

## Accounting for age uncertainty in growth modeling, the case study of yellowfin tuna (Thunnus albacares) of the Indian Ocean

Emmanuelle Dortel, F. Massiot-Granier, Etienne Rivot, J. Million, Jean-Pierre Hallier, Eric Morize, Jean-Marie Munaron, N. Bousquet, Emmanuel Chassot

## ▶ To cite this version:

Emmanuelle Dortel, F. Massiot-Granier, Etienne Rivot, J. Million, Jean-Pierre Hallier, et al.. Accounting for age uncertainty in growth modeling, the case study of yellowfin tuna (Thunnus albacares) of the Indian Ocean. PLoS ONE, 2013, 8 (4), pp.e60886. 10.1371/journal.pone.0060886 . ird-00833540

## HAL Id: ird-00833540 https://ird.hal.science/ird-00833540

Submitted on 13 Jun 2013

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. APPENDIX A. Presentation of data used in the coupling of ageing error and growth models

TABLE A1. Summarize of data used in ageing error model; *It*: section between nucleus and OTC mark , *Im*: section between the OTC mark and edge, *Ir*: section between the nucleus and edge

|                               | Fish from RTTP-IO program<br>knowledge of time-at-liberty:<br>with withou |               |             | without       | Fish from<br>WSTTP<br>program |
|-------------------------------|---------------------------------------------------------------------------|---------------|-------------|---------------|-------------------------------|
| Otolith section               | It                                                                        | Ir            | Im          | It            | It                            |
| Number of fishes              | 80                                                                        | 14            | 27          | 30            | 38                            |
| Fork length at tagging (cm)   | 43 to 85                                                                  | 50 to 72      |             |               |                               |
| Fork length at recapture (cm) | 49.7 to 135.4                                                             | 59.5 to 114.1 | 49.7 to 131 | 47.9 to 146.5 | 19 to 46.6                    |
| Time-at-liberty (days)        | 43 to 969                                                                 | 33 to 414     | 43 to 969   |               |                               |



FIG. A1. Tagging area (gray-colored) and points of tag recovery (circles) of RTTP-IO program and sampling area (square) of WSTTP program

## APPENDIX B. Evaluation by simulation of ageing error model: general approach and results



FIG. B1. Simulation framework for testing the ageing error model; different sources of uncertainty are added to simulated ages to randomly generate noisy increments that were then used as inputs in the model



FIG. B2. Marginal posterior distributions of the ageing error model parameters (black) compared with the simulated distributions (grey) with individual variability (right) and without (left); a, b and c represents the first, second and third simulated data set respectively



FIG. B3. Boxplot of the relative mean square error (RMSE) of estimated age by ageing error model for 2,3,4 or 5 readings of the same otolith; a, b and c represents the first, second and third simulated data set respectively

TABLE B1. Comparison of the RMSE values of estimated age by ageing error model using a Wilcoxon test; 2L, 3L, 4L and 5L correspond to the number of readings of the same otolith; a, b and c represents the first, second and third simulated data set respectively

|   |    | 4L                               | 3L                               | 2L                               |
|---|----|----------------------------------|----------------------------------|----------------------------------|
| a | 5L | V = 54527<br>p-value = 0.01224   |                                  |                                  |
|   | 4L |                                  | V = 48750<br>p-value = 1.767e-05 |                                  |
|   | 3L |                                  |                                  | V = 45892<br>p-value = 2.260e-07 |
| b | 5L | V = 54789<br>p-value = 0.01535   |                                  |                                  |
|   | 4L |                                  | V = 69539<br>p-value = 0.0324    |                                  |
|   | 3L |                                  |                                  | V = 45324<br>p-value = 8.683e-08 |
| с | 5L | V = 46959<br>p-value = 1.257e-06 |                                  |                                  |
|   | 4L |                                  | V = 69539<br>p-value = 0.0324    |                                  |
|   | 3L |                                  |                                  | V = 45324<br>p-value = 8.683e-08 |



FIG. B4. Boxplot of the relative mean square error (RMSE) of estimated age by the ageing error model, the conventional method and the intermediate method for 2, 3, 4 or 5 readings of the same otolith; a, b and c represents the first, second and third simulated data set respectively

