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ABSTRACT

Motivation: Large phylogenies are being built today to study virus

evolution, trace the origin of epidemics, establish the mode of trans-

mission and survey the appearance of drug resistance. However, no

tool is available to quickly inspect these phylogenies and combine

them with extrinsic traits (e.g. geographic location, risk group, pres-

ence of a given resistance mutation), seeking to extract strain groups

of specific interest or requiring surveillance.

Results: We propose a new method for obtaining such groups, which

we call phylotypes, from a phylogeny having taxa (strains) annotated

with extrinsic traits. Phylotypes are subsets of taxa with close phylo-

genetic relationships and common trait values. The method combines

ancestral trait reconstruction using parsimony, with combinatorial and

numerical criteria measuring tree shape characteristics and the diver-

sity and separation of the potential phylotypes. A shuffling procedure

is used to assess the statistical significance of phylotypes. All algo-

rithms have linear time complexity. This results in low computing

times, typically a few minutes for the larger data sets with a number

of shuffling steps. Two HIV-1 data sets are analyzed, one of which is

large, containing43000 strains of HIV-1 subtype C collected world-

wide, where the method shows its ability to recover known clusters

and transmission routes, and to detect new ones.

Availability: This method and companion tools are implemented in

an interactive Web interface (www.phylotype.org), which provides a

wide choice of graphical views and output formats, and allows for

exploratory analyses of large data sets.
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Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Phylogenetic tools are commonly used to study virus evolution

(Grenfell et al., 2004), trace the origin of epidemics (Keele et al.,

2006), establish the mode of transmission (Hué et al., 2005),

survey the apparition of drug resistances (Hué et al., 2009) or

determine virus origin in different body compartments (Lamers

et al., 2011). The process involves the construction of phylogen-

etic trees, their visualization (e.g. Zaslavsky et al., 2008) and their

interpretation. Ancestral character reconstruction methods aid

the interpretation, as extrinsic traits and their evolution can be

mapped on the tree. Parsimony has been one of the first

approaches to reconstruct ancestral characters. This method is

remarkably fast, does not require any model assumption and is

implemented in several popular phylogenetic programs (e.g.

MacClade, Maddison and Maddison, 2003). More sophisticated,

model-based, maximum-likelihood (ML) and Bayesian methods

were developed for reconstructing ancestral characters (e.g.

SIMMAP, Bollback, 2006; Lagrange, Ree and Smith, 2008).

These methods are generally accepted to be more accurate

than parsimony and account for various sources of uncertainty.

However, they are time-consuming with large data sets and

require a realistic evolutionary model to be available for the

trait being considered. This is not an easy step, even with stand-

ard traits such as geographic location or morphological

characters.

Despite the number of methods available for the inference of

ancestral traits, there is little development for the interpretation

of trait-annotated phylogenies. Most of the programs display

the reconstructed ancestral states but do not allow for tests on

ancestry and taxon clustering. For example, MacClade recon-

structs ancestral characters and maps them in the phylogeny,

but the resulting annotated tree needs to be interpreted visually.

Other ML and Bayesian programs, such as BEAST (Drummond

et al., 2012), simultaneously reconstruct ancestral states and the

phylogeny, and allow for testing. However, because of this sim-

ultaneous reconstruction, they need to be re-launched entirely

when new traits are analyzed, which, combined with their

computational heaviness, renders it difficult in the exploratory

stages to select relevant traits for the data at hand. Moreover,

model-based programs are mostly intended to specific trait types

(e.g. geographical location, Lemey et al., 2009, or molecular

characters with SIMMAP). Finally, most (if not all) of ML

and Bayesian programs are not able to deal with the huge

amount of virus sequences available today, with data sets com-

monly comprising several thousand strains.

There is a need for a fast easy-to-use exploratory tool that

can use phylogenies constructed with any of the most popular

methods, while providing fast inference of ancestral traits and

enabling hypothesis testing and visual data interpretation of evo-

lutionary scenarios. In this article, we use and formally define,

the concept of ‘‘viral phylotype’’. Commonly, a phylotype is a

biological type that classifies an organism by its phylogenetic*To whom correspondence should be addressed.
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relationship to other organisms. The term phylotype is

taxon-neutral, thus one can choose the phylogenetic level at

which the phylotype is described, depending on the question

being examined. The term is commonly used in microbiology,

and several tools have been developed to infer bacteria phylo-

types (e.g. RAMI, Pommier et al., 2009) or to study them from

an ecological perspective (e.g. Picante, Kembel et al., 2010, for

analyzing the phylogenetic and trait diversity of ecological com-

munities). Here we adopt a more specific virus view, combining

(ancestral) traits with combinatorial and numerical criteria mea-

suring tree shape characteristics and the diversity and separation

of the phylotypes. Traits of extant and ancestral nodes are used

to assess the relevance of phylotypes for the question being ad-

dressed. Numerical criteria are analogous to those used to define

and study bacteria phylotypes. This method is implemented in

‘‘PhyloType’’, a user-friendly Web interface that uses parsimony

to reconstruct ancestral traits and a number of criteria to select

phylotypes. A shuffling procedure is used to assess the signifi-

cance of this selection process. The method is fast, allowing for

the analysis of phylogenies comprising several thousands of taxa

(strains). In the following, we describe the method and the Web

interface, then show its application on two data sets, dealing

with the epidemiological history of HIV-1 subtype A (HIV-1A)

in Albania (Salemi et al., 2008), and the global epidemic of

HIV-1 subtype C (HIV-1C) using a large data set comprising

�3000 strains collected worldwide (Jung et al., 2012).

