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SMOS Radiometer in the 1400–1427-MHz
Passive Band: Impact of the RFI Environment and

Approach to Its Mitigation and Cancellation
Elena Daganzo-Eusebio, Roger Oliva, Yann H. Kerr, Fellow, IEEE, Sara Nieto, Philippe Richaume,

and Susanne Martha Mecklenburg

Abstract— The Soil Moisture and Ocean Salinity (SMOS)
radiometer operates within the Earth Exploration Satellite
Service passive band at 1400–1427 MHz. Since its launch in
November 2009, SMOS images are strongly impacted by radio
frequency interference (RFI). So far >500 RFI sources distrib-
uted worldwide have been detected. Up to 42% of these RFIs
could be suppressed thanks to the co-operation of the National
Spectrum Management Authorities. Some of the strongest RFI
sources might mask other weaker sources underneath, hence it is
expected the total number of RFI detected may increase as strong
ones are progressively identified and switched off. Most RFIs are
located in Asia and Europe, which together hold ∼73% of the
active sources and >90% of the strongest interference. The areas
affected by RFI may experience either an underestimation in the
retrieved values of soil moisture and ocean salinity or data loss,
with the associated detrimental impact on the scientific return.
ESA and the teams participating in SMOS mission have put in
place different strategies to alleviate this RFI situation.

Index Terms— Interference, radiometry, radio spectrum
management.

I. INTRODUCTION

THE Soil Moisture and Ocean Salinity (SMOS) mission

is a joint program led by the European Space Agency

(ESA) with participation of the Centre National d’Etudes

Spatiales (CNES) in France and the Centro Para el Desar-

rollo Tecnológico Industrial (CDTI) in Spain. Its main sci-

entific objective is to observe soil moisture over land and

sea surface salinity over oceans [1]. Since its launch in

November 2009, SMOS observations are being perturbed by

radio frequency interferences (RFIs) that jeopardize part of

its scientific retrieval in certain areas of the World, espe-

cially over continental areas in Europe, South-Eastern Asia,
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and the Middle East. Detecting and flagging contaminated

observations and contacting national authorities to localize

and eliminate RFI sources emitting in the protected band

present a continuous challenge. This paper describes the reg-

ulatory framework for the protection of remote sensors in the

1400–1427-MHz frequency band, the effect RFI has on SMOS

data and the different approaches considered to improve the

detection, cancellation, and mitigation of the RFI contamina-

tion [2]. This paper also provides an overview of how the

SMOS RFI scenario has evolved, worldwide and in particular

over Europe, following the actions of National Spectrum

Management Authorities and the cancellation of many of the

RFI sources detected.

II. INTERNATIONAL REGULATION FOR THE PROTECTION

OF THE 1400–1427-MHZ PASSIVE BAND

The Earth Exploration Satellite Service (EESS) for pas-

sive sensing has a primary frequency allocation in the

1400–1427 MHz band and all emissions are prohibited in this

band according to the ITU-R Radio Regulations (RR) footnote

5.340. In addition, the World Radiocommunication Conference

2007 (WRC-07) adopted Resolution 750 on the compatibility

between the EESS-passive and relevant active services. As

concerns the 1400–1427-MHz band, Resolution 750 contains

recommended levels of unwanted emissions applicable to the

whole range of ITU-R services allocated in the adjacent

bands (Fig. 1) and resolves to urge administrations to take all

reasonable steps to ensure that unwanted emissions of active

services do not exceed the specific recommended maximum

levels, noting that EESS passive sensors provide worldwide

measurements that benefit all countries.

The evidence of RFI at levels that prevent geophysi-

cal measurements is the rationale for having compulsory

(not only recommended) limits to protect the purely pas-

sive bands. In Europe, the CEPT Electronic Communications

Committee (ECC) approved in March 2011 a new decision

ECC/DEC/(11)01 on the protection of the EESS (passive)

service in the 1400–1427-MHz band. This ECC decision,

which was proposed with the support of ESA, CNES, ANFR,

and EUMETNET, translates the compatibility criteria rec-

ommended by ITU into mandatory limits and intends to

give a clear signal to the international community about the

recognition by CEPT of the societal and economical values

0196-2892/$31.00 © 2013 IEEE
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Fig. 1. ITU-R frequency allocations in the 1400–1427-MHz range and adjacent frequency bands [3].

Fig. 2. SMOS snapshot showing several RFI emissions detected in Central
Europe on October 2010.

of the EESS (passive) applications related to climate change

and natural disasters prediction. The limits for unwanted

emissions apply to stations in the active services operating

in CEPT countries in the 1350–1400 and 1427–1452-MHz

bands brought into use after January 1, 2012. Each CEPT

administration decides at national level when the ECC decision

is implemented. Currently up to ten European countries have

already implemented this decision, which is being planned

in some others [3]. SMOS, AQUARIUS and in particular

future Earth Observation (EO) missions operating in the

1400–1427-MHz passive band, will benefit from this decision.

To increase the awareness of the impact of RFI in the pas-

sive sensors, the SMOS RFI issue was brought to the attention

of the European Commission, who underlined the importance

of strengthening the co-operation of all EU member states in

the investigation of the RFI sources over their territories and

of taking action to remove, as much as possible, the remaining

interferences still being observed [4].