TABLE B2. Comparison of the RMSE values of estimated age by ageing error model, the traditional method and the intermediate method using a Wilcoxon test; 2L, 3L, 4L and 5L correspond to the number of readings of the same otolith; a, b and c represents the first, second and third simulated data set respectively

|   |                        |    | Traditional method            | Intermediate method            |  |  |
|---|------------------------|----|-------------------------------|--------------------------------|--|--|
| a | Ageing error model     | 2L | V = 28741, p-value < 2.2e-16  | V = 55196, p-value = 0.02155   |  |  |
|   |                        | 3L | V = 28165, p-value < 2.2e-16  | V = 57314, p-value = 0.1004    |  |  |
|   |                        | 4L | V = 28080, p-value < 2.2e-16  | V = 59300, p-value = 0.3037    |  |  |
|   |                        | 5L | V = 28796, p-value < 2.2e-16  | V = 59429, p-value = 0.3229    |  |  |
|   | Intermediate<br>method | 2L | V = 17140, p-value < 2.2e-16  |                                |  |  |
|   |                        | 3L | V = 16009, p-value < 2.2e-16  |                                |  |  |
|   |                        | 4L | V = 16139, p-value < 2.2e-16  |                                |  |  |
|   |                        | 5L | V = 18954, p-value < 2.2e-16  |                                |  |  |
|   | Ageing error model     | 2L | V = 37313, p-value = 4.85e-15 | V = 52640, p-value = 0.002009  |  |  |
|   |                        | 3L | V = 35248, p-value < 2.2e-16  | V = 49274, p-value = 3.623e-05 |  |  |
|   |                        | 4L | V = 32274, p-value < 2.2e-16  | V = 53918, p-value = 0.007069  |  |  |
| h |                        | 5L | V = 35057, p-value < 2.2e-16  | V = 55195, p-value = 0.02153   |  |  |
| U | Intermediate<br>method | 2L | V = 36636, p-value = 8.97e-16 |                                |  |  |
|   |                        | 3L | V = 35714, p-value < 2.2e-16  |                                |  |  |
|   |                        | 4L | V = 29036, p-value < 2.2e-16  |                                |  |  |
|   |                        | 5L | V = 32230, p-value < 2.2e-16  |                                |  |  |
| с | Ageing error model     | 2L | V = 26437, p-value < 2.2e-16  | V = 60299, p-value = 0.4719    |  |  |
|   |                        | 3L | V = 26608, p-value < 2.2e-16  | V = 62971, p-value = 0.9149    |  |  |
|   |                        | 4L | V = 22487, p-value < 2.2e-16  | V = 67331, p-value = 0.1455    |  |  |
|   |                        | 5L | V = 23658, p-value < 2.2e-16  | V = 68155, p-value = 0.08714   |  |  |
|   | Intermediate<br>method | 2L | V = 24027, p-value < 2.2e-16  |                                |  |  |
|   |                        | 3L | V = 19659, p-value < 2.2e-16  |                                |  |  |
|   |                        | 4L | V = 14297, p-value < 2.2e-16  |                                |  |  |
|   |                        | 5L | V = 15527, p-value < 2.2e-16  |                                |  |  |



APPENDIX C. Bayesian fit of the growth model coupled with the ageing error model

FIG. C1. Marginal posterior distributions of the parameters of the growth model coupled with the ageing error model (black) compared with the prior distributions (grey)

|                       | $L_{\infty}$ | $k_1$ | $k_2$  | α      | β      | $t_0$  |
|-----------------------|--------------|-------|--------|--------|--------|--------|
| $L_{\infty}$          | 254.808      | -0.93 | -0.8   | -0.29  | -0.027 | -0.43  |
| <i>k</i> <sub>1</sub> | -0.593       | 0.002 | 0.8    | 0.21   | 0.093  | 0.67   |
| <i>k</i> <sub>2</sub> | -5.527       | 0.014 | 0.189  | 0.48   | -0.12  | 0.34   |
| α                     | -7.568       | 0.001 | 0.034  | 0.026  | -0.3   | -0.074 |
| β                     | -2.044       | 0.018 | -0.259 | -0.236 | 23.11  | 0.17   |
| $t_0$                 | -0.601       | 0.002 | 0.013  | -0.001 | 0.074  | 0.007  |

TABLE C1. Correlation-covariance matrix of growth parameters; numerals in bold represent the covariances