�
)���
/��,��	�'���0���	
���
�������1�#��	�#�	
�������$��2��
���	�*���	�  ������3��1429 
����#����	
���4� $���
��������
����0���
/��,1430 

���������	�����
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	��
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 Table 2.  Selected large�scale hydrologic�atmospheric�remote sensing experiments.   1431 

Experiment Lead Agency Location Climatic Regime Observation Period 
HAPEX�MOBILHY Météo – France Southwest France Temperate Forest Summer, 1986 
HAPEX�Sahel Météo – France Niger Tropical Arid Summer, 1992 
BOREAS NASA Canada Boreal Forest Spr./Fall 1994,1996 

IHOP NSF KS, OK, TX Continental 2002 

HYMeX GEWEX Europe Mediterranean 2010�2020 (LOP) 
2011�2015 (EOP) 

CZO NSF 6 sites Varies 2007 � Current 

AirMOSS NASA 7 sites Varies 2011�2015 

5&��6�5��0.
�� ��'	��7�
����$������1432 

�&��6���%�������'	��7�
����$������1433 

 1434 

 1435 

 1436 

 1437 
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Fig. 1. Response function for cosmic-ray probe for soils with pore water only (solid black line) 12 

and those with pore water and other water, such as lattice and organic matter (dashed black line). 13 

N is the mesaured neutron intensity, and N0 is a calibration parameter representing the neutron 14 

intensity above dry soil.  The presence of other water shifts the line horizontally from point A to 15 

B and A’ to B’, and the new line is steeper than the original line for the same moisture range (B-16 

B’ vs. A-A’). Section B-B’ can be placed on the original line by translating it up to fall on 17 

section A’-A’’. Thus, accounting for additional (non-pore) water does not require a new response 18 

function, but merely a translation along the original function by the amount equal to that non-19 

pore water component.20 
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Fig. 2. Sensing volume of the cosmic-ray probe comprises a hemisphere in air (of radius R) and a 21 

cylinder in soil (of height D). All hydrogen within the sensing volume is reflected in the 22 

measured neutron intensity. The horizontal footprint, R, depends on air properties: mainly 23 

density and water vapor content. The vertical footprint depends on soil properties: mainly bulk 24 

density and total hydrogen content (pore water, lattice water, organic matter water).25 
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 26 

 27 

 28 

Fig. 3.  Geometry of a multipath signal, for antenna height (H0) and satellite elevation angle (E). 29 

Black lines represent the direct signal transmitted from the satellite. The gray line is the reflected 30 

signal from the ground. The solid line represents the gain pattern of the antenna. Dashed circles 31 

indicate relative power levels of the gain pattern. (Reproduced from Larson et al., 2008) 32 

33 

H
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 34 

 35 

Fig. 4. Soil volumetric water content (VWC, %) measured by five water content reflectometers 36 

at 2.5 cm depth (grey lines), soil water content estimated by GPS-Interferometric Reflectometry 37 

(circles), and daily precipitation totals (bars) from a site near Marshall, CO, United States. 38 

(Adapted from Larson et al., 2010). 39 

40 

(%
) 
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 41 

Fig. 5. Location of study site used by Striegl and Loheide (2012) (a), aerial photo of active DTS 42 

transect with three independent soil moisture monitoring stations (b), and schematic diagram of 43 

active DTS system components (c). Reproduced from Striegl and Loheide (2012). 44 

45 
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 65 

 66 

 67 

Fig. 6. Time series (x-axis) of four hour rainfall totals and DTS measured average temperature 68 

rise eight minutes after heating began for each 2-m interval along the 130-m cable transect (a), 69 

time series of estimated soil moisture values based on the active DTS data from each 2-m 70 

interval along the cable (b), and a plot of active DTS soil moisture estimates and independent 71 

soil moistuture estimates versus cable position on 25 Oct. 2010 at 16:00 (c). 72 
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 74 

 75 

 76 

Fig. 7. Artist’s view of the Soil Moisture and Ocean Salinity (SMOS) satellite (Courtesy of 77 

Cesbio- Mira). 78 

79 
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 80 

 81 

Fig. 8. Monthly soil moisture product (September 2010) expressed in m
3 

m
-3

. Note the wet 82 

patches in Argentina or the receding Intertropical Convergence Zone influence in Sahel. Where 83 

topography is too steep, RFI too important, vegetation too dense (tropical rain forest) or soils are 84 

frozen /covered by snow, the retrievals are either not attempted or not represented. 85 

