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OSMOS (Soil Moisture and Ocean Salinity) data have now been available for over two years and, as part of the

validation process, comparing this new dataset to already existing global datasets of soil moisture is possible.
In this study, SMOS soil moisture product was evaluated globally by using the triple collocation method. This
statistical method is based on the comparison of three datasets and produces global error maps by statistical-
ly inter-comparing their variations. Only the variable part of the errors are considered here, the bias errors
are not treated by triple collocation. This method was applied to the following datasets: SMOS Level 2 prod-
uct, two soil moisture products derived from AMSR-E (Advanced Microwave Scanning Radiometer)–LPRM
(Land Parameter Retrieval Model) and NSIDC (National Snow and Ice Data Center), ASCAT (Advanced
Scatterometer) and ECMWF (European Center for Medium range Weather Forecasting). The resulting errors
are not absolute since they depend on the choice of the datasets. However this study showed that the spatial
structure of the SMOS was independent of the combination and pointed out the same areas where SMOS
performed well and where it did not. This global SMOS error map was then linked to other global parameters
such as soil texture, RFI (Radio Frequency Interference) occurrence probabilities and land cover in order to
identify their influences in the SMOS error. Globally the presence of forest in the field of view of the radiom-
eter seemed to have the greatest influence on SMOS error (56.8%) whereas RFI represented 1.7% according to
the analysis of variance from a multiple linear regression model. These percentages were not identical for all
the continents and some discrepancies in the proportion of the influence were highlighted: soil texture was
the main influence over Europe whereas RFI had the largest influence over Asia.

© 2013 Published by Elsevier Inc.
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R1. Introduction

Soil moisture is one of the most important variables regarding sea-
sonal climate prediction as it plays a major role in the mass and ener-
gy transfers between the soil and the atmosphere. Several studies
show the importance of the soil moisture for climate change studies
(Douville & Chauvin, 2000), surface-atmosphere interactions (Koster
et al., 2004), weather forecast (Drusch, 2007) or agriculture applica-
tions (Shin et al., 2006). Since August 2010, soil moisture is considered
as an Essential Climate Variable (ECV) by theWorld Meteorological Or-
ganization (World Meteorological Organization et al., 2010).

Recently, satellite missions specially designed for monitoring soil
moisture have been implemented (Soil Moisture and Ocean Salinity
(SMOS), Kerr et al. (2010)) and proposed (Soil Moisture Active Passive
(SMAP), Entekhabi et al. (2010)). SMOS was successfully launched by
the European Space Agency in November 2009 and SMAP is scheduled
to launch in October 2014 by the National Aeronautics and Space Ad-
ministration. Both satellite instruments are designed to acquire data at
the most suitable frequency for soil moisture retrieval (1.4 GHz, Kerr
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et al. (2001)). SMOS provides a global map of soil moisture every
three days at a nominal spatial resolution of 43 km with an accuracy
goal of 0.04 m3/m3.

Several approaches were developed to retrieve soil moisture using
higher frequencies that have been the only options until now. These
include the Scanning Multichannel Microwave Radiometer (SMMR,
1978–1987, Owe et al. (2001)), the Special Sensor Microwave/Imager
(SSM/I, 1987-, Owe et al. (2001)), the Advanced Microwave Scanning
Radiometer-Earth observation system (AMSR-E, 2002–2011, Owe et
al. (2001), Njoku et al. (2003)), WindSat (2003, Li et al. (2010)), the
Advanced Scatterometer (ASCAT, 1991-, Naeimi et al. (2009), Wagner
et al. (1999)). Although their lowest frequencies (5–20 GHz) are not
the most suitable for soil moisture retrievals (higher sensitivity to veg-
etation and atmosphere), they remain a valuable time series for the pe-
riod of 1978 until now.

Currently, numerous studies are underway on the validation of
SMOS soil moisture product with in situ measurements and estimates
of other sensors and models. Al Bitar et al. (2012) used the Soil Climate
Analysis Network (SCAN, Schaefer et al. (2007)) and the Snowpack Te-
lemetry (SNOTEL) sites in North America to compare SMOS soil mois-
ture retrievals and ground measurements. This study showed that
SMOS soil moisture had a very good dynamic response but tended to
underestimate the values. However the new versions of the SMOS
ources of SMOS errors at the global scale, Remote Sensing of Environment
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product (V4 & V5) significantly improved the general results. Jackson et
al. (2012) studied SMOS soilmoisture and vegetation optical depth over
four watersheds in the U.S. They concluded that SMOS almost met the
accuracy requirement with a RMSE of 0.043 m3/m3 in the morning and
0.047 m3/m3 in the afternoon whereas the vegetation optical depth re-
trievals were not reliable yet for use in vegetation analyses. Leroux et
al. (submitted for publication) compared SMOS data with other satellite
and model output products over the same four watersheds for the year
2010. It showed that SMOS soil moisture data were closer to the ground
measurements than the other datasets and even though SMOS correla-
tion coefficient was not the best, the bias was extremely small.

All the validation studieswere performed over a fewpoints and global
conclusions cannot be drawn from single point comparisons.Moreover in
situ measurements are not available at the global scale. As a second step
in the validation process of SMOS soil moisture product, it is necessary to
compare SMOS data to other satellite and model output products at the
global scale to identify the region where the datasets differ or agree. To
perform such global inter-comparison studies, statistical methods are
needed. Triple collocation is a statistical method that compares three
datasets and provides relative error maps as results. It has been widely
used in the past in various environmental fields: sea surface winds
(Caires & Sterl, 2003; Guilfen et al., 2001; Stoffelen, 1998), sea wave
height (Caires & Sterl, 2003; Janssen et al., 2007), and soil moisture
(Dorigo et al., 2010; Loew & Schlenz, 2011; Miralles et al., 2010; Scipal
et al., 2008, 2010). More recently, the triple collocation method has
been applied in the SouthWest regionof France to SMOS soilmoisture re-
trievals with active microwave sensor retrievals and model simulations
(Parrens et al., 2011). From the 40 to 72 common dates in 2010 that
have been used in the triple collocation, it was found that the soil mois-
ture retrievals from the active sensor (ASCAT) gave better results for
this particular region with a relative error of 0.031 m3/m3 whereas
SMOS had a relative error of 0.045 m3/m3. However the triple collocation
only treats the variable part of the errors of the datasets since it compares
their variances.

