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Abstract— A simple approach for correcting the effect of 

vegetation in the estimation of the surface soil moisture (wS) from 

L-band passive microwave observations is presented in this study. 

The approach is based on semi-empirical relationships between 

soil moisture and the polarized reflectance including the effect of 

the vegetation optical depth which is parameterized here as a 

function of the Normalized Vegetation Difference Index (NDVI). 

In a first step, the method was tested against in-situ 

measurements collected over a grass site from years 2004 to 2007 

(SMOSREX experiment) Two polarizations (horizontal/vertical) 

and five incidence angles (20º, 30º, 40º, 50º and 60º) were 

considered in the analysis. The best wS estimations were obtained 

when using both polarizations at the angle of 40º. The average 

accuracy in the soil moisture retrievals was found to be about 

0.06 m3/m3, improving the estimations by about 0.02 m3/m3 in 

comparison with the case when the vegetation effect is not 

considered. In a second step, the proposed method was applied to 

the microwave observations acquired from the Soil Moisture 

Ocean Satellite (SMOS) and optical observations acquired from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) 

over Australia for 2010 in order to evaluate its applicability to 

spaceborne remote sensing observations. The results showed the 

potential interest of using information on vegetation (through a 

vegetation index such as NDVI), in the semi-empirical regressions 

which were calibrated over the Australian site. 

 
Index Terms—Soil moisture, L-band, NDVI, surface 

temperature. 

I. INTRODUCTION 

oil moisture (SM) plays a key role in the hydrological 

cycle and land-atmosphere interactions. Several studies 

documented the importance of soil moisture in a wide range of 

scientific areas, for instance,climate simulations and weather 

forecast [1-6], crop growth simulation models [7-8], rainfall-

runoff transformation models [9], soil evaporation and plant 

transpiration [10-12], among others. 
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Despite the multidisciplinary importance of surface soil 

moisture, reliable regional and regular determination of this 

variable is very difficult through conventional point 

measurements [13]. Thus, remote sensing techniques appear as 

a potential tool to assess soil moisture at different scales. In 

this context, previous research has shown that passive 

microwave measurements are the most relevant remote sensing 

technique to monitor soil moisture over land surface at global 

scale [14-18]. In particular, microwave observations at L-band 

frequencies (1.4 GHz), are very interesting as they have a high 

sensitivity to soil moisture and a low sensitivity to the cloud 

cover and to the atmospheric effects. 

Recently, the Soil Moisture and Ocean Salinity (SMOS) 

mission has been launched. The baseline SMOS payload is an 

L-band (1.4 GHz) two dimensional (2D) interferometric 

radiometer that aims at providing global maps of soil moisture 

with an accuracy better than 4 % (in m
3
/m

3
) every 3 days and 

with a resolution better than 50 km [19]. In the near future, the 

Soil Moisture Active Passive (SMAP) mission will be the 

second spacecraft platform estimating the surface soil moisture 

at L-band [20]. These L-band passive microwave technologies 

generate an important challenge in developing efficient soil 

moisture retrieval algorithms. The main difficulty in the 

estimation of soil moisture by using L-band radiometry arises 

from the presence of the overlying vegetation: the vegetation 

layer attenuates the soil emission and adds its own emission to 

the land surface emission. Nevertheless, several authors have 

developed simple approaches to account for the vegetation 

effects [16, 21]. These approaches are generally based on the 

so-called "tau-omega" model, which is based on the optical 

depth (), accounting for vegetation attenuation effects, and the 

single-scattering albedo (), accounting for vegetation 

scattering effects. The L-band Microwave Emission of the 

Biosphere (L-MEB) model used in the SMOS level-2 

algorithms [22-23] is also based on the "tau-omega" model. 

