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Abstract

Background: Cell separation that occurs during fleshy fruit abscission and dry fruit dehiscence facilitates seed

dispersal, the final stage of plant reproductive development. While our understanding of the evolutionary context

of cell separation is limited mainly to the eudicot model systems tomato and Arabidopsis, less is known about the

mechanisms underlying fruit abscission in crop species, monocots in particular. The polygalacturonase (PG)

multigene family encodes enzymes involved in the depolymerisation of pectin homogalacturonan within the

primary cell wall and middle lamella. PG activity is commonly found in the separation layers during organ

abscission and dehiscence, however, little is known about how this gene family has diverged since the separation

of monocot and eudicots and the consequence of this divergence on the abscission process.

Results: The objective of the current study was to identify PGs responsible for the high activity previously observed

in the abscission zone (AZ) during fruit shedding of the tropical monocot oil palm, and to analyze PG gene

expression during oil palm fruit ripening and abscission. We identified 14 transcripts that encode PGs, all of which

are expressed in the base of the oil palm fruit. The accumulation of five PG transcripts increase, four decrease and

five do not change during ethylene treatments that induce cell separation. One PG transcript (EgPG4) is the most

highly induced in the fruit base, with a 700–5000 fold increase during the ethylene treatment. In situ hybridization

experiments indicate that the EgPG4 transcript increases preferentially in the AZ cell layers in the base of the fruit in

response to ethylene prior to cell separation.

Conclusions: The expression pattern of EgPG4 is consistent with the temporal and spatial requirements for cell

separation to occur during oil palm fruit shedding. The sequence diversity of PGs and the complexity of their

expression in the oil palm fruit tissues contrast with data from tomato, suggesting functional divergence underlying

the ripening and abscission processes has occurred between these two fruit species. Furthermore, phylogenetic

analysis of EgPG4 with PGs from other species suggests some conservation, but also diversification has occurred

between monocots and eudicots, in particular between dry and fleshy fruit species.
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Background
The shedding of plant organs is a highly coordinated de-

velopmentally regulated event that can occur in different

contexts throughout the plant life cycle [1-4]. Organ shed-

ding is important for both plant vegetative and reproduct-

ive development, including abscission of leaves, branches,

whole flowers, floral parts, seeds and immaturely aborted

or ripe fruit. In particular, cell separation that occurs dur-

ing fleshy fruit abscission and dry fruit dehiscence facili-

tates seed dispersal, the final stage of reproductive

development, and therefore governs important characters

in many crop species. For fruit to be shed, cell separation

must occur in a precise location timed to optimize disper-

sal under the most favourable conditions. For crop species,

if fruit are shed too early or late, economic consequences

can be significant. Whereas our understanding of the evo-

lutionary context for this phenomenon is mainly limited

to model systems such as tomato and Arabidopsis, less is

known about the mechanisms underlying fruit abscission

in non-model crop species in general and, monocot spe-

cies in particular.

Oil palm is a tropical perennial monocotyledonous

species in the family Arecaceae with an extraordinarily

oil rich fleshy mesocarp, which is the number one source

of edible vegetable oil worldwide. In addition, potential

use of palm oil as a biofuel is predicted to cause con-

straints on the worldwide supply of edible palm oil and

increase the pressure for higher yields and an expansion

of cultivatable areas. While conventional breeding

schemes have allowed increases in yield of palm oil up

to 1% per year, non-synchronized ripening and subse-

quent shedding of the ripest fruit before harvest limit

yield gains [5,6]. In addition, the difficulty to schedule

regular harvests due to non-synchronized fruit shedding

results in a labour intensive logistics that increases over-

all production costs. Furthermore, several original char-

acters of oil palm fruit shedding warrant further detailed

investigations. In particular, the two-stage process in-

volving primary and adjacent abscission zones (AZs),

plus the extraordinary low amount of methylated pectin

and high levels of polygalacturonase (PG) activity, col-

lectively suggest that divergent mechanisms may under-

lie the cell separation process that leads to fruit

shedding in this monocotyledonous species [7-9]. Fi-

nally, the only organ observed to shed in this palm spe-

cies is the ripe fruit. Flowers and immature fruitlets

from many species are naturally thinned by organ ab-

scission in response to nutritional status to optimized re-

productive success, whereas this phenomenon is not

observed to any extent in oil palm. Indeed, the oil palm

maintains all fruit on a bunch until ripening related sig-

nalling takes place to induce ripe fruit abscission.

While examples of organ shedding in plants are di-

verse, the common model proposed is mainly based on

studies with eudicotyledons [2,3]. Firstly, the develop-

ment of the abscission zone (AZ) takes place at the base

of subtending organ to be shed. Secondly, as the AZ

develops, it must become competent for cell separation

events required for organ abscission. Indeed, once the

AZ develops, it responds differently from adjacent tis-

sues to the signals that induce cell separation [10]. After

the AZ becomes competent for separation to be

induced, cellular activity, in particular the expansion of

the golgi vesicles and activation of the endomembrane

system with the release of hydrolytic enzymes to the

apoplast leads to the degradation of the middle lamella

and cell separation [11,12]. An important feature of the

model is the induction of the genes encoding cell wall

hydrolytic enzymes targeted to modify and degrade cell

wall components for separation to occur. The expression

of these genes is often induced by ethylene and inhibited

by auxin, characteristics that correlate with the positive

and negative effects of these hormones on the abscission

process respectively [1-3]. Despite the central import-

ance of the mechanisms that allow changes in adhesion

of adjacent cells to take place with such temporal and

spatial precision, our understanding of these events even

in model organisms is limited.