The two goals of this study are to evaluate the relative accuracy of
SMOS soil moisture product compared to other global soil moisture
products and to link this relative accuracy to physical parameters.
For this purpose, triple collocation was applied to satellite products
SMOS, AMSR-E (LPRM and NSIDC products), ASCAT and the ECMWF
model product in 2010. For the second objective of this paper, ANOVA
(Analysis of Variance) and CART (Classification And Regression Tree)
analyses have been realized.

The major motivation to perform a classification of the SMOS rela-
tive errors is to provide to SMOS users a relative error estimation
depending on the specifications of their region of interest. Given a set
of parameter values (soil texture, land cover, etc.), it is thus possible
to estimate the relative SMOS error by going through the classification
tree. It also allows the user to know what the relative performance of
SMOS is over their region compared to the soil moisture data sets. An-
other motivation would be at the algorithm level. The classification is
realized at the global and continental scale and it is then possible to
highlight the most influent parameters on the SMOS relative error,
which represents valuable information for the SMOS Level 2 soil mois-
ture team for future improvements.

The datasets used in this study are presented in Section 2 and the tri-
ple collocation method is introduced in Section 3. The SMOS error map
was then related to physical parameters (soil texture, land cover and RFI
(Radio Frequency Interference) probability maps) in order to under-
stand better what caused SMOS largest errors (Section 4).

2. Description of the datasets

2.1. SMOS satellite product

The Soil Moisture and Ocean Salinity (SMOS, Kerr et al. (2010b))
satellite was launched in November 2009. This is the first satellite
Please cite this article as: Leroux, D.J., et al., Spatial distribution and possible s
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specially dedicated to soil moisture retrieval over land with an L-band
passive radiometer (1.4 GHz, Kerr et al. (2001)). SMOS provides global
coverage in less than 3 days with a 43 km resolution. The satellite is
polar orbiting with equator crossing times of 6 am (local solar time
(LST), ascending) and 6 pm (LST, descending). It is generally assumed
that at L-band the signal is mainly influenced by the soil moisture
contained in the top 2.5–5 cm of the soil on average.

SMOS acquires brightness temperatures atmultiple incidence angles,
from 0° to 55° with full polarizationmode. The angular signature is a key
element of the retrieval algorithm that provides soil moisture and the
vegetation optical depth through the minimization of a cost function
between modeled and acquired brightness temperatures (Kerr et al.,
2012; Wigneron et al., 2007). These products are known as Level 2
products (Kerr et al., 2012) and are available on the ISEA-4h9 grid
(Icosahedral Snyder Equal Area, Carr et al. (1997)) whose nodes
are equally spaced at 15 km. In this study, the SMOS Level 2V4 prod-
ucts were used.

In SMOS algorithm, many physical parameters are involved in the
form of auxiliary data (Kerr et al., 2010a) and they all play a very im-
portant role since the algorithm is applied differently according to
their values (Kerr et al., 2010a, 2012). One of the unique features of
SMOS algorithm is in the consideration of the heterogeneity inside
the field of view of the radiometer. Around each pixel, an extended
grid of 123 × 123 km at a 4 km resolution is defined to quantify
the heterogeneity seen by the radiometer. Each pixel of this ex-
tended grid belongs to one of the ten following land cover classes
(aggregated from ECOCLIMAP land cover ecosystems, Masson et
al. (2003)): low vegetation, forest, wetland, saline water, fresh water,
barren, permanent ice, urban area, frost and snow. The frost and snow
classes have been disregarded in this study because they evolve over
time and only average values for 2010 will be compared. To account
for the antenna pattern of the instrument, a weighting function is
applied.

Despite the fact that the SMOS frequency band is protected from
emission by the laws, there exist some interferences all over the globe.
Some regions are however more affected than others, i.e., China, and
Western Europe at the beginning of 2010. More and more efforts are
dedicated to suppress these interference sources but the impact of the
RFI on the signal and on the soil moisture retrievals cannot be ignored.
The RFI occurrence probability maps that have been used in this study
are the average of the 3-month occurrence maps derived from the
Level 1C SMOS data (brightness temperatures) and are available in the
Level 2 products. It should be noted that 15% of the pixels on Earth are
so affected by RFI that no retrieval attempt has been realized, and even
more if we count the number of pixelswhere the inversion has failed be-
cause of the RFI presence.
2.2. AMSR-E satellite products

The Advanced Microwave Scanning Radiometer — Earth Ob-
serving System (AMSR-E) was launched in June 2002 on the Aqua
satellite and stopped producing data in October 2011. This radiom-
eter acquired data at a single 55° incidence angle and at 6 different
frequencies: 6.9, 10.7, 18.7, 23.8, 36.5 and 89.0 GHz, all dual polarized.
The crossing times were 1:30 am (LST, descending) and 1:30 pm
(LST, ascending).

There are several products available using AMSR-E data to esti-
mate soil moisture. The soil moisture product provided by the
National Snow and Ice Data Center (NSIDC) is obtained from an iter-
ative inversion algorithm using the 10.7 GHz and 18.7 GHz channels
(Njoku et al., 2003). Initially, this algorithm was developed for
6.9 GHz and 10.7 GHz but due to the presence of RFI, the 6.9 GHz
frequency was not usable for monitoring environmental parameters.
Land surface parameters like soil moisture and vegetation optical
depth are provided on a 25 km regular grid (Njoku, 2004). The
ources of SMOS errors at the global scale, Remote Sensing of Environment
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Level 3 DailyLand V6 products were used in this study (referred as
the AMSR-E(NSIDC) product thereafter).