As an alternative to the use of retrieval algorithms based on 

forward model inversion [18], vegetation effects at L-band 

have been taken into account in several works using semi-

empirical regressions based on bi-angular [24] or bi-

polarization observations [25-27]. However, these approaches 

were based solely on microwave observations and did not 

attempt to use additional information on the vegetation 

development, as provided by optical indexes in the optical 

domain, such as the Normalized Difference Vegetation Index 

(NDVI) or the Enhanced Vegetation Index (EVI) [28]. 
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Therefore, the aim of this paper is to evaluate a simple 

regression method to estimate the surface soil moisture using 

combined microwave and optical data accounting for the 

vegetation effects. The method is based on the semi-empirical 

regressions derived from [24], but including the vegetation 

effects through the use of the Normalized Difference 

Vegetation Index (NDVI). In-situ measurements obtained 

during the long term SMOSREX experiment [29] were used to 

evaluate the proposed regression approach. An application of 

the method to spaceborne remote sensing observations is also 

presented using data acquired from SMOS and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensors. 

This paper is structured as follows: Section 2 presents the 

material and describes the proposed method. Section 3 

presents the calibration and validation strategy. Section 4 

shows the results obtained in the calibration and validation 

study over the SMOREX site and also a simple application to 

combined SMOS/MODIS observations over eastern Australia. 

Finally, section 5 provides a brief discussion and the 

conclusion of this study. 

II. DATA 

 

A. In situ data: The SMOSREX experimental site 

 

In-situ measurements of soil moisture, surface temperature, 

radiometric passive microwave temperature and visible/near 

infrared reflectance acquired in the framework of the Surface 

Monitoring of the Soil Reservoir Experiment (SMOSREX) 

field campaign [29] were used in this study. SMOSREX is a 

part of the Interdisciplinary Field Experiment on Radiometry 

(PIRRENE) program and is located at the National Office of 

Aerospace Study and Research (ONERA) test site near the 

town of Mauzac in France (43°23'8.74"N; 1°17'32.63"E; 188 

m. a. s. l.). SMOSREX integrates a number of studies in the 

field of passive microwaves at L-band, from the development 

of emission models at L-band to the assimilation of L-band 

data to estimate soil moisture in the root zone. The experiment 

started in 2001 but is in full operation since January 2003. The 

current study is based on the data acquired between 1
st
 January 

2004 to 31
st
 December 2007. These years are representative of 

large variety in terms of meteorological conditions. In 

particular, precipitations ranged from 474mm in 2005 to 

766mm in 2004 (values for 2006 and 2007 are 624 mm and 

589 mm, respectively). 

L-band radiometric observations are obtained by the LEWIS 

radiometer (L-band radiometer for Estimating Water in Soils), 

with an accuracy of 0.2 K and a field of view of 13.5º at 3 dB 

[30]. LEWIS is installed at the top of a 13.7 m vertical 

structure over a fallow were natural grasses grows. An 

automatic scanning is made at five incidence angles (20, 30, 

40, 50, and 60 degrees) over two adjacent areas: a fallow and a 

bare soil field, eight times per day. In routine mode, LEWIS 

monitors the brightness temperature of the fallow field at an 

incidence angle of 40°. Only observations made over the 

fallow area will be considered in this study. 

Soil moisture and temperature profiles are automatically 

measured with a 30-min time step by, respectively, impedance 

sensors (ML2 Theta-probes1) and thermistor probes installed 

at several soil depths. In this study, data measured at the first 

top soil layers (0-6 cm for soil moisture and 1 cm for surface 

temperature) were used. A detailed description of soil moisture 

and temperature profiles measurements can be found in [29]. 

As an illustration of these measurements, the LEWIS 

brightness temperature, soil temperature and soil moisture data 

measured during the study period (2004-2007) over the 

SMOSREX site are presented in Figure 1. 

 

 

 

 
Fig. 1. Time series between 2004 and 2007 measured over the SMOSREX 

site, (a) brightness temperature at 20 and 40º vertical and horizontal 

polarization which are represented by black, red, green and blue respectively, 

(b) volumetric soil moisture (m3/m3) between 0 – 5 cm depth and (c) surface 

temperature (K) at 0 - 1 cm depth. 

 

Vegetation indices (NDVI) were derived from red and near-

infrared reflectance measurements carried out at the incidence 

angle of 40° using two CIMEL optical radiometers from July 

2003 to December 2007. More details about the reflectance 

measurements can be obtained in [31]. Figure 2 presents the 

NDVI values measured over the SMOSREX fallow site. Over 

the year, two clear vegetation growth periods can be generally 

seen in spring and at the end of summer. 
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Fig. 2. Daily NDVI values computed from the optical radiometers over the 

fallow of the SMOSREX site from 2004 to 2007 

 

B. Australian data set 

 

The proposed algorithm was evaluated over eastern 

Australia from optical and microwave data acquired, 

respectively, by MODIS and SMOS in 2010. Passive remote 

sensing data are provided by the SMOS Level-2 products. 