PG gene expression and activity are common features

of organ abscission, observed in bean, tomato, peach

and Sambucus nigra [13-16]. PG activity depolymerises

the homogalacturonan backbone of pectin and while PG

transcripts and activity increase in various species during

the abscission process, they can also be induced by

ethylene or inhibited by auxin [14,15,17-22]. In tomato,

there is a single PG transcript (pTOM6, also known as

TFPG) expressed during fruit ripening, while up to four

other PGs (TAPG1, TAPG2, TAPG4 and TAPG5) are

expressed in the flower/fruit pedicel AZ associated with

abscission [20,21,23-27]. Interestingly, the down-regula-

tion or knockout of TFPG results in a decrease in pectin

depolymerisation, but surprisingly no change in fruit

softening which suggests other components are involved

[25,27-29]. Furthermore, down-regulation of fruit TFPG

has no effect on the timing or rate of leaf abscission, in-

dicating a specific function of this enzyme during fruit

ripening but not organ abscission [22]. In contrast, silen-

cing of the abscission TAPG1 expression delays abscis-

sion and increases break strength of the AZ [30].

Overall, these experiments suggest that while PGs are

important for processes during both ripening and abscis-

sion, the same genes may not be responsible and there

are other factors involved in abscission. Indeed, there

are up to 69 and 59 PG genes in Arabidopsis and rice re-

spectively, many with overlapping expression domains

[31,32]. At least four of the Arabidopsis genes have ex-

pression profiles correlated to cell wall loosening and

cell wall dissolution events during floral organ abscission
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[32]. Furthermore, ADPG1, ADPG2 and QRT2 have

been shown to have overlapping functions during differ-

ent cell separation processes. ADPG1 and ADPG2 are

essential for silique dehiscence, while ADPG2 and QRT2

contribute to floral organ abscission, and all three genes

contribute to anther dehiscence, suggesting precise com-

binations of PG activities may be necessary during the

cell separation events underlying these different pro-

cesses [33].

A previous study revealed a large increase in PG activ-

ity in the oil palm AZ in the base of the fruit during cell

separation events that lead to fruit abscission [7]. Our

main objective in the present study was to identify PG

genes that could be responsible for this activity observed

during fruit shedding. We have performed a detailed ex-

pression analysis of 14 genes that encode PGs in the

base of the oil palm fruit. PG sequence diversity in the

fruit tissues and their profiles of expression during fruit

ripening and during ethylene induced abscission con-

trasts with that observed in tomato, suggesting some

functional divergence underlying these processes in this

monocotyledonous fruit species. The results of a phylo-

genetic analysis of EgPG4 with PGs with known func-

tions and/or expression profiles from various species will

also be discussed in relation to divergence that may have

occurred between eudicots and monocots, in particular

between fleshy and dry fruit species.

Results

Ethylene induced oil palm fruit shedding experimental

system

Previous studies published on oil palm fruit shedding

were done with material transported by airfreight from

plantations in Malaysia to a laboratory in the United

Kingdom where the experiments were performed [7-9].

In order to determine precisely the timing of events that

occur during abscission, our first objective was to set up

an experimental system that could be used in a local

field setting to eliminate problems that could arise due

to the time and conditions required for storage and long

distance shipment of the fruit. Based on the results of

earlier studies with oil palm, ethylene was implicated as

the main signal that induces cell separation in the pri-

mary AZ of the oil palm fruit [9]. Therefore, to

synchronize fruit shedding, we treated spikelet explants

with ethylene in airtight boxes (see Material and Meth-

ods for details; Figure 1A). The first experiment exam-

ined the ethylene dose effect on the induction of cell

separation in the primary AZ of ripe fruit (150 days after

pollination, DAP) treated for 12 h (Figure 1B). An in-

crease in the number of fruit shed (13%) was observed in

spikelets treated with 0.1 μl l-1 ethylene, while at 10 μl l-1,

100% of the fruit underwent cell separation in the primary

AZ. This experiment confirmed the use of 10 μl l-1 as

an effective concentration for our studies as used previ-

ously [9]. In addition, the experiment also confirmed the

two-stage separation process (data not shown) during

which separation first occurs within the predetermined

primary AZ, followed later by separation events in adja-

cent AZs [8,9]. The concentration of 10 μl l-1 was used in

further experiments to compare fruit separation at differ-

ent stages of development (Figure 1C). Spikelets of fruit at

30, 120 and 180 DAP were treated and shedding was

quantified at time intervals up to 24 h after treatment. No

fruit were observed to shed at 3 and 6 h. Fruit at 30 DAP

were only observed to shed after 24 hours of treatment,

while 120 DAP fruit and 180 DAP fruit began to separate

after 12 h and 9 h of treatment respectively. In air con-

trols, only the 180 DAP fruit were observed to shed at 12

h (1%) and 24 h (100%). These experiments define the

time frame during which cell separation must occur for

oil palm fruit shedding to take place, and suggests an im-

portance of developmental factors that influence the re-

sponse to ethylene.

Polygalacturonase gene family expression in the oil palm

fruit tissues and the identification of the EgPG4 transcript

induced in the AZ prior to fruit shedding

A 35-fold increase in polygalacturonase (PG) activity

was reported to occur in the AZ during fruit shedding

[7]. Furthermore, PGs are implicated in cell separation

underlying organ separation in many species. In this

context, our next objective was to identify PG candidate

genes responsible for this large PG activity observed dur-

ing cell separation events in the AZ. Briefly, our ap-

proach involved searches of available databases for

sequences similar to known PGs, including locally

derived 454 pyrosequencing transcriptome data, fol-

lowed by designing of specific primers for each sequence

identified to test, along with degenerate primers, to

amplify from a mixture of cDNAs derived from fruit tis-

sues treated or not treated with ethylene, or from gen-

omic DNA (see Materials and Methods for details).