2 METHODS, CRITERIA AND ALGORITHMS

2.1 Phylotype definition and interpretation,

method outline

A phylotype is a subset of studied taxa (strains) that share a

common history. This history is 2-fold:

The first component is a phylogeny T of all taxa studied,

which is one of the inputs of the method. The quality and rele-

vance of results will, of course, depend on the accuracy of T, but

T is not questioned in the analyses. T must be rooted and, again,

the correctness of root location is essential. T may or may not be

equipped with branch supports (e.g. bootstrap). More relevant

results are obtained when branch supports are available and only

well-supported parts of T are used. Clades (rooted subtrees) are

the standard way to define subsets of taxa with common history

from a rooted phylogeny. Here, a phylotype must be included in

a clade of T, and the root of this clade must be the most recent

common ancestor (MRCA) of the members of the phylotype.

This MRCA is also called the root of the phylotype. In some

cases (e.g. when studying the geographical origin of an epidemic),

the common clade will be the entire phylogeny T. The common

clade and MRCA property define the phylogenetic component

of the common history of phylotypes.

The second component of this common history is induced by a

set of traits or annotations attached to each of the taxa. For

example, these annotations may describe the country of origin,

the presence of a given resistance mutation, the risk group, the

mode of transmission and so forth. These annotations are pro-

vided by the user and are the second input of the method.

They are called primary annotations and can be combined in

the Web interface to obtain, for example, secondary annotations

representing regions of the globe by making a logical ‘OR’ of

several countries. Different sets and combinations of annotations

can be quickly explored, thanks to the speed of the method.

Annotations used in a single analysis are mutually exclusive,

but they may not be exhaustive (i.e. each taxon has at most

one annotation).

Beyond phylogeny, the members of a given phylotype share

the same evolutionary history regarding the annotations being

analyzed. The phylotype root must have a unique annotation,

say A, which lasted until extant phylotype members that are

annotated by A. Formally, within a clade with root r, every

taxon x sharing the same annotation A as r, and for which

A is conserved along the path from r to x, belongs to the phy-

lotype defined by r and A (assuming the MRCA condition is

fulfilled). As ancestral annotations are unknown, some inference

method must be used. The PhyloType software currently uses

parsimony, but other approaches are possible. Figure 1 presents

examples to illustrate the phylotype concept:

� Figure 1a displays a phylotype that is as simple as possible.

All taxa of the clade are marked by annotation A as well as

the clade root and all intermediate nodes. Such a phylotype

typically corresponds to the appearance of a new strain in a

given country.

� Figure 1b shows an ‘‘intermediary’’ A phylotype, included in

a clade that comprises taxa not annotated with A. Some of

these non-A taxa belong to a (simple) B phylotype. Some

others seem to be randomly mixed with the members of

the A phylotype. Such a phylotype is typically seen with

epidemics that start to break out from their country of

origin (A).

� In Figure 1c, we see a ‘‘complex’’ or ‘‘ancient’’ phylotype.

The original annotation, A, has become rare. The

phylotype clade contains several nested clades defining

sub-phylotypes, one of which annotated with A. Such a

phylotype may correspond to ancient epidemics that have

widely diffused among non-A taxa and have returned

back to A.

Phylotypes may thus be simple clades (Fig. 1a), but they may

also form hierarchical chains showing the succession of founder

events (Fig. 1b and c). The approach differs from that commonly

used for bacteria (e.g. RAMI, Pommier et al., 2009; see also

Zaslavsky et al., 2008, for application to viruses), where clades

with low genetic diversity are aggregated, producing clusters

Fig. 1. Three examples of phylotypes, ranked by increasing complexity
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similar to our simple phylotypes. Here, a phylotype is a (poten-

tial) founder event associated with a unique annotation, for

example, a country. Consider two phylotypes PA and PB, anno-

tated with A and B respectively, with PA being the origin of PB as

shown in Figure 1b and 1c. This means that a strain (not neces-

sarily originating from A) started to spread in A and produced a

number of variants, one of which went to B, resulting in a new

founder event PB. PA may be the origin of several founder events

in B. The link between PA and PB may be direct (A or B belong

to the annotation set of every node in the path from PA to PB

roots) or indirect (some nodes contains annotations that all differ

from A and B).

The method to extract phylotypes can be summarized as

follows (details are provided in the following sub-sections):

� Inference of ancestral annotations using parsimony.

� This ancestral reconstruction induces a set of potential

phylotypes defined by the MRCA and path-conservation

conditions (see above).

� Combinatorial, numerical and statistical criteria are used to

select a set of relevant phylotypes from among all potential

phylotypes.

2.2 Reconstruction of ancestral annotations

The PhyloType software uses parsimony to reconstruct ancestral

annotations. To deal with incomplete information, we assume

that non-annotated taxa are associated with the set of all possible

annotations; other (informed) taxa must have a unique annota-

tion. Annotations are treated as non-ordered discrete characters.