These products include the passive microwave brightness 

temperatures available at both vertical and horizontal 

polarizations at 42.5º incidence angle. The temperature values 

are arranged in a global matrix identified by a single unit of 

the Discrete Global Grid (DGG). Additionally, the level-2 

products contain information on the retrieved soil moisture and 

optical depth, surface temperature, etc, and quality flags [23]. 

Optical information from the MODIS sensor was also used. 

This information concerns the NDVI products available in the 

MOD13A land product, at a 0.05º×0.05º global spatial 

resolution available and from 16-day composite time series 

[32]. The studied time period covers September to December 

2010. 

Global soil moisture data extracted from the ERA-Interim 

(ERA-int) was also used. The ERA-int was developed by the 

European Centre for Medium-Range Weather Forecasts 

(ECMWF) and presents several meteorological and climate 

information from 1988 to present at 1.5º x 1.5º latitude-

longitude global spatial resolution [33]. The daily averaged 

volumetric soil moisture in the top soil layer (~ 0-7cm) was 

used in this study between September to December 2010 over 

eastern Australia. 

III. ALGORITHM DESCRIPTION  

 

A. Theoretical basis: the radiative transfer equations 

 

The development of the regression equations is based on the 

tau-omega model applied to vegetation covers [14]. The p-

polarized brightness temperature Tb(,p) was simply written as 

a function of the single scattering albedo (,p), the optical 

depth (,p), the soil reflectivity S(,p), and the soil and 

vegetation effective temperatures (
E

S
T and 

E

V
T , respectively): 

 

2

( , ) (1 )(1 )(1 )
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where =(,p) is the p-polarized transmissivity of the 

vegetation layer, which can be expressed as a function of the 

optical thickness (,p), and the incidence angle . 
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and 
SK Y

Tb



 is the downwards atmospheric and galactic 

brightness temperature. To simplify (1) without introducing 

significant errors in the result [16], it was assumed that the 

effective soil and vegetation temperatures were equal 

(
E E

S V C
T T T effective surface temperature   ). 

Additionally, the upwards atmospheric emission can be 

neglected for ground-based measurements at L-band. The 

downwards brightness temperature 
SK Y

TB



 is also very small 

after reflection on the ground and the attenuation through the 

vegetation [34] and will be neglected in this study. 

 

B.  Wigneron’s statistical relationships 

 

Assuming that scattering effects can be neglected, which is 

generally a good approximation at L-band [35],  can be set 

equal to zero ( =0) and the - model can be written as: 

 

       2
, 1 , ,

C
Tb p T s p p       (3) 

 

The measured surface emissivity e(,p) defined as 

e(,p)=Tb(,p)/Tc can be written as 

 

      
2

, 1 , ,
S

e p p p       (4) 

 

Denoting the measured surface reflectivity as (,p)=1- e(,p), 

equation (4) can be rewritten as 

 

    
2

, ( , ) ,
S

p p p       (5) 

 

Using equation (2) and taking the logarithm function of both 

terms, equation (5) can be rewritten as 

 

 

      

    

cos log , 2 ,

cos log ,

S
p p

p

   

 

   

 

 

(6) 

Since soil reflectivity S(,p) is often considered as close to a 

linear function of surface soil moisture (wS) and it is rather low 

for very dry soils [15], we assumed that soil reflectivity is 

proportional to surface soil moisture according to 



Submitted to IEEE Transactions on Geoscience and Remote Sensing 

 

4 

 

    ,
S S

p Ap w    (7) 

 

where Ap() is a coefficient depending on the sensor 

configuration. The value Ap() is site dependent and implicitly 

accounts for all the soil characteristics that determine soil 

emission: mainly soil texture and structure, surface roughness, 

etc. Many studies in the field of passive microwave remote 

sensing are based on soil moisture relationships derived from 

single configuration measurements of the surface emission 

[36-38]. These latter approaches are appropriate in areas with 

a low contribution from the vegetation to the surface emission 

and low roughness effects [25]. It is important to note that the 

linear approximation in (7) is a crude approximation of the 

reflectivity curve, which is more typically S-shaped and does 

not go through the origin, especially at H polarization [24]. 