Overall, our searches resulted in the identification of 35

putative non-redundant PG sequences, 28 of which con-

tained either a partial or complete glycoside hydrolase

family 28 (GH28) PG signature domain and were

retained for further studies (see Additional file 1 for nu-

cleotide sequences). From the 28 sequences, RT-PCR

analysis revealed that 14 non-redundant PG transcripts

were expressed in the AZ of oil palm fruit and a detailed

analysis of their expression in fruit tissues during ethyl-

ene induced abscission was performed. The 14 tran-

scripts are EgPG1, EgPG3, EgPG4, EgPG7, EgPG8,

EgPG9, EgPG10, EgPG11, EgPG16, EgPG17, EgPG18,

EgPG19, EgPG22 and EgPG26.

To analyze expression, qPCR analysis was performed

with tissue samples from the ethylene experiments
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described above (Figure 1C). The results confirmed the

RT-PCR analysis in that each of the 14 primer pairs suc-

cessfully amplified a PG sequence from the oil palm fruit

AZ, but also from the adjacent pedicel or mesocarp tis-

sues before and after ethylene treatment (Figure 2A-N).

The profiles of transcript abundance accumulation in

the AZ can be grouped into the following three main

categories: I) five transcripts increase significantly (more

than 2 fold; Figure 2A-E), II) four transcripts decrease

significantly (more than 0.5 fold; Figure 2F-I) and, III)

five transcripts have no significant change in abundance

in the AZ during ethylene treatments (Figure 2J-N) re-

spectively. By far the most abundant PG transcript

detected with the most dramatic increase in abundance

in the AZ is that of EgPG4 (Figure 2B). EgPG4 transcript

increases approximately 700, 2000, 4000 and 5000 fold

in the AZ after 3, 6, 9 and 12 h of ethylene treatment

respectively. In contrast, EgPG4 is also highly expressed

in the mesocarp sampled from the upper portion below

the apex of the untreated fruit, but only increases 10, 5,

36 and 13 fold after 3, 6, 9 and 12 h of ethylene treat-

ment respectively (Figure 2B). Finally, EgPG4 is faintly

detectable in pedicel tissue before ethylene treatment,

and increases at a lower magnitude during the ethylene

treatments compared to that observed in the AZ.

An overview of PG gene expression reveals that the

three adjacent fruit tissues respond differently to the ethyl-

ene treatments (Figure 3 and Figure 1 and Additional file

2). In the mesocarp below the apex of 180 DAP fruit,

the EgPG4 transcript represents 95% of the total PG tran-

script before ethylene treatment, then increases to 99%

after 6 h of ethylene treatment (Figure 3). In contrast, in

the AZ of fruit prior to ethylene treatment, EgPG11 is the

most abundant (43%) followed by EgPG10 (15%) and
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Figure 1 (A) Experimental system used for ethylene-induced fruit shedding experiments. (B) Dose response of ripening fruit (150 days

after pollination, DAP) treated with a selected concentration range of ethylene for 12 h. (C) Ethylene time course treatment of oil palm fruit

spikelets at contrasting stages of development (DAP 30, 120, and 180). To test for separation, fruits were subjected to light pressure and
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EgPG8 (10%) and EgPG18 (10%), whereas EgPG4, repre-

sented only 4% of the total PG transcript detected. By con-

trast, EgPG4 accounts for 99% of the PG transcript in the

AZ after 6 h of ethylene treatment. In the pedicel, EgPG10

(62%) and EgPG11 (19%) are the most abundant PG tran-

scripts after 6 h ethylene treatment, while the EgPG4 tran-

script accounts for only 7% and 4% total transcript in

untreated and ethylene treated fruit respectively. Our

findings indicate that EgPG4, the most abundant PG tran-

script detected, is spatially and temporally differentially

regulated in the three adjacent fruit tissues examined. In-

deed, EgPG4 accounts for the majority of the total PG

transcript detected in the mesocarp, and more notably

undergoes a dramatic increase in abundance preferentially

in the AZ prior to the onset of separation observed after 9

h of ethylene treatment (Figure 1C).
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Figure 2 qPCR analysis of PG transcript abundance in oil palm fruit tissues and during ethylene treatment time course. (A-E) PG
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During our ethylene experiments, we observed that 30

and 120 DAP fruit do not separate without treatment

with ethylene (control treatments in air in the presence

of ethylene absorbing material), while in the presence of

ethylene they first separate after 12 h and 24 h respect-

ively, and only after 24 h of ethylene treatment are the

majority of the fruit shed (Figure 1C). By contrast, the

180 DAP fruit treated with air in the presence of ethyl-

ene absorbing material (control treatments) will begin to

undergo cell separation after 12 h and will completely

separate after 24 h (Figure 1C). To determine whether

EgPG4 transcript accumulation coincides with these

observations, we examined the expression of EgPG4 in

30, 120 and 180 DAP fruit in the presence or absence of

ethylene (Figure 4A-C and Figure 1C). The results reveal

a close correlation of the accumulation of the EgPG4

mRNA with the timing of shedding of 30, 120 and 180

DAP fruit. Indeed, EgPG4 has very low relative
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expression in untreated 30 and 120 DAP fruit compared

to 180 DAP, and after 3 h of ethylene treatment, the in-

crease is 2,400 fold in the 180 DAP fruit compared to

only 2.5 fold and 17 fold in the 30 and 120 DAP fruit re-

spectively (Figure 4A-C). After 6 h, EgPG4 transcript

increases 0.70, 260 and 6,803 fold in 30, 120 and 180

DAP fruit respectively, while after 9 h of ethylene treat-

ment, the EgPG4 transcript is increased 143, 350 and

14,200 fold in 30, 120 and 180 DAP fruit respectively.