The Land Parameter Retrieval Model (LPRM, Owe et al. (2001)) re-
trieves the soil moisture and the vegetation optical depth using a com-
bination of the 6.9 and 10.7 GHz frequencies (10.7 GHz acquisitions
were used in the areas of the world where 6.9 GHz was polluted by
RFI) and 36.5 GHz to estimate the surface temperature. This algorithm
is based on a microwave radiative transfer model with a prior informa-
tion about soil characteristics. The Level 3 AMSR-E v03 Grid prod-
ucts are available on a 0.25° × 0.25° grid only for the descending
orbit (referred as the AMSR-E(LPRM) product thereafter). These
data have been beforehand quality-controlled and the contaminat-
ed estimates due to high topography, extreme weather conditions
such as snow have been flagged and have not been considered in
this study.

In order to compare these datasets properly with SMOS retrievals,
the AMSR-E(LPRM) and AMSR-E(NSIDC) soil moisture data have been
interpolated over the SMOS grid.

2.3. ASCAT satellite product

The Advanced Scatterometer (ASCAT) has been launched in October
2006 on the MetOp-A satellite as a follow-on to the ERS (European
Remote Sensing) scatterometer which started operating in 1991. It
has been acquiring data in C-band (5.3 GHz). The scatterometer is com-
posed of six beams: three on each side of the satellite track with azi-
muth angles of 45°, 90° and 135° (incidence angles are in a range of
25° to 64°) and generates two swaths of 550 kmeachwith a spatial res-
olution of 25 or 50 km (in this study the 25 km resolution was used).
The crossing times are 9:30 pm (resp. 9:30 am) LST for the ascending
(resp. descending) orbit.

Soil moisture is retrieved using the Technische Universitat Wien
soil moisture algorithm (Naeimi et al., 2009; Wagner et al., 1999)
which corrects for the effect of vegetation and then retrieves an index
ranging from 0 (dry) to 1 (wet) accounting for the top 2 cm relative
soil moisture.

ASCAT data have also been interpolated over the SMOS grid, such
that all the datasets are comparable on the same grid.

2.4. ECMWF model product

The European Center for Medium range Weather Forecasting
(ECMWF) provides medium range global forecasts and in this context,
some environmental variables including the soil temperature, the evap-
oration or the soil moisture are produced.

The SMOS Level 2 processor uses a custom made climate data
product from ECMWF that is used to set the initial values in the
cost function solution and for fixed parameters in the algorithm to
compute the different contributions of each land cover class. This
product from ECMWF is considered an internal SMOS product as it
is specially computed at SMOS overpasses by interpolating in space
and time the ECMWF forecast products over the SMOS grid. This cus-
tom ECMWF product also has the same spatial resolution as SMOS
and has been used in this study. The ECMWF soil moisture repre-
sents the top 7 cm below the surface.

3. Triple collocation

3.1. Theory

As in Stoffelen (1998) and Dorigo et al. (2010), we propose an ap-
proach where the three datasets θi are linearly linked to the hypotheti-
cal truth θwith a bias term ri and a scale factor si. The triple collocation
method consists in estimating the errors εi. These errors are relative to
the hypothetical truth θ and are comparable with each other since
they are relative to the same quantity. However they are not absolute
Please cite this article as: Leroux, D.J., et al., Spatial distribution and possible s
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errors. One dataset is arbitrarily chosen as the reference dataset so
that r1 = 0 and s1 = 1. Thus, the truth θ and the first product θ1 cannot
be identical since the error term ε1 remains:

θ ¼ θ1 þ ε1
θ ¼ r2 þ s2θ2 þ ε2
θ ¼ r3 þ s3θ3 þ ε3

:

8
<

: ð1Þ

By taking the average over the year (b.>) and assuming that the
errors εi have a zero mean, the following expressions of the mean hy-
pothetical truth are obtained:

bθ > ¼ bθ1 >
bθ > ¼ r2 þ s2bθ2 >
bθ > ¼ r3 þ s3bθ3 >

:

8
<

: ð2Þ

Let θ′ i be the anomaly term of the dataset i that is defined by
θ′i ¼ θi−bθi >. By subtracting Eqs. (1) and (2), the bias terms ri disap-
pear:

θ′ ¼ θ′1þ ε1
θ′ ¼ s2θ

′
2þ ε2

θ′ ¼ s3θ
′
3þ ε3

:

8
><

>:
ð3Þ

The anomalies θ′i are assumed to be independent to the errors εi of
the other datasets. Sincebθ′ i > and εi are null (θ

′
i is the anomaly to the

mean and εi is a zero mean additive noise) and θi can be considered as
a deterministic quantity, we finally have bθ′iεi >¼ 0. It also assumed
that the errors are independent to each other: bεiεj> = 0. By taking
the average and combining the lines, the scale factors and the mean
square true anomaly can be derived:

s2 ¼ bθ′1θ
′
3 > =bθ′2θ3 >

s3 ¼ bθ′1θ
′
2 > =bθ′2θ

′
3 >

bθ′
2
> ¼ bθ′1θ

′
2 > bθ′1θ3 > =bθ′2θ

′
3 >

:

8
><

>:
ð4Þ

With Eq. (2) combinedwith Eq. (4), the bias terms can be computed:

r2 ¼ bθ1 > −s2bθ2 >
r3 ¼ bθ1 > −s3bθ3 >

:

�
ð5Þ

By taking the square of Eq. (3) and its mean and by using Eqs. (4)
and (5), we finally obtain the expressions of each averaged square er-
rors εi that can be written as functions of known anomalies:

bε21 > ¼ bθ′1θ
′
2 > bθ′1θ

′
3 >

bθ′2θ
′
3 >

−bθ′1
2
>

bε22 > ¼ bθ′1θ
′
2 > bθ′1θ

′
3 >

bθ′2θ
′
3 >

−bθ′1θ
′
3>

2

bθ′2θ
′
3>

2 bθ
′
2
2
>

bε23 > ¼ bθ′1θ
′
2 > bθ′1θ

′
3 >

bθ′2θ
′
3 >

−bθ′1θ
′
2>

2

bθ′2θ
′
3>

2 bθ
′
3
2
>

:

8
>>>>>>>><

>>>>>>>>:

ð6Þ

Since the errors εi have a zeromean, bεi2> can be interpreted as their
variances. The dataset with the lowest error variance is considered as
the most accurate among the three. The choice of which dataset is the
reference (the first line in the equations) changes the values of the rel-
ative errors since the projection space changes, but it does not change
the patterns of the errors, i.e., if dataset #2 gave poor results over Africa
compared to the other datasets, it will still give poor results even as the
reference, but with different error values. It is essential to note that
these errors are strictly related to the choice of the triplet and cannot
be compared to errors derived from another triplet.
ources of SMOS errors at the global scale, Remote Sensing of Environment
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3.2. Assumptions, requirements and methodology

Many assumptions have beenmade in the triple collocationmethod
described in the previous section:

• the soil moisture products are linearly linked to the true soil moisture
• the errors are random with a zero mean and mutually independent.