 

Using (7), equation (6) can be rewritten as: 

 

          

    

cos log 2 , cos log ,

cos log ,

S

p

w p p

A p

    

 

     



 (8) 

 

C. The new combined approach 

 

Reordering Equation (8), soil moisture can be expressed as a 

function of the microwaves reflectivities and the optical depth. 

 

       log log , ,
S

w a p b p c         (9) 

 

where a, b and c are regression coefficients. Optical depth 

can be generally assumed as independent of incidence angle 

like ( , ) ( )p p   as described in [24]. Additionally, 

several studies showed that the optical depth can often be 

related to a vegetation indicator, for instance, the leaf area 

index (LAI), the Normalized Difference Vegetation Index 

(NDVI), the Enhanced Vegetation Index (EVI) [22, 39-40]. 

For instance, at global scale, [40] has demonstrated that the 

vegetation optical depth is statistically related with the 

aforementioned optical vegetation indexes in several land 

cover types.  [39] computed relationships between optical 

depth, the vegetation water content (VWC) and vegetation 

indices derived from Landsat. Over the SMOSREX site, [26] 

computed a statistical relationship between optical depth and 

LAI using 2 years of measurements. Linear relationships 

between optical depth, LAI and the vegetation water content 

(VWC) where also obtained over several crop types [27] and 

considered in the L-MEB model for the SMOS level-2 

processor level [23]. Therefore, based on these studies, we 

assumed here that the optical depth can be simply 

parameterized as a function of a vegetation index (NDVI, EVI, 

LAI, etc.). In this study we selected the NDVI, which is a very 

common optical vegetation index and which could be easily 

derived from the SMOSREX reflectance data set and the 

MODIS products. Thus, we considered here that: 

 

 
1

( ) ( )p f NDVI b NDVI     (10) 

 

where b1 is a constant which accounts mainly for the effect of 

the vegetation structure. Using equations (10) and (8), soil 

moisture can be expressed as a function of the microwave 

reflectivity and the NDVI as: 

 

     1 1 1
log log ,

S
w a p b NDVI c       (11) 

 

where a1 and c1 are regression coefficients.  

 

  The above equation was initially developed for one 

polarization and one incidence angle. However, it is valid for 

both Horizontal and Vertical polarizations and for all 

incidence angles. So, equations obtained at different 

polarizations and incidence angles can be summed. It is likely 

that the statistical regression will be more "efficient" if several 

angles and both polarizations are accounted for in the retrieval 

approach. For instance, considering eq. 11 at two different 

angles (denoted by indexes '1' and '2') and both H and V 

polarizations, and replacing the reflectivity by the ratio 

between the brightness and surface temperature ( =1-Tb/Tc), 

the retrieved soil moisture can be expressed as: 

  

1, 2 ,

1, 2 ,

log( ) log 1 log 1

log 1 log 1

V V

s

H H

Tb Tb
w a b c

Tc Tc

Tb Tb
d e f N D VI

Tc Tc

 

 

      
           

      

      
          

      

 

(12) 

 

Where a, b, c, d, e and f are regression coefficients for the 

equation. Several preliminary tests (not shown in this study) 

were made and it was found that retrieval results could not be 

improved significantly if more than two angles were used. 

These tests also showed that best retrieval results were 

obtained for a single angle configuration (at the incidence 

angle of  40º) and for a bi-angle configuration combining 

observations made at the incidence angles of 20 and 40 

degrees; these two configurations including bi-polarization 

observations. Only these two angles will be considered in the 

following 

IV. DATA PROCESSING AND CALIBRATION/VALIDATION 

STRATEGY  

 

A. SMOSREX in-situ data 

 

In order to calibrate the regression coefficients used in eq. 