In situ analysis of the spatial and temporal expression of

EgPG4 during ethylene induced fruit shedding

Whereas the qPCR analysis of EgPG4 transcript accumu-

lation correlates well with the timing of cell separation

events that occur in the base of the oil palm fruit, the AZ

samples that were used for the expression analysis include

a mixture of all three tissues including the AZ and the

margins of the adjacent pedicel and mesocarp tissues

(Figure 5). To examine whether both the temporal and

spatial expression of EgPG4 correlates with the cell separ-

ation events in the AZ that lead to fruit shedding, in situ

hybridization analysis was performed. Firstly, we used a

combination of bright field, polarized light and epifluores-

cence microscopy to clearly distinguish the localization of

the EgPG4 transcript within the AZ cells, compared to the

adjacent mesocarp and pedicel tissues (Figure 5A-J). With

polarized light, the AZ cell layers are well defined in

addition to the lignified vasculature in all the tissues

(Figure 5E-G). In contrast, epifluorescence microscopy

mainly detected the lignified vasculature, predominantly

in the pedicel and the mesocarp (Figure 5H-J). In the base

of ripe fruit before ethylene treatment, the EgPG4 tran-

script was neither detected in the AZ, nor in the lower

margin of the mesocarp or upper margin of the pedicel

tissues (Figure 5A,E,H). By 6 h after ethylene treatment,

the EgPG4 transcript increased in abundance preferentially

in the AZ cell layers, including the parenchyma cells and

the undifferentiated xylem cells of the vascular bundles

(Figure 5B,F,I). By contrast, no EgPG4 transcript was

detected or was only present in relatively lower amounts

in the adjacent pedicel and mesocarp tissues. At higher

magnification of the boundary region between the pedicel

and the AZ, the EgPG4 transcript clearly accumulates in

the AZ cells while it remains at very low or undetectable

amounts in the adjacent pedicel cells (Figure 5C,G,J). In

contrast, the control hybridizations with ribosomal RNA

(rRNA) sense and antisense probes revealed a more even

distribution of rRNA throughout the pedicel, AZ and

mesocarp tissues when compared to EgPG4 (Figure 5B

and D; Additional file 3). Furthermore, the sense strand

control with EgPG4 also had a less intense signal than the

antisense (Additional file 3). As a comparison, in situ

hybridization experiments were also performed with

EgPG10 and EgPG8, the former of which is shown by

qPCR analysis to increase to similar amounts in all three

tissues, while the later decreases during the ethylene treat-

ments (Figure 2E and F). For EgPG10, the results showed

an even distribution of transcript present in the three tis-

sues after ethylene treatment, while EgPG8 was not

detected (data not shown). Together, these results corrob-

orate the correlation between the spatial and temporal ex-

pression profile of the EgPG4 transcript in relation to

ethylene and cell separation observed by qPCR, and pro-

vides further evidence for an important function for this

transcript during fruit abscission.

Phylogenetic analysis of EgPG4 in relation to PGs with

known functions or expression profiles

To examine the relationship of EgPG4 with other plant

PGs, a phylogenetic comparison of its amino acid se-

quence with those predicted from DNA/RNA sequences
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from Arabidopsis and rice was performed. Firstly, EgPG4

groups within the PG clade A3 formed with members

from both rice and Arabidopsis previously defined [32]

(Additional file 4). Notably, EgPG4 does not group with

the PGs from Arabidopsis in clade A15 shown to func-

tion during floral organ abscission, silique or anther

dehiscence including At2g41850 (PGAZAT/ADPG2),

At3g07970 (QUARTET2), and At3g57510 (PGDZAT/

ADPG1) [31-33]. However, EgPG4 is grouped in the A3

clade with two other Arabidopsis PGs (At2g43880 and

At2g43890) that are expressed during floral organ ab-

scission [32].

To examine possible structure-function relationships

of the EgPG4 amino acid sequence with those of known

PGs from a variety of species, including those producing

fleshy fruits (apple, plum, peach, tomato, kiwi, grape, pa-

paya), and dry fruits (soybean, B. napus, Arabidopsis), a

phylogenetic analysis was performed with selected plant

PGs with expression associated with or shown to func-

tion during germination, root or pollen development,

fruit ripening, organ abscission, and anther and pod de-

hiscence [19-21,23,25-27,31,33-55]. Firstly, the recon-

structed tree and bootstrap values confirm earlier

analyses that PGs can be separated into three major

subclades, two that consist of PGs involved in fruit

ripening and abscission and one with PGs involved in

pollen development [18,19] (Figure 6). The presence of a

fourth clade containing soybean (GmPG6_DQ382356)

and grape (VvPG2_EU078975) PGs supports more re-

cent studies that indicate this gene family consists of

more than three subclades [36,56]. In addition, the boot-

strap analysis confirms a close phylogenetic relationship

between EgPG4 and two Arabidopsis PGs expressed dur-

ing floral organ abscission [32]. Notably, in the same

subclade there are also four abscission related tomato

PGs (TAPG1, TAPG2, TAPG4 and TAPG5) [20,21,38] in

addition to two PGs expressed during ripening and ab-

scission of melon (CmPG1 and CmPG2) [19], and PGs

expressed during ripening of papaya (CpPG) [37], pear

(PcPG3) [53,54] and peach (PpPRF5) [42]. An additional

Arabidopsis PG (At2g43860) that functions in cell separ-

ation between endosperm cells when the radicle emerges

during germination [31] was also found within this sub-

clade. The analysis also revealed that the Arabidopsis

PGs involved in abscission or dehiscence including

PGDZAT, PGAZAT, and QTR2, are grouped within a

distinct subclade with other PGs that function during

fruit ripening, floral organ abscission and pod

EgPG4 EgPG4 EgPG4 EgRibo

Figure 5 In situ localization of EgPG4 transcripts in the fruit base containing the AZ prior to cell separation. (A-C) Longitudinal sections

of the fruit base were hybridized with digoxigenin-labelled antisense RNA fragments of EgPG4 and (D) the 18S ribosome and expression is

observed as a blue colouring using bright field microscopy. Sections were made from fruit prior to ethylene treatment (A, E, H) and after 6 h of

ethylene treatments (B-D, F, G, I, J). (E-G) Sections were also observed using polarized light and (H-J) epifluorescence microscopy to distinguish

the AZ from the adjacent pedicel (P) and mesocarp (M) tissues.

