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The number of satellites and remote sensing sensors devoted to earth observation becomes increasingly high, providing more and more data and especially images. In the same time the access to such a data and to the tools to process them has been considerably improved. In the presence of such data flow -and regarding the necessity to follow up and predict environmental and societal changes in highly dynamic socio-environmental contexts -we need automatic image interpretation methods. This could be accomplished by exploring some strengths of artificial intelligence. Our main idea consists in inducing classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system. We applied our proposed methodology to three land cover/use maps of the French Guiana littoral. One hundred and forty six classification rules were induced for the 39 land-cover classes of the maps. These rules are expressed in first order logic language which make them intelligible and interpretable by non-experts. A ten-fold cross validation gave average values for classification accuracy, specificity and sensibility equal to, respectively, 98.82 %, 99.65% and 70%. The proposed methodology could be valuably exploited to automatically classify new objects and/or help operators using object-based classification procedures.

Introduction

Geographic information have always been a key element for decision making in public policy, especially for planning. However, such information and the tools for represent, analyse and interpret them, particularly Geographic Information Systems (GIS), have been becoming more and more popular for the last two decades. Among the geographic information sources, remote sensing data have been taking an increasing part, because of the multiplication of the earth observation satellites and sensors and the evolutions in data distribution policies, more and more countries and/or organizations distributing remotely sensed data for free. Such a data quantity makes the data processing and interpretation a new challenge for engineers and researchers. Therefore, the latter can not keep on applying classical procedures but need new approaches in order to, notably, automatically updating land cover/use maps that provide useful information to decision makers. Such automatic procedures have to be based on existing knowledge, coming not only from remote sensing and image processing experts but also from final users. Some works aim at formally represent and exploit these expert knowledge for automatic image classification and interpretation : Desachy already proposed a fuzzy expert system in 1991, called ICARE, (DESACHY, 1991). More recent studies are directed rather towards ontologies. For instance, in (HUDELOT ; ATIF ; BLOCH, 2008) an ontology of spatial relations is proposed in order to guide image interpretation, then this ontology is enriched by fuzzy representations of concepts. In addition, (DURAND et al., 2007) propose an approach based on ontology for object recognition in remote sensing images.

A complementary approach to the expert based one is to extract knowledge from data. However, The great majority of the methods devoted to satellite image supervised classification consider only the pixel information within the image regions belonging to the same class in order to learn class signatures. Structural aspects within the pixel neighbourhood are essentially taken into account by computing textural indexes within the same regions. Very few methods tend to learn structural symbolic knowledge at a higher semantic level, like the one constituted by regions that can be identified in the image, by means of expert intervention, the application of segmentation or of non-supervised classification procedures. Paradoxically, some software propose to the operator to integrate such high level symbolic knowledge within the classification process, within a methodological framework called object-oriented classification. With the huge number of possible combinations offered by such software, the non-expert user feels somewhat lost and tends to formulate too specific and not reproducible rules. To our knowledge, no learning procedure, within such software environments, is proposed to help such novice users defining more general and efficient rules exploiting structural aspects. However, some studies already propose to learn structural knowledge from existing maps, for different purposes. In [START_REF] Malerba | Empowering a gis with inductive learning capabilities : the case of ingens[END_REF], the authors propose to help interpreting topographic maps. Their system, called INGENS, integrates machine learning tools and GIS functionalities. GIS classical functionalities are used to extract relevant concepts and features from spatial database, and the integrated inductive system permits to find rules in order to automatically recognize complex geographical contexts (like "fluvial landscapes") defined by the presence of specific geographical objects and their spatial arrangement. In (VAZ ; FERREIRA ; LOPES, 2007), the authors use Inductive Logic system called APRIL (FONSECA ; SILVA ; CAMACHO, 2006) to learn classification rules, from, on one hand, a detailed map provided by botanists and, on the other hand, Corine Land Cover (CLC) maps of the same zone. Such rules are intended to automatically disaggregate CLC map information that are judged too generic within the application framework. An application of the inductive learning of structural features from maps are devoted to the prediction of particular events that partially depend on landscape characteristics : Vaz and al. (VAZ ; COSTA ; FERREIRA, 2010) propose a system in order to predict wildfires, from information on past fire events and from compositional and structural features of the land use.