12, the SMOSREX data were processed in order filter and 

reorder the whole dataset. Only observations measured over 

the fallow were used here, as the focus of this study was on the 

correction of vegetation effects. Anomalous data or outliers 

were filtered out. Also, to avoid pondings effects, days which 

present rainfall greater than 0 and the day after were taken off 
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from the data set. Another filter based on the polarization ratio 

index defined as PR=(Tbv-Tbh)/(Tbv+Tbh), where Tbv and 

Tbh are the vertical and horizontal brightness temperature 

respectively, was applied to the data. This index allows the 

identification of soil frozen effects [29], and negative PR 

values indicate an inversion in magnitude of the Tbh over Tbv, 

which is an anomalous pattern. Therefore, days with negative 

or very low PR (i.e. lower than the threshold equal to 0.02) as 

used by [26] were also filtered out. 

 Based on the filtered data, a statistical calibration process 

was carried out to obtain the best statistical correlations 

between soil moisture, brightness temperature (at 40 and 20 & 

40 degrees) and NDVI. These results were compared to the 

same statistical results obtained when NDVI was set equal to 

zero. In this way, the potential improvements obtained when 

NDVI is included in the retrieval process could be evaluated. 

From the four years of available data (2004 to 2007), one 

year was used for the calibration of the semi-empirical 

regressions, and the other three years were used to evaluate its 

validation. Different combinations of years for the 

calibration/validation processes were used to better assess the 

robustness of the proposed retrieval approach. The retrieval 

results were evaluated using several statistical indexes: the 

coefficient of determination (R
2
), as an estimate of the 

statistical fit (p<0.05*) and the Root Mean Square Error 

(RMSE) which was expressed as 
2 2

bias   where bias 

and  are the average and the standard deviation of the 

difference between the estimated and the observed values 

respectively.  

 

 

B. SMOS and MODIS remotely sensed data 

 

     As an illustration of the potential application of the 

regression equations on actual spaceborne observations, the 

statistical retrieval approach was applied to the SMOS 

brightness temperatures available in the level 2 products over 

the eastern part of Australia. In this region of Australia, several 

international projects have been carried in the domain of soil 

moisture mapping over the last decade, as the International 

Soil Moisture Network (ISMN) [41] or SMOS 

calibration/validation field campaigns such as NAFE’06 field 

campaign [42].  

     First of all, an ensemble data matrix using SMOS DGG 

data, MODIS NDVI data and soil moisture from ERA-interim 

was created. The time matching process between all these data 

covered the time period from 16
st
 September to 31

th
 December 

2010 with a 2 or 3 day time step depending on the SMOS 

overpass time. The statistical calibration was computed using 

the whole time period: no validation step as done for the 

SMOSREX data set was attempted, considering the rather 

short time period available for this Australian data set. As in 

the case of the SMOSREX data set, we also calibrated the 

regression equations using the NDVI index or not using it, in 

order to analyze to potential interest of using this index to 

account for the vegetation effects in the retrieval equations. 

 

V. RESULTS  

 

A. Equation calibration from the SMOSREX data set 

 

    Table 1 shows the results obtained in the calibration of the 

regression equations (12) from the SMOSREX in-situ data. As 

expected, better results in terms of R
2
 were obtained for the bi-

angular configuration ( = 20º &  = 40º) than for the mono-

angular configuration (at  = 40º), the latter being a specific 

case of the bi-angular configuration. For both angular 

configurations (mono- and bi-angular), better results were 

obtained in terms of R
2
, when the NDVI index was included in 

the regression equation. The improvement in the results 

obtained using the NDVI index was larger for the mono-

angular configuration. This can be partially explained by the 

fact the NDVI brings information on the vegetation dynamics 

in the regression equation. In the soil moisture retrieval 

process, the vegetation effect can be better corrected from bi-

angular and bi-polarization observations than from mono-

angular and bi-polarization observations [21]. From the 

obtained results, it seems that the information on the 

vegetation dynamics "brought" by the NDVI index is more 

"useful" in the mono-angular than in the bi-angular regression 

equations. 

 The calibration results are generally relatively similar 

whatever the years used for the calibration and validation 

processes. However, larger differences in terms of R
2
 were 

obtained for the mono-angular configuration without using 

NDVI (NDVI set equal to zero): the R
2
 varied from 0.861 

using year 2004 for the calibration to 0.584, using year 2007. 