Moreover, we assume that annotation changes are not oriented

and thus use Fitch parsimony. Two standard options are avail-

able: ACCTRAN and DELTRAN (Swofford and Maddison,

1987). Both perform two tree traversals associating each tree

node with the set of most parsimonious annotations, and requir-

ing O nvð Þ computing time to analyze a tree with n taxa and v

annotations. The first bottom-up tree traversal is common to

ACCTRAN and DELTRAN; it recursively computes the most

parsimonious annotation sets associated to tree nodes with

respect to their descendants. ACCTRAN and DELTRAN

differ in the second top-down tree traversal to account for the

three neighboring subtrees of a given node and resolve ambigu-

ities: ACCTRAN chooses reversals over parallelisms when the

choice is equally parsimonious, while DELTRAN does the

opposite and favors parallelisms. ACCTRAN is typically used

with morphological characters, while DELTRAN is often used

with geographic annotations (e.g. Wallace et al., 2007). Both

procedures are based on extreme opposite choices to solve ambi-

guities, and it is a good practice to run both and compare the

results to check that they are (nearly) identical. Note, however,

that both ACCTRAN and DELTRAN may be unable to solve

some ambiguities; the corresponding nodes then have ‘‘multiple’’

annotations. Moreover, the accuracy and relevance of ancestral

annotations (and thus of the whole analysis) may depend on the

representativity of the sample of sequences; if certain annotations

are clearly over-represented, then parsimony (and any ancestral

reconstruction method) will tend to over-predict those annota-

tions, thus producing erroneous results. This phenomenon may

become significant if, in addition, the tree contains numerous

phylogenetic errors that spread over-represented annotations

throughout the tree.

The potential phylotypes are defined by the clades having a

unique annotation at their root. Phylotype members are obtained

by following the paths where this annotation is conserved and

unique, and the MRCA condition is accounted for by using the

Persistence criterion (see below).

2.3 Combinatorial and numerical criteria

Combinatorial and numerical criteria are used tomeasure the rele-

vanceof potential phylotypes.Anumber of criteria are available in

theWeb interface. The choice of criteria and selection thresholds is

left to users, who will test them interactively until a consistent and

statistically supported picture is obtained. However, some min-

imal constraints (see below) are imposed to avoid meaningless

analyses. All criteria are defined recursively and globally com-

puted for all potential phylotypes in O(n) time (see

Supplementary Material for formal definitions and algorithms).

Size This criterion simply counts the number of taxa (mem-

bers) in the potential phylotypes. Because having a phylotype

containing a single taxon is meaningless, we impose that Size

�2 is always present among phylotype selection criteria.

Moreover, it is possible to express that some taxa correspond

to several strains. We then count the number of strains in the

potential phylotypes, instead of the number of taxa (tree leaves).

Different This criterion measures the number of exceptions in

the potential phylotypes. Let P be a potential phylotype defined

by clade C; Different counts the number of sub-clades of C with

annotations differing from P’s annotation. When such a

sub-clade is found, it is counted as one, regardless of the

number of covered taxa. For example, Different is equal to 3

for both main A phylotypes in Figure 1b and 1c.

Size/Different Size and Different tend to be correlated. We

expect large values of Size to be associated to relatively large

values of Different. To account for both criteria simultaneously,

we use their Size/Different ratio. Because having a phylotype

containing many taxa and sub-clades with different annotations

is meaningless, we impose that Size/Different with threshold�0.5

is always present among phylotype selection criteria. Default se-

lection threshold is �1.

Total This criterion counts the total number of taxa (strains) in

the clade defining a potential phylotype, disregarding annota-

tions. This criterion combines Size (to be maximized) and

Different (to be minimized). To avoid conflicts with these two

criteria, Total cannot be retained to select phylotypes, but its

value may be of interest and is displayed by the software.

Persistence This criterion measures the extent to which the root

annotation A of the phylotype is conserved in its descendants. It

is equal to the minimum depth where A is conserved, among all

lineages starting from phylotype root. Persistence is used to pre-

vent a phylotype from having a direct root descendant with an-

notation different from that of the root. It is easily seen that

requiring Persistence to be41 implies that the MRCA condition

is fulfilled (both direct descendants have A, and thus both direct
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sub-clades contain taxa annotated with A). This �1 constraint is

imposed in the interface, but larger thresholds can be chosen.

Local separation We expect phylotypes to be well separated

from the remaining taxa by a significant number of shared mu-

tations. Local separation criterion is intended for this purpose

and is equal to the length (i.e. expected number of substitutions

per site) of the stemming branch of the phylotype. This criterion

is available in community phylogeny software packages (e.g.

RAMI, denoted as Ydepth, nearest).

Global separation For a number of reasons (e.g. reconstruction

errors), the stemming branch of a potential phylotype may be

short, while the other branches separating the phylotype and

phylogeny root are long and indicate a high separation of the

phylotype from the rest of the tree. For example, in Figure 2, we

see a large A phylotype with short stemming branch, but its sister

group contains a single taxon with annotation B, and the clade

joining both has a long stemming branch that should be ac-

counted for when measuring the separation of the A phylotype.

Global separation accounts for the lengths of all branches separ-

ating the phylotype and phylogeny root, but also incorporates

the number of taxa contained in the sister clades encountered

along the path. With our example of Figure 2, Global separation

of the A phylotype is equal to s (local separation of A) plus s’

(local separation of A’s father) times a= aþ 1ð Þ, where a is the

number of taxa in A, that is, nearly equal to sþ s0. When the

clade with B contains a large number of taxa, Global separation

of the A phylotype is nearly equal to s.

This criterion is related to the Ydepth, deepest index provided by

RAMI in that it counts all branches separating the phylotype from

the tree root; however,Ydepth, deepest simply measures the total path

length and does not account for sister group sizes. Global separ-

ation is also related to average distance criteria, for example, mean

pairwise distance (MPD) in Picante, equal to the average distance

between any taxon in the studied cluster and any taxon outside

this cluster. An advantage of Global separation is that it requires

linear computing times, while using average distances between

taxon pairs requires (at least) quadratic computing times.