In this context, our work consists in implementing machine learning methods for structural and symbolic knowledge extraction from land use/cover maps and from various complementary geographic information layers. We define structural knowledge, on the one hand, as the knowledge that concern intrinsic structures of the land cover/use classes (e.g : "The class C contains small objects"), and on the other hand, as the knowledge that concern relations, in space and/or time, between "objects" (e.g : Objects of the class C1 are always adjacent to the class C2). We chose Inductive Logic Programming (ILP) to implement the machine learning thanks to clearness of the language used and the intelligibility of its resulting hypothesis. Inductive Logic Programming [START_REF] Muggleton | Inductive logic programming[END_REF] can model complex problems and was used in several domains such as : Chemistry [START_REF] Blockeel | Experiments in predicting biodegradability[END_REF], biology, physics, medicine [START_REF] Luu | Kd4v : Comprehensible knowledge discovery system for missense variant[END_REF][START_REF] Fromont | Extraction de connaissances provenant de données multisources pour la caractérisation d'arythmies cardiaques[END_REF]CORDIER ;QUINIOU, 2005), ecology, bioinformatics [START_REF] Santos | Automated identification of protein-ligand interaction features using inductive logic programming : A hexose binding case study[END_REF][START_REF] Lavrac | Inductive Logic Programming : Techniques and Applications[END_REF]DZEROSKI, 1994;[START_REF] Srinivasan | Theories for mutagenicity : A study in first-order and feature-based induction[END_REF]. It was applied for spatial data mining [START_REF] Chelghoum | Fouille de donnees spatiales -approche basee sur la programmation logique inductive[END_REF], for Chess [START_REF] Goodacre | Inductive Learning of Chess Rules Using Progol[END_REF] and to test quality of river water [START_REF] Cordier | A decision-aid system to improve stream-water quality[END_REF].

We applied the proposed methodology to the learning of classification rules for the updating of the land cover/use in French Guiana.

Our paper is organized as follows : Section 2 introduces the general methodology by defining ILP basis, presenting the used dataset and explaining how the extracted information are coded. Section 3 presents the results and is followed by a discussion in section 4 and a general conclusion in section 5.

Methodology 2.1. Inductive Logic Programming

Inductive Logic Programming (ILP) (MUGGLETON, 1991) is a search fields that combines machine learning and logic programming. It is a technique for learning a general theory H from a background knowledge B and examples E within a framework provided by clausal logic. More formally (LAVRAC ; DZEROSKI, 1994), ILP is defined as follows :

Given :

-Background knowledge B expressed under Horn clauses, describing a set of knowledge and constraints that concerns the target concept, i.e., in our case, the membership to a given land cover/use class ; -A set of examples E, divided into two subsets : E + and E -that represent the sets of, respectively, positive and negative examples ; -A description language L. Find a "theory" H expressed under logic program using the description language L and that covers positive examples E + and does not cover (or in a controlled quantity) the negative examples E -. We chose the ILP engine Aleph [START_REF] Srinivasan | The Aleph Manual[END_REF]. It is an open source ILP system written in Prolog, using top-down search and based on inverse entailment [START_REF] Muggleton | Inverse entailment and progol[END_REF]. We set the minimum accuracy of the candidate clauses to 0.7, accuracy being defined by p/(p+n) where p and n are respectively the number of positive examples and the number of negative examples covered by the clause, and the maximum clause length to 6 literals.

Dataset

We applied the proposed methodology to the follow up of French Guiana littoral (Figure 1). Such territory is subjected to intense anthropogenic and natural dynamics (ANTHONY et al., Two complementary geographic information layers were used (see Figure 1) : the road network, provided by the BD-Cartho R database of the IGN, and the river network provided by the BD-Carthage R database of the French ministry in charge of the environment and of the IGN, produced in 2009 for French Guiana by the Regional Direction of the Environment (DIREN) of French Guiana and the French National Agency for Water and Aquatic Environments (ONEMA). First of all, we completed the initial land cover/use types by adding three more classes : Ocean, River and Unknown. The first two classes were added as they contribute significantly to the structuring of the environment on the French Guiana territory. The Unknown class was defined to explicitly take into account the fact that, for some areas, information were not available in 2001 and/or 2005. However, we did not induced rules in order to predict Ocean and Unknown class memberships. Eventually, the class Paddy field was not considered as it was under-represented in the maps.