Roongsattham et al. BMC Plant Biology 2012, 12:150 Page 8 of 15

http://www.biomedcentral.com/1471-2229/12/150



dehiscence [31,33,35]. Notably, no PG involved in ab-

scission of a fleshy fruit is found in this clade, only those

from species with dry fruit such as Arabidopsis, B. napus

and soybean.

Discussion
Sequence and expression analysis of EgPG4 suggests

functional conservation and divergences between

monocots and eudicots

PGs are thought to play a central role in the disassembly

of pectin in the middle lamella or primary cell wall dur-

ing cell separation and cell elongation [18]. In particular,

PGs have been extensively studied during fruit ripening,

organ abscission and pollen development, yet how diver-

gence has occurred between species in order to fulfil dif-

ferent roles in these various tissues is still not

completely understood. In particular, very little data is

available from monocot species to compare the ripening

and abscission processes with those of eudicots.

Our phylogenetic and bootstrap analyses confirmed

several previous phylogenetic studies that revealed PGs

involved in organ abscission and fruit ripening to be

found mainly in two distinct subclades, with a third sub-

clade containing only pollen related PGs [18,19,31,32]. A

fourth minor subclade that contained a PG from ripen-

ing grape skin was also observed as previously [36].

While the current phylogenetic analysis was done with

the complete GH28 domain, not including the prose-

quences characteristic of some PGs, the results support

a previous conclusion that the presence or lack of prose-

quences are not the basis for the divergence of these

sequences into distinct clades [18]. The first notable ob-

servation is that all the known tomato abscission PGs

group closely within a subclade that also contains the

two closely related Arabidopsis floral organ abscission

associated PGs (At2g43890 and At2g43880), in addition

to an Arabidopsis PG (At2g43860) implicated in radicle

emergence [31,32]. The presence of At2g43860, a PG

expressed during the separation of endosperm cells

Deytieux-Belleau  et al.,2008
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Tucker et al., 2007

Hadfield et al., 1998
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Murayama et al., 2006; Sekine et al., 2006 
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Kalaitzis et al., 1995, 1997; Hong and Tucker,1998

Kalaitzis et al.,1997; Hong and Tucker,1998
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Huang et al., 2009a, 2009b

Huang et al., 2009a, 2009b
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Wang et al., 2000
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Ogawa et al., 2009

Kim et al., 2006; González-Carranza et al., 2007; 

Ogawa et al., 2009

*

*
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*

Figure 6 Phylogenetic analysis of EgPG4 and selected plant PGs from clade A with known functions and/or expression profiles using

the neighbor-joining method based on multiple alignment of the sequences containing the GH28 domain. The endo-polygalacturonase

ErPeh1 from Erwinia carotovora was used as a root. Numbers on the branches are bootstrap values for 100 replicates. The black asterisks at

bootstrap values indicate branch points of the four PG subclades.
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when the radicle emerges during germination, suggests

structural relationships between PGs with functions be-

yond fruit ripening and organ abscission. It is interesting

that EgPG4 groups closest with these Arabidopsis abscis-

sion PGs, which suggests functional conservation, and

that these sequences are derived from a common ances-

tral PG that existed prior to the separation of monocots

and eudicots. A second notable observation is that the

tomato fruit PG (TFPG) is more closely associated with

the abscission and dry fruit dehiscence PGs than with

the tomato PGs involved in organ abscission. This con-

trasts with sequences from melon that are in the same

subclade as the tomato abscission PGs, and have expres-

sion profiles associated with both fruit ripening and ab-

scission [19]. Similarly, the EgPG4 transcript does not

only increase in the AZ in relation to abscission, but also

is highly expressed in the portion of the ripening meso-

carp. Together, it appears that some PGs may function

both in ripening fruit tissues, in addition to during cell

separation in the AZ that leads to fruit organ abscission

in monocots and eudicots.

The sequence and expression of EgPG4 suggest

functional divergence between dry and fleshy fruit

Another notable observation is that PGs related to fleshy

fruit abscission are not found within the clade contain-

ing the well-characterized abscission and/or dehiscent

related PGs including QRT2, PGAZAT, PGDZAT,

BnRDPG1 and PGAZBRAN [33,34]. By contrast, PGs

involved in fleshy fruit ripening, such as the tomato

(TFPG), grape (VvPG1), apple (MdPG1), kiwi (CkPGA3)

and pear (PcPG1) are also found within this clade

[23,25-27,36,43,44,48,50,51]. In addition, only the melon

PG (CmPG3) that has an expression profile related to

ripening is found in the same subclade as the dry fruit

dehiscence and abscission PGs, while the other two

melon PGs (CmPG1 and CmPG2) associated with organ

abscission and ripening are in the same subclade as

EgPG4 [19]. While there is no current data that suggests

that the fleshy fruit PGs within this subclade are

involved in fruit or other organ abscission, it is possible

their involvement in cell separation during organ abscis-

sion has not been sufficiently investigated. Indeed, the

analysis and results discussed here are based on the two

best-characterized organ abscission model systems avail-

able, namely tomato and Arabidopsis, and it should be

emphasised that many gaps exist in our current know-

ledge about the functional diversity of plant PGs. Never-

theless, the results suggest that dry fruit species may

have PGs from at least two divergent subclades involved

in cell separation for dehiscence, while fleshy fruit may

have PGs specialized in ripening or abscission, or, that

may function in both contexts. Overall, the results sug-

gest that divergence may have occurred between PGs

involved in dry fruit dehiscence and fleshy fruit abscis-

sion, an area that merits further investigation.