In addition, the Committee on Space Research (COSPAR)

also recognized the importance of complying with the regula-

tory framework and requested all COSPAR national represen-

tatives to contact responsible agencies within their countries

to take measures to eliminate unauthorized contaminating

sources relating to the SMOS mission. Furthermore, ESA has

reported the RFI problem faced by SMOS mission in several

Fig. 3. Impact of very strong RFI emissions, observed as flares in Europe
on April 2012 (bottom) and a plot showing the BT level of SMOS reference
radiometer, indicating saturation of these receivers (top).

international forums such as the International Telecommunica-

tions Union (ITU), the Space Frequency Co-ordination Group

(SFCG), the CEPT Frequency Management Working Group,

and various scientific conferences (e.g., OCOSS, IGARSS, and

EGU).

III. SMOS RFI OBSERVATIONS

A. Type of RFI Emissions

Man-made emissions within the passive band are observed

by SMOS as strong point source emissions. The RFI is

observed as a brightness temperature (BT) intensity that

exceeds the emission radiated by natural sources. The maxi-

mum BT because of natural sources is the physical temperature

of the source and the maximum ground temperature ever

recorded so far is ∼338 K (65 °C). Therefore, BTs values

>340 K indicate that there is a man-made transmitter in the
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Fig. 4. Worldwide RFI contamination probability during the period of May
10–24, 2012.

Fig. 5. Probability of sustained RFI occurrence over Europe during 2-weeks
time-window (10–24 May) in 2010 (top) and 2012 (bottom).

band without any doubt. RFI emissions can be categorized as

low, moderate, strong or very strong as follows.

1) Low RFI emissions have levels similar to natural sources

and are difficult to detect, leading to incorrect physical

retrieval.

2) Moderate RFI emissions are easily detectable but their

effects are circumscribed to the on-ground emitter’s

Fig. 6. SMOS images showing geolocation of RFI sources in the area of
Turkey/Middle East on November 2011 (top) and over China on January 2012
(bottom).

location. The quality of the data will be negatively

affected, with less data available for the retrieval leading

to less accuracy (Fig. 2).

3) Strong RFI emissions influence larger areas through the

secondary lobes tails, which need to be discarded for

scientific retrieval, thus leading to a significant data loss.

4) Very strong RFI emissions essentially hide the full

SMOS field-of-view and can blank out any natural signal

over a range of several hundreds of kilometers, causing

significant loss of data for scientific retrievals. In this

respect, there are observed occasional but recurrent RFI

flares in Europe that are able to saturate some of SMOS

receivers as shown in Fig. 3.
The RFI sources observed by SMOS can be grouped into

two main categories:

1) Illegal in-band emissions in the protected band. These

are caused by unauthorized radiolinks, TV and FM

broadcast stations, wireless monitoring cameras, mal-

functioning DECT phone terminals, and more.

2) Excessive unwanted emissions from systems operating

in the adjacent bands. These cause RFI because of out-

of-band and spurious emissions from radars and other

transmitter systems.

The type of emission causing the interference cannot be

confirmed based on the SMOS data alone. The feedback
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Fig. 7. Overview of SMOS RFI status OFF/ON in September 2012.

Fig. 8. Distribution of active RFI sources worldwide as of September 2012.

Fig. 9. Distribution of active RFI sources worldwide as of September 2012,
classed into moderate, strong, and very strong emission levels.

received from the national spectrum management authorities

is key to be able to better characterize the RFI sources and

to further improve the interference detection, mitigation, and

cancellation techniques.

B. RFI Occurrence Probability Maps

The Level-2 soil moisture processor allows retrieving statis-

tical information of the SMOS pixels affected by RFI and this

data can be presented as probability maps of RFI occurrences

during a certain period of time.

The RFI detection included in soil moisture retrieval

algorithms allows detecting strong emitters but also weaker

Fig. 10. RFI probability map over North America, showing improvement
because of on-going action to refurbish L-Band radar stations in Canada.

Fig. 11. Cases of RFI observed over the sea in the Caribe in 2010 (left) and
near Hawaii in 2012 (right).

sources. As explained, strong sources are detected when

their BTs are outside of the geophysical expectation range.

This range uses variable thresholds dependent of the min-

imum/maximum physical earth surface temperature within

the antenna footprints. This procedure is stricter than the

traditional “maximum maximorum” 340 K fixed threshold and

allows detecting lower BTs values as RFI sources if they are

not geophysically plausible given the earth surface estimates

(from ECMWF) and considering margins to avoid false alarms.

Weaker RFI contaminations are detected through anomalous

angular signature on the first Stokes parameter (BTX + BTY),

which is expected not to change much with the incidence

angle. Finally, when the soil moisture retrieval is attempted,

the farthest outliers with respect to the model solution are

eliminated as (possible) soft RFI sources (larger than four

times the BTs radiometric uncertainties).

The basis of probability maps is to count the number of

BTs considered as contaminated per pixel and orbit and to

accumulate counters as the beginning of the mission in daily

global files maps. These files are called as DGG current RFI

and hold the three counters: NRFIX, NRFIY, and NSNAP.

NRFIX (resp. NRFIY) are the number of BTs detected as

contaminated on X (resp. Y) antenna polarization, whereas
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Fig. 12. Distribution active and switched off RFI sources over Europe by country (status September 2012).

Fig. 13. Distribution of active RFI sources over Europe as of September 2012, classed into moderate, strong, and very strong emission levels.