Diversity This criterion measures the genetic diversity of phy-

lotype members. It is equal to the average path-length distance

between the members of the phylotype and the phylotype root.

This criterion closely resembles the standard average genetic dis-

tance within the studied set of taxa (e.g. within-cluster MPD,

used Picante), but avoid quadratic-time computations. It is

close to Faith’s (1992) phylogenetic diversity (e.g. implemented

in RAMI and Picante), but does not depend on the number of

taxa.

Local and global separation/diversity Separation and diversity

indices depend on the tree scale. For trees with long branches,

these indices will both tend to be high, and vice versa. To com-

bine both aspects and avoid this scale effect, PhyloType provides

users with these ratios: Local separation/Diversity and Global

separation/Diversity.

Support Any branch support (e.g. bootstrap, Bayesian poster-

ior, aLRT) can be used to select phylotypes using a user-supplied

threshold.

Global support Just as with separation, Support may give a too

local view. For example, in Figure 2, assume that s and s’ refer to

branch supports, then the large A phylotype is well supported,

even if s is low. PhyloType thus uses Global support, which is

defined recursively as Global separation, but turning the summa-

tion of branch lengths into a maximum of branch supports to

keep Global support less than the largest possible support value

(e.g. number of bootstrap replicates). In Figure 2, Global support

for the A phylotype is equal to Max s; a= aþ 1ð Þ � s0½ �
� �

� s0.

2.4 Selection of most general phylotypes

Once all potential phylotypes have been evaluated using the cri-

teria and thresholds defined by the user, we perform a top-down

tree traversal to select the most general phylotypes satisfying all

criteria. If an A phylotype satisfying all criteria is included in

another A phylotype satisfying all criteria, then only the most

general one will be selected, unless the path between the two

contains one (or more) node(s) not annotated with A; in that

case, both A phylotypes are selected. For example, in Figure

1c, assuming that both A phylotypes satisfy all criteria, then

both are selected. In terms of infections and countries, this cor-

responds to an infection starting in A, diffused in B and then

returning in A. Similarly, we compute whether the origin of phy-

lotypes is direct or indirect (see above and Fig. 4 for examples).

The corresponding Search algorithm runs in O(n) time and is

provided in Supplementary Material. Lastly, when all phylotypes

have been selected, we compute their values for all non-selection

criteria. These values are displayed by the Web interface to help

users to modify the selection criteria and analyze the results.

2.5 Assessing phylotype significance using shuffling

Once a set of phylotypes has been selected from the data, an

essential question is whether or not these phylotypes have

some statistical significance and clearly depart from a random

selection of taxon subsets within the input phylogeny. For this

purpose, we use a shuffling procedure, a common statistical tool

that is used for similar purposes in phylogenetic software pack-

ages (e.g. MacClade) and to study the phylogeography of virus

epidemics (e.g. Wallace et al., 2007). Here, we randomly shuffle

leaf annotations and proceed with phylotype selection using the

same procedure and selection criteria used for the original data.

Fig. 2. Global separation and support. The respective sizes of A ¼ a � 1ð Þ

and B (¼1) are used to compute global criterion values (see text and

Supplementary Material for detailed formula and algorithm)
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This shuffling procedure is repeated a number of times, typically

100 or 1000, and P-values are computed. The implicit null hy-

pothesis is that the annotations are randomly associated with the

leaves of the tree. The P-value corresponds to the fraction of

shuffled data sets in which one finds a phylotype with the anno-

tation being evaluated and at least as large a criterion value as

the observed phylotype. For example, in Table 1, we see the

analysis performed with the HIV-1A, Albania data set (see

below). One thousand shuffles were performed. The first Africa

phylotype with Size (Sz) 44 has a P-value equal to 0/1000 re-

garding this criterion, meaning that among the 1000 random

shuffles, none has been found with Africa annotation and Size

�44; therefore, this phylotype is highly significant regarding the

Size criterion. However, it is not significant regarding the

Persistence criterion; the P-value is equal to 867/1000 meaning

that 867 shuffled data sets were found, with Africa annotation,

all selection criteria (Table 1) and Persistence �2. Globally this

phylotype is statistically significant, as it is unlikely that such a

large phylotype can be found by chance. The second Albania

phylotype is statistically significant (P-value 	1%) for the

three selection criteria.

Size is the most discriminating criterion, and the use of the

shuffling procedure is especially relevant with this criterion.

Assume that some annotation is highly represented in the data

set; then we expect relatively large phylotypes having this anno-

tation to be found by chance. On the other hand, rare annota-

tions have a low probability of giving rise to phylotypes by

chance. The shuffling procedure quantifies this random effect

and can be used with a user-supplied significance level to discard

phylotypes that could be found by chance due to the abundance

of certain annotations. As multiple testing is performed, a low

significance level (e.g. 1%) is recommended. Note, however, that

sample size plays a crucial role. With limited sampling, low-sized

non-significant phylotypes are to be expected. With additional

samples, some of these phylotypes will become significant and

the others will be discarded.

To obtain reliable P-value estimations, the number of shuffles

has to be large enough; for example, having a P-value¼ 0/10 (i.e.

with 10 shuffles) does not mean that the P-value is equal to 0.

This is why we prefer not to provide the P-value as a percentage.

Thanks to the speed of our selection algorithms, performing

shuffling with 1000 iterations still requires low computing

times, for example, �12 min for the current version of the

Web interface (powered by Intel Xeon X5650 CPUs, without

any parallel implementation) with our large HIV-1C data set

comprising �3000 taxa and 14 annotation values.