More generally, slightly better results in the calibration were 

obtained for years 2004 and 2006, but no clear explanations 

could be found for this result. However, it should be noted that 

2005 was a very dry year (precipitations over the site were 

even lower than those of 2003, the year of a big drought over 

Europe). 

 

B. Validation from the SMOSREX data 

 

   The regression equations were calibrated using one year (see 

the above section) and then evaluated using the three other 

years. The RMSE between measured and retrieved soil 

moisture obtained using the calibrated regression equations are 

presented in Table 2. Conversely to the previous section, better 

results were generally obtained for the mono-angular 

configuration, which seems to be more robust when it is used 

in a "retrieval" mode. 

    As for the previous section, in most cases (except for the 

mono-angular configuration using year 2005 for calibration), 

the RMSE between observed and estimated soil moisture is 

lower when the NDVI index is used in the regression equations  
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TABLE 1.- COEFFICIENTS OF DETERMINATION R2 (P<0,05*) OBTAINED IN THE CALIBRATION OF THE REGRESSION EQUATIONS 

ACCOUNTING FOR OR NOT ACCOUNTING FOR THE NDVI INDEX FOR EACH YEAR. FOR THE MONOANGULAR CONFIGURATION (AT 40º) 

AND BI-ANGULAR (AT 20º AND 40º). 

 

 

               mono-angular configuration 40 - VH- NDVI = 0 

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI) R2 

2004 516 1.559  1.811  -0.763  0.861 

2005 979 0.733  1.719  -1.157  0.654 

2006 800 1.337  1.815  -0.956  0.794 

2007 1243 1.035  1.424  -0.607  0.584 

 

mono-angular configuration 40 - VH- accounting for NDVI      

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI) R2 

2004 516 1.144  1.814  -0.795 0.642 0.888 

2005 979 0.126  2.028  -1.302 1.810 0.869 

2006 800 1.345  2.176  -1.162 0.870 0.875 

2007 1243 0.474  1.292  -0.392 1.162 0.788 

 

Bi-angular configuration 20-40 - VH- NDVI = 0      

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI) R2 

2004 516 -0.730 -6.456 3.356 5.850 -2.826  0.901 

2005 979 1.323 0.687 0.447 1.510 -1.893  0.798 

2006 800 0.423 -4.641 2.144 4.941 -1.888  0.883 

2007 1243 0.572 -0.829 0.925 2.348 -1.844  0.771 

 

Bi-angular configuration 20-40 - VH- accounting for NDVI      

calibration year N a b(TbV20) c(TbV40) d(TbH20) e(TbH40) f(NDVI) R2 

2004 516 -0.538 -5.152 3.064 4.616 -2.396 0.382 0.909 

2005 979 0.529 0.046 1.412 1.107 -1.797 1.432 0.899 

2006 800 0.473 -4.076 2.624 3.771 -1.582 0.776 0.920 

2007 1243 0.319 -1.271 1.359 1.869 -1.235 0.806 0.811 

 

in comparison to the case where NDVI is set equal to zero.  

The minimum values of the RMSE (0.051 & 0.053 m
3
/m

3
) 

were obtained for the mono-angular configuration and the 

calibration years 2005 and 2007 while the maximum values of 

the RMSE (0.091 & 0.095 m
3
/m

3
) were obtained for the bi-

angular configuration (NDVI = 0) and the calibration years 

2004 and 2005. 

 

 
 

TABLE 2.- ROOT MEAN SQUARE ERROR (RMSE) VALUES BETWEEN MEASURED AND RETRIEVED SOIL MOISTURE FOR EACH VALIDATION 

YEAR FOR THE MONO AND BI ANGULAR CONFIGURATIONS (BOTH V & H POLARIZATIONS) ACCOUNTING FOR NDVI OR SETTING NDVI 

EQUAL TO ZERO. THE RMSE VALUES WERE COMPUTED OVER THE VALIDATION PERIOD EXCLUDING THE YEAR USED FOR CALIBRATION 

(THIS LATTER IS GIVEN IN THE FIRST COLUMN). N REPRESENTS THE NUMBER OF OBSERVATION PHASES USED FOR THE RETRIEVALS.  