NSNAP is the total number of observed BTs. Then, P =

(NRFIX+NRFIY)/NSNAP defines a probability of RFI occur-

rences as the beginning of the mission up to the validity date

of a given DGG current RFI map. By differentiating two DGG

current RFI counters maps for two dates, the probability of RFI

occurrences can be computed for the specific time period that

these two dates define. This is shown in the three following

probability maps for 15 days time window at various dates.

The worldwide RFI probability map during the period May

10–24, 2012 is shown in Fig. 4, and the detailed maps over

Europe for 2010 and 2012 are shown in Fig. 5. The color

bar ranges from red (100%), indicating that RFIs are always

present and means that no BT measurements were kept at

all during 15 days, to deep blue, indicating none to very

low probability and thus almost all BT measurements were

kept as usable for retrieval. Intermediate values indicate a

high proportion of RFI presence but do not tell when the

occurrences appeared within the time window considered.

For the 15 days time window illustrated in these maps, a

probability of 50% (green) is equally obtained by 7.5 days

of continuous strong emissions followed by 7.5 days of no

emission at all or by alternating one day with strong RFI

followed by one day RFI off or any other combinations.

These maps do not include outliers to models but only

the radiometric detection to avoid any controversy about the

validity of models that may create false alarms. In the same

spirit, reasonable margins in thresholds and the use of the

radiometric uncertainty are taken into consideration for the

detection to avoid false alarms. The presented maps, though

scary as they are, must be considered optimistic; the reality is

certainly worse because of the margins taken, of the fact that

the stronger RFI sources may be masking weaker RFI emitters
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Fig. 14. Global statistics of SMOS RFI over Europe. Status of September
2012.

Fig. 15. Evolution of SMOS RFI investigations over Europe in co-operation
with the National Spectrum Management Authorities as of September 2012.

and of the difficulty in detecting RFI emissions of moderate

strength very close to BT values from natural sources.

C. RFI Detection and Geolocation Process

SMOS L1c products provide geolocated measurements of

BT. These measurements integrate the radiation received at

the satellite every 1.2 s.

A team of data analysts regularly scans these SMOS images

and the probability maps presented in the previous section for

new RFI sources. Whenever a RFI is detected, a semiautomatic

algorithm [5] analyzes several SMOS passes over that area.

The objective of the algorithm is to estimate, as best as

possible, the on-ground location of the RFI and its BT intensity

(see Fig. 6). This information is then transmitted to the national

spectrum management authorities of the country. These will

initiate investigations about the location and origin of the RFI

source and will take the necessary actions to either switch

off the emitter or repair malfunctioning equipment until the

interference is eliminated.

Even though SMOS spatial resolution (35–55 km) is not

very adequate for this purpose, the algorithm relies on the

large amount of observations to improve the accuracy of the

geographical co-ordinates of the antenna emitter. Considering

that during one pass, each point on-ground is measured several

times under different incidence angles (as the satellite moves

forward) and that at least two weeks of measurements over that

Fig. 16. Evolution of SMOS RFI investigations over Greenland [December
2010 (left) to March 2011 (right)].

Fig. 17. Evolution of SMOS RFI investigations over Greece [June 2010
(left) to April 2011 (right)].

region (i.e., ∼10 passes) are used to infer the RFI position,

the final accuracy of this technique is better than 5 km in the

majority of the cases.

Other characteristics that can be derived in this geolocation

process are the RFI emitter pointing direction and periodicity

(e.g., pulsed emissions from scanning radars, nonpermanent

sources, continuous emissions, and so on).

The BT associated to each RFI only aims to characterize a

first-order estimation of the intensity and to prioritize within

the RFIs detected in one particular country which ones are

most harmful to SMOS measurements. The majority of the

RFI sources correspond to terrestrial emitters with low eleva-

tion, whereas the satellite measurements correspond to almost

zenith observations. Therefore, the BT values measured do not

fully represent the total power transmitted by the interference

source in the passive band.

A very important aspect of the RFI detection process,

together with the accuracy, is reliability. The aim is not to

provide any false alarm detection to the spectrum management

authorities, which could involve the mobilization of a ground

monitoring patrol team looking for an inexistent RFI. This

situation would discourage the national authorities’ efforts to

improve SMOS RFI situation over their territories.

IV. APPROACHES TO IMPROVE SMOS RFI SITUATION

A. General Description of the Approaches Considered

Several strategies are put in place to improve scientific

retrieval of SMOS team under the RFI scenario observed

worldwide as follows:
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Fig. 18. Evolution of SMOS RFI investigations over Italy [July 2010 (left)
to April 2011 (right)].

Fig. 19. Evolution of SMOS RFI investigations over Germany [January 2011
(left) to February 2011 (right)].

1) In the short and medium term:

a) to report the detected RFI sources to the National

Spectrum Management Authorities and request for their

support to initiate investigations. Main outcome of this

initiative is the cancellation of those RFI sources because

of emitters that do not comply with ITU regulations;

b) to localize and flag the RFI contamination in the respec-

tive Level-1 data product, thus avoiding that this data is

used for the retrieval of Level-2 data products. Flagging

techniques have associated an important loss of data

although they increase the reliability in the scientific

retrieved data;

c) to investigate new RFI mitigation algorithms. New

approaches to mitigate or cancel the RFI impact are

under development and preliminary testing is being con-

ducted. Interference mitigation techniques have either

big uncertainties associated to their corrections or imply

a degradation of certain instrument characteristics, such

as spatial resolution, in favour, for example, of a reduc-

tion of the synthetic beam secondary side-lobes. There-

fore, the real benefit of such techniques is still to be

proved.