2.6 PhyloType Web interface

The Web interface (www.phylotype.org) divides PhyloType

analyses into the five steps summarized below. All required

details are provided in the downloadable User Guide. The

Web site includes data set examples showing the input formats

and expected output files.

Input This step enables to copy/paste or upload a phylogenetic

tree and its annotations. The tree is in Newick format with

branch lengths and branch supports (optional). Annotations

are in CSV (Comma-Separated Values) format, possibly with

missing values. A third, optional, input is the number of strains

attached to each taxon (default is 1, see 2.3).

Tree This step is optional. Several methods (e.g. midpoint, out-

group) are available to root the tree, when the user tree is

unrooted. The Tree step enables a visualization of the tree with

the posting of branch lengths and supports.

Annotation This step is also optional. The interface displays the

annotation variables with all their possible values and respective

frequencies among taxa. The Annotation step allows for logical

combinations of annotations. For instance, an ‘OR’ connector

allows for the aggregation of values (e.g. making global ‘regions’

from ‘countries’ annotations). Other operators are available,

such as logical ‘AND’, duplication, deletion, etc. These combin-

ations of annotations can be downloaded for further analyses.

Analysis This step corresponds to the PhyloType analysis

itself. The user selects the criteria to be used for identifying phy-

lotypes. Twelve criteria are available (see 2.3). Each criterion has

a default threshold, which can be modified to be more or less

stringent. An annotation variable must be selected, and, for this

variable, a set of annotations to study is chosen. The parsimony

option (ACCTRAN or DELTRAN) is selected, as well as the

Table 1. Detailed table of the significant phylotypes found with HIV-1A, Albania data set

Pi Anc A Cov (%) Sz Ps Sz/Df Tt Df Sl Sg Dv Sl/Dv Sg/Dv Sp Spg AnB

1 root Africa 88 44 2 2.750 152 16 0.009 0.009 0.172 0.051 0.051 1.000 1.000 –

0/1000 867/1000 201/1000

17 14 Albania 97 30 3 30.000 32 1 0.017 0.059 0.024 0.718 2.415 0.960 0.960 –

0/1000 11/1000 1/1000

251 1 EastEurope 80 8 1 8.000 9 1 0.057 0.065 0.035 1.646 1.886 1.000 1.000 –

0/1000 0/1000 0/1000

14 1 Greece 69 27 2 13.500 60 2 0.009 0.073 0.066 0.132 1.097 0.880 0.880 –

0/1000 424/1000 10/1000

Selection criteria (displayed with bold characters) are Size (Sz �5), Persistence (Ps �1), Size/Different (Sz/Df �1) and Support (Sp �70%). P-values (in italic) are given as

fractions, where the denominator indicates the number of shuffles. The analysis was run with ACCTRAN option. Pi, identifier of phylotype root; Anc, phylotype origin; A,

annotation; Cov (%), coverage, i.e. percentage of taxa annotated with A that belongs to the phylotype; Tt, Total; Sl, Local separation; Sg, Global separation; Dv,Diversity; Spg,

Global support; AnB, list of ‘Breaking’ annotations when the origin is indirect (see text and examples in Fig. 4).
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inclusion (or not) of the outgroup in the analysis. Lastly, the user

can decide to perform shuffling, define the number of iterations

and provide a P-value for phylotype selection using the Size

criterion. PhyloType results are first summarized in an overview

table that displays the number of phylotypes for each annota-

tion value and various statistics (Supplementary Table S3).

PhyloType analyses are fast, and it is easy to tune the parameter

settings to explore the data with respect to this overview table.

Output This final step gives access to the detailed results of

PhyloType. A first table (Table 1) lists all selected phylotypes

with corresponding statistics and taxa. Graphical outputs are

Fig. 4. Phylotype map (ACCTRAN) of the worldwide study of HIV-1C. Some of the phylotypes (colored in red) have indirect origin; for example, 789:

Eastern Europe, with Southern Africa annotation(s) along the path to 1: Central Africa

Fig. 3. Tree graphics obtained in the study of the epidemiological history of HIV-1A in Albania (Salemi et al., 2008). (a) Phylogenetic tree in

‘‘background’’ format: selected phylotypes and their strains are colored; colored regions comprise all (uniquely annotated) nodes on the path from

the phylotype root to the phylotype members; not colored (black) strains do not belong to any phylotype; the root node identifiers of phylotypes

are provided, to be used in conjunction with the detailed table (Table 1). (b) Phylotype map, summarizing the information contained in phylogenetic

tree (a); circle surface is proportional to the Size value (number of members) of the phylotype
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available, such as phylogenies with color-encoded phylotypes or

phylotype maps (Figs 3 and 4). All the input/output are available

for download: original and rooted trees with node identifiers;

annotations (primary and combined); overview and detailed phy-

lotype tables; ready-to-print trees and map graphics in various

formats.

Implementation The PhyloType pipeline is based on Tcl/Tk

CGI scripts. PhyloType will be available soon as a free

stand-alone package for Windows and Unix-like systems, includ-

ing OSX. It will then be possible to integrate this tool in diverse

environments and virus database resources.

3 RESULTS WITH TWO HIV-1 DATA SETS

In this section, we show the application of PhyloType software

on two HIV-1 data sets, the first one (HIV-1 subtype A) with

limited size to show the outputs and advantages of the method,

the second one (HIV-1 subtype C) to demonstrate its efficiency

to deal with large numbers of taxa and annotations. All input

data and PhyloType results are available from www.phylotype.

org/SupMat/.