The first assumption might not be true and it would require to add
at least a second order in the starting Eq. (1). However, all the selected
products are supposed to estimate the soil moisture so it is reasonable
to assume that they are close to the truth by using a scale factor, a
bias and an error term.

The errors εi are assumed to have a zero mean and to be mutually
independent so that their covariances are null (bεiεj> = 0). Other-
wise, we would need to add cross-correlation terms in Eq. (4) that
would have to be arbitrarily estimated and would have repercussions
in the final expressions of the error terms in Eq. (6). In order to avoid
this case of dependency between the errors, the datasets were chosen
very carefully: soil moisture products were derived from different al-
gorithms or were based on acquisitions at different frequencies. This
study does not consider tripletswith the twoASMR-Eproducts together
(NSDIC and LPRM) since they were both derived from the same acqui-
sitions. Thus, the triple collocationwas applied to the following triplets:
(SMOS–AMSR-E(LPRM)–ECMWF), (SMOS–AMSR-E(NSIDC)–ASCAT) and
(SMOS–AMSR-E(LPRM)–ASCAT).

The triple collocation method is based on statistics and they are
only reliable if the number of available samples is large enough. Scipal
et al. (2010) determined that a minimum of 100 samples is required
to apply the triple collocation. In this study, satellite and model data
have been compared for 2010 and after combining the different orbits
and swaths the minimum of 100 common dates are not satisfied. To get
around this problem, we propose to collect the samples of the six closest
neighbors (that are equally distant of 15 km from a central point on the
ISEA grid) as if they were the samples of the central point.

By taking into account the six closest neighbors, geophysical vari-
ance is introduced. However, since the grid nodes are 15 km distant
to each other, the degrees of freedom are not increased much. Never-
theless, 15 km should represent a reasonable distance to assume that
the soil surface conditions are different and heterogeneous enough to
contain a significant amount of information and thus increase the sta-
tistical power of the method.

Since bias would be interpreted as higher deviations, it is impor-
tant to use non biased datasets when applying the triple collocation
method. In this study, the triple collocation has been applied to the
anomalies of the variables and not to the variables themselves. Since
the anomalies have a zero mean by definition, there cannot be any sys-
tematic bias between them.

The triple collocation method can be summarized in four steps:

1. compute the anomalies for each point of the grid for the three
datasets

2. compute the scaling factors with Eq. (4)
3. compute the bias with Eq. (5)
4. compute the variances of the errors with Eq. (6).

The results of the triple collocation are relative errors. It is impor-
tant to keep in mind that these errors only represent the variable part
of the total error for each tested dataset. Indeed the triple collocation
uses the anomalies to compute these errors and the bias part are then
not treated by this method.

3.3. Results

3.3.1. SMOS/AMSR-E(LPRM)/ECMWF
Fig. 1 shows the error maps of SMOS, AMSR-E(LPRM) and ECMWF.

From this first triplet, SMOS did not perform better than the other
two datasets in terms of variable error. SMOS had the lowest error
Please cite this article as: Leroux, D.J., et al., Spatial distribution and possible s
(2013), http://dx.doi.org/10.1016/j.rse.2013.02.017
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for 17% of the points whereas LPRM was better for 44% and ECMWF
for 39% (triple collocation was applied to 302,474 points in this case).
Theworst SMOS errorswere located in East USA, North of North America,
Europe, India and East Asia whereas the best performances were inWest
USA, North Africa, Middle East, central Asia and Australia. ECMWF gave
very good results over Europe, South America, part of North America
and India whereas LPRM best results covered West USA, some parts of
Africa, Asia and West Australia.

3.3.2. SMOS/AMSR-E(NSIDC)/ASCAT
Fig. 2 shows the error maps of SMOS, AMSR-E(NSIDC) and ASCAT.

With this triplet, SMOS performed better on 21% of the points against
35% for NSIDC and 44% for ASCAT (247,798 points globally) in terms of
variable error. The total number of points taken into account for this spe-
cific triplet was lower than for the previous triplet since in this case three
satellite datasets were implicated whereas the model ECMWF was part
of the previous triplet (there was always a ECMWF soil moisture value
for each SMOS or AMSR-E soil moisture retrieved value).

With this triplet again, SMOS performed better over North America
and Australia, NSIDC gave better results in North Africa and Middle
East whereas ASCAT was better in North Africa and central Asia. The
weakness of the NSIDC product is its non-dynamic retrievals Gruhier
et al. (2008), i.e., the NSIDC soil moisture time series are relatively flat.
So over arid regions where there is no precipitation nor vegetation,
NSIDC performed well but over the other regions, NSIDC did not give
satisfying results. ASCAT had good performances over the entire globe
except over Europe, East Australia, Sahel region and the USA.

3.3.3. SMOS/AMSR-E(LPRM)/ASCAT
Fig. 3 shows the error maps of SMOS, AMSR-E(LPRM) and ASCAT.

SMOS performed better than the other datasets over 21% of the points
against 34% for LPRM and 45% for ASCAT in terms of variable error and
for a total of 210,368 points. Less points were available than with the
previous triplet even if only the AMSR-E product was changed. LPRM
and NSIDC are algorithmically different and LPRM retrieved in general
less soil moisture than NSIDC. With this triplet again, SMOS had good
performances over the same regions: NorthAmerica, North Africa,Middle
East, central Asia and Australia.