2) In the medium and long term:

a) to increase the awareness of the international telecom

community about the ITU radio-regulations, both in

terms of prohibiting any emissions in the passive band,

and also in terms of respecting the maximum levels

recommended for unwanted emissions (in the passive

band) because of active services in adjacent bands. It is

important to remember that the removal of strong RFI

sources does not mean that the band is entirely free

Fig. 20. Evolution of SMOS RFI investigations over Iceland [March 2011
(left) to April 2011 (right)].

Fig. 21. Evolution of SMOS RFI investigations over Ukraine [December
2010 (left) to August 2011 (right)].

of interference, as low level RFI can still be present

and create erroneous data.

B. Worldwide Evolution of SMOS RFI

ESA regularly reports the interference cases to the spectrum

management authorities of the different countries so that they

can initiate investigations, identify the type of emitter and take

appropriate actions.

Following a careful analysis of the retrieved data, ESA pre-

pares a RFI catalog/country, containing detailed information

of the geolocation, BT measurements, and characteristics of

the RFI source for all interferences detected over the territory.

This information is typically provided together with a snapshot

of SMOS observations over the area of interest. The spectrum

management authorities normally distribute the information on

RFI sources/regions, and then delegate regional office the task

of investigation and on-site monitoring of the reported RFI

locations.

An overall SMOS RFI catalog is updated regularly and

allows ESA to keep track of the process in the identification

and switching off of RFI sources. The investigation of RFIs

is often an iterative process that requires the co-operation of

the authorities and the co-ordination and regular RFI status

updates provided by SMOS RFI team. This procedure is time-

consuming and not always successful, but has proven to be

effective to improve the interference scenario over extensive

areas.

So far ESA has contacted 45 administrations and reported

>500 RFI sources, most of them located in Europe and Asia.

Approximately 42% of the RFI sources were successfully

identified and switched off. Fig. 7 shows an overview of

the worldwide progress in the investigations since early 2010

until now. A significant improvement is observed in Europe

(144 RFI off), Canada (22 RFI off), and the United States of

America (14 RFI off). Since early 2012 some improvement
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Fig. 22. Evolution of SMOS RFI investigations over Spain [January 2010
(left) to June 2012 (right)].

Fig. 23. Evolution of SMOS RFI investigations over United Kingdom [June
2010 (left) to January 2012 (right)].

is also observed in Asia, with 32 RFI sources switched off

in China, although the continent still remain much polluted

by RFI and with the strongest emitters in the passive band.

By September 2012, there are up to 300 RFIs still active

worldwide and the more polluted areas are Middle East, China,

and some areas in Europe. See the distribution worldwide of

the active RFI sources in Figs. 8 and 9.

The out-of-band emissions from radar systems are con-

firmed as RFI sources in numerous cases. The adjustment of

some technical parameters or repair of malfunctioning mod-

ules has fixed the problem in several occasions. In other cases,

the refurbishment of the radar station was necessary to ensure

compliance with the unwanted emissions maximum levels set

by ITU-R regulations. Because of the commitment of the

national authorities the situation concerning radar interferences

is improving in several countries, as was the case of Canada,

shown in Fig. 10.

Continental regions are not the only ones affected by RFI.

Fig. 11 shows two cases of RFI emitted from boats observed

near the Caribbean islands (2010) and more recently in the

Pacific Ocean, near Hawaii (2012).

C. Evolution of SMOS RFI in Europe

Since early 2010, >220 RFI were detected over Europe and

144 RFIs were successfully switched off because of the co-

operation of the National Spectrum Management Authorities.

Fig. 12 shows an overview of the number of RFI sources

on/off/country, and Fig. 13 shows the distribution/country in

terms of BT intensity (moderate, strong, and very strong) for

those sources active in September 2012. Finally, Fig. 14 shows

the global statistics as of Europe.

The authorities of up to 26 European countries are co-

operating with ESA in the investigation of the RFI over their

territories. The evolution and the results obtained from their

involvement are shown in Fig. 15.

A significant improvement is observed since SMOS launch

and this is noticeable when comparing the satellite snapshots

before and after actions were taken to cancel the RFI. See for

example the cases of Greenland (Fig. 16), Greece (Fig. 17),

Italy (Fig. 18), Germany (Fig. 19), Iceland (Fig. 20), Ukraine

(Fig. 21), Spain (Fig. 22), and United Kingdom (Fig. 23).