3.1 Epidemiological history of HIV-1A in Albania

In this case, we applied PhyloType to a relatively small data set

of pol sequences from 152 HIV-1 subtype A strains. This data

set, the sequences and their alignment were derived from the

study by Salemi et al. (2008) on the origin of subtype A in

Albania, where this subtype is widespread, while the rest of

Europe is mostly affected by subtype B. The sequences used in

this study are from Africa (50) and Europe (102), with 31 se-

quences collected in Albania and 39 in Greece, the suspected

origin of the Albanian epidemic. The isolate HXB2 (HIV-1B)

was used as the outgroup. As in Salemi et al. (2008), the phyl-

ogeny was inferred by ML. We used PhyML (Guindon et al.,

2010) with GTRþIþ�4 (following jModelTest, Posada, 2008),

the SPR option to search the tree topology and aLRT SH-like

branch supports.

The primary annotations in this data set are the countries in

which the studied sequences were collected. These annotations

were grouped into five geographic zones (as in Fig. 1a of Salemi

et al., 2008): Africa, Western Europe, Eastern Europe, Greece

and Albania (see Supplementary Table S1 for details). The cri-

teria chosen for the PhyloType analysis were Size �5, Persistence

�1, Size/Different �1 and Support �0.7. The ACCTRAN par-

simony method was selected and 1000 shuffles were performed to

test phylotype significance. Only those phylotypes whose P-value

for Size is 	1% were retained. These options, selection criteria

and thresholds correspond to PhyloType’s default parameter

settings.

Results are provided in Table 1 and Figure 3, which shows two

types of graphical outputs provided by PhyloType: (a) a phyl-

ogeny in which the selected phylotypes are represented by col-

ored regions; (b) a phylotype map that indicates the succession of

founder and migratory events. DELTRAN results are nearly

identical, the only difference (Supplementary Fig. S1) is that

the large African phylotype includes six additional sequences

due to the removal of some ancestral ambiguities. Moreover,

we checked the robustness of the results regarding selection par-

ameters. We observed high stability (see Supplementary Fig. S2

for details), except when (as expected) we used a low Size thresh-

old of 3 and did not perform any shuffling, which resulted in

artifactual phylotypes. This illustrates the interest of the shuffling

procedure, which should be used in all analyses to discard

non-significant phylotypes.

Four phylotypes are found (Table 1) covering 72% of the

sequences: an ancestral African phylotype (containing 88% of

African strains); a Greek phylotype, clearly supported, with

most of Greek strains (69%); a small East European phylotype

[8 strains out of 10; 4 (out of 5) are Czech]; an Albanian phylo-

type with Greek origin containing almost all Albanian strains

(97%), with strong aLRT support (0.96) and high significance.

PhyloType analysis thus reaches the same main conclusions as

Salemi et al. (2008): ‘The finding that 99% of the HIV-1A

Albanian sequences could be traced back to a unique MRCA

suggests a single major introduction of HIV-1A from Greece

followed by local epidemic spread’. One can also see the import-

ance of allowing exceptions in these analyses, as the large Greek

phylotype includes one Albanian sequence (outside the Albanian

phylotype), whereas the Albanian phylotype includes two Greek

sequences. As noted by Salemi et al. (2008), ‘This could indicate

a limited ongoing viral gene flow between the two neighboring

countries’. One can also observe multiple introductions of

HIV-1A in Europe, including in Greece. Lastly, the analysis

reveals the small East European phylotype, not pointed out by

Salemi et al. (2008), but which is highly significant (Table 1). This

phylotype contains most of the East European strains, plus one

Greek exception, and has aLRT support of 1.0. It could corres-

pond to a founder event followed by restricted spreading in

Eastern Bloc countries, before its transformation. Additional

studies and sequences would be necessary to confirm this hypoth-

esis. However, we see here the advantage of a fast method

such as PhyloType, which makes it possible to reveal and quan-

tify (objective selection criteria, statistical significance using

shuffling) the presence of clusters of interest, a task that is

difficult to achieve using visual inspection, even on such a

small data set.

3.2 Worldwide evolutionary history of HIV-1C

To demonstrate the abilities and efficiency of PhyloType, we

applied the software to a large amount of data related to the

HIV-1 subtype C epidemic on a worldwide scale. This subtype

is the cause of nearly half of all HIV-1 infections. It is highly

prevalent in southern and eastern (mainly Burundi and Ethiopia)

Africa, along with irregular distribution throughout the rest of

the world, including some highly contaminated countries such as

India (Hemelaar et al., 2011). We used the pol sequences of (Jung

et al., 2012), corresponding to all subtype C pol data available

in the Los Alamos HIV database at the time of this study,

to which 18 sequences from Senegal were added. We removed

45 sequences indicated as recombinant using the last version of

SCUEAL (Kosakovsky Pond et al., 2009), thus obtaining a set of

3036 ingroup sequences collected in 60 countries (Supplementary

Table S2). Moreover, to root the tree, we added 35 reference

outgroup sequences extracted from the Los Alamos HIV data-

base (non-C, subtype A to K). The phylogeny was constructed
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using PhyML with GTRþIþ�4, SPR option and aLRT SH-like

branch supports. All alignment sites were used to build this tree,

including sites associated to drug resistances, as their deletion

showed little impact (Jung et al., 2012; see this article for details

on data, alignment and phylogeny calculation).