3.4. SMOS error distribution

The computation of SMOS global error through the triple collocation
was performed with other satellite and model datasets. This study
pointed out that SMOS gave very good results over North America,
North Africa, Middle East, central Asia and Australia. In general, SMOS
gave better results than the other products in North America, central
Asia and Australia. These particular regions are known to be RFI free
and might be an explanation of why SMOS performs better over these
regions.

The triple collocation is a statistical method that only considers
the variable part of the error and not the bias part since it uses the
anomalies and not the products themselves. From previous validation
studies (Leroux et al., submitted for publication), it has been shown
that the SMOS soil moisture product had a very low bias compared
to the other soil moisture products. But this low bias has no impact
in the triple collocation results. Therefore it should be noted that
even if the triple collocation results show that one product is better
than another, it is only in terms of variable errors.

Even if SMOS was chosen as the scaling reference each time, the
resulting error maps cannot be compared since the dates in common
were not the same for all the triplets tested. However, the distribution
of the SMOS error was very similar on the three maps. The regions
where SMOS was good were the same for the three tests. Thus, these
maps can be used to understand and find a link with other physical or
algorithmic parameters such as soil texture, land use maps and RFI.
ources of SMOS errors at the global scale, Remote Sensing of Environment
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Fig. 1. Standard deviations of (a) SMOS errors, (b) AMSR-E(LPRM) errors, and (c) ECMWF errors. (d) shows the areas in which either SMOS (blue), AMSR-E(LPRM) (red) or ECMWF
(green) shows the smallest error (variable part of the error). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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4. SMOS error analysis

In this section, possible links between SMOS errors and biophysi-
cal parameters are investigated. To identify which parameter was re-
sponsible for which proportion of the SMOS error, a multiple linear
regression model with an analysis of variance (ANOVA) was realized.
As a second step, a classification (CART) was performed in order to
identify sets of parameters leading to either small or large SMOS er-
rors. Another motivation to perform a CART analysis is to be able to
estimate or predict SMOS error depending on the values of the inves-
tigated biophysical parameters.
U
N
C
O

R
R(a) SMOS (b

(c) ASCAT (

Fig. 2. Standard deviations of (a) SMOS errors, (b) AMSR-E(NSIDC) errors, and (c) ASCAT er
(green) shows the smallest error (variable part of the error). (For interpretation of the ref
article.)
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DThe following list of parameterswas investigated: percentage of sand

(% sand), percentage of clay (% clay), mean RFI probability over 2010
(RFI), fraction of forest (FFO), wetlands (FWL), water bodies (FWP),
salted water (FWS), barren (FEB), ice (FEI), and urban (FEU) as seen by
the radiometer. The fraction of low vegetated areawas not taken into ac-
count as an explanatory variable because it is a combination of the other
fractions (sum of the other fractions subtracted to 1) and it would have
become a constraint parameter. Moreover, the main goal is to identify
the parameters that deteriorate the SMOS retrievals. Global and conti-
nental analyses were performed to identify regional behaviors and
differences. This work only included standard errors from the triple
) AMSR-E(NSIDC)

d) The dataset with the lowest relative error

rors. (d) shows the areas in which either SMOS (blue), AMSR-E(NSIDC) (red) or ASCAT
erences to color in this figure legend, the reader is referred to the web version of this
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collocation method from 0 to 0.1 m3/m3 which represented 95% of the
points.

The SMOS error map derived from the triple collocation with SMOS,
AMSR-E(LPRM) and ECMWF was used in this part of the study. This
triplet was chosen because it had the advantage to cover more points
over the globe.

The mean values and the standard deviations of the SMOS error
and of each parameter globally and for every continent have been
computed and are shown in Fig. 4. As seen in Fig. 1, North Africa
and Australia are the two continents where SMOS has the lowest
errors: 0.040 m3/m3 and 0.043 m3/m3 respectively (Fig. 4). Howev-
er, the errors over Australia are more homogeneous with the lowest
standard deviation (0.015 m3/m3).

The percentage of clay is quite stable over all the continents
(around 24%). South America is the region where this parameter is
the most heterogeneous with a standard deviation of 10% whereas
East Asia is the most homogeneous with a bit more than 5%. The per-
centage of sand is more heterogeneous than the clay. South Africa and
Australia are the regions with the highest mean percentages of sand
(55.9% and 55.6% respectively) whereas East Asia is the most homo-
geneous region with a standard deviation of only 8.7%. The radio fre-
quency interferences do not affect equally all the regions. Whereas
Australia, America and South Africa are almost not concerned, Europe,
North Africa and Asia are highly contaminated. The fraction of forest,
as estimated by the ECOCLIMAP land cover (and supposed to be seen
by the radiometer), is very heterogeneous, especially over America
and South Africa. As expected for desert regions, there is not a lot of
forest in North Africa and Australia. The other fractions do not represent
a large proportion of what is modeled by the ECOCLIMAP land cover.
Though, it can be noted that there are more wetlands in Europe and
East Asia; more water bodies in North America; more barren soils in
North Africa; and slightly more cities are modeled by ECOCLIMAP in
Europe and North America.

4.1. Multiple linear regression and analysis of variance (ANOVA)

The multiple linear regression is a statistical method that studies
the relation between a variable Y and several explanatory variables
Please cite this article as: Leroux, D.J., et al., Spatial distribution and possible s
(2013), http://dx.doi.org/10.1016/j.rse.2013.02.017
E
DX1,X2,⋯,Xn. This method only accounts for linear relationship of the fol-

lowing form:

Y ¼ α0 þ α1X1 þ α2X2 þ ⋯þ αnXn þ ε ð7Þ

bε2smos >¼ αo þ αclayXclay þ αsandXsand þ αRFIXRFI þ αFFOXFFO

þαFWLXFWL þ αFWPXFWP þ αFWSXFWS þ αFEBXFEB

þαFEIXFEI þ αFEUXFEU :

ð8Þ

If the explanatory variables are not in the same unit as the variable
Y, which is the case in this study, it is absolutely necessary to normal-
ize each variable. All the α parameters are then computed with the
least square method.