V. CONCLUSION

This paper showed that it is essential to protect the passive

band 1400–1427 MHz from both illegal in-band emissions

and excessive unwanted emissions. While the solution of

the RFI because of illegal emissions can be achieved with

the co-operation of the national authorities, the solution of

the excessive unwanted emissions problem would also require

regulatory action and compliance with the levels adopted

in ITU-R Resolution 750 (WRC-07). This effort had to be

continued and intensified by raising concern among the dif-

ferent countries and organizations about the impact of RFI on

scientific observations in particular from potential new services

or systems that could be authorized in the adjacent bands.
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SMOS Radiometer in the 1400–1427-MHz
Passive Band: Impact of the RFI Environment and

Approach to Its Mitigation and Cancellation
Elena Daganzo-Eusebio, Roger Oliva, Yann H. Kerr, Fellow, IEEE, Sara Nieto, Philippe Richaume,

and Susanne Martha Mecklenburg

Abstract— The Soil Moisture and Ocean Salinity (SMOS)
radiometer operates within the Earth Exploration Satellite
Service passive band at 1400–1427 MHz. Since its launch in
November 2009, SMOS images are strongly impacted by radio
frequency interference (RFI). So far >500 RFI sources distrib-
uted worldwide have been detected. Up to 42% of these RFIs
could be suppressed thanks to the co-operation of the National
Spectrum Management Authorities. Some of the strongest RFI
sources might mask other weaker sources underneath, hence it is
expected the total number of RFI detected may increase as strong
ones are progressively identified and switched off. Most RFIs are
located in Asia and Europe, which together hold ∼73% of the
active sources and >90% of the strongest interference. The areas
affected by RFI may experience either an underestimation in the
retrieved values of soil moisture and ocean salinity or data loss,
with the associated detrimental impact on the scientific return.
ESA and the teams participating in SMOS mission have put in
place different strategies to alleviate this RFI situation.

Index Terms— Interference, radiometry, radio spectrum
management.

I. INTRODUCTION

THE Soil Moisture and Ocean Salinity (SMOS) mission

is a joint program led by the European Space Agency

(ESA) with participation of the Centre National d’Etudes

Spatiales (CNES) in France and the Centro Para el Desar-

rollo Tecnológico Industrial (CDTI) in Spain. Its main sci-

entific objective is to observe soil moisture over land and

sea surface salinity over oceans [1]. Since its launch in

November 2009, SMOS observations are being perturbed by

radio frequency interferences (RFIs) that jeopardize part of

its scientific retrieval in certain areas of the World, espe-

cially over continental areas in Europe, South-Eastern Asia,
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and the Middle East. Detecting and flagging contaminated

observations and contacting national authorities to localize

and eliminate RFI sources emitting in the protected band

present a continuous challenge. This paper describes the reg-

ulatory framework for the protection of remote sensors in the

1400–1427-MHz frequency band, the effect RFI has on SMOS

data and the different approaches considered to improve the

detection, cancellation, and mitigation of the RFI contamina-

tion [2]. This paper also provides an overview of how the

SMOS RFI scenario has evolved, worldwide and in particular

over Europe, following the actions of National Spectrum

Management Authorities and the cancellation of many of the

RFI sources detected.

II. INTERNATIONAL REGULATION FOR THE PROTECTION

OF THE 1400–1427-MHZ PASSIVE BAND

The Earth Exploration Satellite Service (EESS) for pas-

sive sensing has a primary frequency allocation in the

1400–1427 MHz band and all emissions are prohibited in this

band according to the ITU-R Radio Regulations (RR) footnote

5.340. In addition, the World Radiocommunication Conference

2007 (WRC-07) adopted Resolution 750 on the compatibility

between the EESS-passive and relevant active services. As

concerns the 1400–1427-MHz band, Resolution 750 contains

recommended levels of unwanted emissions applicable to the

whole range of ITU-R services allocated in the adjacent

bands (Fig. 1) and resolves to urge administrations to take all

reasonable steps to ensure that unwanted emissions of active

services do not exceed the specific recommended maximum

levels, noting that EESS passive sensors provide worldwide

measurements that benefit all countries.

The evidence of RFI at levels that prevent geophysi-

cal measurements is the rationale for having compulsory

(not only recommended) limits to protect the purely pas-

sive bands. In Europe, the CEPT Electronic Communications

Committee (ECC) approved in March 2011 a new decision

ECC/DEC/(11)01 on the protection of the EESS (passive)

service in the 1400–1427-MHz band. This ECC decision,

which was proposed with the support of ESA, CNES, ANFR,

and EUMETNET, translates the compatibility criteria rec-

ommended by ITU into mandatory limits and intends to

give a clear signal to the international community about the

recognition by CEPT of the societal and economical values

0196-2892/$31.00 © 2013 IEEE
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Fig. 1. ITU-R frequency allocations in the 1400–1427-MHz range and adjacent frequency bands [3].

Fig. 2. SMOS snapshot showing several RFI emissions detected in Central
Europe on October 2010.

of the EESS (passive) applications related to climate change

and natural disasters prediction. The limits for unwanted

emissions apply to stations in the active services operating

in CEPT countries in the 1350–1400 and 1427–1452-MHz

bands brought into use after January 1, 2012. Each CEPT

administration decides at national level when the ECC decision

is implemented. Currently up to ten European countries have

already implemented this decision, which is being planned

in some others [3]. SMOS, AQUARIUS and in particular

future Earth Observation (EO) missions operating in the

1400–1427-MHz passive band, will benefit from this decision.

To increase the awareness of the impact of RFI in the pas-

sive sensors, the SMOS RFI issue was brought to the attention

of the European Commission, who underlined the importance

of strengthening the co-operation of all EU member states in

the investigation of the RFI sources over their territories and

of taking action to remove, as much as possible, the remaining

interferences still being observed [4].