As with the previous study, we grouped countries in major

areas to have enough strains for each group and to be able to ex-

tract synthetic and significant information. A total of 14 groups

were used (see Supplementary Table S2 for details and

Supplementary Figs S4 and S5 for other groupings and

corresponding results): Central Africa [644 strains, mostly from

Zambia, plus a few strains collected in the Democratic Republic

of Congo (DRC) near the Zambian border]; South Africa

(including Swaziland, 731 strains); Southern Africa (other south-

ern Africa countries, 328 strains); East Africa (188 strains, mostly

from Burundi and Tanzania); Horn of Africa (118 strains, mostly

from Ethiopia); West Africa (63 strains, mostly from Senegal);

Asia (366, mostly from India); South America (245, mostly from

Brazil); Central America (26, mostly from Cuba); North America

(9, all from the USA); Northern (106), Western (67), Southern

(92) and Eastern (53) Europe.

The selection criteria for PhyloType were Size �10, Persistence

�1, Size/Different �1 and Support �0.7, that is, the default par-

ameter setting, except for Size (10 instead of 5) because of the

large sample used here. The influence of these parameters is

studied in the Supplementary Material and discussed below.

We used both ACCTRAN and DELTRAN with 1000 shuffles

and a significance level for the Size criterion of 1%. The results

with ACCTRAN are reported in Figure 4, Supplementary

Tables S3 and S4. Eighteen phylotypes are found covering

58% of the sequences (results with DELTRAN are similar, see

Supplementary Fig. S3 and further discussion):

Epicenter in Central Africa The analysis suggests (phylotype

no. 1, coverage of 69%) that the epicenter of the HIV-1C epi-

demic is located in southern Central Africa. This annotation in-

cludes strains collected in Zambia and DRC. The latter was

previously identified as being the epicenter of viruses belonging

to the pandemic group M of HIV-1 (Vidal et al., 2000).

Nonetheless, the root of this phylotype does not correspond to

the root of the phylogeny, and it is possible that the origin of

HIV-1C is located in a different region, just as is the case for

HIV-1M itself (Keele et al., 2006).

Dissemination around the African continent The virus spread

from Central Africa across the entire African continent, that is,

directly into Southern African countries (phylotype no. 4578),

South Africa (nos. 964 and 1455), East Africa (no. 4844), West

Africa (no. 398) and Horn of Africa (no. 183), or indirectly to

the Horn of Africa (nos. 4913, 4974 and 5063) and Southern

African countries (no. 1488), passing through East and South

Africa, respectively. The direct filiation from East Africa to

Horn of Africa is doubtful for two phylotypes (nos. 4913, 4974)

with ACCTRAN, as the links are broken by Northern

Europe annotations (Fig. 4), but this finding is not observed

with DELTRAN (Supplementary Fig. S3), which infers a direct

origin in both cases. Even if they differ slightly, the two parsimony

options establish a dual geographical (Central and East Africa)

origin of the Horn of Africa epidemic, which could be a plausible

explanation for the observation of the C and C’ sub-clusters in

Ethiopia (Abebe et al., 2000). Thomson and Fernández-Garcı́a

(2011) demonstrated that the majority of East andHorn of Africa

strains are grouped within one clade, as our analysis suggests once

again (phylotype no. 4844), with the exception of the small Horn

of Africa phylotype no. 183 (directly descending from Central

Africa).WithACCTRAN, PhyloType finds a Central Africa phy-

lotype (no. 4179) that is a descendant of the major Central Africa

phylotype (no. 1); the origin is indirect, possibly indicating a sym-

metrical flow and a return of the epidemic to the center from

southern regions, but DELTRAN does not confirm this finding

and groups the corresponding strains into a single large ancestral

Central Africa phylotype (coverage of 86%). Lastly, we reach the

prediction made in (Jung et al., 2012) on a possible Zambian

origin of the HIV-1C epidemic in Senegal (WestAfrica phylotype

no. 398), especially in theMSMpopulation. However, theAfrican

phylotypes altogether cover only �50% of the African strains:

some regions are well-covered (470%, Central Africa, East

Africa, Horn of Africa), some are in between (�50%, South

and West Africa), while the Southern African countries

(Botswana, Mozambique, Malawi. . .) have a low coverage

(�12%), likely due to their passing position between Central

Africa and South Africa, with numerous introductions and

bi-directional exchanges.

From Central Africa to Asia Our analysis indicates that the two

Asian phylotypes (nos. 2866 and 3321, total coverage of 96%)

originated in southern Central Africa (phylotype no. 1), which

differs from the origin predicted for India (97% of Asian strains)

by (Shen et al., 2011), suggesting South Africa instead. However,

this study used few strains from Zambia (550) and was based on

the env gene. Moreover, a recent study performed on the three

genes (gag, pol and env) was not able to determine the origin of

the Indian cluster in any of those genes (Neogi et al., 2012).

Their analysis, like our own, suggests that the HIV-1C epidemic

in India was subject to multiple introductions with a major

cluster.

Multiple introductions into Europe The Western Europe phylo-

type (no. 4310, descendant of Central Africa) only includes

strains originating from Belgium, a country with historical and

economic links with DRC. The Eastern Europe phylotype

(no. 789) also contains strains from Romania exclusively.

However, a small fraction (�33%) of the strains from Belgium

and Romania are included in these two phylotypes, and most of

the European strains (93%) are not included in any phylotype.

This confirms multiple introductions and complex transmission

chains of HIV-1C in Europe, as already pointed out in numerous

studies.