The high expression and induction of EgPG4 by ethylene

suggests functions during both fruit ripening and

abscission

The most notable result of this study is the high accu-

mulation of the EgPG4 transcript in the base of the fruit

containing the AZ prior to cell separation. Importantly,

EgPG4 transcript accumulates prior to the occurrence of

cell separation, and also accumulates less and in correl-

ation to the timing of the slower separation in fruit at

earlier stages of development. However, the EgPG4 tran-

script is also highly expressed in the mesocarp tissue

near the apex of the fruit that suggests a role in the

ripening of this tissue. Our data also indicate that the

regulation of EgPG4 is closely associated with the cap-

acity for cells to respond to ethylene. This in turn is

related to the developmental stage of ripening, and may

be an important factor that controls the spatial and tem-

poral functionality of EgPG4 during mesocarp ripening

and cell separation in the AZ. Indeed, the mesocarp pro-

duces an increasing amount of ethylene during ripening,

and production progresses from the apex of the fruit to

the fruit base, where it may act as the signal to initiate

the separation events within the AZ [9,57]. Studies on

fruit ripening and floral pedicel abscission of tomato

provide examples of how individual members of this

gene family may have distinct functions in adjacent tis-

sues undergoing cell separation processes in a fleshy

fruit species, and highlight the central importance of tis-

sue specific transcriptional regulation of PGs during

these developmental processes. Indeed, the tomato fruit

TFPG is the only PG gene expressed in the ripening fruit

tissues, its transcription is positively regulated by ethyl-

ene, and the encoded protein is responsible for the PG

activity required for pectin depolymerisation that occurs

during ripening [23-27]. Notably, the TFPG mRNA

accounts for up to 2.3% of the total RNA in ripening to-

mato fruit, and down regulation of TFPG has no effect

on the timing or rate of leaf abscission, indicating a spe-

cific function of this enzyme during fruit ripening but

not organ abscission [22,58]. In contrast, in the pedicel

where the AZ is located at the base of the tomato floral

organs, there are at least four abscission-related PG

genes (TAPG1, TAPG2, TAPG4 and TAPG5) expressed,

three of which are induced by ethylene and correlate

well with the cell separation that occurs in the flower

and leaf AZs [20,21,38]. Furthermore, silencing of the

tomato abscission-related PGs using a TAPG1 fragment,

delayed abscission and increased break strength of the

leaf petiole AZs in explants treated with ethylene. These

studies suggest that a combination of tissue specific

transcriptional regulation and/or localized cellular
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differences in response to ethylene are important factors

that determine the spatial and temporal specificities

related to their functional roles during fruit ripening and

organ abscission.

Oil palm fruit shedding has some similarities but also

notable differences from that seen in tomato. Firstly, the

timing of separation induced by ethylene in oil palm is

comparable to that in tomato. In the presence of ethyl-

ene, cell separation begins to occur by 9 h, while 80–

100% of ripe fruit are shed by 12 h, whereas in tomato,

flower shedding begins at 6 h and is complete by 12 h

[59]. This result is striking given the surface area of the

primary AZ of ripe oil palm, up to 10 mm (Figure 3) is

approximately 20 times larger than the tomato pedicel

AZ, up to 0.55 mm [59]. Secondly, we observe a greater

diversity of PGs expressed in the oil palm fruit tissues

than that of tomato during ripening or abscission. Not-

ably, of the 14 transcripts expressed in the base of the

fruit containing the AZ, five are regulated positively, and

four others negatively in response to ethylene. In

addition, five PG mRNAs displayed no significant

change in abundance during the ethylene treatments. A

previous study with banana fruit revealed that at least

four PG genes are expressed during ripening [60]. How-

ever, none of the PGs identified in that study contained

the full-length GH28 domain and thus we were not able

to compare their phylogenetic relationship with the oil

palm PGs and other PGs presented in Figure 6. The ex-

pression of the banana PG genes was also analyzed dur-

ing finger drop, a process that also involves pectin

disassembly [60,61]. The results indicated that the four

banana PGs were also expressed in the finger drop zone

where cell separation takes place, while MaPG4 was the

most highly expressed with a profile of accumulation

correlated to the decrease in the pedicel rupture force

observed. Together with the present results, the

mechanisms of pectin disassembly during banana and

oil palm fruit ripening may involve a larger number of

PGs than with eudicot species examined thus far. The

current study allows a more complete view of PG ex-

pression in relation to ethylene in a monocot fruit, given

that the earlier studies with banana included fewer and

shorter PG sequences [60,61]. In addition, whereas both

are monocots, the banana is a parthenocarpic berry-type

fruit that accumulates large amounts of starch, while the

oil palm is a drupe with the high oil content, which may

also dictate different ripening regulatory mechanisms be-

tween these two species. Future work will require new

molecular resources for more complete comparative

studies of fruit ripening and abscission in these two di-

verse monocots, in addition to the well-characterized

eudicot tomato model.

In comparison to tomato, the diversity and complexity

of PG expression in the oil palm fruit tissues is far

greater than that observed in the AZs or during ripen-

ing. In the oil palm, all 14 EgPG transcripts are detected

to some extent in the ripening mesocarp tissue, in con-

trast to the single TFPG expressed during tomato fruit

ripening. Notably, none of the EgPGs mRNAs identified

appears to be completely tissue specific, as observed

with the tomato PGs involved in abscission and ripening.

However, the data presented here suggest that differ-

ences in their tissue and developmental stage dependent

response to ethylene may be important for spatial and

temporal control. The most notable example is that of

EgPG4, which is not only the most abundant PG tran-

script in the mesocarp of untreated ripe fruit, but also

undergoes the most dramatic increase in abundance in

the base of the fruit containing the AZ in response to

ethylene. The high abundance of EgPG4 in the mesocarp

and the massive increase in response to ethylene is simi-

lar to PG expression in tomato; however, EgPG4 is highly

expressed in both the ripening mesocarp and the AZ

after ethylene treatment prior to fruit shedding. Further-

more, our in situ hybridization experiments indicate the

increase in EgPG4 transcript abundance in the base of

the fruit occurs preferentially in the AZ compared with

the adjacent mesocarp and pedicel tissues. Importantly,

a delayed and less significant increase in EgPG4 tran-

script is also observed in the AZ of untreated fruit, as

well as in 30 and 120 DAP fruit treated with ethylene,

which corresponds to the delay in shedding observed at

these stages of ripening.