In order to only keep the relevant explanatory variables, the vari-
ables explaining less than 1% of the SMOS error variance according to
the ANOVAwere removed from the regression model. The correlation
coefficients of the multiple linear regression model are indicated in
Table 1 with all the variables.

ANOVA is a statistical method used to study the modification of
the mean of a variable according to the influence of one or several ex-
planatory variables. The proportion of the influence of each variable
on SMOS error was computed from the linear regression model (Fig 5,
Table 2). A parameter having a negative influencemeans that the great-
er value this parameter has, the greater the error is, i.e., the error evolves
with this particular parameter. As a contrary, a positive influence is: the
greater the value of the parameter is, the lower the error is.

4.1.1. Global results
At the global scale, the multiple linear regression and the ANOVA

showed that more than half (57%) of the variation of SMOS error
was due to the variation of the forest fraction,with a negative influence,
i.e., the more forest the radiometers see, the larger the error is. The
second most important explanatory variable is the percentage of sand,
representing 22% of the total variation with a negative influence. The
third influent variable is the fraction of wetlands (7% negatively).
Alongwith the large proportion of the influence of these three variables
(86%) on SMOS error, it alsomeans that if one of these variables was not
ources of SMOS errors at the global scale, Remote Sensing of Environment
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error.

RFI did not have a big influence at the global scale (less than 2%).
RFI influence can be very high but more at the regional scale than at
the global scale.

The only positive influence was the fraction of barren soil (FEB),
i.e., the more barren there is, the lower the error is. All these results
were expected since fractions ofwater, wetlands, urban, RFI or forest dis-
turb the signal and make the soil moisture retrieval more challenging.

4.1.2. Continental results
At the continental scale, there are some discrepancies. The fraction

of forest (FFO), which was the most influent factor at the global scale,
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Table 1
Correlation coefficients of the multiple linear regression for global and continents. Rtot
represents the statistics when all the explanatory variables are considered.

Global North America South America Europe North Africa

Rtot 0.455 0.425 0.470 0.540 0.387

South Africa Central Asia East Asia Australia

Rtot 0.606 0.523 0.451 0.610

Please cite this article as: Leroux, D.J., et al., Spatial distribution and possible s
(2013), http://dx.doi.org/10.1016/j.rse.2013.02.017
was still the most influent variable for most of the continents but did
not represent more than 10% for Europe and East Asia whereas it rep-
resented at least 30% for the other continents. The RFI influence was
also different, its largest influence being in Asia, Europe and North
Africa.

Over North America, the fraction of forest represented 67% of the
variation of SMOS error. This can be seen in Figs. 1, 2 and 3, SMOS er-
rors were higher in the northern part where there are more trees. The
second and third influent variables were the fraction of urban and the
percentage of sand with 8% and 7% respectively. Over this continent,
the unexpected result was the sign of the influence of the percentage
of sand, which was positive. This positive influence of the sand was
also found for Europe and South America.

For South America, the percentage of sand and the fraction of for-
est had almost the same proportion of influence, 39% and 43% respec-
tively. The soil texture was playing a major role in the SMOS error for
this continent. Soil texture also had a large influence in Europe (46%),
South Africa (46%), East Asia (39%) and Australia (54%). However, the
soil texture influencewas not always represented the sameway:mostly
by the claywith positive influence for Europe (43%) and East Asia (30%),
by the claywith a negative influence for South Africa (38%), by the sand
negatively for Australia (53%) and by the sand positively for South
America (39%)whereas the global soil texture influencewas represent-
ed by the sand negatively (22%).
ources of SMOS errors at the global scale, Remote Sensing of Environment
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The RFI influenced the SMOS error more significantly in central
Asia (47%), Europe (24%), North Africa (18%) and East Asia (16%). Re-
garding East Asia, the statistics about RFI might have been compromised
because therewere less points in this area due to the very strong RFI and
no soil moisture value was retrieved. But over the other three cited con-
tinents, RFI were not negligible, especially for central Asia where it was
even the first influent factor.

Nevertheless, the influence of the forest fraction over Australia can
be surprising. This continent does not have a lot of forests but SMOS error
values were very low, except near the coasts where there are some for-
ests. That is why the forest fraction was playing such a large influence
in Australia.
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R4.2. Classification and regression trees (CART)

The main goal of the classification process is to summarize and
predict a variable by a set of explanatory variables. With the values
of the different explanatory parameters, it will be possible to estimate
the SMOS error by going through the resulted classification tree de-
fined by the CART.

The classification was performed recursively by investigating each
variable and each possible threshold value to create the most homo-
geneous classes. Let xi be a variable and sj a value of this variable,
then a partitioning where xi b sj and xi ≥ sj splits the dataset into
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Table 2
Proportion of the SMOS error variance explained by each explanatory variable: per-
centage of sand and clay (% sand, % clay), mean RFI probability in 2010 (RFI), fraction
of forest (FFO), fraction of wetlands (FWL), fraction of waterbodies (FWP), fraction of
salted water (FWS), fraction of barren (FEB) and fraction of urban (FEU).

% sand % clay RFI FFO FWL FWP FWS FEB FEI FEU

Global 22.2 0.1 1.7 56.8 7.2 3.3 2.4 2.0 0.1 4.2
North Am. 7.8 2.6 0.6 66.9 3.5 4.0 4.5 2.5 0.6 7.0
South Am. 39.3 1.4 6.2 42.8 0.1 4.8 2.5 1.2 0.1 1.6
Europe 3.5 42.7 24.4 7.9 9.3 2.4 4.2 0.2 0.2 5.2
North Af. 2.3 14.7 18.1 50.2 3.4 4.7 1.2 0.1 – 5.3
South Af. 8.1 37.9 2.8 48.2 0.6 1.4 0.3 0.5 – 0.2
Cent. Asia 0.8 5.3 47.0 34.7 3.1 3.4 4.7 0.3 0.2 0.5
East Asia 9.2 29.7 15.6 9.7 15.8 2.9 3.4 13.2 0.0 0.5
Australia 52.5 1.9 11.8 29.5 0.2 2.4 1.3 0.3 – 0.1
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level of homogeneity is obtained.
The homogeneity is represented by the Gini index. Let k be the

classes (k = 1,⋯,C; where C is the total number of classes), then the
Gini index of the partition A is defined as follows:

I Að Þ ¼ 1−
XC

k¼1

p2k ð9Þ

where pk are the fractions of the observations belonging to the class k
in the partition A. I = 0 represents the perfect homogeneity where
only one class is present in the partition, I = (C − 1)/C represents
pure heterogeneity where all the classes appear equally in the partition.