From East Africa to South America The analysis suggests that

the HIV-1C epidemic propagated from East Africa (phylotype

no. 4844) towards South America (no. 5204, coverage of 99%), a

link already identified on several occasions (e.g. Véras et al.,

2011). Let us note that, with this data set containing few strains

(3) collected in England, it is not possible to confirm or infirm the

hypothesis that England played a key role in spreading HIV-1C

in Brazil (de Oliveira et al., 2010).
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Origin of the epidemic in Cuba The Central America phylotype

(no. 5077, coverage of 65%) contains strains from Cuba exclu-

sively, a country with numerous links to Africa. With

ACCTRAN (Fig. 4), we find a transmission chain from East

Africa to Horn of Africa and then Central America, while with

DELTRAN (Supplementary Fig. S3) the intermediary Horn of

Africa step is not found and the filiation from East Africa to

Central America (i.e. Cuba) is direct. Note, however, that 35%

of Central America strains are not covered by any phylotype,

which suggest multiple introductions into Cuba and surrounding

countries.

Discussion, influence of options and selection parameters As

ACCTRAN and DELTRAN are two heuristics performing ex-

treme choices to solve ancestral annotation ambiguities, their

comparison enables us to check the robustness of results regard-

ing parsimony-based ancestral reconstructions. We have already

indicated above certain differences between the two analyses. A

general trend (with this data set and others) is that DELTRAN

returns fewer ancestral ambiguities and fewer indirect origins

than ACCTRAN (none versus five, Supplementary Fig. S3).

As a consequence, DELTRAN covers more sequences than

ACCTRAN (64% versus 58%) and finds one more phylotype

(19 versus 18). Moreover, six small phylotypes (5150 sequences

in total) are found by one method but not the other. However,

both methods mostly agree. A number of phylotypes are iden-

tical (8) or nearly indentical (7 with similarity480%) in both

analyses, and the geographical history is the same for 88% of

the covered sequences (see Supplementary Fig. S3 for more re-

sults and explanations on these measures). Overall, this com-

parison gives us high confidence in most of the results of the

PhyloType analysis and puts some others into perspective (e.g.

origin of the Cuba phylotype, see above).

A good practice is to try alternative annotation groupings

and measure their influence on the results. Thus, we tested two

other solutions, using the original country annotations and, on

the opposite, grouping countries into continents (Europe, Asia

and America) and subcontinents (Central Southern Africa, Other

Africa). As expected, when using broad (sub)continent annota-

tions (Supplementary Fig. S4), more sequences are covered

(85%) but the phylogenetic map is oversimplified and not in-

formative: eight original phylotypes (among 18) are recovered,

but nine are included in two large African phylotypes that depict

a coarse (but consistent) history of the epidemic in Africa, from

Central and Southern countries to the rest of the continent.

When using country annotations (Supplementary Fig. S5), the

number of covered sequences remains analogous and the similar-

ity with original analysis is high (89%), but we have more an-

cestral annotation ambiguities and are unable to establish some

of the filiations and results found previously. For example, we do

not find any phylotype related to DRC, and that the epicenter of

the epidemic seems to be situated in the DRC-Zambia region.

Altogether, these results indicate that the grouping step must be

conducted with care using additional (geographical, historical. . .)

knowledge and that an exploratory phase is recommended to

evaluate the relevance of different annotation groupings.

Lastly, we checked the robustness of the results regarding

selection parameter values. When lowering the Size threshold

to 5 (instead of 10), the analysis remains highly similar (97%),

but we find eight additional small phylotypes (49 sequences in

total); on the opposite, when the Size threshold is equal to 20, the

results are still consistent but seven phylotypes are lost

(Supplementary Fig. S6). The Size/Different criterion is more

difficult to tune. Basically, it represents the fraction of exceptions

that one accepts in phylotypes. When too low, some phylotypes

become meaningless and turn out to be non-significant using the

shuffling procedure; when too high, some relevant phylotypes are

lost. Here, the results do not change much in the 0.5, 2.0 range

(Supplementary Fig. S7); 0.5 is a bit too low; values between 1.0

and 2.0 seem to be convenient and result in similar meaningful

phylotypes. With high threshold values, large phylotypes are lost

and broken into numerous small phylotypes.

4 CONCLUSION

To summarize results regarding the HIV-1 subtype C pandemic:

PhyloType recovers a number of already-identified transmission

chains (e.g. East Africa to Brazil), contradicts a few others (e.g.

origin of Indian epidemic) and suggests some new routes (e.g.

two different geographical origins of the Ethiopian epidemic).

Note that PhyloType reveals potential founder events, rather

than gene flows as proposed by Slatkin and Maddison (1989)

and used in numerous studies (e.g. Wallace et al., 2007; Véras

et al., 2011). PhyloType results are obtained rapidly, in a matter

of minutes, through a user-friendly Web interface. Therefore, we

believe that PhyloType software has the potential to be extremely

useful for exploring and interpreting the large virus phylogenies,

which are available today and should become the norm in the

near future. The application’s speed should be a major asset in

surveillance tasks. However, for many viruses (e.g. Hepatitis B),

strain annotations (countries, dates. . .) are not yet as easily ob-

tained from the databases as they are with HIV-1, which should

imply the need for some significant preliminary work before

launching PhyloType analyses. Moreover, representative samples

are still lacking for several viruses (e.g. Nonovirus), and sampling

efforts will have to be made to use PhyloType (and any other

similar tool) effectively.

Several directions deserve further exploration, most notably

the implementation of simple and computationally efficient

probabilistic models, to be used instead of parsimony to infer

ancestral annotations, and the automatic combination of anno-

tation values, as performed by other methods (e.g. DIVA,

Ronquist, 1997; Lagrange, Ree and Smith, 2008). Moreover,

PhyloType could be used for radically different purposes, such

as exploring large protein families associated with differentiated

or specialized functions.
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