 

  40º VH 20 and 40º VH 

  NDVI NDVI=0 NDVI NDVI=0 

 N Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

2004 3022 0.0415 0.064 0.0445 0.075 -0.0105 0.0642 -0.032 0.0912 

2005 2559 -0.0068 0.0677 -0.0199 0.0518 -0.018 0.0831 -0.0405 0.0955 

2006 2738 -0.0015 0.0577 0.0053 0.0638 -0.0073 0.0617 -0.0064 0.0652 

2007 2295 -0.0009 0.0531 0.006 0.0571 0.0231 0.0538 0.0504 0.0782 
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    Illustrations of the retrieval results are given in Figures 3a-b 

which present the retrieved soil moisture for the year 2005 to 

2007 using 2004 as the calibration year. The soil moisture 

estimations using the mono-angular approach are given in 

Figure 3a. We could note there are some periods where the 

observed soil moisture presents a positive bias in comparison 

to the estimated soil moisture (i.e. in spring or autumn 

seasons). Improved results using the NDVI index (RMSE = 

0.064 m
3
/m

3
 versus 0.075 m

3
/m

3
) could generally be obtained 

during these periods. In comparison with the above results, a 

lower bias was obtained in the retrieved soil moisture using the 

bi-angular approach (figure 3b), especially when the NDVI 

index was used (bias = -0.015 m
3
/m

3 
and 0.041 m

3
/m

3
, 

respectively, for the bi-angular and mono-angular regression 

equations using the NDVI index). Conversely, soil moisture 

tends to be over-estimated in winter ("wet" season). Also, 

outliers (i.e. large discrepancies between retrieved and 

measured soil moisture) were obtained for wet soil conditions 

mainly when NDVI was set equal to zero. 

 

 
(a) 

 
(b) 

Fig. 3. Retrieved soil moisture estimations for the validation years 2005 to 

2007 using the mono-angular configuration (a) and the bi-angular 

configuration at 20 & 40 degrees (b) over the SMOSREX site. Measurements 

of SM are represented by red triangle, the estimated soil moisture from the 

proposed regression equations are represented by green squares (when NDVI 

is accounted for in the equation) and blue crosses (when NDVI is set equal to 

zero). 

 

C. Calibration from SMOS and MODIS data: application to 

Australia 

 

  The regression equations (12) were applied to the actual 

Level-2 SMOS brightness temperatures available over the 

eastern part of Australia. The coefficient of determination (R
2
) 

resulting from the calibration of these equations is given in 

Figure 4. Low R
2
 values (0 – 0.1) were obtained in a high 

proportion of the pixels when NDVI was set equal zero in the 

calibration process (figure 4a). However, results were strongly 

improved using using the NDVI index in the regression 

equation (figure 4b). In particular, the R
2
 coefficient of the 

calibration increased significantly in that case.  
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(b) 
Fig. 4. Coefficient of determination (R2, p<0.05*) of the regression 

equations computed from the SMOS and MODIS data for the eastern part of 

Australia during to the period covering September to December (a) setting 

NDVI=0 and (b) accounting for the NDVI index in the regression equation. 

(Sept.-Dec., 2010) 
 

Figure 5 shows the values of R
2
 larger than 0.6 obtained in a 

the pixels over the studies region (representing 10% of all the 

pixels)     

 

 
Fig. 5. Number of pixels for each coefficient of determination intervals 

estimated from the SMOS and MODIS observations over the eastern part of 

Autralia. 
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    Figure 6a presents the spatialized coefficient for the NDVI 

variable calibrated in the regression equation (ie the f 

coefficient in equation (12)). The map of this coefficient value 

was compared to the map of the GLC2000 global land cover 

(figure 6b). The regression coefficients of the NDVI are 

generally well related to the land cover type present in the 

eastern part of Australia. This result could be explained by the 

fact that this coefficient mainly depends on the vegetation 

structure which is largely determined by the land cover type. 