If the sum of the Gini indexes of the two possible partitions is less
than the Gini index of the partition to be split, then the homogeneity
has been improved and the partitioning is accepted and realized.

In order to avoid to split too much and to finally only capture the
noise (over-learning), the resulting tree is pruned. The pruning level
is controlled by the complexity parameter (cp). Any split that does not
decrease the overall lack of fit by a factor of cp is not attempted, i.e. the
overall R2 must increase by cp at each step. Thus, computing time is
saved by pruning off splits or partitions that are considered as notworth-
while. In this study the complexity parameter cp was arbitrarily set to
0.01 for global and continental studies.

4.2.1. Global results
A regression tree was calculated for the entire world (Fig. 6) and

ended with six leaves. These leaves represent the end of several deci-
sions leading to a mean value for the SMOS error. Five decisions were
made and were considered as the most discriminant decisions to split
the entire dataset by the CART algorithm. The decisions resulting in
the lowest SMOS error (0.031 m3/m3) were: FFO = 0 followed by
FWP = 0. Over the entire globe, the characteristics of very low SMOS
error value were no forest and no water body. These two parameters
with their threshold values differentiated the best global dataset. As a
contrary, the decisions leading to the worst SMOS error value were:
FFO > 0 and RFI ≥ 0.07. The combination of these two decisions leads
in average to a very high value of SMOS error (0.070 m3/m3).

The first split was also very discriminant in terms of average SMOS
error since if the statement FFO = 0 was true then the mean SMOS
ources of SMOS errors at the global scale, Remote Sensing of Environment
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Fig. 6. Regression tree of the SMOS error at the global scale. In the rectangles are written the splitting condition, the mean value of the SMOS error before applying this decision and
the number of points that are concerned. If the condition is fulfilled then the branch true of the tree is followed. The end of each branch is concluded by a leaf represented by a circle
with the mean SMOS error value and the number of points.
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error value was 0.037 m3/m3 whereas if it was false, the mean value
was 0.058 m3/m3. The decision true concerned one third of the points
whereas the decision false two thirds. If the first statement was false,
then the next decision was about the RFI value. The threshold pro-
posed at this stage of the tree was 0.07, i.e., the number of acquisi-
tions for a point that has been polluted by RFI in 2010 is 7%. If this
threshold was not respected, then it resulted in a very high SMOS
error value (0.070 m3/m3 in average). If the probability was below
0.07 then the next decision was again about the forest fraction:
FFO b 0.15. This second time, the threshold value was higher (15% of
the scene being covered by forest). If this statement was true, then a
last decision needed to be made about the fraction of wetlands seen
by the radiometer: FWL = 0. This last decision was important as well
because if this was true, themean SMOS error was 0.048 m3/m3where-
as if it was false, it was 0.066 m3/m3, which is about 50% more.

The two analysis (ANOVA and CART) gave complementary results.
The ANOVA computed the part of the SMOS error variance that was
explained by each explanatory variable. The CART analysis computed
which variable and with which value, the SMOS error dataset can be
split so that sub-datasets can be explained differently. That also creat-
ed a list of decisions and the mean SMOS error value depended on
these decisions. So even if some explanatory variables did not have
a large impact in the ANOVA, they can have a large influence in how to
split the dataset. For example, from the ANOVA, RFI was only explaining
1.7% of the total variabilitywhereas itwas the seconddecision parameter
that lead to the largest SMOS error from the CART analysis.
677
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4.2.2. Continental results
Regression trees as in Fig. 6 were computed for each continent and

the decisions which lead to the lowest and largest SMOS error values
are summarized in Table 3. The CART was stopped the same way as in
the global case with a complexity parameter (cp) set to 0.01 in order
to make the conclusions comparable. The forest fraction (FFO) was in-
volved in all the decisions and was in most cases the first variable that
was used to split the dataset.
Please cite this article as: Leroux, D.J., et al., Spatial distribution and possible s
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North Africa, South Africa and Australia were the three regions
where the last branch of the CART resulted in a very low average
SMOS error value. Over North Africa, 50% of the points verified the con-
ditions FFO = 0, FEU = 0, and FWP = 0 and resulted in a SMOS aver-
age error value of 0.026 m3/m3; over South Africa, 17% of the points
verified FFO = 0 for a mean error of 0.031 m3/m3 and over Australia
40% of the points verified FFO = 0, % clay b 19.1 for a mean error of
0.033 m3/m3.

East Asia and central Asia were the two regions where the CART
identified the largest average error values. Over East Asia, the conditions
RFI ≥ 0.20, % clay ≥ 22.2 were fulfilled by 21% of the points for a mean
error value of 0.080 m3/m3 and over central Asia, 31% of the points
verified the conditions RFI ≥ 0.11, FFO > 0 for a mean error value of
0.076 m3/m3.

The classification of South America is coherent with the ANOVA
results (Section 4.1.2 and Fig. 5) since for this region, the sand had a
positive influence, it is then natural to have the lowest SMOS error
obtained with a percentage of sand above 40%.

5. Conclusions and perspectives

SMOS soil moisture has been available for almost three years
starting January 12, 2010. The first year of data was used to evaluate
the SMOS error structure at the global scale. For this purpose, the tri-
ple collocation was applied to SMOS and to two other global soil
moisture datasets among AMSR-E(LPRM), LPRM(NSIDC), ASCAT and
ECMWF. The error maps showed that SMOS gave better results (lower
errors) than the other datasets over North America, Australia and cen-
tral Asia.