At the next step, we produced a synthetic map by merging the information contained in the three initial maps, by means of the "union" GIS operator. The elementary geographical entities of the resulting map are referred to as objects in the following and contribute to define the examples in the ILP process. Objects constituting such a synthetic map belong to only one class at each date, as schematically shown in Fig. 2.

Information coding

Target predicates (i.e. concepts to be learned) were defined as the land cover/use classes to which the objects of the synthetic map belong in 2008.

Objects were described thanks to predicates characterizing intrinsic (class, area, fractal dimension, compacity, perimeter) and relational features (adjacency, inclusion, relative positions in latitudinal and longitudinal directions) :

-classYY(O1,class_type) : indicates the land cover class of the object O1 at the year YY.

-adjacent(O1,O2) : indicates that objects O1 and O2 are adjacent, i.e. that they share, at least partially, their boundary ; -included(O1,O2) : means that object O2 is included in object O1 ; -contain(O1,X), with X ∈ {road, river} : indicates the presence of a road or river in object O1 ; -lat(O1,y) and long(O1,x) : y is a real and positive number corresponding to, respectively, the latitude and the longitude of the centroid of object O1. However, absolute positions of the objects were not expected in induced rules. Relative positions of the objects in the latitudinal direction were coded as follows (the principle was the same for the longitudinal direction, by defining the predicates east and west) :

-north(O1,O2) :-lat(O1,A),lat(O2,B),A> B : indicates that object O1 is located at the north of object O2 ; -south(O1,O2) :-lat(O1,A),lat(O2,B),A≤ B : indicates that object O1 is located at the south of object O2 ; For each numeric descriptive attribute (area, fractal dimension, compacity, perimeter), object value was re-coded by indicating whether it is lower or equal (le) or greater (g) than the 10th, 20th, ... and 90th percentiles of the data empirical distribution. For instance, the area of an object O1 was re-coded by means of the following predicates :

-area(O1,leP i ) :-area(O1,Y), Y ≤ P i .

-area(O1,gP i ) :-area(O1,Y), Y > P i . P i being the i th percentile of the empirical distribution of the area data, and i ∈ {10, 20, ..., 90}.

All object features were extracted using the free and open source GRASS Geographic Information System (GRASS_DEVELOPMENT_TEAM, 1999-2012). Once the information is extracted and coded according the above method, the one vs. rest approach was applied to induce the rules, providing one classifier per land cover/use class.

Results

Set of induced rules

We 

Prediction evaluation

Based on a 10-folds cross-validation, we computed the accuracy, sensibility and specificity for the 39 classifiers. All results are described in Tables 1, 2 and 3. Accuracy values vary from 92.44% to 100% with an average value of 98.82%, on the other hand, specificity values vary between 98.02% and 100% and the average is 99.65%. Sensibility varies from 0 to 100% with an average of 70%. Twenty three percent, 36% and 41% of the 39 classes are associated with a sensibility value, respectively, lower than 50% (Table 1), between 50% and 80% (Table 2) and greater or equal to 80% (Table 3).

Discussion

The number of induced rules is relatively large. However, the distribution of this number among land cover/use classes is not homogeneous. For instance, we obtained 36 rules for Forest of the old coastal plain whilst we had just one rule for the Forest plantation class.

From a qualitative point of view, induced rules seem to be consistent with the knowledge on the environment of the study area. Moreover, they are intelligible and interpretable by nonexperts. However, some rules appear to be very specific, by covering very few (2 or 3) positive examples whereas the total numbers of positive examples for the classes were large (see rules (4), ( 5) and ( 6)).

The predicates south, north and west are not used in the rules whereas the maximum number of literals in the acceptable clauses (set to 6) was not reached. This shows that such predicates were not pertinent for the object discrimination and that we should better characterise the objects by exploiting expert knowledge. In particular, domain ontologies could guide the learning process by specifying the predicates and the learning constraints to use.