As is shown in Figure 6a, the center part of Australia can be 

distinguished in blue colours (large and positive values of the 

regression coefficient for NDVI) and this area is characterized 

by bare soil, and semi-arid areas in the GLC2000 land cover 

type. An opposite case is obtained along the cost of the study 

area, where negative values of the regression coefficient for 

NDVI where obtained, while the land cover types correspond 

to more vegetated areas (forest and grassland and/or croplands 

with higher NDVI values). 
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(b) 

Fig. 6. (a) Regression coefficient of the NDVI variable for DGG points and (b) GLC2000 vegetation classification for the same region (black points 

represents the DGG points, the scale bar represents the vegetation cover fraction of each class from the highest vegetation fraction (1) to bare soil (12). 

 

VI. SUMMARY AND CONCLUSIONS  

 

    The algorithm presented in this paper attempted to improve 

the semi-empirical regression approach proposed by [24] to 

retrieve soil moisture from L-band passive microwaves 

observations. We evaluated whether the information on the 

vegetation dynamics provided by vegetation indexes measured 

in the optical domain (such as NDVI) could be useful to 

correct for the vegetation effects and improve the soil moisture 

retrievals. For both the calibration and the validation steps of 

this study, it was necessary to have an estimate of soil moisture 

which could be considered as a reference. However, obtaining 

such a "reference" soil moisture value is very difficult in most 

studies. Over SMOSREX, we used measurements from Teta-

probes. However these probes provide an estimate of the 

volumetric soil moisture over the ~0-5 cm top soil layer which 

is significantly larger than the surface soil moisture "seen" by 

the L-band radiometer over the ~ 0-3 cm top soil layer [43]. 

Also, these estimates are point measurements, located in an 

area which was not actually observed by LEWIS, while 

LEWIS provided an estimate of the soil moisture over large 

footprints that varied for each incidence angle. 

    Therefore, the soil moisture data used in the calibration and 

validation phases of this study are only indicative of the actual 

soil moisture conditions in the fallow field monitored by 

LEWIS and do not correspond to reference soil moisture 

values. This effect could explain some discrepancies between 

measured and retrieved soil moisture obtained in this study. 

For instance, in many cases, the point measurements of soil 

moisture by the in situ probes outside the LEWIS footprints 

did not represent correctly the effects of ponding due to strong 

rainfalls or hails. Despite this issue of representativeness of the 

in situ soil moisture values, the proposed regression algorithm 

showed good performances in soil moisture retrievals over the 

SMOSREX site.  

    At large spatial scale, a preliminary study was carried out to 

illustrate the potential application of the proposed regression 

algorithm to spaceborne observations. The algorithm 

calibration using SMOS and MODIS information over the 

eastern Australia has shown that improved performances of the 

regression model where obtained when the NDVI index is 

included in the regression equations. As over the SMOSREX 

site, the issue of the representativeness of the soil moisture 

derived from the ECMWF model simulations should also be 

taken into account in the evaluation of the obtained results. In 

particular, the ERA-Interim surface soil moisture also 

corresponds to a larger top soil layer than the one actually 

"seen" by SMOS. As for the NDVI coefficients, clear patterns 

could be identified in the spatial distribution of the regression 

coefficients for the NDVI variable and they could be related to 

the land cover types. However, the data time series was not 

long enough (approximately 4 months from September to 

December) to validate the algorithm.  

 In conclusion, the proposed semi-empirical approach 

combining microwave and optical observations provided 

promising results from the SMOSREX data set over the fallow 

field, even though, soil moisture retrievals have generally 

found to be very difficult over this very complex vegetation, 

due to the combined effects of the presence of litter, senescent 

vegetation, spatial heterogeneity in the vegetation type, 

structure and cover fraction [25-26, 44]. Analysis should be 

carried out to better evaluate the potential application of the 

proposed approach to long term spaceborne observations 
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(which were only briefly illustrated over the eastern Australian 

regions in this study). Also, the NDVI index was used in this 

study as an estimate of the vegetation optical depth, although 

other indices such as the LAI, the Enhanced Vegetation Index 

(EVI) or the Normalized Difference Water Index (NDWI) are 

also interesting options to evaluate instead of NDVI. The use 

of these other vegetation indices will be evaluated in a future 

work at a large spatial scale and over a longer time period 

(more than one year at least to carry out both calibration and 

validation steps) from both SMOS and MODIS observations 

as made here over eastern Australia. 
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