In addition, the Committee on Space Research (COSPAR)

also recognized the importance of complying with the regula-

tory framework and requested all COSPAR national represen-

tatives to contact responsible agencies within their countries

to take measures to eliminate unauthorized contaminating

sources relating to the SMOS mission. Furthermore, ESA has

reported the RFI problem faced by SMOS mission in several

Fig. 3. Impact of very strong RFI emissions, observed as flares in Europe
on April 2012 (bottom) and a plot showing the BT level of SMOS reference
radiometer, indicating saturation of these receivers (top).

international forums such as the International Telecommunica-

tions Union (ITU), the Space Frequency Co-ordination Group

(SFCG), the CEPT Frequency Management Working Group,

and various scientific conferences (e.g., OCOSS, IGARSS, and

EGU).

III. SMOS RFI OBSERVATIONS

A. Type of RFI Emissions

Man-made emissions within the passive band are observed

by SMOS as strong point source emissions. The RFI is

observed as a brightness temperature (BT) intensity that

exceeds the emission radiated by natural sources. The maxi-

mum BT because of natural sources is the physical temperature

of the source and the maximum ground temperature ever

recorded so far is ∼338 K (65 °C). Therefore, BTs values

>340 K indicate that there is a man-made transmitter in the
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Fig. 4. Worldwide RFI contamination probability during the period of May
10–24, 2012.

Fig. 5. Probability of sustained RFI occurrence over Europe during 2-weeks
time-window (10–24 May) in 2010 (top) and 2012 (bottom).

band without any doubt. RFI emissions can be categorized as

low, moderate, strong or very strong as follows.

1) Low RFI emissions have levels similar to natural sources

and are difficult to detect, leading to incorrect physical

retrieval.

2) Moderate RFI emissions are easily detectable but their

effects are circumscribed to the on-ground emitter’s

Fig. 6. SMOS images showing geolocation of RFI sources in the area of
Turkey/Middle East on November 2011 (top) and over China on January 2012
(bottom).

location. The quality of the data will be negatively

affected, with less data available for the retrieval leading

to less accuracy (Fig. 2).

3) Strong RFI emissions influence larger areas through the

secondary lobes tails, which need to be discarded for

scientific retrieval, thus leading to a significant data loss.

4) Very strong RFI emissions essentially hide the full

SMOS field-of-view and can blank out any natural signal

over a range of several hundreds of kilometers, causing

significant loss of data for scientific retrievals. In this

respect, there are observed occasional but recurrent RFI

flares in Europe that are able to saturate some of SMOS

receivers as shown in Fig. 3.
The RFI sources observed by SMOS can be grouped into

two main categories:

1) Illegal in-band emissions in the protected band. These

are caused by unauthorized radiolinks, TV and FM

broadcast stations, wireless monitoring cameras, mal-

functioning DECT phone terminals, and more.

2) Excessive unwanted emissions from systems operating

in the adjacent bands. These cause RFI because of out-

of-band and spurious emissions from radars and other

transmitter systems.

The type of emission causing the interference cannot be

confirmed based on the SMOS data alone. The feedback
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Fig. 7. Overview of SMOS RFI status OFF/ON in September 2012.

Fig. 8. Distribution of active RFI sources worldwide as of September 2012.

Fig. 9. Distribution of active RFI sources worldwide as of September 2012,
classed into moderate, strong, and very strong emission levels.

received from the national spectrum management authorities

is key to be able to better characterize the RFI sources and

to further improve the interference detection, mitigation, and

cancellation techniques.

B. RFI Occurrence Probability Maps

The Level-2 soil moisture processor allows retrieving statis-

tical information of the SMOS pixels affected by RFI and this

data can be presented as probability maps of RFI occurrences

during a certain period of time.

The RFI detection included in soil moisture retrieval

algorithms allows detecting strong emitters but also weaker

Fig. 10. RFI probability map over North America, showing improvement
because of on-going action to refurbish L-Band radar stations in Canada.

Fig. 11. Cases of RFI observed over the sea in the Caribe in 2010 (left) and
near Hawaii in 2012 (right).

sources. As explained, strong sources are detected when

their BTs are outside of the geophysical expectation range.

This range uses variable thresholds dependent of the min-

imum/maximum physical earth surface temperature within

the antenna footprints. This procedure is stricter than the

traditional “maximum maximorum” 340 K fixed threshold and

allows detecting lower BTs values as RFI sources if they are

not geophysically plausible given the earth surface estimates

(from ECMWF) and considering margins to avoid false alarms.

Weaker RFI contaminations are detected through anomalous

angular signature on the first Stokes parameter (BTX + BTY),

which is expected not to change much with the incidence

angle. Finally, when the soil moisture retrieval is attempted,

the farthest outliers with respect to the model solution are

eliminated as (possible) soft RFI sources (larger than four

times the BTs radiometric uncertainties).

The basis of probability maps is to count the number of

BTs considered as contaminated per pixel and orbit and to

accumulate counters as the beginning of the mission in daily

global files maps. These files are called as DGG current RFI

and hold the three counters: NRFIX, NRFIY, and NSNAP.

NRFIX (resp. NRFIY) are the number of BTs detected as

contaminated on X (resp. Y) antenna polarization, whereas
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Fig. 12. Distribution active and switched off RFI sources over Europe by country (status September 2012).

Fig. 13. Distribution of active RFI sources over Europe as of September 2012, classed into moderate, strong, and very strong emission levels.