We noticed that classes associated with very high sensibility (Table 3) undergoes no or slow changes in time, the knowledge of the land cover type at one time in the past defining, for a large part, the land cover type at present and in the future. It is the case for very anthropised area like Port area and Airport or for very stable natural land cover types that can not be exploited by 1) seem correspond to continually and rapidly shifting land cover/use types. It is particularly the case for the classes Construction sites, Heterogeneous agricultural areas corresponding to slash and burn activities, Beach, mud bank or dune that is associated with a highly dynamic environment [START_REF] Anthony | The amazon-influenced muddy coast of south america : A review of mud-bank-shoreline interactions[END_REF], Forest and shrubs in mutation. For these classes, the information provided by the land cover/use maps seem insufficient in terms of anteriority and/or time resolution.

In our study, we did not exploit the satellite and the aerial photographs information (pixel values, texture, etc.) in order to characterise the objects. Obviously these information would have considerably enrich the background knowledge and improve the results. However, the promising prediction results we obtained show the discriminative power of our approach and that structural knowledge can greatly improved the classification accuracy. Moreover, such knowledge appear to be more robust than these related to image data, which highly depends on sensors and of their associated spatial and spectral resolutions.

Inductive Logic Programming is devoted to symbolic data. Several solutions exist in order to code the numeric data into symbolic one, and the management of numeric information in ILP constitutes a specific research field. The solution we proposed seems to realise a good compromise, during the learning phase, between information loss and generalisation capacity.

Eventually, we adopted the one vs. rest approach for managing more than two land cover/use classes. In further works, we should place ourselves in a multi-class framework in order to manage possible assignment of one object to different classes and to adopt more appropriate validation measures (ABUDAWOOD ; FLACH, 2011). 

Conclusion

In this paper we proposed an approach to induce classification rules in order to conceive automatically land cover/use map. Therefore, we implemented a method for automatic extraction of structural knowledge using Inductive Logic Programming. We applied the proposed method to the updating of the land cover/use of the French Guiana littoral. Results show that the induced rules are intelligible and easy to interpret even by non expert users. In particular, they provide knowledge on structural aspects. A ten-fold cross validation of our classifiers provided very promising results that suggest i) that the accuracy of the automatic classification procedures could be greatly improved by the addition of automatically learned structural knowledge and ii) that we are able to provide a valuable assistance to operators using object-based classification procedures.

  FIGURE 1 -Subset of the land cover/use maps and of the complementary geographic information layers used in this article. Sources : French National Office of Forests (Office National des Forêts : ONF), French National Geographic Institute (Institut Géographique National : IGN) ; French ministry in charge of the environment ; Regional Direction of the Environment (DIREN) of French Guiana ; French National Agency for Water and Aquatic Environments (ONEMA). See text for details.

FIGURE 2 -

 2 FIGURE 2 -Illustrative example explaining the definition of the synthetic map which combines the three initial map information.

  obtained a total of 146 rules. The number of positive examples covered by a rule vary from 2 to 692 examples, while negative examples covered by a rule vary from 0 to 101 examples. Classification rule premisses are composed of 1 to 3 literals. Below we show some induced rules with, in brackets, the numbers of positive (Pos cover) and negative (Neg cover) examples covered by the rule and the total number of positive examples for the considered target predicate (Total pos. ex.) (1) (Pos cover = 7 Neg cover = 3 Total pos. ex. = 1191) class08(A, Isolated build) :-class05(A, Flooded forest or swamp), compacite(A,le1.21), perimeter(A,le 552.62). (2) (Pos cover = 692 Neg cover = 36 Total pos. ex. = 1191) class08(A,Isolated build) :-class05(A,Isolated build). (3) (Pos cover = 198 Neg cover = 65 Total pos. ex. = 552) class08(A,Multidisciplinary habitat) :-adjacent(A,B), class05(B,Multidisciplinary habitat), area(A, le 165566.67). (4) (Pos cover = 2 Neg cover = 0 Total pos. ex. = 84) class08(A,Road network) :-class01(A,Degraded forest), class05(A, Road network), compacity(A,g2.10). (5) (Pos cover = 3 Neg cover = 1 Total pos. ex. = 97) class08(A,Construction site) :-class05(A,Construction site), area(A,g10830.61), perimeter(A, le 780.61). (6) (Pos cover = 3 Neg cover = 0 Total pos. ex. = 194) class08(A,High forest) :-contains(A,Road), class05(A,High forest), area(A,le1111.13). To illustrate how we interpret ILP rules, consider the rule (3) : it covers 198 positive examples over 552 and only 65 negative examples over 6615. It states that an object A belongs to the class Multidisciplinary habitat in 2008 if A is adjacent to another object B that belonged to the same class in 2005 and if A has an area lower or equal to 165566.67 square meters.