 86 

87 
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 88 

Fig. 9. Artist’s view of the Soil Moisture Active Passive satellite. 89 

90 
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  91 

 92 

Fig. 10.  Nine AirMOSS flux sites covering major distribution of vegetation types in North 93 

American biomes.   94 

 95 

 96 
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 97 

Fig. 11.  AirMOSS flight path made up of four flight lines, Metolius flux site, Cascade 98 

Mountains, Oregon.   99 

100 
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 101 

 102 

Fig. 12.  AirMOSS three band (Red = HH, Green = HV, Blue = VV where H is horizontal 103 

polarization and V is vertical polarization) raw data image showing the spatial variation of soil 104 

moisture over the Metolius flux site, Cascade Mountains, Oregon along with soil roughness and 105 

vegetation effects which have not yet been removed.  Volcanic feature in center of image is 106 

Black Butte cinder cone.   107 

108 
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 121 

Fig. 13. In situ soil moisture monitoring sites across the Continental U.S.122 
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 123 

 124 

 125 

Fig. 14. Overview of soil moisture stations currently contained in the International Soil Moisture 126 

Network (ISMN). Green dots show the stations that are still measuring soil moisture, red dots the 127 

stations that were imported from the Global Soil Moisture Data Bank. 128 
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 130 

 131 

Fig. 15. Number of stations found within and area covered by the different Köppen Geiger 132 

classes after Peel et al. (2007). For the class legend we refer to the original publication. 133 
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 134 

Fig. 16. Water deficit estimation by the atmospheric water deficit (AWD) method and soil water 135 

deficit methods for the 0- to 40- (SWD40) and 0- to 80-cm depths (SWD80), with corresponding 136 

water deficit thresholds. Averages of 15 yr for Hollis, OK. (Reproduced from Torres et al., 137 

2013).138 
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Fig. 17. Drought probabilities estimated by the AWD method and SWD methods for the 0- to 40- 140 

(SWD40) and 0- to 80-cm depths (SWD80). Average for 15 yr and eight sites in Oklahoma for 141 

May 1 through October 31. (Reproduced from Torres et al., 2013).142 
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 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

Fig. 18.  Departure from average plant available water (PAW) for the 0-16 inch (40 cm) soil 153 

layer across Oklahoma for May 2012 (a) and May 2013 (b).  US Drought Monitor maps for 154 

Oklahoma for May 15, 2012 (c) and May 14, 2013 (d).  The PAW maps were adapted from the 155 

Oklahoma Mesonet Long-Term Averages Maps 156 

(http://www.mesonet.org/index.php/weather/mesonet_averages_maps).  The Drought Monitor 157 

maps were adapted from the US Drought Monitor Archives 158 

(http://droughtmonitor.unl.edu/archive.html).  159 

160 

a) b) 

c) d) 
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 162 

Fig. 19.  Schematic of principle atmospheric boundary layer interactions with the land surface 163 

conditions (modified from Ek and Mahrt, 1994 and Ek, 2005).  Note that two consecutive 164 

negative feedbacks result in a positive feedback.   165 

166 
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 167 

 168 

Fig. 20. Daily mean for each day in July 2006, averaged over Europe, of the observation minus 169 

6-hour forecast  of a) screen-level temperature (K), b)  screen-level relative humidity (%), and c) 170 

near-surface soil moisture (m
3 

m
-3

 ), from i) no assimilation (black, solid), and assimilation of ii) 171 

screen-level temperature and relative humidity (black, dashed), iii) AMSR-E near-surface soil 172 

moisture (grey, solid), and iv) both (grey, dashed) experiments. The assimilation was performed 173 

with an EKF using Météo -France's ISBA land surface model. 174 
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 176 

Fig. 21.  Contrasting soil water depletion profiles from Central Site East-Tiger Bush, HAPEX-177 

Sahel project a) vegetated section and b) bare soil section (modified from Cuenca et al., 1996).   178 

 179 

 180 

181 
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 182 

 183 

Fig. 22. Time series of streamflow (q) at the outlet of the Serein catchment in the Seine river 184 

basin in France for 1 Feb. 2000 to 15 March 2000.  Solid line indicates measured streamflow, 185 

dash dotted line indicates 1-day streamflow forecast without data assimilation, and dashed line 186 

indicated 1-day streamflow forecast with assimilation of streamflow and in situ soil moisture 187 

data. (Reproduced from Aubert et al., 2003). 188 

 189 
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