Even though the error values from one triplet cannot be compared
to the results from another triplet, the structure of SMOS error at the
global scale exhibited similar patterns on the three error maps: high
error values over East and South Asia, Europe and highly vegetated
areas (Amazon, central Africa and extreme North of America); low
error values over North Africa, extreme South Africa, central Asia,
Australia and part of North America. By obtaining these three similar
ources of SMOS errors at the global scale, Remote Sensing of Environment
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Table 3t3:1

t3:2 Sets of parameter values that lead to the lowest and largest SMOS error from the classification process. The parameters are written in the same order as in the tree and the mean
t3:3 SMOS error values are indicated in parenthesis.

t3:4 Lowest SMOS error (m3/m3) % Largest SMOS error (m3/m3) %

t3:5 Global FFO = 0, FWP = 0 (0.031) 21.8 FFO > 0, RFI ≥ 0.07 (0.070) 16.3
t3:6 North Am. FFO = 0, FWP = 0 (0.037) 12.1 FFO > 0, % clay ≥ 20.4 (0.067) 17.2
t3:7 South Am. FFO = 0, RFI b 6.10− 3, % sand ≥ 40, FEU = 0 (0.043) 23.9 FFO > 0, % sand b 44, FWP > 0 (0.070) 11.8
t3:8 Europe FFO = 0, RFI b 0.16, FWL = 0, FEU = 0 (0.038) 9.6 FFO > 0, RFI ≥ 0.06 (0.068) 56.3
t3:9 North Af. FFO = 0, FEU = 0, FWP = 0 (0.026) 50.6 FFO > 0 (0.064) 22.1
t3:10 South Af. FFO = 0 (0.031) 16.7 FFO ≥ 0.32, % clay b 17.4 (0.068) 18.8
t3:11 Cent. Asia RFI b 0.11, FFO = 0 (0.038) 24.0 RFI ≥ 0.11, FFO > 0 (0.076) 30.6
t3:12 East Asia RFI b 0.20, FFO = 0

FWL = 0 (0.049)
10.0 RFI ≥ 0.20, % clay ≥ 22.2 (0.080) 20.6

t3:13 Australia FFO = 0, % clay b 19.1 (0.033) 39.7 FFO ≥ 0.24 (0.061) 8.6
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global maps (related to three different triplets), we can assume that
the triple collocation method is robust to the choice of the triplet.

The second goal of this study was to relate the SMOS error values
and structures to physical and algorithmic parameters: the fractions
of forest, wetland, water body, salted water, barren, ice, and urban
in the radiometer field of view defined by the ECOCLIMAP land cover,
the soil texture (percentages of sand and clay) and the probability of
RFI (radio frequency interference) in 2010. A multiple linear regression
model was computed for each continent and globally. An analysis of
variance (ANOVA) determined the proportion of SMOS error variance
explained by eachparameter according to themultiple linear regression
model.

At the global scale, the fraction of forest (FFO) explained most of
the SMOS error variance (57%) followed by the texture with the per-
centage of sand (22%). The more forest or sand we assume the radi-
ometer sees, the larger the SMOS error is. These proportions vary a
lot depending on the continent. Over Europe, the proportion of the
variance explained by the texture is around 46% followed with the
RFI with 24% whereas over North America, the FFO explained 67%. A
special care needs to be brought to the forest and sandy regions.

The presence of RFI is a serious issue for SMOS retrievals and even
though the proportion of explained SMOS error variance was high
over several continents (Asia, Europe, North Africa), the global pro-
portion explained by RFI remained extremely low (2%). This can be
explained by the fact that the points that were highly infected by
RFI did not have any soil moisture retrieval and were not then consid-
ered in that study.

In order to identify the set of parameters that could lead to very
high or very low SMOS errors, a classification and a regression tree
(CART) was computed for each continent and globally. A CART is de-
termined by the way to split a dataset so that the subsets are more
similar than the original dataset. At the global scale, and for most of the
continents, the FFO was the first parameter to split the original dataset
into two subsets. Except for South America, the value of FFO for the
first decision was very low (maximum 0.07) so even a small fraction of
forest can lead to a very high error value. For central Asia and East Asia,
the RFI was the first parameter that leads to the first split. These two re-
gions were extremely affected by RFI.

Frozen and snow covered grounds have not been taken into account
and can play a major role in the retrievals, especially in Northern lati-
tudes. Since the SMOS algorithm uses the ECMWF values to compute
the contributions of each class represented in the radiometer field of
view, it is possible that ECMWF influences SMOS retrievals and that
the anomalies of these two datasets are not uncorrelated. Nevertheless,
the global results and error patterns of the SMOS relative error are al-
most the same for all the triplets of the triple collocation, so the final
analysis remains the same. One point that has not been covered in
this study is the impact of the uniformity or the non-uniformity of the
observed area on the retrievals. It is expected though that if the scene
is very heterogeneous (many different landcover classes combined),
the contributions of each class need to be evaluated and thus introduce
Please cite this article as: Leroux, D.J., et al., Spatial distribution and possible s
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Fmore error in the retrieved soil moisture. Finally, a reprocessing of

SMOS brightness temperatures is underway and should lead to im-
proved soil moisture retrievals.

From the results of this study, several hints for future improve-
ments concerning SMOS soil moisture algorithm have emerged. The
variation of the forest fraction explains more than half of the error
variance at the global scale and improving the parameterization of
the forest model is definitely needed. The second most important pa-
rameter is the soil texture. However, the role of the soil texture is not
clear according to the results of this study since it has a positive influ-
ence over America or Europe and a negative influence over Africa,
Asia or Australia. In the soil moisture retrieval process, the soil texture
is mostly taken into account in the computation of the soil dielectric
constant. Level 2 soil moisture processor used the Dobson dielectric
constantmodel (Dobson et al., 1985) and since April 2012, theMironov
model (Mironov & Fomin, 2009) has been used in the V5.5 product. This
change in the model shouldmodify the presented results and improve-
ments are expected especially in the sandy regions where the Mironov
model is known to perform better.
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