TABLE 1 -

 1 Ten-fold cross validation results for land cover/use classes associated with "low" sensibility values (lower than 50%)

	Class	(level I)	Class	(level II)	Class	(level III)	Precision	Sensibility	Specificity	Total number	of positive	examples
	Non-agricultural	Mines, rubbish dump	Rubbish dump		99.79	25	99.96		15	
	artificial territories	construction sites	Construction sites	98.81 26.67 99.8		97	
					Fragmented/complex						
	Agricultural	Heterogeneous	cropping systems (slash & burn) 90.48 44.35 98.65	814
	territories	agricultural areas	Shifting slash & burn activities	98.9 39.39 99.84	112
						Low forest						
	Forest and semi-natural area	Forest	on white sand Coastal forest on rocks Flooded forest or swamp Moist evergreen forests on the coastal plain land	99.71 43.33 99.9 99.8 45 99.9 97.37 37.8 100.0	24 14 288
			Open space with								
			some/no vegetation	Beach, mud bank, dune	99.78	0	99.99		15	
			Degraded natural								
			environment	Forest and shrubs in mutation	93.92 45.53 98.35	602

TABLE 2 -

 2 Ten-fold cross validation results for land cover/use classes associated with "medium" sensibility values (between 50% and 80%) natural and/or legal constraints, like Bare rocks, rock savannah, Riverine swamp.On the other hand, classes associated to low sensibility values (Table

	Class	(level I)	Class	(level II)	Class	(level III)	Precision	Sensibility	Specificity	Total number	of positive	examples
			Artificialized green space	99.96	75	99.99		8	
					Continuous urban base	99.72	67	99.92		42	
	Non-agricultural artificial territories	Urbanized areas Industrial zone	Discontinuous urban base Isolated build Multidisciplinary habitat Industrial area Road network	98.88 58.27 99.84 92.44 64.15 98.08 97.1 67.58 99.56 99.76 62.5 99.97 99.44 56.39 99.96	166 1191 552 40 84
			Mines, rubbish								
			construction site	Material extraction	99.05 66.32 99.69	137
	Agricultural territories	Arable land Permanent cultivation	Arable land out of irrigation 99.92 79.55 99.96 Fruit groves 98.35 61.38 99.74	12 259
			Prairies			98.84 67.78 99.93	243
	Forest and	Forest	Mangrove swamp	97.54 67.52 98.67	259
	semi-natural area	Degraded natural								
			environment	Degraded forest	97.01 69.78 98.98	483
	Free water surfaces Continental water River	99.72 62.5 99.89		32	
	humans due to										

TABLE 3 -

 3 Ten-fold cross validation results for land cover/use classes associated with "high" sensibility values (greater than 80%)

	Class	(level I)	Class	(level II)	Class	(level III)		Precision	Sensibility	Specificity	Total number	of positive	examples
	Non-agricultural artificial territories	Industrial zone	Port area Airport Moist evergreen		Forest on sandy cord	99.99 100 99.69	80 100 80	100 100 99.83		5 12 49
					forests on the		Forest of					
	Forest and	Forest	coastal plain land Wet evergreen	the old coastal plain 96.67 80.12 98.02 High forest 98.83 82.92 99.27	543 194
	semi-natural area			forests on laterite Forest plantation	Low forest	99.97 98.33 99.99 99.93 86.67 99.97		58 21
			Shrubby	Dry Savannah			99.47 94.49 99.59	164
			environment	Flooded Savannah		99.79	92	99.9		98
			Open space with	Bare rocks,							
			some/no vegetation	rock Savannah			100.0	100	100.0		6
			Degraded natural	Degraded marshy or						
			environment	flooded forest			99.96	85	100		18
	Wetlands	Interior wetlands	Interior marsh Riverine swamp			99.51 88.27 99.77 99.87 100 99.87	163 38
			Coastal wetlands	Coastal Marsh			99.97 88.89 99.99		9
	Free water surfaces	Continental water	Natural water surface Fish-pond,	100	100	100		4
					artificial pond			99.94	85	99.99		18
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