NSNAP is the total number of observed BTs. Then, P =

(NRFIX+NRFIY)/NSNAP defines a probability of RFI occur-

rences as the beginning of the mission up to the validity date

of a given DGG current RFI map. By differentiating two DGG

current RFI counters maps for two dates, the probability of RFI

occurrences can be computed for the specific time period that

these two dates define. This is shown in the three following

probability maps for 15 days time window at various dates.

The worldwide RFI probability map during the period May

10–24, 2012 is shown in Fig. 4, and the detailed maps over

Europe for 2010 and 2012 are shown in Fig. 5. The color

bar ranges from red (100%), indicating that RFIs are always

present and means that no BT measurements were kept at

all during 15 days, to deep blue, indicating none to very

low probability and thus almost all BT measurements were

kept as usable for retrieval. Intermediate values indicate a

high proportion of RFI presence but do not tell when the

occurrences appeared within the time window considered.

For the 15 days time window illustrated in these maps, a

probability of 50% (green) is equally obtained by 7.5 days

of continuous strong emissions followed by 7.5 days of no

emission at all or by alternating one day with strong RFI

followed by one day RFI off or any other combinations.

These maps do not include outliers to models but only

the radiometric detection to avoid any controversy about the

validity of models that may create false alarms. In the same

spirit, reasonable margins in thresholds and the use of the

radiometric uncertainty are taken into consideration for the

detection to avoid false alarms. The presented maps, though

scary as they are, must be considered optimistic; the reality is

certainly worse because of the margins taken, of the fact that

the stronger RFI sources may be masking weaker RFI emitters



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 14. Global statistics of SMOS RFI over Europe. Status of September
2012.

Fig. 15. Evolution of SMOS RFI investigations over Europe in co-operation
with the National Spectrum Management Authorities as of September 2012.

and of the difficulty in detecting RFI emissions of moderate

strength very close to BT values from natural sources.

C. RFI Detection and Geolocation Process

SMOS L1c products provide geolocated measurements of

BT. These measurements integrate the radiation received at

the satellite every 1.2 s.

A team of data analysts regularly scans these SMOS images

and the probability maps presented in the previous section for

new RFI sources. Whenever a RFI is detected, a semiautomatic

algorithm [5] analyzes several SMOS passes over that area.

The objective of the algorithm is to estimate, as best as

possible, the on-ground location of the RFI and its BT intensity

(see Fig. 6). This information is then transmitted to the national

spectrum management authorities of the country. These will

initiate investigations about the location and origin of the RFI

source and will take the necessary actions to either switch

off the emitter or repair malfunctioning equipment until the

interference is eliminated.

Even though SMOS spatial resolution (35–55 km) is not

very adequate for this purpose, the algorithm relies on the

large amount of observations to improve the accuracy of the

geographical co-ordinates of the antenna emitter. Considering

that during one pass, each point on-ground is measured several

times under different incidence angles (as the satellite moves

forward) and that at least two weeks of measurements over that

Fig. 16. Evolution of SMOS RFI investigations over Greenland [December
2010 (left) to March 2011 (right)].

Fig. 17. Evolution of SMOS RFI investigations over Greece [June 2010
(left) to April 2011 (right)].

region (i.e., ∼10 passes) are used to infer the RFI position,

the final accuracy of this technique is better than 5 km in the

majority of the cases.

Other characteristics that can be derived in this geolocation

process are the RFI emitter pointing direction and periodicity

(e.g., pulsed emissions from scanning radars, nonpermanent

sources, continuous emissions, and so on).

The BT associated to each RFI only aims to characterize a

first-order estimation of the intensity and to prioritize within

the RFIs detected in one particular country which ones are

most harmful to SMOS measurements. The majority of the

RFI sources correspond to terrestrial emitters with low eleva-

tion, whereas the satellite measurements correspond to almost

zenith observations. Therefore, the BT values measured do not

fully represent the total power transmitted by the interference

source in the passive band.

A very important aspect of the RFI detection process,

together with the accuracy, is reliability. The aim is not to

provide any false alarm detection to the spectrum management

authorities, which could involve the mobilization of a ground

monitoring patrol team looking for an inexistent RFI. This

situation would discourage the national authorities’ efforts to

improve SMOS RFI situation over their territories.

IV. APPROACHES TO IMPROVE SMOS RFI SITUATION

A. General Description of the Approaches Considered

Several strategies are put in place to improve scientific

retrieval of SMOS team under the RFI scenario observed

worldwide as follows:
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Fig. 18. Evolution of SMOS RFI investigations over Italy [July 2010 (left)
to April 2011 (right)].

Fig. 19. Evolution of SMOS RFI investigations over Germany [January 2011
(left) to February 2011 (right)].

1) In the short and medium term:

a) to report the detected RFI sources to the National

Spectrum Management Authorities and request for their

support to initiate investigations. Main outcome of this

initiative is the cancellation of those RFI sources because

of emitters that do not comply with ITU regulations;

b) to localize and flag the RFI contamination in the respec-

tive Level-1 data product, thus avoiding that this data is

used for the retrieval of Level-2 data products. Flagging

techniques have associated an important loss of data

although they increase the reliability in the scientific

retrieved data;

c) to investigate new RFI mitigation algorithms. New

approaches to mitigate or cancel the RFI impact are

under development and preliminary testing is being con-

ducted. Interference mitigation techniques have either

big uncertainties associated to their corrections or imply

a degradation of certain instrument characteristics, such

as spatial resolution, in favour, for example, of a reduc-

tion of the synthetic beam secondary side-lobes. There-

fore, the real benefit of such techniques is still to be

proved.