Conclusions
Together, these results provide evidence that EgPG4 par-

ticipates in cell wall pectin modifications during both

mesocarp ripening and in the AZ cells during fruit shed-

ding, in close relation to a developmentally regulated cell

sensitivity or competence to respond to ethylene. Future

work will be aimed at identifying the regulatory factors

that control the ripening and abscission related expres-

sion of EgPG4, to provide a basis to compare these pro-

cesses not only between monocots and eudicots, but in

particular between fleshy and dry fruit species. Finally,

the identification of genes involved in oil palm fruit

shedding will also be helpful for oil palm improvement

selection strategies.

Methods
Plant material, ethylene treatment and RNA extraction

Oil palm (Elaeis guineensis Jacq) fruits were harvested at

Krabi Golden Tenera plantation, from a tenera clone

(clone C) produced in Thailand. For each stage of devel-

opment studied, independent bunches were collected

from distinct individuals of the same genotype. Spikelets

were then collected in the centre of each bunch and sets

of 6 spikelets were randomly sampled from them and
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put in individual hermetically sealed 50 l volume boxes.

Spikelets with fruits at 150 days after pollination (DAP)

were treated with different concentrations of ethylene

(0, 0.001, 0.01, 0.1, 1, 10 μl l-1). In absence of ethylene

treatment, ethylene absorber (ETHYL-GONE, http://

www.biosafer.com/ethyl-gone.php) was added in the

box. All the boxes were kept at ambient temperature

(approximately 30°C), and after 24 h of treatment the

number of fruit separating from the spikelets were

counted. Using the concentration of ethylene (10 μl l-1)

that induced and synchronized the highest amount of

fruit shedding, a time course analysis was then con-

ducted that used the same process with fruit from 30,

120 and 180 DAP. Spikelets were treated with or without

ethylene, and every 3 h, treated or untreated spikelets

were collected and shedding was quantified for each

stage of development. For each time point, the meso-

carp, pedicel and the base of the fruit containing the pri-

mary and adjacent AZs were isolated and frozen

immediately in liquid nitrogen. Samples from two inde-

pendent experiments were collected immediately after

bunches were harvested.

Total RNA from mesocarp, pedicel and the base of the

fruit enriched in AZs, treated or not with ethylene was

extracted as previously described [62]. Total RNA (1 μg)

was used to synthesize cDNA using the first-strand

cDNA synthesis kit (ImProm-II™ Reverse Transcription

System, Promega).

Identification of oil palm non-redundant PG nucleotide

sequences from fruit

To identify oil palm PG cDNA sequences a number of

molecular resources were used. First, the tblastn program

was used to search available databases that contain Elaeis

guineensis sequences, including NCBI (http://www.ncbi.

nlm.nih.gov), local 454 pyrosequencing derived oil palm

mesocarp contigs [57] and contigs derived from tissues

enriched in the AZ (Jantasuriyarat et al., unpublished),

for sequences with high similarity to PGs from Arabidop-

sis and rice previously described [32]. Additional

sequences were also kindly contributed by Dr Arondel

[63]. A complementary approach utilized degenerate pri-

mers [34] to amplify cDNAs from AZ tissues treated with

or without ethylene at different developmental stages

and from oil palm genomic DNA. Primers from the oil

palm PEST643 (accession number N° AY291341) were

designed in the most conserved regions of PGs and also

used to amplify PG cDNAs from fruit tissues. For

sequences lacking the 3’ regions, RACE (Clontech) amp-

lification was performed and from sequences obtained,

sequence specific primer pairs were designed and used to

amplify non-redundant PGs from the oil palm fruit tis-

sues. A total of 35 putative non-redundant PG sequences

were identified from these complementary approaches

and were compared to confirm similarity to plant PGs, in

particular the presence of a partial or complete glycoside

hydrolase 28 (GH28) domain that covers approximately

75% of each PG coding sequence [35]. The accession

numbers for EgPG1 and EgPG4 are JX233615 and

JX233616 respectively, while other PG sequences are

from previous datasets [57,63].

Quantitative Real-Time RT-PCR

qPCR was conducted on a LightCycler 480 (Roche) in

96 well plates in a volume of 10 μl containing 2 μl of

cDNA diluted 1/100, 1.5 μl of primer forward (2 μM),

1.5 μl of reverse primer (2 μM) and 5 μl SYBRW Green

Mastermix (Roche). Additional file 5 lists the primers

used. PCR was initiated by denaturation at 95°C for

10 min, followed by 45 cycles of 95°C for 15 s, 60°C for

15 s, and a final extension at 70°C for 1 min. All expres-

sion was normalized to the EgEfα1 (accession number:

AY550990) mRNA from Elaeis guineensis, and relative

mRNA abundance was determined with the formula as

described previously [64]. No change of EgEfα1 tran-

script accumulation was found in the fruit tissues treated

or not treated with ethylene. Control using RNA matri-

ces were also conducted to validate the absence of DNA

in each sample. Each time point was replicated

three times from 2 independent biological samples,

and all amplified cDNA fragments were sequenced by

Beckman-Cogenics to check the specificity of the ampli-

fied products. Gene abundance is expressed as mean

and standard error bars are calculated from the technical

replicates of one of the biological repetitions.

Phylogenetic analysis

Phylogenetic trees were constructed based on similarity

searches performed with BLASTp programs with default

parameters in protein sequence databases provided by

the NCBI server (http://www.ncbi.nlm.nih.gov). Phylo-

genetic analyses were performed on the Phylogeny.fr

platform (http://www.phylogeny.fr) [65]. Amino acid

sequences from the GH28 domain were aligned with

ClustalW (v2.0.3) [66]. After alignment, ambiguous

regions (i.e. containing gaps and/or poorly aligned) were

removed with Gblocks (v0.91b). The phylogenetic tree

was constructed using the neighbour joining method

implemented in Neighbor from the PHYLIP package

(v3.66) [67]. Distances were calculated using ProtDist.

The Jones-Taylor-Thornton substitution model was

selected for the analysis [68]. The robustness of the

nodes was assessed by bootstrap proportion analysis

computed from 100 replicates [69]. Graphical rep-

resentation and edition of the phylogenetic tree were

performed with TreeDyn (v198.3) and Inkskape

respectively.
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RNA in situ hybridization

To obtain DNA templates for the RNA probe synthesis,

PCR amplifications were performed with gene-specific

antisense primers tailed with a T7 RNA polymerase bind-

ing site. PCRs were performed with the EgPG4qS1–

EgPG4qAS1T7 and EgPGq4S1T7–EgPG4qAS1, and the

EgRiboS-EgRiboAST7 and EgRiboST7–EgRiboAS primer

pairs for EgPG4, and EgRibo-specific probes, respectively

(Additional file 6). The resulting DNA fragments were

used directly as templates to synthesize antisense probes,

with the incorporation of UTP–digoxigenin (Roche) as

the label using the MAXIscriptW T7 Kit (Ambion). Each

amplification product was sequenced to check the specifi-

city of the products amplified. In situ hybridization experi-

ments were carried out as described previously [70] with

some modifications. The fruit bases from untreated fruits

and fruits treated with 10 μl l-1 of ethylene for 6 h were

fixed overnight in the dark at 4°C in fixation buffer (4%

paraformaldehyde, 0.1 M phosphate buffer pH 7). After

16h, they were washed two times in 0.1 M phosphate buf-

fer with 2% glycine, then two times in 0.1 M phosphate

buffer before dehydration through an increasing series of

ethanol and butanol concentrations. After 15 days in buta-

nol to soften the tissues, the samples were embedded in

Paraplast plus (Paraplast X-Tra, Oxford Labware) and sec-

tioned to 12 μm with a microtome. Tissue sections were

deparaffinised with Safesol (LaboNord, France), rehy-

drated through an ethanol series of decreasing concentra-

tions, and then pre-treated with proteinase K (100 U μl-1,

Roche) in Tris–HCl (100 mM, pH 7.5), EDTA (50 mM) at

37°C for 35 min. Digestion was stopped by washing twice

for 5 min each with TRIS–HCL (20 mM, pH 7.5, CaCl2
(2mM) and MgCl2 (50 mM), then phosphate-buffered sa-

line (0.1 M PBS) with 0.2% glycine for 2 min, and then

twice with 0.1 M PBS. After ethanol baths, hybridization

was performed at 45°C overnight with 200 ng of

the digoxigenin-labelled RNA probe in 100 μl of hy-

bridization solution (50 μl formamide, 10 μl 20X SSC, 1 μl

Denhardt 100X, 20 μl dextran sulphate 50%, 1 μl tRNA at

100 mg ml-1). After hybridization, slides were washed in

2X SSC at 25°C for 5 min, in 2X SSC at 50°C for 45 min

and in 1X NTE (Tris–HCl 10 mM, NaCl 0.5 M, EDTA 1

mM, pH 7.5) at 25°C then 37°C for 5 min each. An RNase

A digestion (20 μg ml-1) was carried out for 30 min at

37°C and stopped by washing with 1X NTE at 37°C. Final

washes were conducted twice in 1X SSC for 30 min each

at 55°C. Detection was performed using the Vector Blue

Alkaline Phosphatase Substrate Kit III (Vector Laborator-

ies). Control without probe was conducted to valid the ab-

sence of endogenous alkaline phosphate activity. Samples

were incubated in blocking reagent [Roche; 10% (w/v) in

PBS] for 1 h and afterwards for 45 min at 37°C containing

antidigoxigenin alkaline phosphatase-conjugated Fab frag-

ment antibody (Roche) diluted at 1:500 in blocking

reagent. After three washes for 10 min in 0.1 M PBS, tis-

sues were equilibrated in detection buffer (100 mM Tris–

HCl pH 8.2) then several batches of 3 h at 37°C with Blue

vector. Finally the detection was amplified by ethanol

vapour for 20 min and samples were mounted on slides

with Mowiol and observed with a bright-field microscope

(Leica DM6000) using the 40X/0.75 numeric aperture. To

visualize the abscission zone, tissue sections were also

observed under polarized light and epifluorescence with a

TXR filter. Photographs were taken with a Retiga 2000R

camera (Qimaging). In situ hybridization and microscopy

analysis were conducted at the “Plate-Forme d’Histocyto-

logie et Imagerie Cellulaire Végétale” (PHIV platform;

http://phiv.cirad.fr/).

Additional files

Additional file 1: List of the 28 sequences that contain either a

partial or complete GH28 PG signature domain.

Additional file 2: Standard errors for Figure 3. Percentages were

calculated from gene expression data derived from qPCR analysis that

included individual values (3 technical repetitions) compared to the

average expression of the reference gene (EgEF1α, elongation factor 1 α),

together with the standard deviation (SD) for the following three tissue

regions of the fruit: AZ, Abscission Zone; M, Mesocarp; P, Pedicel.

Additional file 3: Control experiments for in situ hybridization

studies. Longitudinal sections of the fruit base were hybridized with

digoxigenin-labelled RNA fragments of EgPG4 antisense (A) and sense (B),

and the 18S ribosome antisense (C) and sense (D) probes after 6h

ethylene treatment.

Additional file 4: Phylogenetic analysis of EgPG4, EgPG8 and

EgPG10 with sequences from Arabidopsis and rice.

Additional file 5: List of primers used for expression analysis of oil

palm PG genes by qPCR.

Additional file 6: List of primers used for the synthesis of in situ

hybridation probes.
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