2) In the medium and long term:

a) to increase the awareness of the international telecom

community about the ITU radio-regulations, both in

terms of prohibiting any emissions in the passive band,

and also in terms of respecting the maximum levels

recommended for unwanted emissions (in the passive

band) because of active services in adjacent bands. It is

important to remember that the removal of strong RFI

sources does not mean that the band is entirely free

Fig. 20. Evolution of SMOS RFI investigations over Iceland [March 2011
(left) to April 2011 (right)].

Fig. 21. Evolution of SMOS RFI investigations over Ukraine [December
2010 (left) to August 2011 (right)].

of interference, as low level RFI can still be present

and create erroneous data.

B. Worldwide Evolution of SMOS RFI

ESA regularly reports the interference cases to the spectrum

management authorities of the different countries so that they

can initiate investigations, identify the type of emitter and take

appropriate actions.

Following a careful analysis of the retrieved data, ESA pre-

pares a RFI catalog/country, containing detailed information

of the geolocation, BT measurements, and characteristics of

the RFI source for all interferences detected over the territory.

This information is typically provided together with a snapshot

of SMOS observations over the area of interest. The spectrum

management authorities normally distribute the information on

RFI sources/regions, and then delegate regional office the task

of investigation and on-site monitoring of the reported RFI

locations.

An overall SMOS RFI catalog is updated regularly and

allows ESA to keep track of the process in the identification

and switching off of RFI sources. The investigation of RFIs

is often an iterative process that requires the co-operation of

the authorities and the co-ordination and regular RFI status

updates provided by SMOS RFI team. This procedure is time-

consuming and not always successful, but has proven to be

effective to improve the interference scenario over extensive

areas.

So far ESA has contacted 45 administrations and reported

>500 RFI sources, most of them located in Europe and Asia.

Approximately 42% of the RFI sources were successfully

identified and switched off. Fig. 7 shows an overview of

the worldwide progress in the investigations since early 2010

until now. A significant improvement is observed in Europe

(144 RFI off), Canada (22 RFI off), and the United States of

America (14 RFI off). Since early 2012 some improvement
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Fig. 22. Evolution of SMOS RFI investigations over Spain [January 2010
(left) to June 2012 (right)].

Fig. 23. Evolution of SMOS RFI investigations over United Kingdom [June
2010 (left) to January 2012 (right)].

is also observed in Asia, with 32 RFI sources switched off

in China, although the continent still remain much polluted

by RFI and with the strongest emitters in the passive band.

By September 2012, there are up to 300 RFIs still active

worldwide and the more polluted areas are Middle East, China,

and some areas in Europe. See the distribution worldwide of

the active RFI sources in Figs. 8 and 9.

The out-of-band emissions from radar systems are con-

firmed as RFI sources in numerous cases. The adjustment of

some technical parameters or repair of malfunctioning mod-

ules has fixed the problem in several occasions. In other cases,

the refurbishment of the radar station was necessary to ensure

compliance with the unwanted emissions maximum levels set

by ITU-R regulations. Because of the commitment of the

national authorities the situation concerning radar interferences

is improving in several countries, as was the case of Canada,

shown in Fig. 10.

Continental regions are not the only ones affected by RFI.

Fig. 11 shows two cases of RFI emitted from boats observed

near the Caribbean islands (2010) and more recently in the

Pacific Ocean, near Hawaii (2012).

C. Evolution of SMOS RFI in Europe

Since early 2010, >220 RFI were detected over Europe and

144 RFIs were successfully switched off because of the co-

operation of the National Spectrum Management Authorities.

Fig. 12 shows an overview of the number of RFI sources

on/off/country, and Fig. 13 shows the distribution/country in

terms of BT intensity (moderate, strong, and very strong) for

those sources active in September 2012. Finally, Fig. 14 shows

the global statistics as of Europe.

The authorities of up to 26 European countries are co-

operating with ESA in the investigation of the RFI over their

territories. The evolution and the results obtained from their

involvement are shown in Fig. 15.

A significant improvement is observed since SMOS launch

and this is noticeable when comparing the satellite snapshots

before and after actions were taken to cancel the RFI. See for

example the cases of Greenland (Fig. 16), Greece (Fig. 17),

Italy (Fig. 18), Germany (Fig. 19), Iceland (Fig. 20), Ukraine

(Fig. 21), Spain (Fig. 22), and United Kingdom (Fig. 23).

V. CONCLUSION

This paper showed that it is essential to protect the passive

band 1400–1427 MHz from both illegal in-band emissions

and excessive unwanted emissions. While the solution of

the RFI because of illegal emissions can be achieved with

the co-operation of the national authorities, the solution of

the excessive unwanted emissions problem would also require

regulatory action and compliance with the levels adopted

in ITU-R Resolution 750 (WRC-07). This effort had to be

continued and intensified by raising concern among the dif-

ferent countries and organizations about the impact of RFI on

scientific observations in particular from potential new services

or systems that could be authorized in the adjacent bands.
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